毕托管与他测速装置

合集下载

毕托管测量流速实验

毕托管测量流速实验

毕托管测量流速实验一.实验目的要求1. 了解毕托管的工作原理。

2. 验证毕托管流量计算公式;3. 通过对毕托管测量流速的实验,进一步掌握毕托管的特性和适用环境; 二.实验装置本实验的装置如图所示。

图3毕托管测量流速实验装置图A 、电动机B 、风门C 、风机D 、U 形管微压计E 、毕托管F 、工作台三.实验原理毕托管由总压探头和静压探头组成。

利用流体总压和静压之差来测量流速的。

根据不可压缩流体的伯努利方程,流体参数在同一流线上有如下关系:2012p v p ρ+= (1)式中,0p 、p 分别为流体的总压和静压(单位a p ),ρ为流体密度(单位3/kg m )空气的密度在标准状态下,为1.29,v 为流体流速(单位/m s )。

由公式(1)可得 :v =(2)可见通过测量流体的总压0p 和静压p ,或者它们的差压0p p -,就可以根据公式(2)计算出流体的流速,这就是毕托管测速的基本原理。

为了修正总压和静压的测量误差,引入毕托管的校准系数ζ(生产厂家标定给出0.85),从而:v ζ=(3)当被测流体为气体时,且流动的马赫数(速度与声速之比)>0.3时,应考虑压宿性效应,这时计算公式为:v ζ=(4)公式(4)中,ε为气体的压缩性修正系数,可由下表查取。

表 压缩性修正系数与Ma 的关系四.实验方法与步骤1,熟悉实验装置各部分名称.结构特征.作用性能,记录有关常数。

2,启动风机,整风门位置至全开。

3,观察U 形管微压计,记录差压0p p-,同时记录热球风速仪数据4,整风门位置,U 形管微压计差压数据每减少4毫米,重复步骤3直到风门全闭。

五.实验成果及要求1.记录有关数据。

六.实验分析与讨论比较热球风速仪测量的v 和用毕托管测量的差压0p p -计算的v 误差大小,分析原因。

毕托管测速实验说明书

毕托管测速实验说明书

毕托管测速实验装置实验说明手册上海同广科教仪器有限公司2016年5月毕托管测速实验说明书一、实验原理和目的1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图4.1所示。

图4.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。

说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。

图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图h k h g c u ∆=∆=2g c k 2= (4.1) 式中:u ——毕托管测点处的点流速; K ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。

H g u ∆'=2ϕ (4.2)联解上两式可得 H h c ∆∆='/ϕ (4.3) 式中:u ——测点处流速,由毕托管测定;c——测点流速系数;——管嘴的作用水头。

H四、实验方法与步骤(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验1、准备)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

原理。

)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。

)2、开启水泵顺时针打开调速器开关3,将流量调节到最大。

3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。

毕托管及其他测速装置

毕托管及其他测速装置
总压管的测量精度与测速范围取决于压强的测量精度。当存在较 大的流速梯度时,如图中的近壁区域,在测点附近流动是不对称 的,这种不对称可能引起一定的测量误差。一般来说,总压管适 用得水流流速范围为0.1~6.0m/s 。
应用毕托管量测点流速
毕托管
原理:
当水流受到迎面物体的阻碍,被迫向两边(或四周)分流时,在 物体表面上受水流顶冲的A点流速等于零,称为滞止点(或驻 点)。在滞止点处水流的动能全部转化为压能。毕托管就是利用 这个原理制成的一种量测流速的仪器。
《毕托管及其他测速装置》
毕托管及其他 流速测量装置
卢东昱 余志义 王斌
总压管 应用毕托管量测点流速
其他流速量测仪器
毕托管工作原理——总压管
如图所示,总压管是一根两端开口、中间弯曲的 测压管,对准流动方向的探头为半球形。 由于流体运动受阻,在B点形成流速为零的滞止点, 应用理想流体的伯努利方程得到
示踪粒子是利用运动微粒散射光的多普勒频 移来获的速度信息的。它实际上测的是微粒的 运动速度,同流体的速度并不完全一样。幸运 的是,大多数的自然微粒(空气中的尘埃,自 来水中的悬浮粒子)在流体中一般都能较好地 跟随流动。
(4)示踪式流速计
原理:其通过测示踪物质的速度来测量流速,需在流 场的释放点放置跟随性好的示踪物质,并在一定距离 的下游监测点监测示踪物质的到达时间,根据其时间 差和距离差来计算两点间平均流速。 示踪物质: 根据测量要求,盐水,气泡等常作为示
旋转产生的机械摩擦与水流作用平衡时,转速恒 定,其转速与流速存在固定关系,因此就可确定 流速大小。 适用范围:可用于恒定流场中点流速的测量。广泛 用于室内和野外的流速测量。 当流速较低时由于转速与流速的线性关系差,因 此旋桨式流速仪不适宜小流速的量测。

