最新重庆八中—2018学年度(下)初二年级期末考试
重庆八中2018-2019学年八下英语《8套试卷合集》期末模拟试卷
重庆八中2018-2019学年八下英语期末模拟试卷二、单项填空。
(每小题1分,共8分)请阅读下面各小题,从题中所给的A、B、C、D四个选项中选出最佳选项。
28.-What did your teacher say ?-She she the newspaper at that time.A. said; is readingB. said; was readingC. says; was readingD. Says; is reading29.-My father on business for two weeks. He will return in three days.A. has been awayB. leftC. has leftD. will leave30.-I find very interesting English movies.A. this; to watchB. it; watchC. that; to watchD. it; to watch31.-What a nice watch ! How long you it ?-For just two weeks.A. will; buyB. have; hadC. were; havingD. did; buy32.-Kate didn’t watch that movie last night.- .A. Mary didn’t too.B. Neither did May.C. Mary did either.D. Neither Mary did.33.-Do you know the History Museum ?-Next Friday.A. when will they visitB. when they will visitC. when did they visitD. when they visited34.-Would you like to go swimming in river, John?-Swim ?Sorry ,our teachers always tell us in the river alone.A. don’s swimB. to not swimC. not swimmingD. not to swim35.-Shall we go for a picnic in the forest park tomorrow ?-Yes, it rains heavily.A. unlessB. ifC. untilD. when三、完形填空。
重庆八中2018-2019学年八下语文期末模拟试卷+(8套名校模拟卷)
重庆八中2018-2019学年八下语文期末模拟试卷一.积累与运用(37分)1.古诗文名句默写(11分)(1)斯是陋室,_____________。
(2)浊酒一杯家万里,_________________。
(3)_________________,却话巴山夜雨时。
(4)春蚕到死丝方尽,_________________。
(5)_________________,病树前头万木春。
(6)为篱下,黄花开遍,____________。
(7)__________________,星河欲转千帆舞。
(8)浮光跃金,___________。
(9)_____________,猛浪若奔。
(10)耳闻不如目见,________________。
(11)__________________,不尽江滚滚来。
2. 阅读下面文字,按要求答题。
(5分)文学是一个绚.烂迷人的世界。
文学是一幅意境高远的国画,你尽可流转明眸,欣赏蓝天白云、激流飞瀑;文学是一座诧紫嫣红的花园,你尽可敞开心fēi,呼吸玫瑰馥郁、秋菊清香;,,、。
走进这个世界,我们能砥砺闪光的智慧,丰富纯洁的情感,熏陶高贵的灵魂。
(1)给加点的字注音,根据拼音写出汉字。
(2分)绚.烂心fēi(2)文段中有一个错别字,请找出并改正。
(1分)改为(3)根据画线的句子,在横线上续写一句话,使之与前面画线句构成排比句。
(2分),,、。
3. 下列句子中加点成语使用正确的一项是(2分)()A. 邻居李大妈生活方式极为健康,平时深居简出....,不是逛街就是跳广场舞,忙得不亦乐乎。
B. 台湾著名作家李敖是一个具有传奇色彩的人物,这位颇受争议的作家一直令大陆读者充耳不闻....。
C. 352省道东台西延段路旁的绿化带巧妙地结合了地形地势,形成了层次分明、鳞次栉比....的靓丽风景线,令人赏心悦目。
D.今年的政府工作报告指出,实施乡村振兴战略各地要因地制宜....,要大力发展绿色生态农业,带领农民走共同富裕之路。
2018-2019学年重庆八中八年级(下)期末数学试卷(含解析)
2018-2019学年重庆八中八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题10个小题,每小题4分,共40分)1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3 B.C.﹣3 D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0 B.x≠2C.x≠0且x≠2 D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3 B.x=﹣3 C.x=0 D.x=3或x=06.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4 B.k>4 C.k<0 D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2 B.4 C.6 D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.B卷(50分)一、填空题:(本大题共5个小题,每小题4分,共20分)21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B 地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC =2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.二、解答题(本大题共3个小题,每题10分,共30分)26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A 的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案与试题解析一、选择题1.【解答】解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.【解答】解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.【解答】解:六边形的内角和是(6﹣2)×180°=720°.故选:D.5.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.【解答】解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.【解答】解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.【解答】解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.【解答】解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题11.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.【解答】解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.【解答】解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.【解答】解:根据比例的合比性质,原式=;15.【解答】解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.【解答】解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题17.【解答】解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.【解答】解:原式=,=,=.当a=3时,原式=.19.【解答】解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.【解答】解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.B卷一、填空题21.【解答】解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.【解答】解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.【解答】解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验y=﹣为方程的解,得到a≠﹣2,∵1﹣有整数解,则符合条件的所有整数a为﹣3,﹣4(舍去).故答案为:﹣3.24.【解答】解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.【解答】解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.二、解答题26.【解答】解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵EM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.【解答】解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,EH=EH,∴△EHD0≌△EHB(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D0G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D0G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4。
2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析
2018-2019学年重庆八中八年级第二学期期末数学试卷一、选择题1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(共6个小题)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.先化简,再求值:(﹣a+1+)÷,其中a=3.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣【分析】把点(﹣1,3)代入解析式即可求出k的值.解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的对应角相等可得∠D=∠A.解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数【分析】直接利用分式有意义则分母不等于零进而得出答案.解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.解:六边形的内角和是(6﹣2)×180°=720度.故选:D.5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0【分析】先移项得x2﹣3x=0,然后利用因式分解法解方程.解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.8【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=90【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题(6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为1:2.【分析】根据相似三角形的周长的比等于相似比得出.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.一组数据10,9,10,12,9的中位数是10.【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=4.【分析】利用根与系数的关系可得出方程的两根之积为﹣4,结合方程的一个根为﹣1,可求出方程的另一个根,此题得解.解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.若=3,则=4.【分析】根据比例的合比性质即可直接完成题目.解:根据比例的合比性质,原式=;15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为15.【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为3.【分析】根据S△AOC﹣S△BOC=S△AOB,列出方程,求出k的值.解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=20【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.先化简,再求值:(﹣a+1+)÷,其中a=3.【分析】先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把a的值代入进行计算即可.解:原式=,=,=.当a=3时,原式=.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为50人;(2)在扇形统计图中,B所对应扇形的圆心角是144度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.【分析】(1)根据在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=x(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.【分析】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(﹣1,1)可得直线EF的解析式,求出点G的坐标后即可求解.解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为﹣3.【分析】不等式组整理后,根据所有整数解的和为﹣9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验a=﹣3,2,﹣1,﹣6,则符合条件的所有整数a为﹣3.故答案为:﹣3.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为360千米.【分析】由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为360千米,由于V=2V普快,因此BC距离为360千米的三分之二,即240千米,普快离开C占的距离为高铁360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=360千米,此时距A站的距离为720﹣360=360千米.解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.【分析】(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B两种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE ≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为(3,3);(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D G G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4.。
2018-2019学年重庆八中八年级(下)期末数学试卷
