初中数学平行四边形练习题和答案
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典习题(含答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 4.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .45.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 6.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 7.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形 B .平行四边形 C .菱形 D .正方形8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .109.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形10.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形11.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2012.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º13.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .414.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα= 15.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=245二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.19.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.20.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.21.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.22.如图,正方形ABCD 中,5AD =,点E 、F 是正方形ABCD 内的两点,且4AE FC ==,3BE DF ==,则EF 的平方为________.23.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.24.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.25.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.26.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.三、解答题27.如图,四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,∠AOD =60°,AD =2,求AC 的长度.28.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.29.已知,如图,在等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,点E ,F 分别是AC ,BC 上的动点,且始终满足CE BF =,(1)证明:DE DF =;(2)求EDF ∠的大小;(3)写出四边形ECFD 的面积与三角形ABC 的面积的关系式,并说明理由.30.在ABC 中,23,AB CD AB =⊥于点,2D CD =.(1)如图1,当点D 是线段AB 的中点时,①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE . ①按要求补全图形;②求AE 的长.。
初中数学《八下》 第十八章 平行四边形-平行四边形 考试练习题
初中数学《八下》第十八章平行四边形-平行四边形考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分1、如图,将折叠,使顶点D落在边上的点E处,折痕为,则下列结论一定正确的是A .B .C .D .知识点:平行四边形【答案】C【分析】根据折叠的性质,可得出DF=EF ,再结合题目有,四边形 CBEF 是平行四边形,继而有 BC=EF ,即可得出正确答案.【详解】解:由折叠的性质得,,,∵ 四边形是平行四边形,∴,.∴,∴.∵,∴ 四边形是平行四边形,∴,∴.故选:C .【点睛】本题考查的知识点是折叠的性质以及平行四边形的判定定理及其性质,属于中等难度题.失分的原因有2 个:(1 )不能熟练运用折叠的性质;(2 )未掌握平行四边形的性质与判定.2、已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF ∥AB.求证:四边形ABFE 是菱形.评卷人得分知识点:平行四边形【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【详解】证明:∵ 四边形ABCD是平行四边形,∴AD ∥BC,又∵EF ∥AB,∴ 四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD ∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴ 平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.3、下列给出的条件中,能判断四边形ABCD是平行四边形的是()A .AB ∥CD,AD=BCB .∠B=∠C;∠A=∠DC .AB=CD,CB=ADD .AB=AD,CD=BC知识点:平行四边形【答案】C【分析】平行四边形的判定定理① 两组对边分别相等的四边形是平行四边形,② 一组对边平行且相等的四边形是平行四边形,③ 两组对角分别相等的四边形是平行四边形,④ 对角线互相平分的四边形是平行四边形,判断即可.【详解】解:A、根据AD ∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.【点睛】本题考查了对平行四边形的判定定理的应用,关键是能熟练地运用平行四边形的判定定理进行推理,此题是一道比较容易出错的题目.4、下列选项中,能判定四边形ABCD是平行四边形的是()A .AB //CD,AD=BCB .∠A=∠D,∠B=∠CC .AB //CD,∠A+∠B=180°D .∠A=∠C,∠B+∠D=180°知识点:平行四边形【答案】C【分析】平行四边形的判定定理:(1 )两组对边分别平行的四边形是平行四边形(2 )两组对边分别相等的四边形是平行四边形(3 )一组对边平行且相等的四边形是平行四边形(4 )两组对角分别相等的四边形是平行四边形(5 )对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A 、AB //CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B 、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C 、因为∠A+∠B=180° ,所以AD //BC,又因为AB //CD,所以四边形ABCD是平行四边形,故此选项正确;D 、∠A=∠C,∠B+∠D=180° 不能判定四边形ABCD是平行四边形,故此选项错误;故选C .【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.5、如图,A,B两地被池塘隔开,小明通过下面的方法测出A,B间的距离:先在AB外选一点C,连接AC,BC.分别取AC,BC的中点D,E,测得米,由此他知道了A,B间的距离为___________ 米,这种做法的依据是 _______________ .知识点:平行四边形【答案】30 三角形中位线性质定理【分析】根据三角形中位线性质定理解答即可.【详解】解:∵ 点D,E是AC,BC的中点,∴AB=2DE=30 (m ),小石的依据是三角形中位线定理,故答案为:30 ;三角形中位线性质定理.【点睛】本题考查的是三角形中位线性质定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6、如图,□ABCD 的对角线 AC , BD 相交于点 O ,点 E 是 CD 的中点,△ABD 的周长为 16cm ,则△DOE 的周长是 _________ ;知识点:平行四边形【答案】8【详解】∵ 四边形 ABCD 是平行四边形,∴O 是 BD 中点,△ABD≌△CDB ,又∵E 是 CD 中点,∴OE 是△BCD 的中位线,∴OE=BC ,即△DOE 的周长=△BCD 的周长,∴△DOE 的周长=△DAB 的周长.∴△DOE 的周长=×16=8cm .7、如图,D是△ABC内一点,BD ⊥CD,AD =6 ,BD =4 ,CD =3 ,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A . 7B . 8C . 11D . 10知识点:平行四边形【答案】C【详解】分析:根据勾股定理求出BC的长,根据三角形的中位线定理得到HG =BC =EF,EH =FG =AD,求出EF 、HG、EH、FG的长,代入即可求出四边形EFGH的周长.详解:∵BD ⊥DC,BD =4 ,CD =3 ,由勾股定理得:BC ==5 .∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG =BC =EF,EH =FG =AD.∵AD =6 ,∴EF =HG =2.5 ,EH =GF =3 ,∴ 四边形EFGH的周长是EF +FG +HG +EH =2× (2.5+3 ) =11 .故选C .点睛:本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解答此题的关键.8、如图,在Rt △ABC中,∠BAC=90° ,过点A的直线MN ∥BC,点E为BC边上一点,过点E作DE ⊥AC ,交直线MN于点D,垂足为F.连接AE.(1 )求证:BE=AD;(2 )当点E在BC的中点时,四边形AECD是什么特殊的四边形?说明理由.(3 )若点E为BC的中点,当∠B满足什么条件时,四边形AECD是正方形?说明理由.知识点:平行四边形【答案】(1 )见解析;(2 )菱形,见解析;(3 )∠B=45° ,见解析【分析】(1 )MN ∥BC,得出四边形ADEB是平行四边形,即可得出结论;(2 )先证明AECD是平行四边形,由斜边中线得到AE=EC,可证明AECD是菱形;(3 )当△ABC是等腰直角三角形,由等腰三角形的性质得出AE ⊥BC,即可得出四边形AECD是正方形.【详解】(1 )证明:∵DE ⊥AC,∴∠EFC=90° ,∵∠BAC=90° ,∴∠BAC=∠EFC,∴AB ∥DE,∵MN ∥BC,∴BE ∥AD,∴ 四边形ADEB是平行四边形,∴BE=AD;(2 )结论:四边形AECD是菱形.理由:当点E在BC的中点时,而四边形ADEB是平行四边形,∴ 四边形AECD是平行四边形,又∵,∴ 四边形AECD是菱形.(3 )解:当∠B=45° 时,四边形AECD是正方形.理由:∵∠BAC=90° ,∠B=45° ,∴△ABC是等腰直角三角形,∵E为AB的中点,∴AE ⊥BC,∴∠AEC=90° ,四边形AECD是菱形,∴ 四边形AECD是正方形;故答案为:45° .【点睛】本题主要考查了平行四边形的性质与判定,菱形的判定,正方形的判定,解题的关键在于能够熟练掌握相关知识进行求解.9、已知:如图1 ,四边形 ABCD 是平行四边形, E,F 是对角线 AC 上的两点, AE=CF.(1 )求证:四边形 DEBF 是平行四边形;(2 )如果 AE=EF=FC, 请直接写出图中 2 所有面积等于四边形 DEBF 的面积的三角形 .知识点:平行四边形【答案】(1 )见解析;(2 )△ADF ,△CDE ,△CBE ,△ABF.【分析】(1 )由四边形 ABCD 是平行四边形得出 OA=OC,OB=OD ,因为 AE=CF 可推出 OE=OF ,由对角线互相平分的四边形是平行四边形,可证结论;(2 ) AE=EF=FC 可知,故而可推面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF.【详解】(1 )证明:连接BD 交 AC 于点 O ,∵ 平行四边形 ABCD∴OA=OC,OB=OD∵AE=CF∴OE=OF∴ 四边形 DEBF 为平行四边形;(2 )由 AE=EF=FC 可知故面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF ;【点睛】本题考查了平行四边形的性质及判定,以及三角形面积,熟练掌握平行四边形的判定是解题的关键.10、如图,在中,,,分别是边,,的中点,若的周长为10 ,则的周长为______ .知识点:平行四边形【答案】20【分析】根据三角形中位线定理得到AC =2DE,AB =2EF,BC =2DF,根据三角形的周长公式计算,得到答案.【详解】解:∵△DEF的周长为10 ,∴DE +EF +DF =4 ,∵D,E,F分别是AB,BC,CA的中点,∴AC =2DE,AB =2EF,BC =2DF,∴△ABC的周长=AC +AB +BC =2 (DE +EF +DF)=20 ,故答案为:20 .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11、如图,在中,对角线,,垂足为,且,,则与之间的距离为______ .知识点:平行四边形【答案】.【分析】设与之间的距离为,由条件可知的面积是的面积的2 倍,可求得的面积,,因此可求得的长.【详解】解:∵ 四边形为平行四边形,∴,,,∴,∵,,,∴,∴,设与之间的距离为,∵,∴,∴,解得,故答案为:.【点睛】本题主要考查平行四边形的性质,由已知条件得到四边形ABCD 的面积是△ABC 的面积的 2 倍是解题的关键(本题也可以采用等底等高的三角形的面积是平行四边形面积的一半来求解).12、如图,菱形ABCD 的两条对角线 AC , BD 相交于点 O , E 是 AB 的中点,若 AC = 6 , BD = 8 ,则 OE 长为()A . 3B . 5C . 2.5D . 4知识点:平行四边形【答案】C【分析】根据菱形的性质可得OB=OD ,AO⊥BO ,从而可判断 OE 是△DAB 的中位线,在Rt△AOB 中求出 AB ,继而可得出 OE 的长度.