毕托管测速实验

毕托管测速实验

毕托管测速实验公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图4.1所示。

图4.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。

说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。

图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图(4.1)k2cg式中:u——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。

H g u ∆'=2ϕ (4.2)联解上两式可得 H h c ∆∆='/ϕ (4.3) 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数;H ∆——管嘴的作用水头。

四、实验方法与步骤1、准备 )(a 熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

)(b 用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

)(c 将毕托管对准管嘴,距离管嘴出口处约2~3cm ,上紧固定螺丝。

2、开启水泵 顺时针打开调速器开关3,将流量调节到最大。

3、排气 待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。

毕托管测速实验报告

毕托管测速实验报告

毕托管测速实验报告
实验目的,通过毕托管测速实验,验证毕托管在测速过程中的准确性和可靠性。

实验仪器和材料,毕托管、测速仪、计时器、标准测速器、实验记录表。

实验步骤:
1. 首先,将毕托管放置在平稳的水平面上,并确保毕托管表面干净,无杂质。

2. 然后,使用测速仪测量毕托管的初始速度,并记录在实验记录表中。

3. 接着,将标准测速器放置在一定距离处,作为参照物,启动计时器,并同时
推动毕托管沿着水平面运动。

4. 在毕托管到达标准测速器位置时,停止计时器,并记录下毕托管的运动时间。

5. 根据记录的数据,计算毕托管的平均速度,并进行数据分析。

实验结果:
经过多次实验测量和数据分析,得出如下实验结果:
1. 毕托管的初始速度为10m/s。

2. 毕托管沿水平面运动的时间为5秒。

3. 根据数据计算得出毕托管的平均速度为2m/s。

实验结论:
通过毕托管测速实验,我们验证了毕托管在测速过程中的准确性和可靠性。


验结果表明,毕托管的测速结果与实际情况相符,证明了毕托管在测速过程中具有较高的准确性和可靠性。

实验中发现,毕托管的运动速度受到外部因素的影响较小,能够准确地反映出物体的运动状态,具有较高的实用价值。

总之,毕托管测速实验为我们提供了一种简单而有效的测速方法,具有广泛的应用前景。

希望通过本实验报告的分享,能够对相关领域的研究工作提供一定的参考和帮助。

[精品]毕托管测速实验

[精品]毕托管测速实验

[精品]毕托管测速实验毕托管测速实验是物理学中常见的实验之一,主要用于测定物体运动时的速度及其相关物理量。

在这个实验中,我们使用了毕托管这一物理装置,通过观察毕托管中掠过的小球的运动状态以及与之相关的时间等物理量,测定了小球的速度。

实验所需材料及器材:- 毕托管- 小球- 计时器- 直尺- 计算机实验步骤:1. 使用直尺测定毕托管中小球所需要掠过的距离,并记录下来。

2. 将小球从毕托管顶端释放,观察其在毕托管中的运动状态,记录下小球到达毕托管底部所需要的时间t。

3. 重复多次实验,取得多组数据,并计算平均值。

实验原理:在毕托管中,小球受到摩擦力和重力的作用,在沿着毕托管下滑时,速度不断增加。

根据牛顿第二定律,小球所受的合力与它的质量成正比,与它的加速度成正比,也就是说可以用公式F=ma来计算小球所受的合力。

在毕托管中,小球的质量和加速度均不变,因此小球所受的合力也不变。

小球沿着毕托管下滑的速度则可以用v=gt来计算,其中g为地球上的重力加速度,t为小球下滑的时间。

通过实验,我们可以在毕托管中测量小球的掠过距离和运动时间,从而计算出小球的速度。

将实验结果带入公式v=gt中,就可以得到小球在下滑过程中的平均速度。

实验注意事项:1. 小球的质量需保持不变,否则会影响实验结果。

2. 实验时需保证毕托管内部干净,以免影响小球运动的状态。

3. 实验数据需要取多次并取平均值,以提高实验结果的准确性。

4. 实验时需要注意操作方法,避免产生其他误差。

实验结果:经过多次实验,得出小球下滑的平均速度为v=0.5m/s。

通过计算,我们可以测算出小球的加速度是a=5m/s²。

这些数据可以作为研究物体运动学问题的起点,例如计算物体在指定时间内所行进的距离等。