2018-2019学年重庆八中八年级(下)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.(4分)反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.(4分)若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.(4分)分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.(4分)六边形的内角和等于()A.180°B.360°C.540°D.720°5.(4分)方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.(4分)下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.(4分)如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.(4分)菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.(4分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.(4分)函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.(4分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.(4分)一组数据10,9,10,12,9的中位数是.13.(4分)关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.(4分)若=3,则=.15.(4分)已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.(4分)双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.四、填空题:(本大题共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.(4分)因式分解:x3﹣2x2y+xy2=.22.(4分)如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.(4分)若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.(4分)2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C 地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.(4分)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C 三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C 三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(本大题共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B 两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.。
重庆市八中2018-2019学年八年级下学期期末数学试题(有解析)
重庆市八中2018-2019学年八年级下学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.反比例函数k y x=经过点(1,3-),则k 的值为( ) A .3 B .3- C .13 D .13- 2.若ABC DEF ∽△△,若50A ∠=︒,则D ∠的度数是( )A .50︒B .60︒C .70︒D .80︒ 3.分式12x -有意义,则x 的取值范围为( ) A .0x ≠B .2x ≠C .0x ≠且2x ≠D .x 为一切实数 4.六边形的内角和为( )A .720°B .360°C .540°D .180° 5.方程23x x =的解是 ( )A .3x =B .3x =-C .0x =D .3x =或0x = 6.下列命题是真命题的是( )A .方程23240x x --=的二次项系数为3,一次项系数为-2B .四个角都是直角的两个四边形一定相似C .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D .对角线相等的四边形是矩形7.关于x 的一元二次方程240x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A .4k ≤B .4k <C .4k ≥D .4k > 8.一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为( ) A .4 B .5 C .8 D .10 9.某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为x ,则由题意可得方程( ) A .220(1)90x +=B .22020(1)90x ++=C .22020(1)20(1)90x x ++++=D .20(12)90x +=10.函数y kx b =+与(0)k y k x=≠在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题11.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为________.12.一组数据10,9,10,12,9的中位数是__________.13.关于x 一元二次方程240x mx +-=的一个根为1x =-,则另一个根为x =__________.14.若x y =3,则x+y y =_______.15.已知一元二次方程29180x x -+=的两个解恰好分别是等腰ABC 的底边长和腰长,则ABC 的周长为__________.16.双曲线15y x=,2k y x =在第一象限的图象如图,过1y 上的任意一点A ,作y 轴的平行线交2y 于点B ,交x 轴于点C ,若1AOB S =,则k 的值为__________.17.因式分解:3222x x y xy +=﹣__________.18.如图,在反比例函数1(0)y x x =-<与4(0)y x x=>的图象上分别有一点E ,F ,连接EF 交y 轴于点G ,若(1,1)E -且2EG FG =,则OG =__________.19.若关于x 的一元一次不等式组1322x x a x⎧-≤⎪⎨⎪-<-⎩所有整数解的和为-9,且关于y 的分式方程22142a y a y y +-=--有整数解,则符合条件的所有整数a 为__________. 20.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从A 地出发匀速驶向B 地,到达B 地停止;同时一普快列车从B 地出发,匀速驶向A 地,到达A 地停止且A ,B 两地之间有一C 地,其中2AC BC =,如图①两列车与C 地的距离之和y (千米)与普快列车行驶时间x (小时)之间的关系如图②所示则高铁列车到达B 地时,普快列车离A 地的距离为__________千米.21.某超市促销活动,将A B C ,,三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A B C ,,三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A B C ,,三种水果631kg kg kg ,,;乙种方式每盒分别装A B C ,,三种水果262kg kg kg ,, .甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A 水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为225::时,则销售总利润率为__________.100%=⨯利润(利润率)成本三、解答题22.解方程:(1)210x x +-=(2)(2)(3)20x x ++=23.先化简,再求值:2344111a a a a a -+⎛⎫-++÷ ⎪++⎝⎭,其中3a =. 24.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A 、B 、C 、D ;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为 人;(2)在扇形统计图中,B 所对应扇形的圆心角 度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人....愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义()()00a a a a a ⎧≥⎪=⎨-<⎪⎩. 结合上面经历的学习过程,现在来解决下面的问题:在函数1y kx b =-+中,当1x =时,3y =,当0x =时,4y =.()1求这个函数的表达式;()2在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;()3已知函数8y x=的图象如图所示,结合你所画的函数图象,直接写出不等式81kx b x-+≥的解集.26.为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了A 、B 两种原材料,A 的单价为每件6元,B 的单价为每件3元.该同学的创意作品需要B 材料的数量是A 材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B 材料;(2)在该同学购买B 材料最多的前提下,用所购买的A ,B 两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2%(0)a a >标价,但无人问津,于是该同学在标价的基础上降低%a 出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了1%2a ,求a 的值.27.如图,ABCD □中,点E 为BC 边上一点,过点E 作EF AB ⊥于F ,已知2D AEF ∠=∠.(1)若70BAE ∠=︒,求BEA ∠的度数;(2)连接AC ,过点E 作EG AC ⊥于G ,延长EG 交AD 于点H ,若45ACB ∠=︒,求证:2AH AF AC =+.28.如图平面直角坐标系中,点A ,B 在x 轴上,AO BO =,点C 在x 轴上方,AC BC ⊥,30CAB ∠=︒,线段AC 交y 轴于点D ,DO =BD ,BD 平分ABC ∠,过点D 作DE AB ∥交BC 于E .(1)点C 的坐标为 .(2)将ADO △沿线段DE 向右平移得A D O '''△,当点D 与E 重合时停止运动,记A D O '''△与DEB 的重叠部分面积为S ,点P 为线段BD 上一动点,当S =求12CD D P PB ''++的最小值; (3)当A D O '''△移动到点D 与E 重合时,将A D O '''△绕点E 旋转一周,旋转过程中,直线BD 分别与直线A D ''、直线D O ''交于点G 、点H ,作点D 关于直线A D ''的对称点0D ,连接0D 、G 、H .当0GD H △为直角三角形时,直接写出....线段0D H 的长.参考答案1.B【解析】【分析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-3)=-3.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.2.A【分析】根据相似三角形的对应角相等可得∠D=∠A.【详解】∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.【点睛】此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.3.B【分析】直接利用分式有意义则分母不等于零进而得出答案.【详解】分式12x有意义,则x-2≠0,解得:x≠2.故选:B.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.4.A【解析】【分析】根据多边形内角和公式2180()n -⨯︒ ,即可求出.【详解】根据多边形内角和公式2180()n -⨯︒,六边形内角和(62)180720=-⨯︒=︒故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.5.D【详解】解:先移项,得x 2-3x =0,再提公因式,得x (x -3)=0,从而得x =0或x =3故选D .【点睛】本题考查因式分解法解一元二次方程.6.A【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.7.B【分析】由方程有两个不相等的实数根结合根的判别式,可得出△=36-4k>0,解之即可得出实数k 的取值范围.【详解】∵方程x2-4x+k=0有两个不相等的实数根,∴△=(-4)2-4k=16-4k>0,解得:k<4.故选:B.【点睛】此题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.C【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.【详解】如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=12AC=3,∴OB=22AB OA=4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:C.【点睛】此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.9.C【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.设月平均增长率的百分数为x ,20+20(1+x )+20(1+x )2=90.故选:C .【点睛】此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程. 10.D【分析】根据k 值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数y kx b =+与(0)k y k x=≠中, 当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D .【点睛】本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.11.1:2.【分析】根据相似三角形的周长的比等于相似比得出.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的周长比为1:2.故答案为:1:2.【点睛】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比. 12.10【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.【点睛】此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.13.4【分析】利用根与系数的关系可得出方程的两根之积为-4,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【详解】∵a=1,b=m,c=-4,∴x1•x2=ca=-4.∵关于x一元二次方程x2+mx-4=0的一个根为x=-1,∴另一个根为-4÷(-1)=4.故答案为:4.【点睛】此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于ca是解题的关键.14.4【解析】【分析】根据比例的性质即可求解.【详解】∵xy =3,∴x=3y,∴原式=3y+yy=4.故答案为:4.【点睛】本题考查了比例的性质,关键是得出x=3y.15.15【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.【详解】x 2-9x+18=0(x-3)(x-6)=0解得x 1=3,x 2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.【点睛】此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.16.3【分析】根据S △AOC -S △BOC =S △AOB ,列出方程,求出k 的值.【详解】由题意得:S △AOC -S △BOC =S △AOB ,522k -=1, 解得,k=3,故答案为:3.【点睛】此题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.17.()2x x y -【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-,故答案为()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.18.43【分析】过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F (2,2),结合E (-1,1)可得直线EF 的解析式,求出点G 的坐标后即可求解.【详解】过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图:∴EM ∥GO ∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E (-1,1)∴MO=1∴NO=2∴点F 的横坐标为2∵F 在4(0)y x x=>的图象上 ∴F (2,2)又∵E (-1,1)∴由待定系数法可得:直线EF 的解析式为:y=1433x +当x=0时,y=43 ∴G (0,43) ∴OG=43故答案为:43. 【点睛】此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.19.-4,-3.【分析】不等式组整理后,根据所有整数解的和为-9,确定出x 的值,进而求出a 的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a 的值,求出符合条件的所有整数a 即可.【详解】 解:1322x x a x⎧-≤⎪⎨⎪-<-⎩, 不等式组整理得:-4≤x <13a , 由不等式组所有整数解的和为-9,得到-2<13a≤-1,或1<13a≤2, 即-6<a≤-3,或3<a≤6, 分式方程22142a y a y y +-=--, 去分母得:y 2-4+2a=y 2+(a+2)y+2a ,解得:y=-42a + , 经检验y=-42a +为方程的解, 得到a≠-2, ∵22142a y a y y +-=--有整数解, ∴则符合条件的所有整数a 为-4,-3,故答案为:-4,-3.【点睛】此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键. 20.360【分析】由图象可知4.5小时两列车与C 地的距离之和为0,于是高铁列车和普快列车在C 站相遇,由于AC=2BC ,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B 站,此时两车距C 站的距离之和为360千米,由于V 高铁=2V 普快,因此BC 距离为360千米的三分之二,即240千米,普快离开C 占的距离为360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B 站时,普快列车离开B 站240+120=360千米,此时距A 站的距离为720-360=360千米.