五年级奥数:行程问题
五年级奥数---行程问题-列方程解行程问题
行程问题的定义
两个运动物体从两地出发,相向而行,经过一段时间相遇。
行程问题的分类
相遇问题
两个运动物体从两地出发,同向而行,经过一段时间后快的追上慢的。
追及问题
两个运动物体从同一点出发,反向而行,经过一段时间后相遇。
环形运动问题
运动物体的速度、时间、路程之间的关系。
运动物体的初始状态(速度、路程)。
详Hale Waihona Puke 描述公交车相遇问题THANKS
谢谢您的观看
运动物体的运动状态(速度、时间、路程)。
行程问题的基本要素
列方程解行程问题的基本思路
02
仔细阅读题意
标明已知量和未知量
画出示意图
画图分析
列方程
根据等量关系,列出方程式子。常用的方程有路程=速度×时间、路程=时间×速度等。
确定等量关系
在行程问题中,一般存在时间、路程和速度三个变量,根据题目所求,确定等量关系。
顺水速度和逆水速度
顺水行程 = 顺水速度 × 顺水时间
逆水行程 = 逆水速度 × 逆水时间
顺水行程和逆水行程
对于同一艘船,船在静水中的速度是一定的,所以船速不会随着水速的变化而变化。
对于不同的船,由于船本身的结构、质量、形状等因素,船速可能会有所不同,因此船速会随着水速的变化而变化。
船速和水速的关系
列车进站和出站问题
行程问题在实际生活中的应用
07
VS
在行程问题中,最佳路线问题是最常见的问题之一。这类问题的关键在于利用数学工具,如线段图和数量关系,来寻找最短或最快的路线。
详细描述
在实际生活中,最佳路线问题可以应用于多种场景,如物流运输、旅游路线规划和城市交通规划等。例如,物流运输中需要选择最短的路线将货物从起点运到终点,而旅游路线规划则需要寻找一条涵盖多个旅游景点的最短或最快路线。
五年级奥数学第10讲行程问题
A.1/7
B.1/6
C.3/4 D.2/5
3.流水问题
我们知道,船顺水航行时,船一方面按自己本身 的速度即船速在水面上行进,同时整个水面又按 水的流动速度在前进,因此船顺水航行的实际速 度〔简称顺水速度就等于船速与水速的和,即
顺水速度=船速+水速 逆水速度=船速-水速 可推知 船速=〔顺水速度+逆水速度÷2 水速=〔顺水速度-逆水速度÷2
所以,正确答案为C.
例2 甲、乙两人从400米的环形跑道的一点A背 向同时出发,8分钟后两人第三次相遇.已知甲每 秒钟比乙每秒钟多行0.1米,那么,两人第三次相 遇的地点与A点沿跑道上的最短距离是
A.166米 B.176米 C.224米 D.234米
解析:此题为典型的速度和问题,为方便理解可 设甲的速度为X米/分,乙的速度为Y米/分,则依 题意可列方程 8X+8Y=400×3
例题2:小王从甲地到乙地,因有风,所以去时用 了2个小时,回来时用了3个小时.已知甲乙两地 的距离是60公里,求风速是多少?
A.5km/h B.10km/h C. 15km/h D. 20km/h
解析:此题可采用代入法.也可设小王的速度为 X,风速为Y,则可列如下方程:
X+Y=60÷2 X-Y=60÷3 解得X=25,Y=5. 所以风速为5,答案为A.
1000÷〔120+80=5〔分 500×5=2500〔米 答:小狗共走了2500米.
例题:两列对开的列车相遇,第一列车的车速为 10米/秒,第二列车的车速为12.5米/秒,第二列车 上的旅客发现第一列车在旁边开过时共用了6 秒,则第一列车的长度为多少米?
A.60米 B.75米 C.80米 D.135米
则甲乙两地相距:1.4*3-0.6=3.6千米〔?