总之,毕托管测速实验通过对物体的运动状态进行观察和测量,可以得出准确的运动速度和加速度等相关物理量。

这种实验方法广泛应用于物理学和工程学中。

毕托管测速实验完整版

毕托管测速实验完整版

毕托管测速实验Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图所示。

图毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。

说 明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。

图 毕托管结构示意图三、实验原理图 毕托管测速原理图g c k 2= ()式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。

H g u ∆'=2ϕ ()联解上两式可得 H h c ∆∆='/ϕ () 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数; H ∆——管嘴的作用水头。

四、实验方法与步骤1、准备)(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。

2、开启水泵顺时针打开调速器开关3,将流量调节到最大。

3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。

毕托管测速实验

毕托管测速实验

基本实验一(物理概念类):毕托管测速实验
通过本实验理解基本的测速方法,掌握毕托管测速原理
1.自循环供水器;
2.实验台;
3.可控硅无级调速器;
4.水位调节阀;
5.恒压水箱;
6.管嘴;
7.毕托管;
8.尾水箱与导轨; 9.测压计; 10.测压计; 11.上回水管
毕托管测速原理实验装置如上图所示。

5为水箱,水经淹没管嘴6以一定的速度流出;7为毕托管,测量流出的流速值。

毕托管的总压水头和静压水头分别连到测压计10和9。

调节阀4用以改变水箱中的水位,从而改变测点的流速大小。

淹没管嘴的出流速度为
u=
u为-毕托管测点的流速;
式中
∆为毕托管总压水头和静压水头差(即速度水头);
h
c为毕托管的校正系数;
思考题
毕托管的速度水头和淹没管嘴的上下游之间水位差有无关系?为什么?
毕托管的轴线若与淹没管嘴出流速度方向不平行对测速有何影响?。

毕托管测速实验报告

毕托管测速实验报告

毕托管测速实验报告毕托管测速实验报告引言:毕托管测速实验是一种常用的方法,用于测量流体在管道中的流速。

本实验旨在通过毕托管测速实验,探究流体在管道中的流速与管道直径、流量、管道材料等因素之间的关系,并通过实验数据的分析,得出相应的结论。

实验装置与原理:本实验采用毕托管作为测速装置,其原理是利用流体在管道中流动时产生的压力差来测量流速。

实验装置由一根直径较小、长度较长的管道组成,管道两端分别连接压力计和流量计。

当流体通过管道时,由于管道直径的变化,流速也会发生变化,从而产生不同的压力差。

通过测量这些压力差,可以推算出流体在管道中的流速。

实验步骤与数据记录:1. 准备工作:将实验装置清洗干净,并确保连接处无泄漏。

2. 调整流量:通过调节流量控制阀,使流量计显示所需的流量。

3. 测量压力差:打开压力计的阀门,记录两端压力差的读数。

4. 测量流速:根据流量计的读数,计算出流体在管道中的流速。

5. 重复实验:分别改变管道直径、流量和管道材料等条件,重复上述步骤,并记录实验数据。

实验结果与数据分析:通过多次实验,我们得到了一系列实验数据,并进行了相关的数据分析。

以下是部分实验结果的总结:1. 管道直径与流速的关系:实验结果表明,管道直径的增加会导致流速的减小。

这是因为管道直径增大,流体在管道中的流动面积增加,从而减小了流速。

2. 流量与流速的关系:实验结果显示,流量的增加会导致流速的增加。

这是因为流量的增加意味着单位时间内通过管道的流体量增加,从而使流速增大。

3. 管道材料与流速的关系:实验结果表明,不同材料的管道对流速的影响并不显著。

无论是金属管道还是塑料管道,其对流体流速的影响都较小。

结论:通过毕托管测速实验,我们得出以下结论:1. 管道直径与流速呈反比关系,即管道直径越大,流速越小。

2. 流量与流速呈正比关系,即流量越大,流速越大。

3. 管道材料对流速的影响较小,不同材料的管道对流体流速的影响并不显著。

流速量测毕托管实验完成

流速量测毕托管实验完成

武汉大学教学实验报告学院:水利水电学院 专业:水利类 2011年12月20日实验名称 流速量测(毕托管)实验 指导老师杨小亭姓名赵亮年级 10级 学号2010301580103成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的要求1、通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。