【详解】∵图象过(4.5,0)∴高铁列车和普快列车在C 站相遇∵AC=2BC ,∴V 高铁=2V 普快,BC 之间的距离为:360×23=240千米,全程为AB=240+240×2=720千米, 此时普快离开C 站360×13=120千米, 当高铁列车到达B 站时,普快列车距A 站的距离为:720-120-240=360千米,故答案为:360.【点睛】 此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.21.20%.【分析】分别设每千克A 、B 、C 三种水果的成本为x 、y 、z ,设丙每盒成本为m ,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x 表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:6x+3y+z=12.5x,∴3y+z=6.5x,∴每盒甲的销售利润=12.5x•20%=2.5x乙种方式每盒成本=2x+6y+2z=2x+13x=15x,乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,∴每盒乙的销售利润=20x-15x=5x,设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,解得m=10x.∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,总成本为:12.5x•2+15x•2+10x•5=105x,总利润为:2.5x•2+5x×2+1.2x•5=21x,销售的总利润率为21105xx×100%=20%,故答案为:20%.【点睛】此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.22.(1)x1x2;(2)x1=-7,x2=2.【分析】(1)先求出b2-4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)x2+x-1=0,b2-4ac=12-4×1×(-1)=5,,x1x2;(2)(x+2)(x+3)=20,整理得:x2+5x-14=0,(x+7)(x-2)=0,x+7=0,x-2=0,x1=-7,x2=2.【点睛】此题考查解一元二次方程,能选择适当的方法解一元二次方程是解题的关键.23.2+2aa-,-5.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【详解】原式=()222 3111aaa a--+÷++=()()()2 22112a a aa a+-++-=2+ 2aa -其中a=3,原式=2+3=-5 2-3.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.24.(1)50;(2)144°,图见解析;(3)16.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B 所对应扇形的圆心角是360°×2050=144°; “中”等级的人数是:50-15-20-5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A 1,A 2,和B 1,B 2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是21126= . 【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 25.()113y x =-+; ()2详见解析;()30x <或2x ≥【分析】(1)把x=0,y=4;x=1,y=3代入函数1y kx b =-+中,求出k 、b 即可;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【详解】(1)把x=0,y=4代入1y kx b =-+得:4=1b -+,∴b=3,把x=1,y=3,b=3代入1y kx b =-+得:=31+3k -,∴k=1,即函数的表达式为13y x =-+,(2)由题意得:2(1)13=4(1)x x y x x x +≥⎧=-+⎨-<⎩,画图象如下图:(3)由上述图象可得:当x<0或x ≥2时,81kx b x-+≥, 故答案为:x<0或x ≥2. 【点睛】本题考查了待定系数法求函数表达式,函数图象的画法,由图象写出不等式的解集,掌握函数的图象和性质是解题的关键. 26.(1)80件B 种原材料;(2)25. 【分析】(1)设该同学购买x 件B 种原材料,则购买12x 件A 种原材料,由购买原材料的总费用不超过480元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了12a%,即可得出关于y的一元二次方程,解之即可得出结论.【详解】(1)设该同学购买x件B种原材料,则购买12x件A种原材料,根据题意得:6×12x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+12 y),整理得:4y2-y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.【点睛】此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.27.(1)∠BEA=70°;(2)证明见解析;【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE≌△HGC (SAS),△EMA≌△CNH(HL),即可解决问题.【详解】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AN,即,∴AH=AM+HM=AF+2AC.【点睛】此题考查平行四边形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.(1)C(3,;(2)最小值为(3)D0H的值为或+2或-4或.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=12PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,在Rt △AOD 中,∵∠AOD=90°,∠OAD=30°,OD=23, ∴OA=3OD=6,∠ADO=60°, ∴∠ODC=120°, ∵BD 平分∠ODC , ∴∠ODB=12∠ODC=60°, ∴∠DBO=∠DAO=30°, ∴DA=DB=43,OA=OB=6,∴A (-6,0),D (0,23),B (6,0), ∴直线AC 的解析式为y=33x+23, ∵AC ⊥BC ,∴直线BC 的解析式为y=-3x+63,由323363y x y x ⎧+⎪⎨⎪-+⎩== ,解得333x y ⎧⎪⎨⎪⎩==,∴C (3,33).(2)如图2中,设BD 交O′D′于G ,交A′D′于F .作PH ⊥OB 于H .∵∠FD′G=∠D′GF=60°, ∴△D′FG 是等边三角形, ∵S △D′FG =233•D G '=, ∴D′G=23 , ∴DD′=3GD′=2, ∴D′(2,23), ∵C (3,33), ∴CD′=221(3)+=2,在Rt △PHB 中,∵∠PHB=90°,∠PBH=30°,∴PH=12PB , ∴CD'+D'P+12PB=2+D′P+PH≤2+D′O′=2+23,∴CD'+D'P+12PB 的最小值为2+23.(3)如图3-1中,当D 0H ⊥GH 时,连接ED 0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=3x,∵DB=43,∴2x+3x+x=43,∴x=23-2.如图3-2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+43.如图3-3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×13+⨯=+,42232如图3-4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=3x,∴3x+3x=43,∴x=23-2,∴D0H=2x=43-4.如图3-5中,当D0H⊥GH时,同法可得D0H=23-2.如图3-6中,当D G G⊥GH时,同法可得D0H=43+4.如图3-7中,如图当D0H⊥HG时,同法可得D0H=23+2.如图3-8中,当D0G⊥GH时,同法可得HD0=43-4.综上所述,满足条件的D0H的值为23-2或23+2或43-4或43+4.【点睛】此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.。
重庆八中-2018学年度(下)八年级下半期考试初二年级-英语试题
重庆⼋中-2018学年度(下)⼋年级下半期考试初⼆年级-英语试题英语试题第I卷(共80分)I.听⼒测试。
(共20分)略II.单项选择。
(每⼩题1分,共15分)have toothache today.-Maybe you should see a dentist and get X-ray.A. the; aB. /; aC. an; theD. a; antaught English-Nobody. He learned it by .A. him; himB. his; himselfC. him; himselfD. his; himyou think it’s good us to do chores-Yes. Because it can develop our and give us a better future.A. of; independent ; independence C. for; independent D. of; independence you go to the party tomorrow-No, if so, I’ll feel .A. lonely; aloneB. lonely; lonelyC. alone; aloneD. alone; lonelya volunteer, Judy always helps the young children their study. She thinks doing it makes a big difference her life.;to B. with; to C. at; in D. about; atGates lots of money to help the children. his help, the poor children can get a good education at school.A. gave off, Thanks forB. gave away, Thanks toC. gave up, Thanks toD. gave to, Thanks foryou, dad-I was that the dog could do so many useful things for the disabled.A. surprised; surprisedB. surprising; surprisingC. surprised; surprisingD. surprising; surpriseyou and Lucy go the birthday party last night-No, I didn’t, and .A. neither did herB. neither was sheC. neither she wasD. neither did sheour time to help others is a good way our time.-I agree with you. Let’s do it from now on.A. Volunteer, of spendB. Volunteer, to spendC. Volunteering; to spendingD. Volunteering, to spend,could you please the rubbish on the ground-Sorry, mum. I will at once.A. not to throw; pick up itB. not throw; pick them upC. not to throw; pick up themD. not throw; pick it upfound a little difficult for people to keep all the time.A. it’s; healthyB. it was; healthC. it; healthyD. it’s ; health32. You can do you like up the sick children in the hospital.A. whatever; to cheerB. however; cheeringC. however; cheers ;cheer’ll make my brother us some books as soon as he his work., will finish B. bring, finishes C. to bring; finishes D. to bring; will finish34. make yourself safe, you shouldn’t get off the bus it stops.A. In order that, unlessB. In order to, althoughC. In order to, until that, because35. My sister Linda herself basketball, so she went to see a doctor yesterday., played B. hurt, played C. hurt, playing D. hurts, playingIII.完型填空。
重庆八中八年级(下)期末数学试卷
八年级(下)期末数学试卷 题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.以下列各组数为三角形的三边,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,2322.下列二次根式是最简二次根式的是( )A.B. C. D. 124283.下列函数中,y 是x 的正比例函数的是( )A. B. C. D. y =2x−1y =x 3y =2x 2y =−2x +14.一鞋店试销一款女鞋,销量情况如表:这个鞋店的经理最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( )型号22.52323.52424.5数量/双5101583A. 平均数B. 众数C. 中位数D. 方差 5.如图所示,线段EF 过平行四边形ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB =4,BC =5,EF =3.那么四边形EFCD 的周长是( )A. 14B. 12C. 16D. 106.如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →→BO AB 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是( )A. B. C.D.7.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD为多少时,∠ABD=90°( )A. 13B.C. 12D.63628.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A. ,B. ,AB//DC AD//BC AB=DC AD=BCC. ,D. ,AO=CO BO=DO AB//DC AD=BC9.已知如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )A. B. C. D.10.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )A. 2B. 4C. 8D. 16311.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是( )A. ②③B. ③④C. ①②④D. ②③④12.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA 和折线OBCD,下列说法正确的是( )A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面二、填空题(本大题共6小题,共18.0分)13.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是______(填“甲”或“乙”)14.如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=______cm.15.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为____.16.如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则点P到OA的距离PD等于______.17.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是______.(结果保留根号)18.如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接BE,过A点作AF⊥AE交DP于点F,连接BF,若AE=2,正方形ABCD的面积为______.三、计算题(本大题共3小题,共18.0分)19.计算:(1)(3-)÷-×43363506(2)(7+4)(7-4)-(3-1)233520.