2024年小学五年级行程问题奥数题及答案
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案
奥数之五年级行程问题专题
五年级奥数之行程问题专题1、甲、乙两人赛跑,甲跑了105米时,乙跑了75米。
已知甲每秒比乙快2米,两人每秒钟各跑多少米?2、一辆载重汽车从甲城开往乙城,每小时行30千米。
两小时后,又有一辆小汽车从甲城开往乙城,每小时行50千米。
经过几小时,小汽车追上载重汽车?3、计划开凿一条长158米的隧道,甲、乙两个工程队从山的两边同时开工,甲队每天挖2.5米,乙队每天挖1.5米。
35天后,甲队调往其他工地,剩下的工程由乙队单独开凿。
还需要多少天才能打通隧道?4、两地之间的路程是760千米,有两列火车同时从两地相向开出,第一列火车每小时行72千米,第二列火车每小时行54千米。
一只鸽子以每小时80千米的速度和第二列火车一起出发,向第一列火车飞去。
当这只鸽子与第一列火车相遇时,第二列火车距离目的地还有多少千米?5、张波每天早上步行上学,如果每分钟走60米,就要迟到5分钟;如果每分钟走75米,则可提前5分钟到校。
张波家与学校相距多少米?6、甲、乙二人从相距46千米的A、B两地出发,相向而行。
甲先出发1小时,他们二人在乙出发4小时后相遇,已知甲比乙每小时快2千米。
求甲、乙二人的速度。
7、一支长1.2千米的部队正在行军,在队尾的王涛要送信给队首的首长,跑步用6分钟赶到队首将信送到。
为了回到队尾,他在原地等了24分钟。
如果他跑步回到队尾,要用多长时间?8、两辆汽车同时从A地开往B地,甲汽车每小时行80千米,乙汽车每小时行120千米。
当乙车比甲车多行200千米时,甲车正好到达B地。
A地到B地的路程是多少千米?9、一列火车通过一座长1000米的大桥需要60秒,以同样的速度通过一个长800的山洞需要50秒。
这列火车每秒行多少米?10、甲、乙两辆汽车从A、B两地相对而行,如果乙先行2小时后甲再出发,两车恰好在中点相遇。
若甲车的速度是50千米/小时,乙车的速度是45千米/小时。
问相遇时甲车行了多少小时?。
五年级奥数:行程问题
1。
某商场一二层有一个自动扶梯。
1)一共有60级台阶,电梯的速度是2级/秒。
若小明在扶梯上匀速的每秒走1级,那么多久能到达地面?2)一共60级台阶,电梯每秒向上走2级,若小明逆着扶梯走,走了1分钟才走下扶梯,求小明的速度是多少?3)在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果小明站着不动乘电动扶梯向上走需15秒到达楼上,那么电动扶梯不动时,小明徒步沿扶梯上楼等多少秒?2。
在地铁车站中,从站台到地面架设有向上的自动扶梯,小强从下到上,如果每秒向上迈两级台阶,那么50秒后到达站台:如果每秒向上迈三级台阶,那么走过40秒到达站台。
自动扶梯有多少级台阶?3。
从A地到B地的公交站,每10分钟发一趟公交车,每辆公交车的速度是600米/分。
1)小明在某车站5点10分看见一辆公交经过,那么他看到下一辆公交经过会是几点?2)在A地B地之间,相同方向行驶的两车之间的距离是客少?3)小明在途中跑步,速度是200米/分,那么,他每隔客久会迎面通到——辆公交车?4。
某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车,他发现每隔15分钟有一辆公共汽车追上他,每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?小刚以每分钟50米的速度离家上学,走了2分钟后,他发现这样走下去就要迟到8分钟;于是改为每分钟60米的速度前进,结果提早5分钟到校.问小刚家到学校的路程()米.答案:如果在准时到达的时间内,用每分钟50米的速度将会少行50×8=400米;如果前2分钟也按每小时60米的速度行走,将会多行(60—50)×2+60×5=320米,两次相差320+400=720米;速度差为:60—50=10米;那么原来准时到达的时间为:720÷10=72(分钟);小刚从家到学校要走:50×(72+8)=4000(米);据此解答.解:(60—50)×2+60×5=320(米),(50×8+320)÷(60-50),=720÷10,=72(分钟);50×(72+8)=4000(米);答:小刚家到学校的路程4000米.故答案为:4000.相遇问题(1)艾迪和薇儿两人分别以每小时6千米和每小时4千米的速度行走,若他们从A、B两地同时出发,相向而行,5小时后相遇,则A. B两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480干米的两地向对方的出发地前进,多久后他们会相遇?(3)八戒和悟空两家相距255干米,两人同时骑车,从家出发相对而行,3小时后相遇.已知:悟空每小时行60干米,则八戒每小时行多少干米?追及问题(1)一天,去上学的艾迪发现薇儿在他前面150米处,于是以每分钟80米的速度向她追去,已知:薇儿每分钟走50米,问:艾迪多长时间能追上薇儿呢?(2)一天,艾迪发现薇儿在他前面某个地方,于是他以每分钟80米的速度向她追去,5分钟后追上,已知薇儿每分钟走60米,问:艾迪刚开始和薇儿的距离是多少米?(3)甲、乙二人都要从北京去天津,甲行驶10干米后乙才开始出发,甲每小时行驶55千米,乙行了2小时追上了甲,问:乙每小时行多少千米?流水行船问题(1)一只小船在静水中的速度内毎小时25千米。
(完整)五年级奥数行程问题五大专题
行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
五年级 奥数行程问题
第二讲行程(1)相遇问题知识链接:相遇问题是研究两个物体共同走一段路程的运动。
可分为相向,相背,环行运动等相遇问题。