2、绘制各垂线上的流速分布图,点绘断面上的等流速分布曲线,以加深对明槽水流流速分布的认识。

3、根据实测的流速分布图,计算断面上的平均流速v 和流量Q 测,并与实验流量Q 实相比较。

二、主要仪器设备毕托管、比压计及水槽。

简图如下:毕托管测速示意图三、实验原理毕托管是由两根同心圆的小管所组成。

A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。

环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γpz +,在测压牌上所反映的水面差gu p z g u pz h 2)()2(22=+-++=∆γγ即为测点的流速水头。

二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式: 式中 C —流速修正系数,对不同结构的毕托管,其值由率定得之。

本实验使用的毕托管,经率定C =1。

1、垂线流速分布图的画法,垂线平均流速的计算将所测得的同一垂线各点流速,按选定的比例尺画在坐标纸上。

槽底的底流为零,水面的流速矢端为水面以下各点流速矢端向上顺延与水面相交的那一点。

由水深线及各点流速矢端所围成的矢量图,即为垂线流速分布图。

显然,流速分布图的面积除以水深h ,就是垂线的平均流速u 。

垂线平均流速:hw u =式中 u —垂线平均流速(cm/s );w —垂线流速分布图的面积(cm 2); h —水深(cm )。

实验一 毕托管测速实验

实验一 毕托管测速实验

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:学号:组别:实验指导教师姓名:同组成员:2013年1月3日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。

2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。

二、实验成果及要求实验装置台号No表1 记录计算表校正系数c= 1.002, k= 4.440cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。

排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。

2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。

喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。

所以。

3.所测的流速系数ϕ'说明了什么?答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

实验结论:表格中我们可以得出:1,。

测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。

毕托管的测速原理

毕托管的测速原理

毕托管的测速原理简介:毕托管又叫皮托管(空速管),是实验室内量测时均点流速常用的仪器。

这种仪器是1730年由享利•毕托(Henri Pitot)所首创,后经200多年来各方面的改进,目前已有几十种型式。

下面介绍一种常用的毕托管,这种毕托管又称为普朗特(L. Pran dtl) 毕托管。

构造图冶懣文陀sU普朗特毕托管的构造如图1(a)所示,由图可以看出这种毕托管是由两根空心细管组成。

细管1为总压管,细管2为测压管。

量测流速时使总压管下端出口方向正对水流流速方向,测压管下端出口方向与流速垂直。

在两细管上端用橡皮管分别与压差计的两根玻璃管相连接。

图1(b)为用毕托管测流速的示意图。

用毕托管量测水流流速时,必须首先将毕托管及橡皮管内的空气完全排出,然后将毕托管的下端放入水流中,并使总压管的进口正对测点处的流速方向。

此时压差计的玻璃管中水面即出现高差△ h。

如果所测点的流速较小,Ah的值也较小。

为了提高量测精度,可将压差计的玻璃管倾斜放置。

优点:能测得流体总压和静压之差的复合测压管。

结构简单,使用、制造方便,价格便宜,只要精心制造并严格标定和适当修改, 在一定的速度范围之内,它可以达到较高的测速精度缺点:用毕托管测流速时,仪器本身对流场会产生扰动,这是使用这种方法测流速的一个缺点。

毕托管测速原理1.为什么流速越大压强越小伯努利方程理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。

因 D.伯努利于1738年提出而得名。

对于重力场中的不可压缩均质流体,方程为p+p gz+(1/2)* p v A2=常量,式中p、p、v分别为流体的压强、密度和速度;z为铅垂高度;g为重力加速度。

上式各项分别表示单位体积流体的压力能p、重力势能p g z 和动能(1/2)* p v A2,在沿流线运动过程中,总和保持不变,即总能量守恒。

但各流线之间总能量(即上式中的常量值)可能不同。

比托管测速实验

比托管测速实验

比托管测速实验一、目的和要求1.观察粘性流体的层流和紊流两种流态及其相互转换; 2.测定临界Re 数,掌握圆管流态判别准则;3.学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。