【详解】解:∵ 四边形 ABCD 是菱形, AC=6 , BD=8 ,∴AO=OC=3 , OB=OD=4 ,AO⊥BO ,又∵ 点 E 是 AB 中点,∴OE 是△DAB 的中位线,在Rt△AOD 中, AB==5 ,则OE=AD=.故选C .【点睛】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.13、如图,以为直径的经过的中点,于点.(1 )求证:是的切线;(2 )当,时,求图中阴影部分的面积(结果保留根号和).知识点:平行四边形【答案】(1 )见解析;(2 )【分析】(1 )连接,根据中位线定理,可得,由已知,可得,进而可得是的切线;(2 ))过点作,连接,根据已知条件求得扇形的圆心角的度数,进而求得扇形面积,求得的面积,根据阴影扇形即可求得阴影部分面积.【详解】(1 )连接,如图,点是的中点,点是的中点,,,l14、如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=4cm ,则菱形ABCD的周长为()A . 32cmB . 24cmC . 16cmD . 8cm知识点:平行四边形【答案】A【分析】根据菱形的性质可以判定O为BD的中点,结合E是AB的中点可知OM是△A BD的中位线,根据三角形中位线定理可知AD的长,于是可求出四边形ABCD的周长.【详解】解:∵ 四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵M是AB的中点,∴MO是△ABD的中位线,∴AD=2MO=2×4 = 8cm ,∴ 菱形ABCD的周长=4AD=4×8 = 32cm ,故选:A .【点睛】本题主要考查了菱形的性质,解答本题的关键是证明EO是△ABD的中位线,此题难度不大.15、如图,在□ABCD中,已知AB>BC.(1 )实践与操作:作∠ADC的平分线交AB于点E,在DC上截取DF =AD,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2 )猜想并证明:猜想四边形AEFD的形状,并给予证明.知识点:平行四边形【答案】(1 )详见解析;(2 )四边形 AEFD 是菱形,理由详见解析 .【分析】(1 )由角平分线的作法容易得出结果,在 AD 上截取 AF=AB ,连接 EF ;画出图形即可;(2 )先利用证明四边形 AEFD 是平行四边形,然后利用 AD=DF 可判断□ AEFD 是菱形..【详解】解:(1 )如图所示:(2 )猜想:四边形 AEFD 是菱形.证明:∵ 四边形 ABCD 为平行四边形,∴AB∥DC ,∴∠CDE=∠DEA ,∵DE 平分∠ADC ,∴∠CDE=∠ADE ,∴∠ADE=∠DEA ,∴AD=AE ,又∵AD=DF ,∴DF=AE 且DF∥AE ,∴ 四边形 AEFD 是平行四边形,∵AD=DF ,∴□ AEFD 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.16、如图,四边形是平行四边形,E,F分别是边,上的点,.证明.知识点:平行四边形【答案】见解析【分析】方法一:证明四边形是平行四边形,根据平行四边形的性质即可得结论;方法二:证明,利用全等三角形的性质即可得结论.【详解】方法一证明:∵ 四边形是平行四边形,∴.∴.又∵,∴ 四边形是平行四边形.∴.方法二证明:∵ 四边形是平行四边形,∴,,.∵,∴.即.∴.∴.【点睛】本题考查了平行四边形的性质及其判定方法,熟练运用平行四边形的性质及判定方法是解决问题的关键.17、以下四个命题:① 任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5 , 4 , 3 , 2 , 1 场,则由此可知,还没有与B 队比赛的球队可能是D队;③ 两个正六边形一定位似;④ 有 13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A . 1 个B . 2 个C . 3 个D . 4 个知识点:平行四边形【答案】A【分析】① 根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;② 由单循环赛对 A 队, E 队进行推理即可;③ 根据正六边形的性质、位似的定义解题;④ 由平均数定义解题.【详解】解:① 如图,是的中线,是的中位线,连接,由中位线定义可知,四边形是平行四边形对角线互相平分,故① 正确;② 由单循环比赛可知,每支队伍最多赛 5 场,A对已经赛5 场,即每支队伍都与A队比赛过,而E 队只比赛1 场,据此可知,E队没有与B对比赛过,故② 错误;③ 两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③ 错误;④13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,也可能最多,故④ 错误,其中真命题的个数有① , 1 个,故选:A .【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.18、如图,四边形是平行四边形,且分别交对角线于点E,F.(1 )求证:;(2 )当四边形分别是矩形和菱形时,请分别说出四边形的形状.(无需说明理由)知识点:平行四边形【答案】(1 )证明见解析;(2 )四边形BEDF是平行四边形与菱形.【分析】(1 )根据平行线的性质可得,即可得出,根据平行四边形的性质可得,,利用AAS即可证明;(2 )当四边形ABCD为矩形时,根据全等三角形的性质可得BE =DF,即可证明四边形BEDF是平行四边形;当四边形ABCD为菱形时,根据菱形的性质,利用SAS可证明△ABE ≌△ADE,可得BE =DE,即可证明四边形BEDF是菱形.【详解】(1 )∵∴∴∵ 四边形是平行四边形∴,,∴在△ABE 和△CDF 中,∴.(2 )如图,当四边形ABCD为矩形时,连接DE、BF,同(1 )可知,∴BE =DF,∵BE //DF,∴ 四边形BEDF是平行四边形.如图,当四边形ABCD是菱形时,连接DE、BF,同理可知四边形BEDF是平行四边形,∵ 四边形ABCD是菱形,∴AB =AD,∠BAE =∠D AE,在△ABE和△ADE中,,∴△ABE ≌△ADE,∴BE =DE,∴ 四边形BEDF是菱形.综上所述:当四边形分别是矩形和菱形时,四边形分别是平行四边形与菱形.【点睛】本题考查平行四边形的判定与性质、全等三角形的判定与性质及菱形的判定与性质,熟练掌握相关性质及判定定理是解题关键.19、如图,在四边形中,平分交于点,交的延长线于点为延长线上一点,.(1 )求证;(2 )求的度数.知识点:平行四边形【答案】(1 )见解析;(2 )130°【分析】(1 )由邻补角的定义及题意可得到∠ADE =∠BCE,即可判定AD ∥BC;(2 )根据题意及由三角形的外角定理得到∠DGE =∠E =25° ,由平行线的性质得到∠EBC =∠GDE =25° ,根据角平分线的定义得到∠ABE =∠EBC =25° ,再根据对顶角相等及三角形的内角和求解即可.【详解】解:(1 )证明:∵∠ADE +∠BCF =180° ,∠BCE +∠BCF =180° ,∴∠ADE =∠BCE,∴AD ∥BC;(2 )∵∠ADC =∠E +∠DGE,∠ADC =2∠E =50° ,∴∠DGE =∠E =25° ,由(1 )得,AD ∥BC,∴∠EBC =∠DGE =25° ,∵BE平分∠ABC,∴∠ABE =∠EBC =25° ,∵∠AGB =∠DGE =25° ,∠A +∠ABE +∠AGB =180° ,∴∠A =180°-25°-25°=130° .【点睛】此题考查了多边形的内角与外角及平行线的判定与性质,熟记三角形的内角和、外角定理及平行线的判定定理与性质定理是解题的关键.20、如图,在网格中,线段的两个端点和点都在网格的格点上,分别按下列要求仅用无刻度直尺画图(保留作图痕迹).(1 )在图甲中画线段的中点.(2 )在图乙中画线段,使得.知识点:平行四边形【答案】(1 )见解析;(2 )见解析【分析】(1 )根据矩形的性质即可得到结论;(2 )根据平行四边形的性质作出图形即可.【详解】解:(1 )如图甲,点M即为所求;(2 )如图乙,线段CD即为所求.【点睛】本题考查了作图﹣应用与设计作图,矩形的性质,平行四边形的性质,正确的作出图形是解题的关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】 解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A 解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.8【分析】过点A 作AM ⊥BC 过点A 作AN ⊥BC 交DE 于N 证明△AFN ≌△BFE 得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC ∴∠B=∠C ∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A 作AM ⊥BC ,过点A 作AN ⊥BC 交DE 于N ,证明△AFN ≌△BFE ,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC ,∴∠B=∠C ,∵DE BC ⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD ,∠B=∠C ,∴∠BFE=∠AED=∠CDE ,∴AD=AF ,过点A 作AM ⊥BC ,在△ABC 中,∵AB=AC ,∴M 为BC 的中点,∴BM=12BC =6, 在Rt △ABM 中,AM=2222106AB BM -=-=8∵F 为AB 中点,FE ⊥BC , ∴FE 为△ABM 的中位线,BF=AF=12AB =5, ∴AD=AF=5,BE=132BM =, 过点A 作AN ⊥BC 交DE 于N ,∵AF=BF ,∠AFN=∠BFE ,∠ANF=∠BEF=90°,∴△AFN ≌△BFE ,∴AN=BE=3,在Rt △AND 中,DN=2222534AD AN -=-=,∵AD=AF ,AN ⊥DF ,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12. 【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x 在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.如图,在平行四边形ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为_____.【分析】连接CE过点C作交AB的延长线于点H设AE=x则BE=8-xCE=AE=x在根据勾股定理即可得到x的值【详解】如图:连接CE过点C作交AB的延长线于点H平行四边形ABCD中设AE=x则BE=解析:20 3【分析】连接CE,过点C作CH AB,交AB的延长线于点H,设AE=x,则BE=8-x,CE=AE=x,在根据勾股定理,即可得到x的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==, 在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE BF =,连接AE ,CF .(1)求证:E F ∠=∠;(2)连接AF ,CE ,当BD 平分ABC ∠时,四边形AFCE 是什么特殊四边形?请说明理由.解析:(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)根据四边形ABCD 是平行四边形,可以得到AD=CB ,AD ∥BC ,从而可以得到∠ADE=∠CBF ,然后根据SAS 证明△ADE ≌△CBF ,从而得出结论;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (SAS ),∴∠E=∠F ;(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE=BF ,∴OE=OF ,又∵OA=OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的判定、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t =72(秒);Ⅲ.当BM=BN ,当N 从C 运动到D 时,则BH=AB-AH=AB-DN=16-2t ,∵BM 2=BN 2=NH 2+BH 2=122+(16-2t )2,∴(16-t )2=122+(16-2t )2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.解析:(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点,∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD , ∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用. 26.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC. 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC .如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.27.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt△ADK≌Rt BAG,则AK=BG=12,DK=AG=5,∵AF+FK=AK=BG=GF=AG+AF∴FK=AG=5在R t△DFK中,根据勾股定理可得,DF=2252+=DK FK②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
初中数学平行四边形练习题(含答案)