行程问题基本数量关系式:路程=速度×时间相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间超级课堂1. 甲乙两车同时从两地相对开出,经过5小时后相遇。
甲车每小时行70千米,乙车每小时行65千米,问:甲,乙两地相距多少千米?2. 甲,乙两人同时从两地出发,相向而行,距离是50千米。
甲每小时走3千米,乙每小时走2千米。
甲带一只狗,每小时跑5千米,这只狗同甲一起出发,当它碰到乙后便转回头跑向甲…如此下去,直到两人碰到头为止。
问这只狗一共跑了多少千米?3. 甲,乙两辆货车分别同时从A,B两个城市相向开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两城中点25千米处相遇。
那么A,B两个城市间的路程是多少千米?4. A,B两城相距60千米,甲,乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?5. 客车和货车早上8时分别从甲,乙两个城市同时出发相向而行,到上午10时两车相距120千米,两车继续行驶到下午1时,两车又相距120千米,那么甲,乙两城之间路程是多少千米?6. A,B两地相距1100米,甲从A地,乙从B地同时出发,相向而行,甲每分钟行90米,乙每分钟行70米,第一次在C处相遇,AC之间距离是多少米?相遇后继续前进,分别到达A,B两地后立即返回,第二次相遇于D处,CD之间的距离是多少米?超级练习1. 电气机车和磁悬浮列车各一列,从相距298千米的两面地同时相向而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米每小时,半小时后两车相遇。
则电气机车和磁悬浮列车的速度分别是多少?2. 两支部队从相距50千米的甲,乙两地同时相对而行,一名通信员骑车以每小时20千米的速度在两支部队间不断往返联络。
小学五年级奥数行程问题练习题及答案
小学五年级奥数行程问题练习题及答案1.小学五年级奥数行程问题练习题及答案篇一张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟。
答案解析:第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)o这道题重要是要求出汽车速度与工程师的速度之比。
2.小学五年级奥数行程问题练习题及答案篇二1、小熊骑自行车出去玩,经过三段长度分别为IOOO米,200米,800米的平路,上坡路和下坡路,包包在这三段路上的速度分别为200米/分,50米/分,400米/分,问小熊走完这三段路程需要多少时间?【分析】简单分段行程平路所需时间:1000÷200=5(分钟)上坡路所需时间:200÷50=4(分钟)下坡路所需时间:800÷400=2(分钟)所以总共需要时间为5+4+2=Π(分钟)2、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。
已知下坡路每小时行20千米,那么上坡路每小时行多少千米?【解析】由题意知,去的上坡时间+去的下坡时间二4.5小时回的上坡时间+回的下坡时间二3.5小时则:来回的上坡时间十来回的下坡时间二8小时所以来回的下坡时间=60÷20=3(小时)则:来回的上坡时间二8—3二5(小时)故:上坡速度为60÷5=12(千米/时)3.小学五年级奥数行程问题练习题及答案篇三1、甲放学回家需走10分钟,乙放学回家需走14分钟。
五年级奥数:行程问题
1.某商场一二层有一个自动扶梯。
1)一共有60级台阶,电梯的速度是2级/秒.若小明在扶梯上匀速的每秒走1级,那么多久能到达地面?2)一共60级台阶,电梯每秒向上走2级,若小明逆着扶梯走,走了1分钟才走下扶梯,求小明的速度是多少?3)在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果小明站着不动乘电动扶梯向上走需15秒到达楼上,那么电动扶梯不动时,小明徒步沿扶梯上楼等多少秒?2.在地铁车站中,从站台到地面架设有向上的自动扶梯,小强从下到上,如果每秒向上迈两级台阶,那么50秒后到达站台:如果每秒向上迈三级台阶,那么走过40秒到达站台。
自动扶梯有多少级台阶?3.从A地到B地的公交站,每10分钟发一趟公交车,每辆公交车的速度是600米/分。
1)小明在某车站5点10分看见一辆公交经过,那么他看到下一辆公交经过会是几点?2)在A地B地之间,相同方向行驶的两车之间的距离是客少?3) 小明在途中跑步,速度是200米/分,那么,他每隔客久会迎面通到- -辆公交车?4.某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车,他发现每隔15分钟有一辆公共汽车追上他,每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?小刚以每分钟50米的速度离家上学,走了2分钟后,他发现这样走下去就要迟到8分钟;于是改为每分钟60米的速度前进,结果提早5分钟到校.问小刚家到学校的路程()米.答案:如果在准时到达的时间内,用每分钟50米的速度将会少行50×8=400米;如果前2分钟也按每小时60米的速度行走,将会多行(60-50)×2+60×5=320米,两次相差320+400=720米;速度差为:60-50=10米;那么原来准时到达的时间为:720÷10=72(分钟);小刚从家到学校要走:50×(72+8)=4000(米);据此解答.解:(60-50)×2+60×5=320(米),(50×8+320)÷(60-50),=720÷10,=72(分钟);50×(72+8)=4000(米);答:小刚家到学校的路程4000米.故答案为:4000.相遇问题(1)艾迪和薇儿两人分别以每小时6千米和每小时4千米的速度行走,若他们从A、B两地同时出发,相向而行,5小时后相遇,则A. B两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480干米的两地向对方的出发地前进,多久后他们会相遇?(3)八戒和悟空两家相距255干米,两人同时骑车,从家出发相对而行,3小时后相遇。