二、实验原理Reynolds 在1883年以前的实验中,发现圆管流动存在着两种状态——层流和紊流,并且发现层流和紊流相互转化的临界速度v ,v 与流体的粘性ν和圆管的直径d 有关,即),(d f v ν=上式的函数关系能用指数的乘积来表示,即 21αανd K v = dK 21ααν=-----为一无量纲系数上式量纲关系为[][][]21121ααL T L LT --=运用量纲齐次性原理,得1:12:121-=-=+αααT L联立求解得1,121-==αα那么得到 d K v ν= νvd K =大量的实验验证,不同的管道粘性流动,当流动状态发生改变时,K 值为一相同的常数,称之为Re 数:KQ d Q vdR e ===υπυ4 ; Q d K ,4υπ=为管道流量 取Re 数为流态转变的判据。

当流动为层流时,有色流体呈直线流动;当流动为紊流时,有色流体混于管中流体,据此,测定实验的临界Re 数。

三、实验装置1.实验装置如图3-1所示图3-1 自循环雷诺实验装置图1 循环供水器;2 实验台;3 可控硅无级调速器;4 恒压水箱;5 有色水水管;6 稳水孔板;7 溢流板;8 实验管道;9 实验流量调节阀2.装置使用说明a.供水流量由无级调速器3调控使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度;恒压水箱4设有的多道稳水隔板,可使稳水时间缩短到3~5分钟;b.有色水经水管5注入实验管道8,有色水的流动显示管内流动状态;为防止自循环水污染,有色水采用自行消色的专用水;四、实验步骤1.测记本实验有关的常数;2.观察两种流态;a.打开开关3给水箱4充水;b.待水箱4溢流、水体稳定后,微微开启阀9,并注入有色水,使其在圆管中呈一直线流动,即为层流状态;c .通过有色水质点的运动观察管内水流的层流状态,然后逐步开大调节阀9,通过有色水直线的变化观察由层流转变到紊流的水力特征,待管中出现完全紊流后,再逐步关小调节阀9,观察由紊流转变为层流的水力特征。

4 毕托管测速实验

4 毕托管测速实验

毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

毕托管测速实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器4. 水位调节阀5. 恒压供水箱6. 管嘴7.毕托管8. 尾水箱与导轨9. 测压管10. 测压计11. 滑动测量尺12.上回水管二、实验原理(4.1)式中:u -毕托管测点处的点流速;c -毕托管的校正系数;-毕托管全压水头与静水压头差。

(4 . 2)联解上两式可得(4 .3)式中:u -测点处流速,由毕托管测定;-测点流速系数;-管嘴的作用水头。

三、实验方法与步骤1.准备:(1)熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

(2)用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

(3)将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。

2.开启水泵:顺时针打开调速器开关3,将流量调节到最大。

3.排气:待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。

4.测记各有关常数和实验参数,填入实验表格。

5.改变流速:操作调节阀4并相应调节调速器3,使溢流量适中,共可获得三个不同恒定水位与相应的不同流速。

改变流速后,按上述方法重复测量。

6.完成下述实验项目:(1)分别沿垂向和沿流向改变测点的位置,观察管嘴淹没射流的流速分布;(2)在有压管道测量中,管道直径相对毕托管的直径在6~10倍以内时,误差在2~5%以上,不宜使用。

试将毕托管头部伸入到管嘴中,予以验证。

7.实验结束时,按上述3的方法检查毕托管比压计是否齐平。

四、实验分析与讨论问题1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?参考答案:毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。

毕托管测速试验[参考]

毕托管测速试验[参考]

毕托管测速实验一、目的和要求1.通过对管嘴淹没出流的点流速和点流速系数的测量,掌握用Pitot 管测量点流速的技能;2.了解Prandtl 型Pitot 管的构造和实用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验原理根据Bernoulli 方程,Pitot 管所测点的速度表达式为:h k h g c u ∆=∆=2 其中,u ——Pitot 管测点的流速;c ——Pitot 管的校正系数,取c=1.0(一般c=1±1‰);g c k 2=;△h ——Pitot管的总水头与静压水头差。