初中数学平行四边形练习题(含答案)一、选择题(共10小题,3*10=30)1.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线2.在▱ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.下列不能判定一个四边形是平行四边形的条件是( )A .两组对角分别相等B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等4.只用下面的一种正多边形,不能进行平面镶嵌的是( )A .正三角形B .正方形C .正五边形D .正六边形5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O ,分别交AD ,BC 于点E ,F ,已知▱ABCD 的面积是20 cm 2,则图中阴影部分的面积是( )A .12 cm 2B .10 cm 2C .8 cm 2D .5 cm 26. 如图,在▱ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,CG ⊥BF ,垂足为点G ,若BF =4,则线段CG 的长为( )A.152B .4 3C .215 D.557.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种8.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH的交点P在BD上,则图中面积相等的平行四边形有()A.3对B.2对C.1对D.0对9.如图,在四边形ABCD中,E,F,P,Q分别为AB,AD,BC,CD的中点.若∠ABC=90°,∠AEF=60°,则∠CPQ的度数为()A.15° B.30°C.45° D.60°10.如图,在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16 3 B.14 3C.8 3 D.73二.填空题(共8小题,3*8=24)11.一个多边形的内角和等于900°,则这个多边形是_________边形.12. 如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE 的周长为________.14.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是____________.15.如图,面积为12 cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC的3倍,则四边形ACED的面积为_________.16.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=22,则▱ABCD 的周长是________.17.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是___________.18.如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD,则当点E,F不重合时,BD与EF的关系是____________.三.解答题(共7小题,66分)19.(8分) 如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF ,连接EF 交BD 于点O.求证:OB =OD.20.(8分) 是否存在一个多边形,它的每一个内角都相等且等于相邻外角的14请说明理由.21.(8分) 如图,在平行四边形ABCD 中,E 为AB 边上的中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:AD =BF ;(2)若平行四边形ABCD 的面积为32,试求四边形EBCD 的面积.22.(10分) 如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O 并且分别和AB ,CD 相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.23.(10分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.24.(10分)如图,在平行四边形ABCD中,∠ABC,∠BCD的平分线交于点E,且点E刚好落在AD上,分别延长BE,CD交于点F.(1)AB与AD之间有什么数量关系?并证明你的猜想;(2)CE与BF之间有什么位置关系?并证明你的猜想.25.(12分) 在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与CD相交,且∠EAB=90°时,请你写出线段EG,AG,BG之间的数量关系,并证明你的结论.参考答案1-5CBDCD 6-10CCABB11. 七 12. 72° 13.15 14.3<x <11 15. 60 cm 2 16.8 17. 2≤a +2b≤5 18.互相平分19. 证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠ADB =∠CBD.又∵AE =CF ,∴AE +AD =CF +BC.∴ED =FB.又∵∠EOD =∠FOB ,∴△EOD ≌△FOB(AAS).∴OB =OD.20. 解:不存在,理由如下:假设存在这样的一个多边形,设其一个外角的度数度为x°,则相邻的内角度数为180°-x°,由题意,得14x =180-x , 解得x =144,即这个多边形的每一个外角的度数都是144°,由多边形的外角和为360°,得这个多边形的边数为360°÷144°=2.5,因为多边形的边数应为整数,所以不存在这样的多边形.21. 解:(1)∵E 是AB 边上的中点,∴AE =BE.∵AD ∥BC ,∴∠ADE =∠F.在△ADE 和△BFE 中,∠ADE =∠F ,∠DEA =∠FEB ,AE =BE ,∴△ADE ≌△BFE.∴AD =BF(2)过点D 作DM ⊥AB 与M ,则DM 同时也是平行四边形ABCD 的高.∴S △AED =12×12AB·DM =14AB·DM =14×32=8, ∴S 四边形EBCD =S ▱ABCD -S △ADE =32-8=2422. 证明:如图所示.∵点O 为▱ABCD 对角线AC ,BD 的交点,∴OA =OC ,OB =OD.∵G ,H 分别为OA ,OC 的中点,∴OG =12OA ,OH =12OC. ∴OG =OH.又∵AB ∥CD ,∴∠1=∠2.在△OEB 和△OFD 中,⎩⎪⎨⎪⎧∠1=∠2,OB =OD ,∠3=∠4,∴△OEB ≌△OFD(ASA).∴OE =OF.∴四边形EHFG 为平行四边形.23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠ECF.∵E 为BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠B =∠ECF ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.(2)解:CH ⊥DG.理由如下:由(1)知△ABE ≌△FCE ,∴AB =CF.∵AB =CD ,∴DC =CF ,即点C 为DF 的中点.∵H 为DG 的中点,∴CH ∥FG.∵DG ⊥AE ,∴CH ⊥DG.24. 解:(1)AD =2AB.证明如下:∵BF 平分∠ABC ,∴∠ABE =∠FBC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FBC =∠AEB ,∴∠AEB =∠ABE ,∴AB =AE ,同理可证:CD =DE ,∴AD =AE +ED =AB +CD =2AB.(2)CE ⊥BF.证明如下:∵BF 平分∠ABC ,∴∠ABC =2∠EBC ,∵CE 平分∠BCD ,∴∠BCD =2∠BCE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°,∴2∠EBC +2∠BCE =180°,∴∠EBC +∠BCE =90°,∴∠BEC =90°,即CE ⊥BF.25. 解:(1)证明:如图①,作∠GAH =∠EAB 交GE 于点H ,设EF 与AB 相交于点P.则∠GAB =∠HAE.∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH.在△ABG 和△AEH 中,⎩⎪⎨⎪⎧∠GAB =∠HAE ,AB =AE ,∠ABG =∠AEH ,∴△ABG ≌△AEH(ASA).∴BG =EH ,AG =AH.∵∠GAH =∠EAB =60°,∴△AGH 是等边三角形.∴AG =HG.∴EG =AG +BG.(2)EG =2AG -BG.证明如下:如图②,作∠GAH =∠EAB 交GE 的延长线于点H.∴∠GAB =∠HAE.∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH.又∵AB =AE ,∴△ABG ≌△AEH ,∴BG =EH ,AG =AH.∵∠GAH =∠EAB =90°,∴△AGH 是等腰直角三角形. ∴2AG =HG.∴EG =2AG -BG.。
初中数学特殊的平行四边形50题(含答案)
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
平行四边形习题及答案
平行四边形习题及答案平行四边形是初中数学中的一个重要概念,也是几何学中的基础知识之一。
它具有独特的性质和特点,是解决几何问题的关键要素之一。
在本文中,我将为大家介绍一些关于平行四边形的习题及其答案,希望能够帮助大家更好地理解和掌握这一知识点。
习题一:已知平行四边形ABCD中,AB=8cm,AD=5cm,角A的度数为60°,求平行四边形的面积。
解答:首先,我们知道平行四边形的面积可以通过底边乘以高得到。
由于ABCD是平行四边形,所以AD和BC也是平行的,且高的长度为AD。
因此,平行四边形的面积为8cm × 5cm = 40cm²。
习题二:已知平行四边形ABCD中,AB=6cm,BC=10cm,角A的度数为120°,求平行四边形的周长。
解答:平行四边形的周长可以通过将所有边长相加得到。
由于ABCD是平行四边形,所以AB和CD是平行的,BC和AD也是平行的。
因此,平行四边形的周长为6cm + 10cm + 6cm + 10cm = 32cm。
习题三:已知平行四边形ABCD中,AB=8cm,BC=12cm,角A的度数为135°,求平行四边形的对角线长度。
解答:对角线是连接平行四边形的相对顶点的线段。
在平行四边形ABCD中,对角线AC和BD是相互平分的。
由于ABCD是平行四边形,所以AC和BD是平行的。
我们可以利用三角形的余弦定理来求解对角线的长度。
设对角线的长度为x,根据余弦定理,我们可以得到方程:x² = 8² + 12² - 2 × 8 × 12 ×cos(135°)。
计算得到x² ≈ 256,因此x ≈ 16。
所以平行四边形的对角线长度为16cm。
习题四:已知平行四边形ABCD中,AB=6cm,BC=8cm,角A的度数为60°,求平行四边形的高。
解答:平行四边形的高是指与底边平行且垂直于底边的线段。
(必考题)初中八年级数学下册第十八章《平行四边形》经典习题(含答案解析)
一、选择题1.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个D解析:D【分析】 求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.2.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4C解析:C【分析】 由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.3.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm D 解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B 、∵AC=6cm ,BD=10cm ,∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.A 解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B【分析】 判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC 3AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS =可判断⑤;即可求解.【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC =3AB ,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S ,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .6A解析:A【分析】 由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20C解析:C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163A解析:A【分析】 由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,平行四边形ABCD中,CE AD⊥于点E,点F为边AB的中点,连接EF,CF,若12AD CD=,38CEF∠=︒,则AFE∠=_____________.24°【分析】延长CF交DA延长线于点G证△BCF≌△AGF得GF=FC由垂直得△FEC是等腰三角形可知△BFC是等腰三角形求出∠GFE和∠GFA即可【详解】解:延长CF交DA延长线于点G∵AG∥B解析:24°【分析】延长CF交DA延长线于点G,证△BCF≌△AGF,得GF=FC,由垂直得△FEC是等腰三角形,12AD CD=,可知△BFC是等腰三角形,求出∠GFE和∠GFA即可.【详解】解:延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF ,∠GAF=∠B ,∵AF=FB ,∴△AGF ≌△BCF ,∴GF=CF ,AG=BC ,∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°,∵38CEF ∠=︒,∴∠FEG=∠FGE=52°,∠GFE=76°, ∵12AD CD =, ∴BC=BF=AF ,∵AG=BC ,∴AG=AF ,∠G=∠AFG=52°, AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.cm,两条对角线之比为3∶4,则菱形的周长为14.已知菱形的面积为962__________.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=226+8=10cm ,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.15.