五年级奥数行程问题
行程问题(一)邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32×2=64(千米)。
两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8(千米)。
64÷8=8(时),所以两车各行了8小时,求东西两地的路程只要用(56+48)×8=832(千米)练习:1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。
求两地之间的路程是多少千米?2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?思路导航:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)练习:1、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距 30米。
弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
五年级奥数行程问题
五年级奥数·行程问题一、相遇问题
路程=速度×时间,即S=v·t
路程=速度和×相遇时间,S
总=V
总
·t
练习:
二、追及问题
路程差=速度差×追及时间,S
差=V
差
·t
练习:
列方程解应用题
练习:
三、流水行船
基本公式:V
船是船在静水中的速度,V
水
是水流的速度
①顺水速度=船速+水速,即V
顺=V
船
+V
水
②逆水速度=船速-水速,即V
逆=V
船
-V
水
③船速=(顺水速度+逆水速度)÷2
④水速=(顺水速度-逆水速度)÷2
四、火车过桥
①完全在桥,即从车头到车尾都在桥上,完全在桥长度=桥长-车长
②完全过桥,即从车头开始上桥到车尾完全离开桥,完全过桥长度=桥长+车长。
小学五年级-奥数--行程问题
--第二十四讲行程问题---相遇问题例1:甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。
两人几小时后相遇?练习1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?3、一列快车和一列慢车分别从甲乙两地同时相向而行。
快车10小时可以到达乙地,慢车15小时可以到达甲地。
快车每小时比慢车多行20千米,两车出发后几小时相遇?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。
两车在距中点42.9千米处相遇,东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。
求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。
求A、B两城之间的距离?3.甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?- - word.zl-例3 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习1、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?3、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。
五年级奥数---行程问题
行程问题一.多人行程问题1.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).2.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:张明每小时行驶多少千米?老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。
二.两次相遇甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25 千米处相遇.求A 、B 两地间的距离.三. 多次相遇四. 火车过桥五.流水行船六.环形跑道1.在400米的环形跑道上,A、B两点相距100米,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?假设没有休息那么100/(5—4)=100秒钟在100/5=20秒100/20-1=4(次)100+4*10=140秒2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分七.简单相遇甲、乙两人同时从两地相向而行。
五年级奥数之行程问题
植树问题行程问题行程问题是研究运动物体的路程、速度和时间三个量之间关系的问题。
行程问题的基本数量关系是:速度×时间=路程路程÷时间=速度路程÷速度=时间相遇问题在行程问题中,还包括相遇(相离)问题(相离指的是两个人背对背行走)和追及问题。
这两个问题主要的变化在于人的数量和运动方向上。
现在我们可以简单地理解成:相遇(相离)问题和追及问题当中参与者必须是两个人以上;如果他们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