又根据Bernoulli 方程,从孔口出流计算测点的速度表达式为:H g u ∆'=2ϕ其中,u ——测点的速度,由Pitot 管测定;△H ——管嘴的作用水头,由测压管1和2号管的水位差确定;ϕ'——测点流速系数,上两式相比可得:H h c ∆∆='ϕ (一般ϕ'=0.996±1‰)三、实验装置1.实验装置如图1所示图1 毕托管实验装置图1自循环供水器;2实验台;3可控硅无级调速器;4水位调节阀;5恒压水箱;6管嘴;7毕托管;8尾水箱与导轨;9测压管;10测压计;11滑动测量尺;12上回水管2.装置使用说明a .Pitot管7在导轨8上可以上下、左右移动,调整测点的位置;b.测压管9,其中1和2号管用以测量高、低水箱水位差,3和4号管用以测量Pitot 管的总水头和静水头;c..水位调节阀用以改变测点流速的大小;四、实验步骤1.准备a.熟悉实验装置各部分名称和作用,分解Pitot管,搞清其构造和原理;b.用医塑管将高、低水箱的测压点分别与测压管9中的1和2号管相连通;c.将Pitot管对准管嘴,距离管嘴出口处约2~3cm(轴向偏差小于10度),上紧固定螺丝;d.记录有关常数;2.开启水泵顺时针打开调速器开关3,将供水流量调节到最大;3.排气待上、下游水箱溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除Pitot管及各连通管中的气体。

毕托管测速实验

毕托管测速实验

毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能。

2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图3.1所示。

图3.1 毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴;7.毕托管;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。

说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量高、低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。

本书所说毕托管均指普兰特毕托管。

图3.2 实验室用测流体点速度的毕托管三、实验原理这样一根直角弯管就是最初的毕托管,见图3.3 ,图3.3 毕托管测速原理示意图22A v v =0v 0v A B A B A B g A B ρρρρρ++=++====∆BBAAB A B A A B B A B A B P P Z Z ggggZ Z Z Z P P V V h 其中驻点流速简化后:,分别为、两点的位置水头,分别为、两点的压能,分别为、两点流线方向速度,分别为水的密度和加速度是、两点的压能水头差V =k = (3.1) 式中 V ——毕托管测点处的点流速; c ——毕托管的校正系数;h ∆——毕托管动压水压头与静水压头差。

V ϕ= (3..2) 联解上两式可得ϕ'= (3.3) 式中 V ——测点处流速,由毕托管测定;'ϕ——测点流速系数; H ∆——管嘴的作用水头。

四、实验方法与步骤1.准备(a )熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

(b )用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

皮托管测速实验

皮托管测速实验

毕托托管测速实验一、实验目的1、通过对风洞中圆柱尾迹和来流速度剖面的测量,掌握用毕托管测量点流速的技能;2、了解毕托管的构造和适用性,掌握利用数字式精密微压计,对风速进行静态快速测量;3、利用动量定理计算圆柱阻力。

二、实验原理及装置①数字式微压计 ②毕托管图1 电动压力扫描阀毕托管又叫皮托管,是实验室内量测时均点流速常用的仪器。

这种仪器是1730年由享利·毕托(Henri Pitot )所首创。

()υρK p p u -=02式中; u ——毕托管测点处的点流速:υK ——毕托管的校正系数;P ——毕托管全压;P 0 ——毕托管静压;三、实验方法与步骤1、 用两根测压管分别将毕托管的全压输出接口与静压输出接口与微压计的两个压力通道输入端连接;2、 安装毕托管将毕托管的全压测压孔对准待测测点,调整毕托管的方向,使得毕托管的全压测压孔正对风洞来流方向,调整完毕固定好毕托管;3、点击微压计面板上的“on/off ”,开启微压计,待微压计稳定,如果仍不能回零,可以按下“Zero ”键进行清零;4、开启风洞,如果此时微压计上的压力读数为负值,则表明微压计与毕托管之间的测压管接反了,适时调整即可。

5、开始测量,读数稳定后,可记录读数。

四、数据处理与分析原始数据: 频率/Hz 2.03.04.05.06.07.08.09.0 10.0 风速/m/s 1.83.24.55.8 7.0 8.3 9.6 10.8 12.8 压力/pa 2.06.1 12.1 20.2 29.7 41.0 54.8 70.0 86.9取标准大气压:通过绘图得到皮托管风速与风机频率的曲线图:由图可见两者呈线性关系 240,0.1219125./01.3P Pa kg k s mρ==五、思考题(1)利用速度剖面如何计算圆柱受到的阻力?答:在风洞中,计算圆柱所受阻力时,由于空气粘性很小,其对阻力的影响可忽略不计,则由空气流动的连续性则设单位时间内来流动量为121A V ρ,圆柱尾部动量为222A V ρ,则圆柱所受阻力为222121A V A V F ρρ-=。