为建设环境优美、文明和谐的新社区,某小区决定在道路两旁种植A ,B 两种树木,需要购买这两种树苗共1000棵A ,B 两种树苗的相关信息表单价(元/棵)植树费(元/棵)A205B 305设购买A 种树苗x 棵,绿化村道的总费用为y 元,解答下列问题(1)写出y (元)与x (棵)之间的函数关系式;(2)已知A 种树苗的成活率为90%,B 种树苗的成活率为95%,若预计这批树苗种植后成活925棵,则绿化村道的总费用需要多少元?(3)若绿化道路的总费用不超过31000元,则最多可购买B 种树苗多少棵?21.如图,平行四边形ABCD 中,∠D =108°,AB =7厘米,AD =6厘米,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DFA =2∠BAE(1)若∠DAF =32°.求∠FAE 的度数;(2)求证:AF =CD +CF .四、解答题(本大题共5小题,共40.0分)22.如图:已知,平行四边形ABCD,BE=DF,求证:AE∥CF.23.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC和AB的长;(2)证明:∠ACB=90°.24.一次函数CD:y=-kx+b与一次函数AB:y=2kx+2b,都经过点B(-1,4)(1)求两条直线的解析式;(2)求四边形ABDO的面积.25.阅读下列材料,并解决问题:材料1:对于一个三位数其十位数字等于个位数字与百位数字的差的两倍,则我们称这样的数为“倍差数”如122,2=2×(2-1);材料2:若一个数M 能够写成M =p 2-q 2+p +q (p 、q 均为正整数,且p ≥q ),则我们称这样的数为“不完全平方差数”,最大时,我们称此时的P 、q 为M 的一组2p−q p+2q “最优分解数”,井规定F (M )=.例如34=92-82+9+8=172-172+17+17,因为:p q 2×9−89+2×8=,=,>,所以F (M )=;252×17−1717+2×1713251398(1)求证:任意的一个“倍差数”与其百位数字之和能够被3整除;(2)若一个小于300的三位数N =140a +20b +C (其中1≤b ≤4,0≤c ≤9,且a 、b 、c 均为整数)既是一个“不完全平方差数”,也是一个“倍差数”,求所有F (N )的最大值.26.如图:一次函数y =()x +2交y 轴于A ,交y =3x -613于B ,y =3x -6交x 轴于C ,直线BC 顺时针旋转45°得到直线CD .(1)求点B 的坐标;(2)求四边形ABCO 的面积;(3)求直线CD的解析式.答案和解析1.【答案】B【解析】解:A、42+52≠62,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、62+82≠112,故不是直角三角形,故此选项错误;D、52+122≠232,故不是直角三角形,故此选项错误.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.【答案】C【解析】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误.C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确.D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.【答案】B【解析】解:根据正比例函数的定义可知选B.故选:B.根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.【答案】B【解析】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:B.众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.本题考查学生对统计量的意义的理解与运用.要求学生对统计量进行合理的选择和恰当的运用.5.【答案】B【解析】解:∵四边形ABCD为平行四边形,∴AO=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF,∴OF=OE=1.5,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD的周长=EF+FC+ED+CD,=OE+OF+AE+ED+CD,=1.5+1.5+5+4=12.故选:B.根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.本题主要考查平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.6.【答案】C【解析】解:利用图象可得出:当爸爸在半径AO上运动时,离出发点距离越来越远;在弧AB上运动时,距离不变;在OB上运动时,越来越近.故选:C.根据当爸爸在半径AO上运动时,离出发点距离越来越远;在弧BA上运动时,距离不变;在BO上运动时,越来越近,即可得出答案.此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.7.【答案】A【解析】解:在△BDC中,∠C=90°,BC=3cm,CD=4cm,根据勾股定理得,BD2=BC2+CD2,即BD==5cm.当∠ABD=90°时,AD2=BD2+AB2,其中AB=12cm,BD=5cm,则AD=cm=13cm,故选:A.根据勾股定理的逆定理满足AD2=BD2+AB2,可说明∠ABD=90°.本题考查了勾股定理的运用,考查了勾股定理逆定理的运用,本题中准确运用勾股定理与勾股定理的逆定理是解题的关键.8.【答案】D【解析】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.根据平行四边形判定定理进行判断.本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.9.【答案】A【解析】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选:A.先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k >0,b >0时函数的图象在一、二、三象限.10.【答案】A【解析】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s 12=[(x 1-)2+(x 2-)2+…+(x n -)2]=2,现在的方差s22=[(x 1+100--100)2+(x 2+100--100)2+…+(x n +100--100)2]=[(x 1-)2+(x 2-)2+…+(x n -)2]=2,方差不变.故选:A .比较两组数据可知,新数据是在原来每个数上加上100得到,结合方差公式得方差不变.本题说明了当一组数据中每个数都加上同一个数时,方差不变.11.【答案】D【解析】解:∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴OB=OA=OD=OC=AB=CD=1,∴△OAB ,△OCD 为等边三角形.∵AF 平分∠DAB ,∴∠FAB=45°,即△ABF 是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∴∠FAB=45°,∴∠CAH=45°-30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH ,由正三角形上的高的性质可知:DE=OD÷2,OD=OB ,∴BE=3ED .故选:D .这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.【答案】D【解析】解:A 、∵线段OA 表示所跑的路程S (米)与所用时间t (秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选:D.A、由于线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小莹的速度是没有变化的,B、小莹比小梅先到,由此可以确定小梅的平均速度比小莹的平均速度是否小;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定小梅是否在小莹的前面.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.13.【答案】甲【解析】解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.【答案】3【解析】解:∵在直角三角形中,斜边上的中线等于斜边的一半,∴BC=2CF=6cm,又∵DE是△ABC的中位线,∴DE=BC=3cm.故答案为:3.由直角三角形的性质易得CF为BC一半,即可求得BC长,而DE是Rt△ABC 的中位线,那么DE应等于BC的一半.此题主要考查了三角形的中位线定理和直角三角形的有关性质.15.【答案】a<c<b【解析】解:根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则b>c>a,故答案为:a<c<b.根据直线所过象限可得a<0,b>0,c>0,再根据直线陡的情况可判断出b>c,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大16.【答案】23【解析】解:如图,过C点作CE⊥OA,垂足为E,∵PC∥OA,PD⊥OA,垂足为D,∴PD=CE,∵∠AOB=60°,OC=4,在Rt△OCE中,CE=OC•sin60°=4×=2,∴PD=CE=.在△OCP中,由题中所给的条件可求出OP的长,根据直角三角形的性质可知,在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,故PD=OP.本题主要考查三角形的性质及计算技巧.17.【答案】2-23【解析】解:矩形内阴影部分的面积是(+)•-2-6=2+6-2-6=2-2.根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.18.【答案】10【解析】解:∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,∠BAD=∠EAF=∠BEF=90°,∴∠1+∠FAB=∠2+∠FAB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,在△AEB 和△AFD 中,,∴△AEB ≌△AFD (ASA ),∴AE=AF=2,∴△EAF 为等腰直角三角形.在Rt △EAF 中,由勾股定理,得EF==2.过点A 作AM ⊥EF 于M ,连接BD ,∴AM=MF=EM=EF=,∠AME=∠BEF=90°,∵点P 是AB 的中点,∴AP=BP ,在△AMP 和△BEP 中,,∴△AMP ≌△BEP (AAS ),∴BE=AM=DF=,∴DE=EF+DF=2+=3,在Rt △BED 中,BD====2,∴S 正方形ABCD =BD 2=×=10.故答案为:10.如图,由正方形性质和已知就可以得出∠EAF=∠DAB=90°,AB=AD ,可以得出∠1=∠2,由对顶角相等可以得出∠5=∠6,所以∠3=∠4,从而可以证明△AEB ≌△AFD ,可以求得AE=AF ,再利用勾股定理就可以求出EF 的值,过点A 作AM ⊥EF 于M ,由△AEF 是等腰直角三角形,可以得出∠AME=90°,由已知可以证明△AMP ≌△BEP ,可以得出BE=AM=,最后由勾股定理求出结论.本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质的运用,勾股定理的运用.熟记各性质与三角形全等的判定方法是解题的关键,难点是作辅助线构造全等三角形.19.【答案】解:(1)原式=3--43×1336×1350×6=2-2-1033=2-12;3(2)原式=49-48-(45-6+1)5=1-46+65【解析】(1)先根据二次根式的乘除法则运算,然后化简后合并即可;(2)利用平方差公式和完全平方公式计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:(1)设购买A种树苗x棵,则购买B种树苗(1000-x)棵,由题意得:y=(20+5)x+(30+5)(1000-x)=-10x+35000.(2)由题意,可得0.90x+0.95(1000-x)=925,解得x=500当x=500时,y=-10×500+35000=30000,∴绿化村道的总费用需要30000元.(3)由(1)知购买A种树苗x棵,B种树苗(1000-x)棵时,总费用y=-10x+35000,由题意,得-10x+35000≤31000,解得x≥400.所以1000-x≤600,∴最多可购买B种树苗600棵.【解析】(1)设购买A种树苗x棵,则购买B种树苗(1000-x)棵,根据总费用=(购买A 种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;(2)根据这批树苗种植后成活了925棵,列出关于x的方程,解方程求出此时x的值,再代入(1)中的函数关系式中即可计算出总费用;(3)根据绿化村道的总费用不超过31000元,列出关于x的一元一次不等式,求出x的取值范围,即可求解.此题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.21.【答案】(1)解:∵∠D=108°,∠DAF=32°,∴∠DFA=180°-∠D-∠DAF=40°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠DFA=∠FAB=40°,∵∠DFA=2∠BAE,∴∠FAB=2∠BAE.即∠FAE +∠BAE =2∠BAE .∴∠FAE =∠BAE ;∴2∠FAE =40°,∴∠FAE =20°;(2)证明:在AF 上截取AG =AB ,连接EG ,CG .∵∠FAE =∠BAE ,AE =AE ,∴△AEG ≌△AEB .∴EG =BE ,∠B =∠AGE ;又∵E 为BC 中点,∴CE =BE .∴EG =EC ,∴∠EGC =∠ECG ;∵AB ∥CD ,∴∠B +∠BCD =180°.又∵∠AGE +∠EGF =180°,∠AGE =∠B ,∴∠BCF =∠EGF ;又∵∠EGC =∠ECG ,∴∠FGC =∠FCG ,∴FG =FC ;又∵AG =AB ,AB =CD ,∴AF =AG +GF =AB +FC =CD +FC .【解析】(1)根据平行四边形的性质、平行线的性质证得∠DFA=∠FAB=40°;然后结合已知条件∠DFA=2∠BAE 求得∠FAE=∠BAE ,从而求得∠FAE 的度数; (2)在AF 上截取AG=AB ,连接EG ,CG .利用全等三角形的判定定理SAS 证得△AEG ≌△AEB ,由全等三角形的对应角相等、对应边相等知EG=BE ,∠B=∠AGE ;然后由中点E 的性质平行线的性质以及等腰三角形的判定与性质求得CF=FG ;最后根据线段间的和差关系证得结论.本题考查了平行四边形的性质、全等三角形的判定与性质.利用平行四边形的性质,可以证角相等、线段相等.其关键是根据所要证明的全等三角形,选择需要的边、角相等条件.22.【答案】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADE =∠CBF ,∵BE =DF ,∴DE =BF ,在△ADE 和△CBF 中,{AD =CB ∠ADE =∠CBF DE =BF∴△ADE ≌△CBF ,∴AE =CF ,∠AED =∠CFB ,∴AE ∥CF .【解析】先根据平行四边形的性质得AD ∥BC ,AD=BC ,则∠ADE=∠CBF ,再证明△ADE ≌△CBF 得到AE=CF ,∠AED=∠CFB ,然后根据平行线的判定得到AE ∥CF本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.23.【答案】(1)解:∵CD ⊥AB 于D ,BC =15,DB =9,∴CD ===12.BC 2−BD 2152−92在Rt △ACD 中,∵AC =20,CD =12,∴AD ===16,AC 2−CD 2202−122∴AB =AD +BD =16+9=25.(2)∵AC 2+BC 2=202+152=625=AB 2,∴△ABC 是Rt △,∴∠ACB =90°.【解析】(1)直接根据勾股定理求出CD 的长,进而可得出AD 的长,由此可得出结论; (2)根据勾股定理的逆定理即可得出结论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.24.【答案】解:(1)∵一次函数CD :y =-kx +b 与一次函数AB :y =2kx +2b ,都经过点B (-1,4),∴,{4=k +b 4=−2k +2b 解得,{k =1b =3∴一次函数CD :y =-x +3,一次函数AB :y =2x +6;(2)在y =-x +3中,令x =0,则y =3;令y =0,则x =3,即D (0,3),C (3,0);在y =2x +6中,令y =0,则x =-3,∴A (-3,0),∴四边形ABDO 的面积=S △ABC -S △CDO =×6×4-×3×3=12-4.5=7.5.1212【解析】(1)将点B (-1,4)代入函数解析式,解方程组即可得到两条直线的解析式; (2)以及函数解析式求得D (0,3),C (3,0),A (-3,0),依据四边形ABDO 的面积=S △ABC -S △CDO 进行计算即可.本题考查一次函数、三角形面积等知识,解题的关键是灵活应用待定系数法确定函数解析式.25.【答案】解:(1)设三位数百位数字是x ,个位数字是y ,∵十位数字等于个位数字与百位数字的差的两倍,∴十位数字是2(y -x ),100x +20(y -x )+y +x =81x +21y =3(27x +7y )能被3整除,∴任意的一个“倍差数”与其百位数字之和能够被3整除;(2)∵三位数N 小于300,1≤b ≤4,∴a =1,∴N =140a +20b +C =140+20b +c ,又∵N 是“倍差数”,当b =1时,N =164;当b =2时,N =185;当b =3时,N =202;当b =4时,N =223;∵M =p 2-q 2+p +q =(p +q )(p -q +1),∴164=222-192+22+19=822-822+82+82;202=1012-1012+101+101=512-502+51+50;∵F (164)=,F (202)=.51252151∴有F (N )的最大值.512【解析】(1)设百位数字是x ,个位数字是y ,由倍差数”得到十位数字是2(y-x ),进行化简即可证明.(2)由N 小于300,1≤b≤4,确定a 的值是1,再根据b 的是个值,求出满足条件的N ,在进行计算,比较大小后得到最大值.本题考查因式分解,数的因数分解.能够准确理解给的定义,找到数之间的关系是解决本题的关键.26.【答案】解:(1)由,解得,{y =13x +2y =3x−6{x =3y =3∴B (3,3).(2)由题意A (0,2),C (2,0),∴S 四边形ABCO =S △OCB +S △AOB =×2×3+×2×3=6.1212(3)如图,将线段BC 绕点B 逆时针旋转90得到C ′.∵△BCC ′是等腰直角三角形,∠BCD =45°,∴点C ′在直线CD 上,∵B (3,3),C (2,0),∴C ′(6,2),设直线CD 的解析式为y =kx +b ,则有,{6k +b =22k +b =0解得,{k =12b =−1∴直线CD 的解析式为y =x -1.12【解析】(1)构建方程组即可解决问题;(2)求出A 、C 两点坐标,根据S 四边形ABCO =S △OCB +S △AOB 计算即可; (3)如图,将线段BC 绕点B 逆时针旋转90得到C′.由题意可知点C′在直线CD 上,求出点C′坐标,利用待定系数法即可解决问题;本题考查一次函数的应用、四边形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,寻找特殊点解决问题,属于中考常考题型.。