1、相遇(相离)问题的基本数量关系:速度和×相遇时间= 相遇(相离)路程相遇(相离)路程÷相遇时间 = 速度和相遇(相离)路程÷速度和 = 相遇时间2、追及问题的基本数量关系速度差×追及时间= 相差路程相差路程÷追及时间 = 速度差相差路程÷速度差 = 追及时间在相遇(相离)问题和追击问题中,必须很好地理解各个数量的含义及其在应用体重是如何给出的,这样才能提高解题速度和能力。
例1:小丽和小红两家相距910米,两人电话相约同时从家中出发向对方相向行驶,小丽每分钟走60米,小红每分钟走70米,几分钟后两人在途中相遇?例2:甲、乙两人同时从学校向相反的方向行驶,甲每分钟行52米,乙每分钟行50米,经过7分钟后他们相距多少米?他们各自离学校有多少米?例3:甲、乙两辆汽车从相距600千米的两地相对开出,甲每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出,问乙车行几小时后与甲车相遇?相遇时各行多少千米?练习:1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时后相遇?2、甲、乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时行多少千米?3、王乐和张强两人从相距2280米的两地相向而行,王乐每分钟行60米,张强每分钟行80米,王乐出发3分钟后张强才出发,张强出发几分钟与王乐相遇?4、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一列火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长是多少千米?5、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远?例4:快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车在经过中点32千米处与慢车相遇,求甲、乙两地的路程是多少?1、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?2、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇时距中点3千米,求两地距离多少千米?3、甲、乙两人同时从正方形花坛A点出发,沿着花坛的边上走,甲顺时针每分钟走40米,乙逆时针每分钟行45米,两人在距C点15米处相遇,求这个花坛周长是多少?例5:甲、乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共用了几小时?1、AB两地相距900米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?2、AB两地相距250千米,一辆客车和一辆货车同时从A到B,客车每小时行65千米,货车每小时行60千米,客车到达B后立即返回与货车在途中相遇,求相遇点距B地有多少?3、甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分150米的速度在两队间不停地往返联络,甲队每分行25米,乙队每分行20米,两队相遇时,骑自行车的同学共行了多少米?与环形有关的行程问题一对老年夫妇沿着周长为200米的圆形花坛散步,他们从同一地点出发,相背而行,老太太每分钟走45米,老先生每分钟走55米,多长时间后他们第一次相遇(合走一圈)?多长时间后他们第二次相遇?火车过桥(过隧道或山洞)、火车经过人、两车对开问题火车过桥(过隧道或山洞)问题,主要发生变化的量是路程。
(完整)小学五年级-奥数--行程问题
第二十四讲行程问题---相遇问题例1:甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。
两人几小时后相遇?练习 1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?3、一列快车和一列慢车分别从甲乙两地同时相向而行。
快车10小时可以到达乙地,慢车15小时可以到达甲地。
已知快车每小时比慢车多行20千米,两车出发后几小时相遇?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。
两车在距中点42.9千米处相遇,东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。
求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。
求A、B两城之间的距离?3.甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?例3 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习 1、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?3、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。
五年级经典奥数题:行程问题
五年级经典奥数题:行程问题
1、晶晶每天早上步行上学,如果每分钟走60米,则要迟到5分钟;如果每分钟走75米,则可提前2分钟到校。
求晶晶到校的路程。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米。
甲、乙从东镇去西镇,丙从西镇去东镇,三人同时
出发,丙与乙相遇后,又经过2分钟与甲相遇。
求东西两镇间的路程
有多少米?
3、A、B两辆汽车同时从甲、乙两站相对开出,两车第一次在距甲站32公里处相遇,相遇后两车继续行驶,各自到达乙、甲两站后,立
即沿原路返回,第二次在距甲站64公里处相遇。
甲、乙两站间相距多
少公里?