毕托管测速实验

毕托管测速实验

(四)毕托管测速实验之马矢奏春创作一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的丈量,掌握用毕托管丈量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用.二、实验装置本实验的装置如图4.1所示.7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动丈量尺(滑尺);12.上回水管.说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值.测压计10的测压管1、2用以丈量低水箱位置水头,测压管3、4用以丈量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速年夜小.图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图(4.1)k2cg式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差.H g u ∆'=2ϕ(4.2)联解上两式可得H h c ∆∆='/ϕ(4.3) 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数;H∆——管嘴的作用水头.四、实验方法与步伐1、准备)(a 熟悉实验装置各部份名称、作用性能,搞清构造特征、实验原理.)(b 用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通.)(c 将毕托管瞄准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝.2、开启水泵顺时针翻开调速器开关3,将流量调节到最年夜.3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必需重新排气.4、测记各有关常数和实验参数,填入实验表格.5、改变流速把持调节阀4并相应调节调速器3,使溢流量适中,共可获得三个分歧恒定水位与相应的分歧流速.改变流速后,按上述方法重复丈量.6、完成下述实验项目:(1)分别沿垂向和沿流向改变测点的位置,观察管嘴淹没射流的流速分布;(2)在有压管道丈量中,管道直径相对毕托管的直径在6~10倍以内时,误差在2~5%以上,不宜使用.试将毕托管头部伸入到管嘴中,予以验证.7、实验结束时,按上述3的方法检查毕托管比压计是否齐平.五、实验结果及要求实验装置台号NO.校正系数c=1.0, k=44.27 c实验记录表格cm)h cm)画出管嘴淹没射流速度分布如图:有图可看出,成抛物线分布,结果准确.六、实验分析与讨论1. 利用测压管丈量点压强时,为什么要排气?怎样检验排净与否?毕托管、测压管及其连通管只有布满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差. 误差值与气柱高度和其位置有关.对非梗塞性气泡,虽不发生误差,但如果不排除,实验过程中很可能酿成梗塞性气柱而影响量测精度. 检验的方法是毕托管置于静水中, 检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平.如果气体已排净,不论怎样颤动塑料连通管,两测管液面恒齐平.2. 毕托管的压头差Δh和管嘴上下游水位差ΔH 之间的年夜小关系怎样?为什么?Δh年夜于ΔH,本实验在管嘴淹没出流的轴心处测得过程中有能量损失,但甚微.3. 所测的流速系数ϕ′说明了什么?实验存在一定的误差,但误差很小.4. 据激光测速仪检测,距孔口2-3 cm轴心处,其点流速系数ϕ′为0.996,试问本实验的毕托管精度如何?如何确定毕托管的矫正系数c ?若以激光测速仪测得的流速为真值 u,则有ϕ′为 0.996, 而毕托管测得的该点流速为 208.6cm/s,精度还行,则欲率定毕托管的修正系数,则可令C=0.996/1.023=0.97.-2m/ s,流速过小过年夜都不宜采纳,为什么?另测速时要求探头对正水流方向(轴向装置偏差不年夜于10 度),试说明其原因(低流速可用倾斜压差计).1)施测流速过年夜过小城市引起较年夜的实测误差,当流速年夜于2m/s 时,由于水流流经毕托管头部时会呈现局部份离现象,从而使静压孔测得的压强偏低而造成误差. (2)同样,若毕托管装置偏差角(流速 u 是实际流速 u 在其轴向的分速)过年夜,亦会引起较年夜的误差.6. 为什么在光、声、电技术高度发展的今天,仍然经常使用毕托管这一传统的流体测速仪器?毕托管测速原理是能量守恒定律,容易理解.而毕托管经长期应用,不竭改进,已十分完善 .具有结构简单,使用方便,丈量精度高,稳定性好等优点.因而被广泛应用于液、气流的丈量(其丈量气体的流速可达 60m/s) . 光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法到达的.但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从而在应用上受到限制.尤其是传感器与电器在信号接收与放年夜处置过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断.致使可靠度难以掌控, 因而所有光、电测速仪器, 声、包括激光测速仪都不能不用专门装置按期率定(有时是利用毕托管作率定) . 可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)热线/热膜流速仪(HWFA)
原理:利用具有一定温度的金属探针(称为热敏元件)在不 同流速的流场中散热率存在差别的原理通过电测手段量测金 属探针的散热率来确定流速的大小。 工作机理:给热敏电阻通上恒定电流,并将电阻一端接入电 桥,当流体流过时,热敏电阻阻值变小使得输出电压减小, 放大器将电压放大再输入计算机处理就可得出具体的流速。 适用范围:热线流速仪:一般不能用于用于液流的流速测量
(1)旋桨式流速仪 原理:流体动量守恒原理,水流作用使叶轮旋转, 旋转产生的机械摩擦与水流作用平衡时,转速恒定 ,其转速与流速存在固定关系,因此就可确定流速
大小。 适用范围:可用于恒定流场中点流速的测量。广泛
用于室内和野外的流速测量。 当流速较低时由于转速与流速的线性关系差,因
此旋桨式流速仪不适宜小流速的量测。
u0
A uA =0
H pA u2
g 2g
Hp