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒ 221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.30°【分析】根据矩形的性质得到AD ∥BC ∠DCB =90°根据平行线的性质得到∠F =∠ECB =20°根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF+∠F =2∠F =40°于是得到结论【详解】解 解析:30°【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =20°,根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB∵∠ECB =20°,∴∠F =∠ECB =20°,∵∠GAF =∠F ,∴∠GAF =∠F =20°,∴∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,∴∠ACB =∠ACG +∠ECB =60°,∴∠ACD =90°﹣∠ACB =90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG 解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC 的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB ,∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.19.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.20.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.三、解答题21.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.22.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).解析:(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长. 【详解】(1)∵PA 平分BAD ∠,BP AP ⊥,∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒;(2)如图1,延长BP 交AD 的延长线于点G , ∵BP AP ⊥,PA 平分BAD ∠,∴90APB APG ∠=∠=︒,BAP GAP ∠=∠, 在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠,∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD , ∴CBP DGP ∠=∠, 在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△, ∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G , ∴由已知条件可知,此时四边形ABFE 是平行四边形, ∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =, 由(2)可知,ABP AGP ≌, ∴5BA GA a ==,3BP GP a ==, 由(2)可知,BCP GDP △≌△, ∴=CP DP ,=BC GD , ∵//BC AD , ∴BFP GEP ∠=∠, 在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠, ∴CFP ≌DEP , ∴CF DE =, ∵=BC GD ,∴BC CF GD DE +=+, ∴BF EG =,又∵四边形ABFE 是平行四边形, ∴BF AE =,∴BF AE EG ==, ∴25AG AE a ==,∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I , 同①可得PFC PED △≌△, ∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+, ∴5BF AE BC AD AB a +=+==, 在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△, 梯形ABCD 的面积2122BC ADBH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=,∵//BC AD ,∴BH FI =,BF HI =, ∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =, ∴Rt BHA △≌Rt FIE △,∴75AH EI a ==,∴2()BF AE BF AH EI HI BF AH +=+++=+,∴2()BF AE BF AH +=+, ∴1110BF a =, ∴3910AE AB BF a =-=.图3 【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.23.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析 【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论. 【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠, DE AB ∵⊥,DF BC ⊥, 90AED CFD ∴∠=∠=︒, 在ADE ∆和CDF ∆中, AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.24.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM的角平分线CN,过点B作CN 的垂线,垂足为E;(2)求证:四边形BECD是矩形;(3)AB与AC满足怎样的数量关系时,四边形BECD是正方形?证明你的结论.解析:(1)如图所示,见解析;(2)见解析;(3)当AB=2AC时,矩形BECD是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD是AB的垂直平分线,推出∠CDB=90°,AC=BC,利用CN平分∠BCM求出∠DCN=∠DCB+∠BCN=90°,由BE⊥CN求得∠BEC=90°,即可得到结论;(3)当AB=2AC时,矩形BECD是正方形,由AD=BD,AB=2AC,求得BD=22AC,根据AD⊥CD,∠CDB=90°,推出BD=CD,由此得到矩形BECD是正方形.【详解】(1)解:如图所示,(2)证明:∵CD是AB的垂直平分线,∴CD⊥BD,AD=BD,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB=2AC时,矩形BECD是正方形∵AD=BD,AB=2AC,∴BD=22AC,∵AD⊥CD,∠CDB=90°,∴BD=CD,∴矩形BECD是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.25.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?解析:(1)t=2;(2)t=3或65t .【分析】(1)根据等边三角形的性质,列出关于t的方程,进而即可求解.(2)根据△PAQ是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP=2t(米),AQ=6-t(米).∵∠A=60°,∴当△PAQ是等边三角形时,AQ=AP,即2t=6-t,解得:t=2,∴当t=2时,△PAQ是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒), 当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长. 解析:(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可. 【详解】(1)证明:2AD BC =,E 为AD 的中点, DE BC ∴=. //AD BC ,∴四边形BCDE 是平行四边形. 90ABD ∠=︒,AE DE =, BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC , //AD BC ,AC 平分BAD ∠, BAC DAC BCA ∴∠=∠=∠. 1AB BC ∴==.22AD BC ∴==, 2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒. 在Rt ACD ∆中 2AD =, 1CD ∴=,∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 27.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ; (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =12AB =AE . ∵△ACD 是等边三角形, ∴AD =CD . 在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△CDE (SSS ), ∴∠ADE =∠CDE =30°. ∵∠DCB =150°, ∴∠EDC +∠DCB =180°. ∴DE ∥CB . (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°, ∵∠DCB =150°, ∴∠DCB +∠B =180°, ∴DC ∥BE , 又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒ 【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解. 【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒, ∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒, ∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,。
(必考题)初中数学八年级数学下册第六单元《平行四边形》测试卷(答案解析)
一、选择题1.如果一个多边形的内角和为1260︒,那么从这个多边形的一个顶点可以作( )条对角线.A .4B .5C .6D .72.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.53.如图,作ABC 关于直线对称的图形A B C ''',接着A B C '''沿着平行于直线l 的方向向下平移,在这个变换过程中两个对应三角形的对应点应具有的性质是( )A .对应点连线相等B .对应点连线互相平行C .对应点连线垂直于直线lD .对应点连线被直线平分 4.已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )A .9B .10C .11D .12 5.如图,在▱ABCD 中,AB=2.6,BC=4,∠ABC 的平分线交CD 的延长线于点E ,则DE 的长为( )A .2.6B .1.4C .3D .26.下列关于多边形的说法不正确的是( )A .内角和外角和相等的多边形是四边形B .十边形的内角和为1440°C .多边形的内角中最多有四个直角D .十边形共有40条对角线7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是BC 的中点,若AB =16,则OE 的长为( )A .8B .6C .4D .3 8.已知在四边形ABCD 中,3AB =,5CD =,M ,N 分别是AD ,BC 的中点,则线段MN的取值范围是( )A .14MN <<B .14MN <≤C .28MN <<D .28MN <≤ 9.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,-33),则D 点的坐标是 ( )A .(4,0)B .(92,0)C .(5,0)D .(112,0) 10.有下列命题:①有一个角为60°的等腰三角形是等边三角形;②三边长为3,4,5的三角形为直角三角形;③三角形三边垂直平分线的交点到三角形三个顶点的距离相等;④平行四边形的对角线相等;⑤顺次连结任意四边形各边的中点组成的新四边形是平行四边形.正确的个数有( )A .4个B .3个C .2个D .1个11.如图,ABCD 中,点E 在边BC 上,以AE 为折痕,将ABE △向上翻折,点B 正好落在CD 上的点F 处,若FCE △的周长为7,FDA △的周长为21,则FD 的长为( )A .5B .6C .7D .812.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若6AB =,8AC =,则BD 的长是( )A .10B .213C .413D .12二、填空题13.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______. 14.如图,在平行四边形ABCD 中,∠B=60°,∠BCD 的平分线交AD 点E ,若CD=3,四边形ABCE 的周长为13,则BC 长为__.15.平行四边形ABCD 中,4AB =,对角线3AC =,另一条对角线BD 的取值范围是_____.16.如图,在ABCD 中,CD =2,∠B =60°,BE ∶EC =2∶1,依据尺规作图的痕迹,则ABCD 的面积为________.17.如图,在平行四边形ABCD 中,AB=213,AD=4,AC ⊥BC .则BD=____.18.一个多边形的内角和是1080°,则这个多边形是边形__________边形.19.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.20.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.三、解答题21.如图,ABCD 的对角线AC 、BD 交于点O ,M ,N 分别是AB 、AD 的中点. (1)求证:四边形AMON 是平行四边形;(2)若6AC =,4BD =,90AOB ∠=︒,求NO 的长度.22.