4、周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙即转身与甲同
向而跑,当甲跑到A时,乙恰好跑到B。
如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?
5、老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来
时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时。
求甲、乙两城的距离。
6、速度为快、中、慢的三辆汽车同时从同一地点出发,沿同一公
路追赶前面一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追
上骑车人,现在知道快车每小时行24公里,中车每小时行20公里,
那么慢车每小时行多少公里?
7、在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次。
如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟
相遇一次。
问两人各跑一圈需要几分钟?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(一)讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法:例1.小明上学时坐车,回家时步行,在路上一共用了90分。
如果他往返都坐车,全部行程需30分。
如果他往返都步行,需多少分例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。
汽车行驶了一半路程,在中途停留30分。
如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少例3.一列火车于下午1时30分从甲站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。
甲、乙两站相距多少千米例4.苏步青教授是我国着名的数学家。
一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米。
甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
这只狗一共走了多少千米苏步青略加思索,就把正确答案告诉了这位外国数学家。
小朋友们,你能解答这道题吗例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
东、西两地相距多少千米练习与思考:1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行千米。
小李下午3时半骑自行车出发,、经过小时两人相遇。
小李骑自行车每小时行多少千米2.A、B两地相距60千米。
两辆汽车同时从A地出发前往B地。
甲车比乙车早30分到达B地。
当甲车到达B地时,乙车离B地还有10千米。
甲国君从A地到B地共行了几小时3.一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
行了几小时后两车相距51千米再行几小时两车又相距51千米4.甲、乙两人同时从A、B两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点千米处与乙相遇。
A、B两地相距多少千米5.小张的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,小张走了两村间路程的一半还多千米,此时恰好与小王相遇。
小王的速度是每小时千米,小张每小时行多少千米6.A、B两地相距20千米,甲、乙两人同时从A地出发去B地。
甲骑车每小时行10千米,乙步行每小时行5千米。
甲在途中停了一段时间修车。
乙到达B地时,甲比乙落后2千米。
甲修车用了多少时间7.A、B两地相距1000千米,甲列车从A地开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇。
已知甲列车比乙列车每小时多行10千米。
甲列车每小时行多少千米8.小李由乡里到县城办事,每小时行4千米,到预定到达的时间时,离县城还有千米。
如果小要每小时走千米,到预定到达的时间时,又会多走4。
5千米。
乡里距县城多少千米9.A、B两城相距75千米,小红从A向B走,每小时走千米,小明从B地走向A,每小时走6千米。
小军骑自行车在小红和小明间联络,小军从A走向B,每小时走15千米。
三人同时动身,小军在途中遇见的小明即折顺往A走,遇见了小红,又折回向B走,再遇见了小明又折回往A走……一直到三人在途中相遇为止。
小巧玲珑军共走了多少千米10.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米行程问题(二)本讲主要讲“相遇问题”。
相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是:总路程=速度和×相遇时间这里的“速度和”是指两个物体在单位时间内共同行的路程。
例题与方法:例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。
已知甲车的速度是乙车的2倍。
东、西两村之间的公路长多少千米例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。
联络员每分跑多少米例3.甲、乙两车相距516千米,两车同时从两地出发丰向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。
甲车保持原速继续前进,经过2小时与乙车相遇。
求乙车的速度。
例4.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇。