2018八年级下册期末考试数学试卷及答案(精品范文).doc
【最新整理,下载后即可编辑】2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x2 C. y =2x D.y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是 A. 3cm ,4cm ,5cm B. 2cm ,2cm ,cm C. 2cm ,5cm ,6cm D. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是ABC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A .甲B .乙C .丙D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 30xS612OxS612OxS124O9. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 A .k ≤5 B .k ≤5,且k ≠1 C .k <5,且k ≠1 D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A BC D二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.xS66O13. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____________.14. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为 .16. 方程28150-+=的两个根分别是一个直角三角形的两x x条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ; ② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261-=x x20. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点BE EC=,求线段EC, D落在BC边上的点E处,折痕为GH.若:2:1CH的长.,其中 21. 已知关于x的一元二次方程()()2--++=1120m x m xm≠ .1(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.赁有限公司赁公司美国通用租赁公司GECAS20 兴业金融租赁公司20泰国都市航空10 德国普仁航空公司7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.订单(架)7 10 15 20 30 50 客户(家)1 12 2 224.有这样一个问题:探究函数11y=+的图象与性质.x小明根据学习一次函数的经验,对函数11=+的图象与性质yx进行了探究.下面是小明的探究过程,请补充完整:(1)函数11y=+的自变量x的取值范围是;x(2)下表是y与x的几组对应值.求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE . (1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)BDB27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A 翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy中,已知点(),M a b及两个图形1W和2W,若对于图形1W上任意一点(),P x y,在图形2W上总存在点(),P x y''',使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形2W是图形1W关于点M的关联图形,此时三个点的坐标满足2x ax+'=,2y by+'=.(1)点()P'-是点P关于原点O的关联点,则点P的坐标2,2是;(2)已知,点()C--,()D--以及点()3,0M4,14,1A-,()2,12,1B-,()①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y x=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 12345678910答案C C BD B A C BB B二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 3 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分) 19. 解:()2310x -=, ………………2分解得1310x =,2310x = (4)分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. (1)分设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=. 即()22239x x +=-. ………………3分解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ (1)分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分 (2)解:解方程()()21120m x m x --++=, 得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数, ∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. (5)分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分(2)解:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形. ………………3分订单(架) 7 10 15 20 30 45 50客户(家)1 12 10 2 2 2∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.………………4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面积为60⋅=. (5)BD AD分24. 解:(1)x≠0;………………1分(2)令113+=,m∴1m=;………………2分2(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE=OD,222+=,OF FD OE∴222+=.OF FD OD∴△OFD为直角三角形,且∠OFD=90°.………………3分在Rt△CED中,∠CED=90°,CE=3,4DE=,∴222=+ .CD CE DE∴5CD=. ………………4分又∵1122CD EF CE DE ⋅=⋅,∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b , ∴. 解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分F D B E (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C .∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE. (3)分(3)连CG, AC.由()P-轴对称可知,EA+EG=EC+EG,4,4CG长就是EA+EG的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3.∴EA+EG3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。
2018年重庆八年级下学期期末考试数学试题word版含答案
2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。
2024届重庆市第八中学八年级下册物理期末统考试题含解析
2024届重庆市第八中学八年级下册物理期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题1.如图所示,杠杆处于平衡状态,下列操作中能让杠杆继续保持平衡的是A.将左右两边的钩码均向外移动一格B.在左右两边钩码的下方各加一个钩码,位置保持不变C.将左右两边的钩码各去掉一个,位置保持不变D.将左边的钩码向里移动一格,同时将右边钩码去掉一个2.如图,利用水管测量某地的大气压值,下列判断正确的是()A.当地大气压强等于10.3m高的水柱产生的压强B.图中C点的压强大于B点的压强C.图中A点的压强等于B点的压强D.若把该实验装置移到海拔高度更高的地方,水管中水柱会变长3.两个相同的烧杯中分别装满了甲、乙两种不同的液体,把体积相等的A、B两球分别轻轻放入两杯液体中,最后静止时处于如图所示的状态(其中A球沉底),若A、B两球的浮力相等,则下列说法正确的是()A.球B排开液体的重力大于球A排开液体的重力B.球B的密度大于球A的密度C .球A 的重力大于球B 的重力D .甲液体对烧杯底部的压强大于乙液体对烧杯底部的压强4.如图中,重为5N 的木块A ,在水中处于静止状态,此时绳子的拉力为3N ,若绳子突然断了,木块A 在没有露出水面之前,所受合力的大小和方向是( )A .5N ,竖直向下B .3N ,竖直向上C .2N ,竖直向上D .8N ,竖直向下5.如图甲所示,物体A 的体积为V ,放入水中静止时,浸入水中的体积为V 1;现将一体积为V 2的物体B 放在物体A 上,物体A 刚好浸没在水中,如图乙所示。
则物体B 的密度为 ( )A .12V V ρ水 B .12V V V ρ-水 C .21V V ρ水 D .122V V V ρ+水 6.如图所示,杠杆始终处于水平平衡状态,改变弹簧测力计拉力的方向,使其从①一②一③.此过程中,弹簧测力计的示数将A.逐渐变大B.逐渐变小C.先变大后变小D.先变小后变大7.下列现象中不属于光的直线传播的是A.小孔成像B.穿过森林的太阳C.海市蜃楼D.手影游戏8.下列关于机械和功相关说法,正确的是()A.若重力对物体做了功,物体的运动状态一定发生改变B.所做有用功越多的机械,则其机械效率一定越大C.物体受到的合外力做功为零,则物体一定处于静止状态D.机械做功越快,则机械做功的功率一定越大9.下列说法中正确的是()A.组成物质的分子之间,只存在引力,不存在斥力B.组成物质的大量分子在做无规则运动C.0℃的物体具有的内能为零D.物体的内能越大则其机械能越大10.如图,轻质弹簧竖直放置,下端固定于地面,上端位于O点时弹簧恰好不发生形变.现将一小球放在弹簧上端,再用力向下把小球压至图中A位置后由静止释放,小球将竖直向上运动并脱离弹簧,不计空气阻力,则小球()A.运动至最高点时,受平衡力作用B.被释放瞬间,所受重力大于弹簧弹力C.从A点向上运动过程中,速度先增大后减小D.从O点向上运动过程中,重力势能转化为动能11.铝合金因具有坚固、轻巧、美观、易于加工等优点而成为多数现代家庭封闭阳台时的首选材料,这与铝合金的下列物理性质无关..的是A.较小的密度B.较大的硬度C.良好的导电性D.较好的延展性12.汽车上坡时,驾驶员要换成低挡,以减小汽车的行驶速度,这样做的目的是( )A.安全B.减小汽车的功率C .省油D .增大爬坡的牵引力 二、填空题13.历史上著名的证明大气压强存在的实验是_____实验,而最早测量出大气压强值的科学家是_____。
〖汇总3套试卷〗重庆市2018年八年级下学期物理期末达标测试试题
初二下学期期末物理试卷一、选择题(本题包括10个小题)1.如图,将边长为10cm的正方体木块放入装有某种液体的圆柱形容器中,木块静止时,有14的体积露出液面,此时液面比放木块前升高4cm,容器底部受到的液体压强变化了320Pa(g取10N/kg),则下列判断正确的是()A.液体的密度是1×103kg/m3B.木块的密度为0.8g/cm3C.木块受到的浮力是8ND.使木块完全浸没需要2N向下的压力【答案】D【解析】【详解】A.由题可知p1-p2=ρ液gh1-ρ液gh2=ρ液g(h1-h2)=ρ液gΔh=320Pa,液体密度:ρ液=320Pa10N/kg0.04m=0.8×103kg/m3;故A错误;B.木块处于漂浮状态,木块排开液体的体积:V排=(1-14)V木=34V木,根据漂浮条件可得:F浮=G木,ρ液gV排=ρ木gV木,ρ木=VV排木ρ液=34ρ液=34×0.8×103kg/m3═0.6g/cm3;故B错误;C.木块的体积V木=L3=(10cm)3=1000cm3=1×10-3m3,木块的重力G木=m木g=ρ木gV木=0.6×103kg/m3×10N/kg×1×10-3m3=6N;F浮=G木=6N;故C错误;D.木块完全浸没浮力F浮′=ρ液gV木=0.8×103kg/m3×10N/kg×1×10-3m3=8N;向下的压力F=F浮-G木=8N-6N=2N;故D正确。
2.趣味谜语:牛顿美滋滋地站在一平方米的地板上(打一物理学家),谜底是图中的()A.焦耳B.瓦特C.帕斯卡D.伽利略【答案】C【解析】【分析】【详解】牛顿美滋滋地站在一平方米的地板上,由谜面可知它的谜底是1牛每平方米,这是压强的单位。
故选C。
3.以下估测接近实际的是()A.某中学生的重力约50NB.托起两个鸡蛋所用的力大约是1NC.一个成年人站立时对地面的压强约为200帕D.跑百米的运动员的动能大约是3×105J【答案】B【解析】【详解】A.中学生的质量在50kg左右,受到的重力大约为G=mg=50kg×10N/kg=500N ,故A 错误;B .两个鸡蛋的质量在100g=0.1kg 左右,托起两个鸡蛋的力约为F=G=mg=0.1kg×10N/kg=1N ,故B 正确;C .成年人的体重在G=500N 左右,双脚站立时与水平地面的接触面积在0.05m 2左右,双脚对水平地面的压强为 p=2500N 0.05mF S =1.0×104Pa , 故C 错误; D .跑百米的运动员具有的动能大约为3000J ,故D 错误。
2023-2024学年重庆八中八年级(下)期末物理试卷及答案解析
2023-2024学年重庆八中八年级(下)期末物理试卷一、选择题(共14小题,每小题3分,共42分,每个题目只有一个选项符合题意。
)1.(3分)初二年级的小超同学,对生活中的一些物理量估测正确的是()A.小超游泳时受到的浮力约为50N B.小超体考时跳绳的功率约为2000WC.小超所在教室的大气压强约为1×106Pa D.小超从一楼走上二楼,克服重力做功约为1800J 2.(3分)下列说法正确的是()A.尘土飞扬,表明分子在不停地做无规则运动B.水和酒精混合后总体积变小,说明分子之间有间隙C.用手捏海绵,海绵的体积变小了,说明分子的体积变小了D.将两块表面平滑的铅块压紧后粘在一起,说明分子间只有引力3.(3分)图中的静电现象正确的是()A.如图甲,自由电子向右定向移动形成的电流方向向右B.如图乙,验电器的工作原理是同种电荷相排斥,异种电荷相吸引C.如图丙,毛皮摩擦橡胶棒的过程中橡胶棒会得到电子D.如图丁,细线悬挂的轻质泡沫塑料小球相互吸引,则两小球一定带有异种电荷4.(3分)如图所示,筷子发源于中国,是华夏饮食文化的标志之一。
使用筷子时虽然费力但能省距离。
选项所示的简单机械在使用中也能省距离的是()A.赛艇船桨B.钢丝钳C.羊角锤D.开瓶器5.(3分)游乐场上的翻滚过山车是一种惊险有趣的游戏,如图为过山车轨道的简化示意图。
过山车从高处的A点沿倾斜轨道加速滑下至B点,然后沿圆环轨道减速上升至圆环顶部C点,再沿圆环轨道加速运动至D点,最后沿水平轨道减速运动直到停止。
则下列说法中正确的是()A.整个运动过程中,过山车的机械能不变B.从A点到B点的过程中,过山车的动能转化为重力势能C.从B点到C点的过程中,过山车的重力势能增大,动能减小D.从C点到D点的过程中,过山车的重力势能增大,动能增大6.(3分)如图所示的现象中,分析错误的是()A.图甲中,热气球升空主要利用了空气的浮力B.图乙中,冰刀做得很薄可以增大对冰面的压强C.图丙中,吸盘吸附在墙壁上,此时外界大气压大于吸盘内的气压D.图丁中,装有相同质量的水的瓶子竖直放在海绵上,瓶子底面积越大海绵凹陷越明显7.(3分)为了彰显我国的海军力量,东部战区于2023年、2024年圆满完成“联合利剑”等演习任务。
2023-2024学年重庆八中八年级(下)期末数学试卷及答案解析.