如图,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为一边,在△OAB 外作等边三角形OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形.(2)求四边形ABCE 的面积.23.如图,在△ABC 中,AC =BC ,E 是AB 上一点,且CE =BE ,将△CBE 绕点C 旋转得到△CAD .(1)求证:AB ∥DC ;(2)连接DE ,判断四边形BEDC 的形状,并说明理由.24.在ABC 中,AB AC =,36BAC ∠=︒,将ABC 绕点A 顺时针旋转一个角度α得到ADE ,点B 、C 的对应点分别是D 、E .(1)如图1,若点E 恰好与点B 重合,DF AB ⊥,垂足为F ,求BDF ∠的大小; (2)如图2,若108α=︒,连接EC 交AB 于点G ,求证:四边形ADEG 是平行四边形.25.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求△OEF 的周长.26.如图,平行四边形ABCD 中,分别过A 、C 两点作AE BD ⊥,CF BD ⊥,垂足分别为E 、F ,连接CE 、AF .(1)若4AB =,3EF =30ABD ∠=︒,求ABD △的面积;(2)求证:AF CE =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用n 边形的内角和公式算出n ,再利用n 边形的每一个顶点有(n-3)条对角线计算即可.【详解】根据题意,得(n-2)×180=1260,解得n=9,∴从这个多边形的一个顶点可以作对角线的条数为:n-3=9-3=6.故选C.【点睛】本题考查了n 边形的内角和和经过每一个顶点可作的对角线条数,熟记多边形内角和公式,计算经过每一个顶点的对角线条数计算公式是解题的关键.2.C解析:C【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解.【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠,∴6AF AB ==,同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.3.D解析:D【分析】作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,则AD 被对称轴垂直平分,利用EF 是△A A 'D 的中位线,得到AE=E A ', 同理可知:图形中对应点连线被直线平分.【详解】根据题意,作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,∵A 、D 关于直线l 对称,∴AD 被对称轴垂直平分,又∵EF ∥A 'D ,∴EF 是△A A 'D 的中位线,∴AE=E A ',即A A '被对称轴平分,同理可知:图形中对应点连线被直线平分,故选:D ..【点睛】此题考查平移的性质,轴对称的性质,三角形中位线的性质,熟练掌握各性质是解题的关键.4.B解析:B【分析】先根据多边形的外角和等于360︒可得其内角和的度数,再根据多边形的内角和公式即可得.【详解】设这个多边形的边数为n ,这个多边形的内角和是外角和的4倍,∴其内角和为36041440︒⨯=︒,由多边形的内角和公式得:180(2)1440n ︒-=︒,解得10n =,故选:B .【点睛】本题考查了多边形的内角和与外角和问题,熟练掌握多边形的内角和公式是解题关键. 5.B解析:B【分析】由平行四边形ABCD 中,BE 平分∠ABC ,可证得△BCE 是等腰三角形,继而利用DE=CE-CD ,求得答案.【详解】 解:四边形ABCD 是平行四边形,AB//CD ∴,CD AB 2.6==,E ABE ∠∠∴=. BE 平分ABC ∠,ABE CBE ∴∠=∠,CBE E ∠∠∴=,CE BC 4∴==,DE CE CD 4 2.6 1.4∴=-=-=.故选:B .【点睛】此题考查了平行四边形的性质,能证得△BCE 是等腰三角形是解此题的关键. 6.D解析:D【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答.【详解】A 、内角和与外角和相等的多边形是四边形,正确;B 、十边形的内角和为()102180-⨯︒=1440°,正确;C 、多边形的内角中最多有四个直角,正确;D 、十边形共有()101032⨯-=35条对角线,故错误;故选:D .【点睛】本题考查了多边形,解决本题的关键是熟记多边形的有关性质. 7.A解析:A【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO 的长.【详解】解:∵在□ABCD 中,对角线AC ,BD 相交于点O ,∴点O 是AC 的中点,又∵点E 是BC 的中点,∴EO 是△ABC 的中位线,∴EO =12AB =8. 故选:A .【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出EO 是△ABC 的中位线是解题关键.8.B解析:B【分析】利用中位线定理作出辅助线,利用三边关系可得MN 的取值范围.【详解】连接BD ,过M 作MG ∥AB ,连接NG .∵M 是边AD 的中点,AB=3,MG ∥AB , ∴MG 是△ABD 的中位线,BG=GD ,1322MG AB ==; ∵N 是BC 的中点,BG=GD ,CD=5,∴NG 是△BCD 的中位线,1522NG CD ==, 在△MNG 中,由三角形三边关系可知NG-MG <MN <MG+NG ,即53532222MN -<<+, ∴14MN <<,当MN=MG+NG ,即MN=4时,四边形ABCD 是梯形,故线段MN 长的取值范围是1<MN≤4.故选B .【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答. 9.C解析:C【详解】解:如图,∵点C与点E关于x轴对称,E点的坐标是(7,3∴C的坐标为(7,3∴CH3CE3,∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC3∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D点的坐标是(5,0),故答案为(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x轴对称的特点以及勾股定理的运用.10.B解析:B【分析】根据各图形的性质和判定可以选出正确答案.【详解】解:①为等边三角形的判定定理,正确;对于②,2223475575+==≠,,,所以错误;∵线段垂直平分线上点到线段两端点距离相等,所以三角形三边垂直平分线的交点到三角形三个顶点的距离相等,③正确;矩形的对角线相等,一般的平行四边形对角线不一定相等,④错误;顺次连结任意四边形各边的中点组成的新四边形各组对边分别与某一条对角线平行,所以新四边形是平行四边形,⑤正确,故选B.【点睛】本题考查三角形与四边形的性质与判定,灵活应用有关定理求证是解题关键.11.C解析:C【分析】由题意易得AB=AF,FE=BE,然后根据三角形的周长及线段的等量关系进行求解即可.【详解】解:由题意得:AB=AF,FE=BE,四边形ABCD是平行四边形,∴BC=AD,AB=DC=AF,FCE△的周长为7,FDA△的周长为21,∴FE+EC+FC=7,AD+AF+DF=21,∴BC+FC=7,AF=DC=DF+FC,∴7-FC+DF+FC+DF=21∴DF=7.故选C.【点睛】本题主要考查折叠的性质及平行四边形的性质,熟练掌握平息四边形及折叠的性质是解题的关键.12.C解析:C【分析】由平行四边形的性质得出OB=OD,OA=OC=12AC=4,由AC⊥AB,根据勾股定理求出OB,即可得出BD的长.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC=12AC=4,∵AB⊥AC,∴由勾股定理得:==∴故选:C.【点睛】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OB是解题的关键.二、填空题13.60°【分析】首先设这个正多边形的边数为n根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.14.5【分析】利用平行四边形的对边相等且互相平行进而得出DE=CD=3再求出AE+BC=7BC-AE=3即可求出BC的长【详解】∵CE平分∠BCD交AD边于点E∴∠ECD=∠ECB∵在平行四边形ABCD解析:5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC的长.【详解】∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=CD=3,∴△CDE是等边三角形,∴CE=CD=3,∵四边形ABCE的周长为13,∴AE+BC=13-3-3=7①,∵AD-AE═DE=3,即BC-AE=3②,由①②得:BC=5;故答案为:5.【点睛】此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE是解题关键.15.【分析】根据四边形和三角形的三边关系性质计算即可得到答案【详解】如图平行四边形ABCD 对角线AC 和BD 交于点O ∵平行四边形ABCD ∴中或∴或∵不成立故舍去∴∴∵∴【点睛】本题考查了平行四边形三角形的解析:511BD <<【分析】根据四边形和三角形的三边关系性质计算,即可得到答案.【详解】如图,平行四边形ABCD 对角线AC 和BD 交于点O∵平行四边形ABCD ,3AC = ∴1322AO AC == ABO 中AO BO AB AO BO AB +>⎧⎨-<⎩ 或AO BO AB BO AO AB +>⎧⎨-<⎩∴342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩ 或342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩∵342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩不成立,故舍去 ∴342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩∴51122BO << ∵2BD BO =∴511BD <<.【点睛】 本题考查了平行四边形、三角形的性质;解题的关键是熟练掌握平行四边形对角线、三角形三边关系的性质,从而完成求解.16.【分析】分析作图痕迹可知△ABE 是等边三角形从而可求其面积继而求得△ABC 的面积再分析求得平行四边形的面积【详解】过点A 作AF ⊥BC 垂足为点F连接AC由题意知:△ABE是等边三角形∵四边形ABCD是解析:33【分析】分析作图痕迹,可知△ABE是等边三角形,从而可求其面积,继而求得△ABC的面积,再分析求得平行四边形的面积.【详解】过点A作AF⊥BC,垂足为点F,连接AC,由题意知:△ABE是等边三角形,∵四边形ABCD是平行四边形,∴AB=CD=2,∵∠B=60°,∴在Rt△ABF中,BF=1,AF=22AB-BF=3,△ABE的面积为:11AB AF=23=3 22⨯⋅⨯⨯,∵BE∶EC=2∶1∴△ABC与△ABE的底之比为3:2,而它们等高,∴△ABC的面积为:332,∴平行四边形ABCD的面积为:33.【点睛】考查垂直平分线的性质、等边三角形的判定、勾股定理、平行四边形的性质等,比较综合,但难度不大.17.10【分析】由BC⊥ACAB=2BC=AD=4由勾股定理求得AC的长得出OA长然后由勾股定理求得OB的长即可【详解】解:∵四边形ABCD是平行四边形∴BC=AD=4OB=ODOA=OC∵AC⊥BC∴解析:10【分析】由BC⊥AC,13BC=AD=4,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=4,OB=OD,OA=OC,∵AC⊥BC,∴,∴OC=3,∴,∴BD=2OB=10故答案为:10.【点睛】此题考查平行四边形的性质以及勾股定理.解题关键在于注意掌握数形结合思想的应用.18.八【分析】首先设这个多边形的边数为n由n边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n边形的内角和等于180︒(n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.19.2cm【解析】试题解析:2cm.【解析】试题∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).20.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD是平行四边形∴∴∵将四边形CDMN沿线段MN折叠得到四边形QPMN∴∴故答案为【点睛】本题考察了平行四边解析:44︒【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠=故答案为44︒.【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.三、解答题21.(1)证明见解析;(2)NO =. 【分析】(1)根据平行四边形的性质得到AO =OC ,BO =OD ,根据三角形中位线的性质得到MO ∥AD ,NO ∥AB ,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB =12NO AB =进而可得结论.【详解】(1)∵四边形ABCD 是平行四边形,∴AO =OC ,BO =OD .∵M ,N 分别是AB 、AD 的中点,∴//MO AD ,//NO AB ,∴//MO AN ,//NO AM ,∴四边形AMON 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,∴AO OC =,BO OD =.∵6AC =,4BD =,∴3AO =,2BO =.∵90AOB ∠=︒, ∴AB =∵N 是AD 的中点,BO OD =, ∴12NO AB =,∴NO =【点睛】本题主要考查了平行四边形的性质和判定,三角形中位线的性质,勾股定理,根据三角形中位线的性质得到12NO AB =是解决问题的关键.22.(1)见详解;(2)【分析】(1)先证明AB ∥CE ,再推出∠ADB =∠OBC=60°,从而得AD ∥BC ,进而得到结论; (2)根据勾股定理求出AO 的长,再根据平行四边形的面积公式,即可求解.