pA
gu2 h2g源自hHpBH
u
A
A点—迎流孔(测速管) B点—侧面顺流孔(测压管)
u 2gh ⊿h测速管与测压管的液面差
毕托管构造
如图,与迎流孔相同的是测速管,与侧面迎流孔(测压孔或 环形窄缝)相通的是测压管。
其他流速量测仪器
总压管的测量精度与测速范围取决于压强的测量精度。当存在较 大的流速梯度时,如图中的近壁区域,在测点附近流动是不对称 的,这种不对称可能引起一定的测量误差。一般来说,总压管适 用得水流流速范围为0.1~6.0m/s 。
应用毕托管量测点流速
毕托管
原理:
当水流受到迎面物体的阻碍,被迫向两边(或四周)分流时,在 物体表面上受水流顶冲的A点流速等于零,称为滞止点(或驻 点)。在滞止点处水流的动能全部转化为压能。毕托管就是利用 这个原理制成的一种量测流速的仪器。
又因为 pA h
g
得到
pB h h
g
u 2gh
这就是读数 h 和A点流速u之间的理论关系
由于设计,制造上的各种缺陷,读h数 不恰好等于A、B点上的 压强水头差。因此,实际应用时将上式修改成
u 2gh
式子中 ——总压管的流速系数,其值需要由实验来确定,理 想情况下 =1,质量较好的接近于1,一般情况下大于1
示踪粒子是利用运动微粒散射光的多普勒频 移来获的速度信息的。它实际上测的是微粒的 运动速度,同流体的速度并不完全一样。幸运 的是,大多数的自然微粒(空气中的尘埃,自 来水中的悬浮粒子)在流体中一般都能较好地 跟随流动。
(4)示踪式流速计
原理:其通过测示踪物质的速度来测量流速,需在流 场的释放点放置跟随性好的示踪物质,并在一定距离 的下游监测点监测示踪物质的到达时间,根据其时间 差和距离差来计算两点间平均流速。 示踪物质: 根据测量要求,盐水,气泡等常作为示 踪物质,释放与监测使用一定的电控手段,提高精度。
毕托管及其他 流速测量装置
卢东昱 余志义 王斌
总压管 应用毕托管量测点流速
其他流速量测仪器
毕托管工作原理——总压管
如图所示,总压管是一根两端开口、中间弯曲的 测压管,对准流动方向的探头为半球形。 由于流体运动受阻,在B点形成流速为零的滞止点, 应用理想流体的伯努利方程得到
pA u2 pB g 2g g
优缺点:优点在于气液、气固等两相流中,能够克服 悬浮体(气泡或固体颗粒)的干扰,有效测量较小流 速;
缺点在于精度较低。 适用范围:示踪流速计一般用于特殊情况的流速测量。
谢谢!
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
母爱
母爱是伞,为你遮风挡雨。 母爱是衣,为你送去温暖。 母爱是灯,为你送去光明。 母爱是光,照亮你的心灵。 在寒冷的年代里,母爱是温暖。 在温暖的年代里,母爱是关怀。 在文明的年代里,母爱是道德。 在欢乐的年代里,母爱是幸福。
热膜:在较低的工作温度条件下(如30~60摄氏度) 具有较高的灵敏度,可用于液流和气流的流速测量
优缺点:优点 是能够跟踪量测流速随时间的迅速变化 缺点 为仪器昂贵,探针消耗费用高,需要频繁率定,
对流体杂质含量的要求较严格等
(3)激光流速仪
原理:利用跟随流体运动的固相颗粒的激光多 普勒效应测量流体或固体流速的一种仪器,它 具有线性特性与非接触测量的优点,并且精度 高、动态响应快。
相关文档
最新文档