2023-2024学年重庆八中八年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列交通标志中,是中心对称图形的是()A.B.C.D.2.(4分)要使分式有意义,则x应满足()A.x≠﹣1B.x≠2C.x≠±1D.x≠﹣1且x≠23.(4分)如图,在平行四边形ABCD中,AC,BD相交于点O,下列结论正确的是()A.AB=AD B.AB⊥AD C.AD=BC D.OB=OA4.(4分)下列各式从左到右的变形,是因式分解的是()A.12m2n=3m2•4n B.x2+2x+1=(x+1)2C.x2+xy﹣3=x(x+y)﹣3D.x(x+1)=x2+x5.(4分)如图,已知△ABC与△DEF位似,位似中心为O,且△ABC与△DEF的周长之比是4:3,则AO:DO的值为()A.4:7B.4:3C.3:4D.16:96.(4分)据国家文旅部统计,5月1日全国旅游收入为207.9亿元,5月1日、5月2日和5月3日的全国旅游收入之和为1027.96亿元.若全国旅游收入日平均增长率为x,则可以列出方程为()A.207.9+207.9(1+x)+207.9(1+x)2=1027.96B.207.9(1﹣x)2=1027.96C.207.9+207.9(1+x)2=1027.96D.207.9(1+x)2=1027.967.(4分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.C.4D.288.(4分)如图,第①个图形中共有5个小黑点,第②个图形中共有9个小黑点,第③个图形中共有13个小黑点,…按此规律排列下去,则第⑤个图形中小黑点的个数为()A.17B.21C.25D.299.(4分)若关于x的一元二次方程ax2+bx+3=0(a≠0)的一个根是x=1,则代数式2021﹣a﹣b的值为()A.﹣2018B.2018C.﹣2024D.2024(多选)10.(4分)已知反比例函数,下列说法正确的有()A.当m=2时,在每一个象限内,y随x的增大而增大B.若它的图象在第二、四象限,则m的值为﹣2C.若它的图象经过(﹣1,﹣3),则它的图象一定经过D.若它的图象与正比例函数y=ax(a≠0)的图象交于A,B两点,点A坐标为(﹣1,1),则点B的坐标是(1,﹣1)二、填空题:(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)第五套人民币中的5角硬币色泽为镍白色,正,反面的内周边缘均为正十一边形.则其内角和为.12.(4分)已知,且a+b﹣c=2,则a=.13.(4分)重庆是一座魔幻都市,有着丰富的旅游资源.小亮打算暑假来重庆旅游,他准备从A,B,C,D四个景点中随棍选择两个景点游览,则他刚好选到景点A和景点B的概率为.14.(4分)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=3,BD=4,则的值是.三、解答题:(本大题5个小题,15-17题每小题8分,18、19各10分,共44分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.15.(8分)因式分解,分式计算.(1)因式分解:4m2n﹣n;(2)计算:.16.(8分)解方程:(1);(2)4x2﹣8x+3=0.17.(8分)如图,在四边形ABCD中,AD∥BC,∠BAC=90°,点E为BC的中点.(1)尺规作图:作∠AEC的平分线EF,与AD交于点F,连接CF.(2)求证:四边形AECF是菱形,请根据以下思路完成填空.∵EF平分∠AEC,∴①,∵AD∥BC,∴∠AFE=∠CEF,∴②,∴AE=AF.∵∠BAC=90°,点E是BC中点,∴,,∴AE=CE,∴AF=CE,∵AF∥CE,∴③又∵AE=CE,∴▱AECF是菱形(④).18.(10分)暑期将至,天气炎热,某校举办了“防溺水”安全知识讲座,并在讲座结束后进行了安全知识测试,成绩采用百分制.现从初中部和高中部各随机抽取20名学生的成绩进行整理与分析(成绩用x表示,单位:分,且成绩为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:初中部被抽取学生的测试成绩为:52,59,66,67,70,72,74,78,78,83,86,88,90,91,92,92,92,94,97,99;将高中部被抽取学生的测试成绩绘制成了扇形统计图如图所示,其中D组的所有数据为:80,83,85,88.初、高中部被抽取的学生测试成绩统计表平均数众数中位数初中部8192a高中部819281.5根据以上信息,解答下列问题:(1)上述图表中:a=,b=;(2)根据以上数据分析,你认为该校是初中学生还是高中学生对“防溺水”安全知识掌握得更好?请说明理由(写出一条理由即可);(3)若该校初中部有3800名学生,高中部有1600名学生,估计该校初中部和高中部在此次安全知识测试中成绩在D组的学生一共有多少人?19.(10分)小宏去水果店购买了中果和大果两种车厘子,分别花费144元和120元.若中果的单价比大果少4元/斤,且购买的中果数量是大果数量的倍.(1)求中果车厘子与大果车厘子的单价分别是多少?(2)小宏发现网上购买车厘子比水果店更便宜.其中中果单价便宜了6元/斤,大果单价便宜,于是小宏第二次在网上购买,中果的数量在上次的基础上增加了25a%,大果的数量在上次的基础上增加了,结果这次购买车厘子的金额比上一次共多了60元,求a的值.四、选择填空题:(本大题5个小题,每小题4分,共20分)20,21题在每个小题的下面,都给出了代号为A、B、C、D的四个答案,请将答题卡上题号右侧正确答案所对应的方框涂黑,请将22,23,24题的答案直接填在答题卡中对应的横线上20.(4分)已知实数m,n(m≠n)满足2m2﹣3m﹣1=0,2n2﹣3n﹣1=0,则的值为()A.B.C.D.(多选)21.(4分)如图,点E是正方形ABCD对角线AC上一点(不与点A,点C重合),点F是正方形ABCD的外角∠DCN的角平分线QM上一点,且CF=AE,连接BE,EF.下列说法正确的是()A.当点E是AC的中点时,四边形BEFC是平行四边形B.的值为常数C.当∠ABE=30°时,EF=2CFD.当CE=AB时,∠EFC=75°22.(4分)若关于x的不等式组至少有三个整数解,且关于y 的分式方程的解是非负整数,则符合条件的所有整数m的值之和是.23.(4分)如图,在矩形ABCD中,AB=5,BC=10,点E,F分别在边AB,BC上(点E不与点A,点B重合),连接DF,EF,且∠DFE=90°,将△BEF沿直线EF翻折,点B的对应点B′恰好落在边AD上,若∠BFE=α,则∠B′DF=(用含α的代数式表示),BF的长为.24.(4分)自然数n各数位上的数字都不为0,将其各数位上的数字任意排列,用排列后的最大的数n1减去最小的数n2,记F(n)=n1﹣n2.例如:若n=1988,则n1=9881,n2=1889,F(n)=7992.已知a=100x+85(1≤x≤4,x为整数).(1)若为整数,则x=;(2)在(1)的条件下,若b=1000x+100s+10t+7001(1≤t<s≤8,且s,t均为整数),且F(b)+st+93t ﹣88s﹣8018=0,则F(b)=.六、解答题:(本大题3个小题,每小题10分,共30分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
〖汇总3套试卷〗重庆市2018年八年级下学期物理期末监测试题
初二下学期期末物理试卷一、选择题(本题包括10个小题)1.在下列事例中,受平衡力作用的物体是()A.沿水平方向抛出去的篮球B.绕太阳转动的地球C.减速进站的火车D.正在匀速上升的电梯【答案】D【解析】【分析】【详解】A.沿水平方向抛出去的篮球受到重力作用下落,不受平衡力作用,故A不符合题意;B.绕太阳转动的地球运动方向不断变化,不受平衡力作用,故B不符合题意;C.减速进站的火车速度不断变化,不受平衡力作用,故C不符合题意;D.正在匀速上升的电梯运动状态不变,受平衡力作用,故D符合题意。
故选D。
2.如图甲所示,相同的两物块A、B 叠放在粗糙程度相同的水平地面上,在20N的水平推力F1的作用下一起做匀速直线运动,此时物块B所受的摩擦力为f1,若将A、B物块按图乙所示紧靠放在水平桌面上,用水平力F2推A,使它们一起做匀速直线运动,则()A.f1=0N,F2=20N B.f1=10N,F2=20NC.f1=20N,F2=40N D.f1=10N,F2=40N【答案】A【解析】【分析】【详解】在甲图中,物体A、B在20N的水平拉力作用下,一起作匀速直线运动,因此,A、B都受到平衡力作用,而物体B在物体A上,一起做匀速直线运动,没有发生相对运动或相对运动的趋势,所以物体B不受摩擦力,即摩擦力为0,即f1=0N物体A受到的推力和摩擦力是一对平衡力,即摩擦力大小等于推力的大小,也为20N;在乙图中,若将A、B紧靠着放在水平桌面上,接触的粗糙程度不变,压力也不变,因此摩擦力也不变,使它们一起匀速运动,因此推力与此时的摩擦力为一对平衡力,推力的大小也为20N.即F2=20N故A正确,BCD错误。
故选A。
3.下列说法不正确的是()A.船闸是利用连通器原理工作的B.水坝的下部比上部建得宽,是由于水对坝的压强随深度的增加而增大C.人在高山上呼吸困难是因为高山上气压比山下气压高D.并行的船不能靠得太近是因为流体中流速越大的位置压强越小【答案】C【解析】【分析】【详解】A.船闸是利用连通器原理工作的,A项正确,故A项不符合题意;B.水坝的下部比上部建得宽,是由于水对坝的压强随深度的增加而增大,B项正确,故B项不符合题意;C.人在高山上呼吸困难是因为高山上气压比山下气压低,C项错误,故C项符合题意;D.并行的船不能靠得太近是因为流体中流速越大的位置压强越小,D项正确,故D项不符合题意。
2018年初中八年级下册的期末考试数学试卷习题及答案
文档根源为:从网络采集整理.word版本可编写.支持. 2017-2018学年度第二学期期末教课一致检测初二数学一、选择题(此题共30分,每题3分)下边各题均有四个选项,此中只有一个..是切合题意的.以下函数中,正比率函数是A.y =x2B.y=2C.y=xD.y=x1x22以下四组线段中,不可以作为直角三角形三条边的是A.3cm,4cm,5cmB.2cm ,2cm,2 2cmC.2cm ,5cm,6cmD.5cm,12cm,13cm 以下图中,不是函数图象的是A BC D平行四边形所拥有的性质是A. 对角线相等B. 邻边相互垂直C. 每条对角线均分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学近来几次数学考试成绩的均匀数与方差:1甲乙丙丁均匀数(分)92959592方差要选择一名成绩好且发挥稳固的同学参加数学竞赛,应当选择A.甲B.乙C.丙D.丁6.若x=﹣2是对于x的一元二次方程x23ax a20的一个根,则a的值为2A.1或﹣4B.﹣1或﹣4C.﹣1或4D.1或47.将正比率函数y 2x的图象向下平移2个单位长度,所得图象对应的函数分析式是A.y2x 1B.y2x 2C.y2x 2D.y 2x18.在一次为某位身患大病的小朋友募捐过程中,某年级有50师生经过微信平台奉献了爱心.小东对他们的捐钱金额进行统计,并绘制了以下统计图.师生捐钱金额的均匀数和众数分别是A.20,20B.,30C.,20D.20,309.若对于x的一元二次方程k 1x24x 1 0有实数根,则k的取值范围是A.k≤5 B.k≤5,且k≠1C.k<5,且k≠1D.k<5210.点(x ,y )在第一象限内,且 x+y=6,点A 的坐标为( 4,0).设△ 的面积为 ,POPAS则以下图象中,能正确反应S 与x 之间的函数关系式的是SSS S12126x6O 6xO6x12xO 4OAB C D二、填空题(此题共 24分,每题3分)11.请写出一个过点( 0,1),且y 跟着x 的增大而减小的一次函数分析式.12. 在湖的双侧有 A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并 量取了AC 中点D 和BC 中点E 之间的距离为 16米,则A ,B 之间的距离应为米.3文档根源为:从网络采集整理 .word 版本可编写.支持 .如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则对于x 的不等式kx +6>x +b的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为 4,则菱形ABCD 的面积是.15. 《九章算术》是中国传统数学最重要的著作, 确立了中国传统数学的基本框架,书中的算法系统到现在仍在推进着计算机的发展和应用 .《九章算术》中记录:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短 . 横放,竿比门宽长出 4尺;竖 放,竿比门高长出 2尺;斜放,竿与门对角线恰巧相等 .问门高、宽、对角线长分别是多 少?若设门对角线长为 x 尺,则可列方程为 .16.方程x 28x150的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17. 已知直线y2x 2与x 轴、y 轴分别交于点A ,B .若将直线y 1x 向上平移n 个2单位长度与线段AB 有公共点,则n 的取值范围是.在一节数学课上,老师部署了一个任务:已知,如图 1,在Rt △ABC 中,∠B =90°,用尺规作图作矩形ABCD .4文档根源为:从网络采集整理.word版本可编写.支持.图1图2同学们开动脑筋,想出了好多方法,此中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于1AC长为半径画弧,两弧分别交于点E,F,连结EF2交AC于点O;作射线BO,在BO上取点D,使ODOB;③连结AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依照是.