相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。
求A、B两会间的路程。
练习与思考:1.甲、乙两人分别从东、西两地同时相向而行。
2小时后两人相距96千米,5小时后两人相距36千米。
东、西两地相距多少千米2.甲、乙两人骑车从同一地点向相反方向出发,甲车每小时行13千米,乙车每小时行12千米。
如果甲先行2小时,那么,乙行几小时后两人相距99千米3.甲、乙两地相距59千米,汽车行完全程要小时,步行要14小时。
一个人从甲地出发,步行小时后改乘汽车,他到达乙地共要几小时4.甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在离中点30千米处相遇。
A|B两地相距多少千米5.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。
求乙车的速度。
6.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的倍。
当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇7.两辆汽车从同一地点向相反方向开出,第一辆汽车每小时行48千米,第二辆汽车每小进行52千米。
如果第一辆车先行小时,那么,两辆汽车同时行驶几小时后,它们之间的距离为千米8.一架运输机和一架客机同时从某地起飞相背飞行,小时后两机相距3650千米。
已知客机比运输机每小时多飞行100千米,运输机每小时飞行多少千米9.A、B两地相距6千米,甲、乙两人分别从A、B两地同时出发在两面三刀地间往返行走(到达另一地后就马上返回),在出发40分后两人么一次相遇。
乙到达A地后马上返回,在离A地2千米的地方两面三刀人第二次相遇。
求甲、乙两人的速度。
10.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米。
两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到达甲地后也立即返回,两车在距中点108千米处再以、次相遇。
甲、乙两地相距多少千米行程问题(三)本讲的内容是“追及问题”。
追及问题一般是知两个物体同时运动,经过一定时间,后者追上前者的问题。
追及问题的基本数量关系是:速度差×追及时间=追及路程例题与方法:例1中巴车每小时行60千米,小轿车每小时行84千米,两车由同一个车库出发。
已知道中巴车先开出,30分钟后小轿车顺着中巴车的路线出发,小轿车经过多少时间能追上中巴车例2甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。
途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地。
两地间的路程是多少千米例3兄妹两人同时离家去上学,哥哥每分走90米,妹妹每分走60米。
哥哥到校门口时,发现忘带课本,立即沿原路回家去取,行到离学校180米处与妹妹向隅,他们呢家离学校有多远例4小华、小丽个小霞三人都要从甲地到乙地,早上6时小华和小丽两人一起从甲地出发一,小华每小时走5千米,小丽每小时走4千米。
小霞上午8时才从甲地出发。
傍晚6时,小华和小霞同到到达乙地。
小霞是在什么时间追上小丽的练习与思考:1.哥哥放学回家,以每小时6千米的速度步行,18分后,弟弟也从同一所学校放学回家,弟弟骑自行车以每小时15千米的速度追上哥哥。
经过几分弟弟可以追上哥哥2.两辆卡车为王村送化肥,第一辆以每小时30千米的速度由仓库开往王村,第二辆晚开12分,以每小时40千米的速度由仓库开往王村,结果两车同时到达。
仓库到王村的路程有多少千米3.好马每天走240里,劣马每分走150里,劣马先走12天,好马几天可以追上劣马(我国古代算题)4.小玲每分行100米,小平每分行80米,两人同时同地背向行了5分后,小玲调转方向去追赶小平。
小玲追上小平时一共行了多少米5.一架飞机从甲地飞往乙地,原计划每分飞行9千米,现在按每分12千米的速度飞行,结果比原计划提前半小时到百叶窗。
甲、乙两地相距多少千米6.一辆摩托车追前面的汽车,汽车每小时行28千米,摩托车每小时行40千米,摩托车开出4小时后追上汽车。
汽车比摩托车早出发几小时(得数保留一位小数)7.一支队伍长450米,以每秒1。
5米的速度行进。
一个战士因画需从排尾赶到排头,并立即返回排尾。
如果他的速度是每秒3米,那么,这位战士往返共需多少时间8.李华以每小时4千米的速度从学校出发步持到千米以外的冬令营报到,半小时后,营地的老师闻讯前往迎接,老师每小时比李华多走千米。
又过了小时,张明从学校骑车去营地报到,结果三人同时在途中相遇。
张明骑车每小时行多少千米9.甲、乙两人各骑一辆自行车由同一地点出发,到相隔45千米的某地办事。
乙比甲早出发20分,而甲比乙早到45分,甲到达时乙在甲的后面10千米处。
甲每小时行多少千米(得数保留整数)10.玲玲从家到县城上学,她以每分50米的速度走了2分后,发现按个人速度走下去要迟到8分,于是她加快了速度,每分多走10米,结果到学校时,离上课还有5分。
玲玲家到学校的路程是多少米行程问题(四)要讲主要讲两种比较特殊的行程问题,“火车过桥”和“环形跑道”。
“火车过桥”是两个物体,一动一静,火车在前进、在运动,桥是静的、不动的。
为了弄清运动过程中的数量关系,我们可以利用身边一些适宜演示这类问题的实物,如直尺、铅、笔、橡皮等,把它们当作“火车”和“桥”,按照题意比试比试,使题目具体、形象化,从而找到解题的思路。
“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。
解题时,我们可以运动“转化法”把线路“拉直”或“截断”,从布把物体在“环形路道”上的运动转化为我们熟悉的物体在直线上的运动。
例题与方法:例1.一列火车长150米,每秒行20米。