【详解】(1)证明:∵∠OAB =90°,∴AB ⊥x 轴,∵y 轴⊥x 轴,∴AB ∥y 轴,即AB ∥CE ,∵∠AOB =30°,∴∠OBA =60°,∵∠OAB=90°,D 是OB 的中点,∴DB=DO=12OB =4, ∵∠AOB=30°, ∴AB= 12OB =4, ∵DB =DO =AB =4,∴∠BDA =∠BAD =(180°-60°)÷2=60°,∵△OBC 是等边三角形,∴∠OBC =60°,∴∠ADB =∠OBC ,即AD ∥BC ,∴四边形ABCE 是平行四边形;(2)在直角△OAB 中,AB=4,BO=8,∴=∴平行四边形ABCE 的面积=AB∙AO=4⨯=【点睛】本题主要考查直角三角形的性质,等边三角形的性质,勾股定理以及平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.23.(1)见解析;(2)平行四边形,理由见解析【分析】(1)由旋转的性质得出∠BCE =∠ACD ,由等腰三角形的性质得出∠B =∠BAC ,∠B =∠BCE ,由平行线的判定可得出结论;(2)由平行四边形的判定可得出结论.【详解】(1)证明:由旋转的性质得∠BCE =∠ACD ,∵AC =BC ,∴∠B =∠BAC ,∵CE =BE ,∴∠B =∠BCE ,∴∠ACD =∠BAC ,∴AB ∥CD ;(2)解:四边形BEDC 是平行四边形,由旋转的性质得CD =CE ,∵CE =BE ,∴CD =BE ,∵AB ∥DC ,∴四边形BEDC 是平行四边形.【点睛】本题考查了旋转的性质、等腰三角形的性质、平行四边形的性质与判定、熟练掌握旋转的性质是解本题的关键;24.(1)18BDF ∠=︒;(2)见解析.【分析】(1)根据等腰三角形的性质求出∠ACB=72゜,再由旋转的性质得∠DBF=∠ACB=72゜,最后根据直角三角形两锐角互余可得结论;(2)分别证明∠DEC=108゜,∠DAG =108゜,可得EG//AD ,AG//DE ,从而可证四边形ADEG 是平行四边形.【详解】解:(1)∵AB AC =,36BAC ∠=︒∴72ABC ACB ∠=∠=︒∴72ADB ABD ∠∠==︒∵DF AB ⊥,∴90DFB ∠=︒∴∠DBF+∠BDF=90゜∴907218BDF ∠=︒-︒=︒(2)∵108α=︒,即108CAE ∠=︒又AE AC =∴36ACE AEC ∠=∠=︒∵∠AED=∠ADE=72゜∴∠DEC=72゜+36゜=108゜∴∠ADE+∠CED=180゜∴EG//AD∵∠DAE=∠BAC∴∠DAE+∠EAG=∠CAB+∠EAG=108゜∴∠DAG+∠ADE=180゜∴AG//DE∴四边形ADEG 是平行四边形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.25.(1)详见解析;(2)14【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论; (2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、 G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10 ∴EF=5 ∵AC+BD=36∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 26.(1);(2)证明见解析【分析】(1)由平行四边形的性质得AB=CD ,AB ∥CD ,由平行线的性质得∠ABE=∠CDF ,由AAS 证得△ABE ≌△CDF ,得BE=DF ,在Rt △ABE 中,由含30°角直角三角形的性质得122AE AB ==,再由勾股定理求出BE ,进而得到BD 的长,进而求出ABD △的面积; (2)由(1)得△ABE ≌△CDF ,则AE=CF ,易证AE ∥CF ,得出四边形AECF 是平行四边形,即可得出结论.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABE=∠CDF ,又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中:ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (AAS ),∴BE=DF ,∵在Rt △ABE 中,∠ABD=30°, ∴122AE AB ==,由勾股定理得:BE ==, ∴2223353BDBE EF , ∴112535322ABD SAE BD , 故答案为:(2) 由(1)得:△ABE ≌△CDF ,∴AE=CF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEF=∠CFE=90°,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF=CE .【点睛】本题考查了平行四边形的判定与性质、平行线的性质、全等三角形的判定与性质、含30°直角三角形的性质、勾股定理、三角形面积计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.。
平行四边形综合练习附答案
平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
(典型题)初中数学八年级数学下册第六单元《平行四边形》测试卷(有答案解析)
一、选择题1.如图,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形,则应增加的条件是( )A .AB =CDB .∠BAD =∠DCBC .AC =BD D .∠ABC +∠BAD =180°2.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 3.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .7 4.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 5.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm7.如图所示,EF 过▱ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长是( )A .10B .11C .12D .138.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =OD D .AB ∥CD ,AD =BC9.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm10.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④11.如图,平行四边形ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F .若AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为( )A .16B .14C .10D .1212.如图,在周长为12cm 的▱ABCD 中,AB <AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .5cmC .6cmD .7cm二、填空题13.如图,点C 在线段AB 上,等腰ADC 的顶角120ADC =∠︒,点M 是矩形CDEF 的对角线DF 的中点,连接MB ,若63AB =,6AC =,则MB 的最小值为为______.14.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______. 15.七边形的外角和为________.16.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.17.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.20.如图,已知,,,AB DC AD BC E F ==在DB 上两点,且BF DE =,若30ADB ∠AEB =110︒,∠=︒,则BCF ∠的度数为________.三、解答题21.已知:如图,平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E ,且BE CE =,80B ∠=︒;求DAE ∠的度数.22.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .23.如图,ABCD 的对角线AC BD 、相交于点,,,3,5O AB AC AB BC ⊥==,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.()1求BQ 的长(用含t 的代数式表示);()2问t 取何值时,四边形ABQP 是平行四边形?24.如图,在平行四边形ABCD 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,连结BF ,DE .(1)求证:四边形BFDE 是平行四边形;(2)连结BD ,若3BE =,5BF =,求BD 的长.25.如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可.【详解】A错误,当四边形ABCD是等腰梯形时,也满足条件.AD BC,B正确,∵//∴180∠+∠=,BAD ABC︒∵BAD DCB∠=∠,∴180∠+∠=,DCB ABC︒AB CD,∴//∴四边形ABCD是平行四边形.C 错误,当四边形ABCD 是等腰梯形时,也满足条件.D 错误,∵180ABC BAD ︒∠+∠=,∴//AD BC ,与题目条件重复,无法判断四边形ABCD 是不是平行四边形.故选:B .【点睛】本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题关键是熟练掌握平行四边形的判定方法.2.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,AB ∴==25A B ==,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++15 6.=+=故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.C解析:C【分析】⨯=︒,设这个多边形是n边形,内角和是多边形的外角和是360︒,则内角和是2360720()-⋅︒,这样就得到一个关于n的方程,从而求出边数n的值.n2180【详解】解:设这个多边形是n边形,根据题意,得()-⨯︒=⨯,n21802360=.解得:n6即这个多边形为六边形.故选:C.【点睛】本题考查了多边形的内角和与外角和,熟记内角和公式和外角和定理并列出方程是解题的关键,根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决. 4.C解析:C【分析】由平行四边形的判定可求解.【详解】A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C.【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.5.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.6.D解析:D【分析】的周长=AB+BC+AC,而AB+BC为平行四边形ABCD的周长的一半,代入数值求解ABC即可.【详解】因为四边形ABCD是平行四边形,∴AB=DC,AD=BC,∵▱ABCD的周长是56cm,∴AB+BC=28cm,∵△ABC的周长是36cm,∴AB+BC+AC=36cm,∴AC=36cm−28cm=8cm.故选D.【点睛】本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.C解析:C【解析】试题根据平行四边形的性质,得AO=OC,∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OF=OE=1.5,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=12.故选C.8.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.10.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.11.D解析:D【分析】由题意根据平行四边形的性质可知AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE 和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD 的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,进而计算求出周长即可.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故选:D.【点睛】本题考查平行四边形的性质和全等三角形的判定与性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.12.C解析:C【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是线段BD的垂直平分线,∴BE =ED ,∵△ABE 的周长=AB +AE +BE =AB +AE +ED =AB +AD =6cm .故选:C .【点睛】此题考查平行四边形的性质,解题关键是根据平行四边形的性质得出OB =OD ,再结合线段垂直平分线的定义解答.二、填空题13.