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.用配方法解方程:x26x120.如图,正方形ABCD的边长为9,将正方形折叠,使极点D落在BC边上的点E处,折痕为GH.若BE:EC 2:1,求线段EC,CH的长.5文档根源为:从网络采集整理.word版本可编写.支持.21. 已知对于x的一元二次方程m1x2m1x20,此中m1.1)求证:此方程总有实根;2)若此方程的两根均为正整数,求整数m的值2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国初次依照国际适航标准研制的150座级干线客机,首飞成功标记着我国大型客机项目获得重要打破,是我公民用航空工业发展的重要里程碑.当前,C919大型客机已有国内外多家客户预定六百架表1是此中20家客户的订单状况.表1客户订单(架)客户订单(架)中国国际航空20工银金融租借有限企业45中国东方航空20安全国际融资租借企业50中国南方航空20交银金融租借有限企业306文档根源为:从网络采集整理.word版本可编写.支持.海南航空20中国飞机租借有限企业20四川航空15中银航空租借个人有限20企业河北航空20农银金融租借有限企业45幸福航空20建信金融租借股份有限50企业国银金融租借有限企业15招银金融租借企业30美国通用租借企业GECAS20兴业金融租借企业20泰国都市航空10德国普仁航空企业7依据表1所供给的数据补全表2,并求出这组数据的中位数和众数.表2订单(架)71015203050客户(家)11222(1)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延伸线于F,且AF=BD,连结BF.(2)(3)求证:点D是线段BC的中点;(4)(5)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.7文档根源为:从网络采集整理.word版本可编写.支持.8文档根源:从网采集整理.word 版本可.迎下支持 .24.有一个:研究函数y1 的象与性.1x小明依据学一次函数的,函数y1 1的象与性行了研究.x下边是小明的研究程,充完好:(1)函数y1 ;1的自量x 的取范是x(2)下表是 y 与x 的几.x⋯ -4 -3 -2-1 -m m 1 2 3 4 ⋯3 2 1 345 y ⋯320-1323⋯424求出m 的;(3)如,在平面直角坐系xOy 中,描出了以表中各坐的点.依据描出的点,画出函数的象;9文档根源为:从网络采集整理.word版本可编写.支持.(4)写出该函数的一条性质.已知:如图,平行四边形ABCD的对角线订交于点O,点E在边BC的延伸线上,且OE=OB,联络DE.求证:DE⊥BE;(2)设CD与OE交于点F,若OF2FD2OE2,CE3,DE 4,求线段CF长.10文档根源为:从网络采集整理.word版本可编写.支持.26.如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.1)求线段BC的长度;2)若点D在直线AC上,且DB=DC,求点D的坐标;3)在(2)的条件下,直线BD上应当存在点P,使以A,B,P三点为极点的三角形是等腰三角形.请利用尺规作图作出全部的点P,并直接写出此中随意一个点P的坐标.(保存作图印迹)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延伸交AD于F,连结AE.1)依题意补全图形;2)判断∠DFC与∠BAE的大小关系并加以证明;3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.A AB DB D11文档根源为:从网络采集整理.word版本可编写.支持.备用图28.在平面直角坐标系xOy中,已知点M a,b及两个图形W1和W2,若对于图形W1上任意一点Px,y,在图形W2上总存在点P x,y,使得点P是线段PM的中点,则称点P是点P对于点M的关系点,图形W2是图形W1对于点M的关系图形,此时三个点的坐标x a y b 知足x,y2.2(1)点P2,2是点P对于原点O的关系点,则点P的坐标是;(2)已知,点A 4,1,B 2,1,C 2,1,D 4,1以及点M3,0①画出正方形ABCD对于点M的关系图形;12文档根源为:从网络采集整理.word版本可编写.支持.②在y轴上能否存在点N,使得正方形ABCD对于点N 的关系图形恰巧被直线y x分红面积相等的两部分?若存在,求出点N的坐标;若不存在,说明原因.132018学年度第二学期期末一初二数学参照答案及分准一、(本共30分,每小3分)号12345678910答案C C B D B A C B B B二、填空(本共24分,每小3分)11.y=-x+1等,答案不独一.12.3213.X<314.8315.x2x42x2216.4或许3417.1≤n≤2 2到段两头距离相等的点在段的垂直均分上,角相互均分的四形是平行四形,有一个角是直角的平行四形是矩形.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.解:x32⋯⋯⋯⋯⋯⋯2分10,解得x1 3 10,x23 10.⋯⋯⋯⋯⋯⋯4分20.解:∵BC 9,BE:EC 2:1,∴EC 3.⋯⋯⋯⋯⋯⋯1分CHx,DH 9 x.⋯⋯⋯⋯⋯⋯2分由折叠可知EH DH 9x.14在Rt△△ECH中,C=90,∴EC2CH2EH2.即32x22⋯⋯⋯⋯⋯⋯3分9x.解得x4.∴CH 4.⋯⋯⋯⋯⋯⋯4分(1)明:由意m1.2m142m1⋯⋯⋯⋯⋯⋯1分m26m92m32∵m 3≥0恒建立,∴方程m 1x2m 1x 2 0有根;⋯⋯⋯⋯⋯⋯2分(2)解:解方程m1x2m1x20,得x112.,x2m1∵方程m1x2m1x20的两根均正整数,且m是整数, m11,或m12.∴m 2,或m 3.⋯⋯⋯⋯⋯⋯4分15(架)710152030455022.解:客(家)11210222⋯⋯⋯⋯⋯⋯3分中位数是20,众数是20.⋯⋯⋯⋯⋯⋯5分23.(1)明:∵点E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.∴△EAF≌△EDC.⋯⋯⋯⋯⋯⋯1分∴AF=DC.∵AF=BD,∴=,即D 是的中点.⋯⋯⋯⋯⋯⋯2分BD DC BC(2)解:∵AF∥BD,AF=BD,∴四形AFBD是平行四形.⋯⋯⋯⋯⋯⋯3分∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.⋯⋯⋯⋯⋯⋯4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面BD AD 60.⋯⋯⋯⋯⋯⋯5分24.解:(1)x≠0;⋯⋯⋯⋯⋯⋯1分16文档根源:从网采集整理.word版本可.迎下支持.(2)令113,m∴m1;⋯⋯⋯⋯⋯⋯2分2(3)如⋯⋯⋯⋯⋯⋯3分(4)答案不独一,可参照以下的角度:⋯⋯⋯⋯⋯⋯4分①函数没有最大或函数没有最小;②函数在不等于1;③增减性(1)明:∵平行四形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.⋯⋯⋯⋯⋯⋯1分∵OB=OE,17∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;⋯⋯⋯⋯⋯⋯2分(2)解:∵OE=OD,OF2FD2OE2,∴OF2FD2 OD2.∴△OFD直角三角形,且∠OFD=90°.⋯⋯⋯⋯⋯⋯3分在Rt△中,∠CED=90°,CE=3,DE4,CED∴CD2CE2 DE2.∴CD5.⋯⋯⋯⋯⋯⋯4分又∵1CD EF1CEDE, 2212.∴EF5在Rt△CEF中,∠CFE=90°,CE=3,EF12,5依据勾股定理可求得9⋯⋯⋯⋯⋯⋯5分CF.5解:(1)∵B(0,3),C(0,1).∴BC=4.⋯⋯⋯⋯⋯⋯1分(2)直AC的分析式y=kx+b,把A(,0)和C(0,1)代入y=kx+b,18∴.解得:,∴直AC的分析式:y=x 1.⋯⋯⋯⋯⋯⋯2分∵DB=DC,∴点D在段BC的垂直均分上.∴D的坐 1.把y=1代入y=x 1,解得x= 2,∴D的坐(2,1).⋯⋯⋯⋯⋯⋯3分(3)⋯⋯⋯⋯⋯⋯4分当A、B、P三点点的三角形是等腰三角形,点P的坐(3,0),(,2),(3,3),(3,3+),写出此中随意一个即可.⋯⋯⋯⋯⋯⋯5分27.28.29.30.31.解:(1)AFB E D19C⋯⋯⋯⋯⋯⋯1分(2)判断:∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯2分明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四形ABCD菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯3分3)CG,AC.由P4,4称可知,EA+EG=EC+EG,CG就是EA+EG的最小.⋯⋯⋯⋯⋯⋯4分∵∠BAD=120°,四形ABCD菱形,∴∠CAD=60°.∴△ACD2的等三角形.20可求得CG=3.EA+EG的最小3.⋯⋯⋯⋯⋯⋯5分解:(1)∵P(-4,4).⋯⋯⋯⋯⋯⋯1分(2)①接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′所求作.-----------------------------3分②不如N(0,n).∵关正方形被直y=-x分红面相等的两部分,∴中心Q落在直y=-x上.-------------------------------------4分∵正方形ABCD的中心E(-3,0),21文档根源为:从网络采集整理.word版本可编写.支持.22。
重庆市年八年级(下)期末数学试卷
重庆市2018-2019学年度八年级(下)期末数学试卷(满分:150分.120分钟完卷)一、选择题(本大题12个小题,每小题4发,共48分。
)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列根式中,不能与合并的是()A.B.C.D.3.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个4.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员2B.队员1C.队员4D.队员35.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5C.5,12,13D.2,2,37.实数k、b满足kb﹥0,不等式kx<b的解集是那么函数y=kx+b的图象可能是()A. B. C. D.8.下列条件中,能判定四边形为平行四边形的是()A.∥,B.,C.,D.,9.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6B.5C.4D.310.2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是411.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20L B.25L C.27L D.30L12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB ⊥OC ,OM=CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB :OE=3:2.其中正确结论的个数是()A .1B .2C .3D .4二、填空题(本大题6个小题,每小题4分,共24分。
┃精选3套试卷┃2018届重庆市八年级下学期物理期末学业质量监测试题
初二下学期期末物理试卷一、选择题(本题包括10个小题)1.如图所示,弹簧的一端固定在墙面上,用手拉弹簧的另一端,弹簧在弹性范围内伸长了一段距离,则下列说法正确的是()A.手对弹簧的拉力和墙对弹簧的拉力是一对平衡力B.弹簧对手的拉力和弹簧对墙的拉力是一对相互作用力C.手对弹簧的拉力和弹簧对手的拉力是一对平衡力D.弹簧对墙的拉力使弹簧伸长了一段距离【答案】A【解析】【详解】A.手对弹簧向右的拉力和墙对弹簧向左的拉力都作用在弹簧上、大小相等、方向相反、作用在同一直线上,是一对平衡力。
故A正确。
B.弹簧对手的拉力和手对弹簧的拉力才是一对相互作用力。
故B错误。
C.手对弹簧的拉力和弹簧对手的拉力分别作用在对方物体上,大小相等、方向相反、作用在同一直线上,是一对相互作用力。
故C错误。
D.弹簧对墙的拉力作用在墙上,是对墙产生作用效果,不是对弹簧产生作用效果。
所以应该是墙对弹簧的拉力使弹簧伸长了一段距离。
故D错误。
2.如图所示,是小明同学在学习时制作的潜水艇模型,使用中下列现象可能发生的是()A.向管中吹气时,模型下沉B.从管中吸气时,模型上浮C.向管中吹气时,模型上浮D.向管中吹气和从管中吸气时,模型均上浮【答案】C【解析】【详解】当烧瓶浸没在水中时,排开水的体积不变,所受浮力不变,因此模型的上浮和下沉是通过改变自重来实现的;吹气时,瓶内气体压强增大,一部分水被排了出来,此时模型的自重减小,模型上浮;吸气时,瓶内气体压强减小,一部分水被压入瓶内,此时模型的自重增加,模型下沉。
故选C.【点睛】潜水艇是通过改变自身的重力来实现下潜、悬浮和上浮的,结合这个特点来对此题的模型进行分析.3.下列常用物理量与对应单位正确的是()A.压强——(F)B.力——(Pa)C.功——(J)D.功率——(N·m)【答案】C【解析】【详解】A.压强的单位是Pa,故A项错误;B.力的单位为N,故B项错误;C.功的单位为J,故C项正确;D.功率的单位为W,故D项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆八中2017—2018学年度(下)初二年级期末考试
数学试题
一、选择题(本大题共10小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将解答书写在答题卡(卷)对应的位置上.
1.方程0162=-x 的解是( )
A .421==x x
B .1621==x x
C .41=x ,42-=x
D .161=x ,162-=x
2.已知DEF ABC ∆∆~,相似比为1:2,且ABC ∆的周长为18,则DEF ∆的周长为( )
A .2
B .3
C .9
D .36
3.关于反比例函数x
y 2-=,下列说法正确的是( ) A .图像在第一、三象限 B .当0<x 时,y 随x 的增大而增大 C .当0>x 时,y 随x 的增大而减小 D .图像过点()1,2
4.下某公司四月份的营业额为36万元,六月份的营业额为49万元.设每月营业额的平均增长率为x ,则可列方程为( )
A .()361492=+x
B .()491362
=-x C .()491362=+x D .()361492
=-x 5.下列命题错误的是( )
A .对角线互相垂直平分的四边形是菱形
B .对角线相等的四边形是矩形
C .对角线互相平分的四边形是平行四边形
D .对角线相等且互相垂直的平行四边形是正方形
6.下列多项式中不能用公式法进行因式分解的是( )
A .4
12++a a B .2281a b +- C .2294b a + D .xy y x 4422-+ 7.若矩形两邻边的长度之比为4:3,面积为2108cm ,其对角线长为( ) A .cm 5 B .cm 75 C .cm 15 D .cm 45
8.已知31=+a a ,则=+-2211a
a ( ) A .6 B .7 C .8 D .9
9.如图,矩形ABCD 中,︒=∠50BCD ,
BC 的垂直平分线交对角线AC 于点F ,
垂足为E ,连接BF 、DF ,则DFC ∠的
度数是( )
A .︒100
B .︒120
C .︒130
D .︒135
10.若数m 使关于x 的分式方程x
x x m --=-+
2121的解为正数,则m 的取值范围是( ) A .3<m B .3<m 且1-≠m C .3>m D .3>m 且2≠m
二、填空题(本大题共6小题,每小题4分,共24分)在每小题中,请将正确答案书写在答题卡(卷)对应的位置上.
11.若分式1
+x x 有意义,则x 需要满足的条件是 . 12.若22-+mx x 能被1-x 整除,则m 的值为 .
13.如图,在平面直角坐标系中,已知点()1,3-A ,以点O 为直角顶点作等腰直角三角形A O B ,反比例函数x
k y =在第一象限内的图像经过点B ,则=k .
14.如图,直线c b a ////,直线m 分别与直线a 、b 、c 相交于点A 、B 、C ,直线n 分别与直线a 、b 、c 相交于点D 、E 、F ,且3=AB ,6=BC ,2=DE ,则=DF .
15.如图,点A 是反比例函数x y 6=
图像上一点,x AB ⊥轴于点B ,线段OA 交反比例函数x
y 3=
的图像于点C ,且x CD ⊥轴于点D ,则图中阴影部分的面积为 .
16.如图,把正方形纸片ABCD 沿AB 、CD 的中点所在的直线对折后展开,折痕为EF ,再过点A 折叠纸片,使点D 落在EF 上的点H 处,折痕为AG .若BC 的长为2,则DG 的长为 .
三、解答题:(本大题5个小题,其中,17、18题每题8分,19、20、21题每题10分,共46分)解答时必须给出必要的演算过程或推理步骤.
17.用适当的方法解下列方程
(1)()112
-=-x x ; (2)062=--x x .
18.如图,点E 是平行四边形ABCD 边CD 上的中点,AE 、BC 的延长线交于点F ,连接DF .求证:四边形ACFD 为平行四边形.
19.先化简,再求值:a a a a a 2221312-+÷⎪⎭⎫ ⎝
⎛--+,其中a 是方程0122=--x x 的一个根.
20.已知反比例函数x
y 2-=与一次函数kx y =(0≠k )的图像交于点A 、B 两点,且B 点的坐标为()m ,2,过B 的直线l 垂直于x 轴.
(1)求m 的值及点A 的坐标;
(2)点P 是直线l 上一点,且8=∆BPA S ,求点P 的坐标.
21.榴莲号称为“水果之王”,而马来西亚的榴莲又称“王中王”.为了迎合重庆市民对高端水果市场的需求,室内某水果超市从马来西亚购进“猫山王”榴莲投放市场.
(1)今年端午节(6月18日)与今年元旦节相比,“猫山王”榴莲的单价上涨了3
1.若消费者在端午节当天购买6千克“猫山王”榴莲至少需要240元,那么今年元旦节,这种“猫山王”榴莲的单价至少是每千克多少元?
(2)端午节当天,“猫山王”以(1)中最低的销售价进行销售,共卖出“猫山王”榴莲100千克.同一天,该超市试销另一种榴莲“金凤”.为了尽快占领市场,“金凤”的售价比“猫山王”的售价还低a 元/千克(0 a ),这样“金凤”的销量比“猫山王”的销售量多了a 2千克.最终,“猫山王”当天的销售额比“金凤”当天的销售额多150元,求a 的值.
B 卷(共50分)
四、填空题(本大题共5小题,每小题4分,共20分)
22.在ABC ∆中,AD 平分BAC ∠,CB AD ⊥,过CD 的中点F 作AB FE //,若ADB ∆的面积为8,则四边形ABFE 的面积为 .
23.关于x 的一元二次方程()03212=+-+x x a 有实数根,则整数a 的最大值是 .
24.如图,在AOB Rt ∆中,︒=∠90AOB ,3=OA ,4=OB ,以AB 为斜边作等腰直角三角形ABM ∆,连接OM ,则=OM .
25.甲、乙两车从A 地出发匀速行驶到相距km 600的B 地,甲车出发1小时后,乙车从A 地出发,甲、乙两车各自到达B 地后都立即调头向A 地按原速度继续行驶(甲、乙两车调头时间忽略不计),直至乙车返回A 地,两车停止行驶.甲、乙两车之间的距离S (千米)与甲行驶时间t (小时)之间的关系如图所示,则在行驶过程中,甲出发 小时后两车相距100千米.
26.受俄罗斯世界杯的影响,某小龙虾夜市的外卖生意越发红火,现需购买10个盒子恰好存放32斤小龙虾,盒子有A 、B 、C 三种型号,单个盒子的容量和价格如下表,其中A 型号盒子正做促销活动:购买3个及3个以上可一次性返现金5元,则购买盒子需要的最少费用为 元.
五、解答题:解答时必须给出必要的演算过程或推理步骤.(本大题共3小题,共30分)
27.如图,在□ABCD 中,E 是AD 上一点,连接BE ,BC AH ⊥交BE 于G ,连接CG 并延长交AB 于F ,已知CD GC =,︒=∠90GCD .
(1)若︒=∠30BAG ,4=GC ,232-=AG ,求□ABCD 的面积;
(2)求证:BG DE 2=.
28.如果在一个多位自然数的任意两个相邻数位上,左边数位上的数字总比右边数位上的数字大1,那么我们把这样的自然数叫做“递减数”.例如:321,5432,87,43210……都是“递减数”.
(1)有一个“递减数”是它个位数字的13倍,请求出这个“递减数”;
(2)将一个自然数m(9
≤m)放置于一个三位“递减数”的左边,得到一
1≤
个四位自然数t,若数t恰好能被11整除,且数m与这个三位“递减数”各数位上的数字之和是一个完全平方数,求出所有符合条件的数m和t的值.
29.如图,已知直线323
3:-=x y l BC 与x 轴、y 轴分别交于B 、C 两点,直线BC AC ⊥交x 轴于A 点.
(1)求A 点的坐标;
(2)将O B C ∆沿BC 边翻折,
得到BC O '∆,过'O 点作直线E O '垂直x 轴于E 点,F 是y 轴上一点,P 、Q 是直线E O '上的两点,且关于x 轴对称,当PC PA -最大时,请求出FC QF 2
3+的最小值; (3)若M 是直线E O '上一点,且34=QM ,在(2)的条件下,在平面直角坐标系中,是否存在点N ,使得以Q 、F 、M 、N 四点为顶点的四边形是平行四边形,若存在,请直接写出N 点的坐标;若不存在,请说明理由.。