【分析】过D 作DG ⊥AC 于G 取FC 中点H 连结MHHB 由等腰的顶角可得DG 平分∠ADCAG=CG=可求∠GDC=60°∠DCG=30°在Rt △DGC 中由勾股定理DC2=DG2+GC2即4DG2=DG2解析:9-【分析】过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB 由等腰ADC 的顶角120ADC =∠︒,可得DG 平分∠ADC ,AG=CG=1AC=32,可求∠GDC=60°,∠DCG=30°,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,可求由M ,H 为中点,可得MH=12MB MH+HB ,MH 为定值,HB 最小时,MB 最短,BH ⊥CF ,可求∠HCB=60°,CH=()11BC=22,由勾股定理9=-,BH 最小-【详解】解:过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB ,∵等腰ADC 的顶角120ADC =∠︒,∴DG 平分∠ADC ,AG=CG=1AC=32, ∴∠GDC=60°,∠DCG=90°-∠GDC=90°-60°=30°,∴CD=2DG ,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,∴,∵M ,H 为中点,∴MH=12根据两点之间线段最短,则有MBMH+HB ,MH 为定值, ∴HB 最小时,MB 最短,∴BH ⊥CF ,∠HCB=180°-∠DCA-∠DCF=180°-30°-90°=60°, CH=()11BC=63-6=33-322, BH=()2233333933CB CH CH -==-=-,BH 最小=3+9-33=923-,故答案为:923-.【点睛】本题考查等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系,掌握等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系是解题关键.14.60°【分析】首先设这个正多边形的边数为n 根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n ∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.15.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;16.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.17.14【分析】根据三角形中位线定理得到FG∥EHFG=EH根据平行四边形的判定定理和周长解答即可【详解】∵FG分别为BCCD的中点∴FG=BD=4FG∥BD∵EH分别为ABDA的中点∴EH=BD=4E解析:14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=1BD=4,FG∥BD,2∵E ,H 分别为AB ,DA 的中点,∴EH =12BD =4,EH ∥BD , ∴FG ∥EH ,FG =EH ,∴四边形EFGH 为平行四边形,∴EF =GH =12AC =3, ∴四边形EFGH 的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC ,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.20.80【分析】先证明四边形ABCD 是平行四边形再通过条件证明最后根据全等三角形的性质及三角形外角性质即可得出答案【详解】∵∴四边形ABCD 是平行四边形∴在△AED 和△CFB 中∴∴∵∴故答案是【点睛】本解析:80【分析】先证明四边形ABCD 是平行四边形,再通过条件证明△△AED CFB ≅,最后根据全等三角形的性质及三角形外角性质即可得出答案.【详解】∵,AB DC AD BC ==,∴四边形ABCD 是平行四边形,∴ADE CBF ∠=∠,在△AED 和△CFB 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△AED CFB SAS ≅,∴DAE BCF ∠=∠,∵30ADB ∠AEB =110︒,∠=︒,∴1103080BCF DAE AEB ADB ∠=∠=∠-∠=︒-︒=︒,故答案是80︒.【点睛】本题主要考查了平行四边形的性质,结合外角定理计算是解题的关键. 三、解答题21.50°【分析】根据平行四边形的性质求出CD=CE ,得到AB=BE ,所以BAE BEA ∠=∠根据80B ∠=︒,//AD BC 得到DAE ∠的度数【详解】 证明:四边形ABCD 是平行四边形//AD BC ∴13∠∠∴= DE 是ADC ∠的角平分线12∠∠∴=23∴∠=∠CD CE ∴=四边形ABCD 是平行四边形AB CD ∴=BE CE =AB BE ∴=BAE BEA ∴∠=∠80B ∠=︒50AEB ∴∠=︒//AD BC50DAE AEB ∴∠=∠=︒【点睛】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE 是解决问题的关键.22.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题. 试题∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF . 考点:平行四边形的判定与性质.23.(1)5-t ;(2)52【分析】(1)先证明△APO ≌△CQO ,可得出AP=CQ=t ,则BQ 即可用t 表示;(2)由题意知AP ∥BQ ,根据AP=BQ ,列出方程即可得解;【详解】解:(1)∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC ,∴∠PAO=∠QCO ,∵∠AOP=∠COQ ,∴△APO ≌△CQO (ASA ),∴AP=CQ=t ,∵BC=5,∴BQ=5-t ;(2)∵AP ∥BQ ,当AP=BQ 时,四边形ABQP 是平行四边形,即t=5-t , 52t =, ∴当52t =时,四边形ABQP 是平行四边形. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)见解析 (2)213【分析】(1)根据平行四边形的性质和已知可证得//BE DF ,ABE CDF ≅,由全等三角形的性质可证得BE DF =,利用平行四边形的判定即证得出结论;(2)根据平行四边形的对角线互相平分得OE OF OB OD ==,,再根据勾股定理即可求解.【详解】解:(1)在平行四边形ABCD 中,∵//AB CD ,AB CD =,∴BAE DCF ∠=∠,∵BE AC DF AC ⊥⊥, ,∴90//BEA DFC BE DF ∠=︒=∠,,∴ABE CDF ≅,∴BE DF =,∴四边形BFDE 是平行四边形;(2)连结BD 交AC 于点O ,则OE OF OB OD ==,,∵35BE AC BE BF ⊥==,, ,∴在Rt BEF △中,4EF ==, ∴OE =2,在Rt OBE 中,OB == ∴2BD OB ==【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理,是典型的基础题,难度适中,熟练掌握这些知识的综合运用是解答的关键.25.(1)见解析;(2)见解析.【分析】(1)由四边形ABCD 是平行四边形,可得AD ∥BC ,又BE ∥DF ,可证四边形BFDE 是平行四边形;(2)由四边形ABCD 是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF ,即AE=CF.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,即DE ∥BF .∵BE ∥DF,∴四边形BFDE 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∵四边形BFDE 是平行四边形,∴ED=BF ,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A 的平分线即可;根据平行四边形的性质可知AB=CD=5,AD ∥BC ,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA ,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E 点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A 的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.考点:作图—复杂作图;平行四边形的性质。
平行四边形练习题及答案
平行四边形练习题及答案平行四边形是初中数学中的重要概念之一,它具有特殊的性质和特点。
通过练习题的形式,我们可以更好地理解和掌握平行四边形的相关知识。
本文将为大家提供一些平行四边形的练习题及答案,希望能对大家的学习有所帮助。
1. 练习题一:已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角A的度数为60°,求AD的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,AD = BC =8cm。
2. 练习题二:已知平行四边形EFGH中,EF = 10cm,GH = 15cm,角E的度数为120°,求FG的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,FG = EH =15cm。
3. 练习题三:已知平行四边形IJKL中,IJ = 12cm,KL = 18cm,角I的度数为135°,求JK的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,JK = IL = 18cm。
4. 练习题四:已知平行四边形MNOP中,MN = 5cm,NO = 7cm,角M的度数为45°,求OP的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,OP = MN = 5cm。
5. 练习题五:已知平行四边形QRST中,QR = 9cm,ST = 12cm,角Q的度数为30°,求RS 的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,RS = QT =9cm。
通过以上练习题,我们可以发现平行四边形的一个重要性质:平行四边形的对边长度相等。
这个性质在解题过程中起到了关键的作用,帮助我们求解未知的边长。
除了对边长度相等外,平行四边形还具有其他一些重要的性质。
例如,平行四边形的对角线互相平分,即对角线互相等长。
这个性质在解题过程中也经常被用到。
练习题只是帮助我们巩固平行四边形的相关知识点,实际问题中,平行四边形的应用非常广泛。
初中数学平行四边形作图专题题专项训练含答案
初中数学平行四边形作图专题题专项训练含答案姓名:__________ 班级:__________考号:__________一、作图题(共10题)1、如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.•现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,•请在图中画出改动后的小路.2、如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.3、图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形.4、如图,AE为菱形ABCD的高,请仅用无刻度的直尺按要求画图。
(不写画法,保留作图痕迹)。
(1)在图1中,过点C画出AB边上的高;(2)在图2中,过点C画出AD边上的高。
5、如图,公园里有一块平行四边形的草坪,草坪里有一个圆形花坛,有关部门计划在草坪上修一条小路,这条小路要把草坪和花坛的面积同时平分,请在图中画出这条小路。
(小路用AB表示)6、我们把能够平分一个图形面积的直线叫“好线”,如图1.图1 图2 图3问题情境:如图2,M是圆O内的一定点,请在图2中作出两条“好线”(要求其中一条“好线”必须过点M),使它们将圆O的面积四等分.小明的思路是:如图3,过点M、O画一条“好线”,过O作OM的垂线,即为另一条“好线”.所以这两条“好线”将的圆O的面积四等分.问题迁移:(1)请在图4中作出两条“好线”,使它们将□ABCD的面积四等分;(2)如图5,M 是正方形内一定点,请在图5中作出两条“好线”(要求其中一条“好线”必须过点),使它们将正方形的面积四等分;(3)如图6,在四边形中,,,点是的中点,点是边一点,请作出“好线”将四边形的面积分成相等的两部分.图6图4图57、如图,多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请用两种不同的方法用一条直线将该多边形分成面积相等的两块.8、用两种不同方法把平行四边形面积二等分(在所给的图形中画出你的设计方案,画图工具不限).9、如图1,有一张菱形纸片ABCD ,,。
初中数学平行四边形练习题(含答案和解析)
一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
初中数学平行四边形性质练习题及答案
初中数学平行四边形性质练习题及答案练习题一:1. 证明平行四边形的对角线互相平分。
2. 若平行四边形的一条对角线被平分,那么这个平行四边形是什么形状?3. 怎样判定一个四边形是平行四边形?答案一:1. 证明:设平行四边形ABCD的对角线AC和BD相交于点O。
要证明对角线AC和BD互相平分,只需证明AO=CO和BO=DO。
首先,由平行四边形的性质可知,AB∥CD,AD∥BC。
根据平行线性质,AO=CO(对应角相等)同理,BO=DO所以,平行四边形的对角线互相平分。
2. 若平行四边形的一条对角线被平分,那么这个平行四边形是矩形。
证明:设平行四边形ABCD的对角线AC被平分于点O。
要证明ABCD是矩形,只需证明∠A=∠B=∠C=∠D=90°。
由平行四边形的性质可知,AB∥CD,AD∥BC。
由对角线互相平分的性质可知,AO=CO,BO=DO。
因此,∠AOC=∠COA,∠BOC=∠COD。
又∠AOC+∠BOC=180°(补角定理)所以,∠AOC=90°(相等补角)。
同理,∠COA=90°,∠BOC=90°,∠COD=90°。
所以,ABCD是矩形。
3. 判定平行四边形的方法:方法一:判定对边平行若四边形ABCD满足AB∥CD及AD∥BC,则四边形ABCD是平行四边形。
方法二:判定对角线互相平分若四边形的对角线互相平分,则四边形是平行四边形。
方法三:判定边长及对角线长度关系若平行四边形ABCD的对角线AC和BD相等,则四边形ABCD是平行四边形。
练习题二:1. 证明平行四边形的相邻角互补。
2. 若平行四边形的一组相邻角是补角,那么这个平行四边形是什么形状?3. 如何判断一个四边形是菱形?答案二:1. 证明:设平行四边形ABCD的两组相邻角为∠A和∠B,∠B和∠C,∠C和∠D,∠D和∠A。
要证明平行四边形的相邻角互补,只需证明∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠D+∠A=180°。
初中数学平行四边形的判定习题及答案题
BDCAOHGFE OABDOABD平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵,∴四边形是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形是平行四边形.5两组对角分别相等的四边形是平行四边形∵∴四边形是平行四边形.二、平行四边形性质与判定的综合应用例1:如图,已知:E、F是平行四边形对角线上的两点,并且。
求证:四边形是平行四边形变式一:在□中,E,F为上两点,.求证:四边形为平行四边形.变式二:在□中,分别是上两点,⊥于E,⊥于F.求证:四边形为平行四边形想一想:在□中,E,F为上两点,=.那么可以证明四边形是平行四边形吗?例2:如图,平行四边形中,=,=。
求证:和互相平分。
练习1、如图所示,在四边形中,M是中点,、互相平分于点O,那么请说明且∥:1、以不在同一直线上的三点为顶点作平行四边形,最多能作()A、4个B、3个C、2个D、1个2、如图,在□中,已知两条对角线相交于点O,E、F、G、H分别是、、、的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形中,∥,且>,= 6分别从A,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形成为平行四边形?HG图20.1.3-1FED CBA图1FEDCB A 图2F E D CBA 图4GF EDCBA ABCDE图1FE DCBA 4321图3F E D C BA H G 图2F E D CB A1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1一、选择题(3′×10=30′)1.下列性质中.平行四边形具有而非平行四边形不具有的是().A.内角和为360°B.外角和为360°C.不确定性D.对角相等2.ABCD中.∠A=55°.则∠B、∠C的度数分别是().A.135°.55°B.55°.135°C.125°.55°D.55°.125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;~③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm.那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在ABCD中.AB+BC=11cm.∠B=30°.S ABCD=15cm2.则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中.没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;~D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题是真命题D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1.其相对应三边之比为().A.1:2:1 B.12:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示.在△ABC中.M是BC的中点.AN平分∠⊥AN.若AB=•14.•AC=19.则MN的长为().A.2 B.2.5 C.3 D.…二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形.短边与长边的比为3:4.短边的比为________.长边的比为________.12.已知平行四边形的周长为20cm.一条对角线把它分成两个三角形.•周长都是18cm.则这条对角线长是_________cm.13.在ABCD中.AB的垂直平分线EF经过点D.在AB上的垂足为E.•若ABCD•的周长为38cm.△ABD 的周长比ABCD的周长少10cm.则ABCD的一组邻边长分别为______.14.在ABCD中.E是BC边上一点.且AB=BE.又AE的延长线交DC的延长线于点F.若∠F=65°.则ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm.16cm.两条长边的距离是8cm.•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______.•那么这两个命题是互为逆命题.17.命题“两直线平行.同旁内角互补”的逆命题是_________.18.在直角三角形中.已知两边的长分别是4和3.则第三边的长是________.、19.直角三角形两直角边的长分别为8和10.则斜边上的高为________.斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为.另一边c为奇数.且a+b+•c•是3•的倍数.•则c•应为________.此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示.在ABCD中.BF⊥AD于⊥CD于E.若∠A=60°.AF=3cm.CE=2cm.求ABCD 的周长.·22.如图所示.在ABCD中.E、F是对角线BD上的两点.且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB23.如图所示.ABCD的周长是323AB于⊥CB交CB•的延长线于点的长是3.求(1)∠C的大小;(2)DF的长.24.如图所示.ABCD中.AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线.AQ与BN交于与DQ交于M.在不添加其它条件的情况下.试写出一个由上述条件推出的结论.并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).[25.已知△ABC的三边分别为(n>4).求证:∠C=90°.$26.如图所示.在△ABC中.AC==6.在△ABE中.DE⊥AB于=△ABE=60.•求∠C的度数.!27.已知三角形三条中位线的比为3:5:6.三角形的周长是112cm.•求三条中位线的长.>28.如图所示.已知AB===CM.求证:∠1=∠2.29.如图所示.△ABC的顶点A在直线MN上.△ABC绕点A旋转.BE⊥MN于E.•CD•⊥MN于为BC中点.当MN经过△ABC的内部时.求证:(1)FE=FD;(2)当△ABC继续旋转.•使MN不经过△ABC内部时.其他条件不变.上述结论是否成立呢(—30.如图所示.E是ABCD的边AB延长线上一点.DE交BC于F.求证:S △ABF =S△EFC.答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C~二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°.130°.50°.130°• •15.10 16.结论题设17.同旁内角互补.两直线平行18.5或719.40325041,41,4141414120.13 直角三、21.ABCD的周长为20cm 22.略23.(1)∠C=45°(2)DF=56224.略25.•略26.∠C=90°27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD.取BD•的中点G.连结29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略·练习2一、填空题(每空2分,共28分)1.已知在ABCD 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明 (只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (第3题)(2)菱形可以由两个能够完全重合的 拼合而成;(3)矩形可以由两个能够完全重合的 拼合而成.5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .>7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm .8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .:(第8题) (第10题)9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形的面积为 2cm .@10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上) 二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和.那么这个多边形是( )A 、三角形B 、四边形C 、五边形D 、六边形1m 1mAB C D 】 O AB CD O l12.下列说法中,错误的是 ( ) A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C. 平行四边形的对角相等 D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) 个 个 个 个 {14. 四边形ABCD 中.AD 么 的值可能是( )A 、3:5:6:4B 、3:4:5:6C 、4:5:6:3D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( )A.变大B.变小C.不变D.无法确定(第15题) (第16题) (第17题) 16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( ) A. 15 B. 30 C. 45 D. 6017.如图,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F , —那么四边形AFDE 的周长是 ( )18.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形 其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第19题8分,第20~23题每题10分,共48分)19.如图, 中,DB=CD , 70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数.(第19题)]》A B CD E A BC D E F A B C - b ABCD20.如图, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.·(第20题)21.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: #;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图①) (图②) (图③) (图④) (第21题)'22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现若能,请画出你的设计;若不能,请说明理由. 【(第22题)ABCD FEGABC DABCD答案. 2.平行四边形;有一组邻边相等.. 提示:它们是.,,,,,,,ACD BCD ABC ABD AOD COD BOC AOB ∆∆∆∆∆∆∆∆ 4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形. . 6. 135; 45. . 》. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为1m 的正方 形,所以它的周长为4m .(第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. . . . .. 提示:因为ABC ∆的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ∆的面积不变. . 提示:由于()BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . . 提示:先说明DF=BF,DE=CE,所以四边形AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. `.19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠-=∠∆⊥D DAE AED BD AE 中所以在直角.20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG,即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ;(2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得DGE GBF ∠=∠,所以 100=∠=∠DGE AFD .21.(1)平行四边,两组对边分别相等的四边形是平行四边形;(2)矩,有一个是直角的平行四边形是矩形.22.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.¥A ~ BC DE F GH练习31、把正方形ABCD绕着点A.按顺时针方向旋转得到正方形AEFG.边FG与BC交于点H(如图).试问线段HG与线段HB相等吗请先观察猜想.然后再证明你的猜想.,2、四边形ABCD、DEFG都是正方形.连接AE、CG.(1)求证:AE=CG;(2)观察图形.猜想AE与CG之间的位置关系.并证明你的猜想.[3、将平行四边形纸片ABCD按如图方式折叠.使点C与A重合.点D落到D′处.折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF.判断四边形AECF是什么特殊四边形证明你的结论.;AB CDE\D′D |CA BGHFE挑战自我:1、 (2010年眉山市).如图.每个小正方形的边长为、B 、C 是小正方形的顶点.则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2、(2010福建龙岩中考)下列图形中.单独选用一种图形不能进行平面镶嵌的图形是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°.则这个正多边形的边数是( )A .9B .8C .6D .44、(2010年福建福州中考)如图4.在□ABCD 中.对角线AC 、BD 相交于点O.若AC===10.则△OAB 的周长为 。