七年级下册数学同步练习试题及答案

合集下载

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102909

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102909

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.如图,可以判定的条件是( )A.=B.=C.=D.=2. 下列说法中正确的个数有( )在同一平面内,两条不相交的直线叫做平行线经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条如果,,则两条不平行的射线,在同一平面内一定相交.A.B.C.D.3. 如图,下列条件:①,②,③,④中,能判断直线的有( )A.个B.个C.个AB//CD ∠1∠2∠3∠4∠D ∠5∠BAD+∠B 180∘(1)(2)(3)a//b b//c a//c (4)1234∠1=∠3∠2=∠3∠4=∠5∠2+∠4=180∘//l 1l 2123D.个4. 下列关系中,互相垂直的两条直线是( )A.两直线相交成的四角中相邻两角的角平分线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线5. 从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A.B.C.D.6. 过直线外一点作的平行线,可以作( )条.A.B.C.D.7. 如图,下列条件中,能判定的是( )A.B.4a −a =x 2a(x+1)(x−1)1cm 14cm 20πcm 240πcm 2120∘1412341m A m 0123DE//AC ∠EDC =∠EFC∠AFE =∠ACDC.D.8. 下列说法正确的是( )①在同一平面内,不相交的两条直线叫做平行线;②在同一平面内,过一点有且仅有一条直线与已知直线平行;③平面内,过一点有且仅有一条直线与已知直线垂直;④平行于同一条直线的两条直线平行;A.①②B.①③C.①②③D.①③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,点是延长线上一点,,。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)034144

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)034144

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于”为一次运算.若运算进行了次才停止,则的取值范围是 A. B. C.D.2. 不等式组的整数解是( )A.B.C.D.3. 下列不等式中是一元一次不等式的是( )A.B.C.D.4. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽303x ()a −1<2,2a +>3120123x+y <2>3x 2−<12x 2x+1>−35202404. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽车共辆,经了解,甲种汽车每辆最多能载人和件行李,乙种汽车每辆最多能载人和件行李.设租用甲种汽车辆,你认为下列符合题意的不等式组是( )A.B.C.D.5. 不等式组 的解集在数轴上表示为( )A.B.C.D.6. 小明网购了一本课外阅读书,同学们想知道书的价格,小明让他们猜.甲说:“至少元.”乙说:“至多元.”丙说:“至多元.”小明说:“你们三个人都说错了”.则这本书的价格(元)所在的范围为( )A.B.C.D.7. 不等式组’的整数解的个数是( )5202401250154025x {50x+40(12−x)≥52015x+25(12−x)≥240{50x+40(12−x)>52015x+25(12−x)>240{50x+40(12−x)≤52015x+25(12−x)≤240{50x+40(12−x)<52015x+25(12−x)<2403x <2x+4−x ≤−1x+33151210x 10<x <1212<x <1510<x <15x >12{1−2x <3x+1≤4A.个B.个C.个D.个8. 下列不等式组:① ②③ ④ ⑤其中一元一次不等式组的个数是 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 对于实数,规定表示不大于的最大整数,例如,,若,则的取值范围为________.10. 不等式组的非负整数解是________.11. 某地经历百年一遇的干旱,驻地部队官兵开展“军民一家亲,鱼水情意深”的活动,帮助驻地周边农村运水,现需组战士步行运送水,要求每组分配的人数相同,若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,那么预定每组分配的人数是________人.12. 不等式组的解集是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某校学生志愿服务小组分给每位老人盒牛奶,那么剩下盒牛奶;如果分给每位老人盒牛奶,那么最后一位老人分得的牛奶不足盒,但至少有盒.求这个敬老院的老人最少有多少人?14. 解不等式组并求出最大整数或最小整数解.6543{x >−2,x <3{x >0,x+2>4{+1<x ,x 2+2>4x 2{x+3>0,x <−7{x+1>0,y−1<02345x [x]x [1.2]=1[−2.5]=−3[x−2]=−1x 6−3x ≥0>−2x−2281100190 2−x ≥3,x+1>x−13212428541 +<−1,x+23x 21−2(x−1)≥−3,15. 某手机专营店代理销售,两种型号手机.手机的进价、售价如下表:型 号进 价元/部元/部售 价元/部元/部第一个月:用元购进,两种型号的手机,全部售完后获利元,求第一个月购进,两种型号手机的数量;第二个月:计划购进,两种型号手机共部,且不超出第一个月购进,两种型号的手机总费用,则型号手机最多能购多少部?16. 已知方程组的解能使等式成立,求的值.A B A B1800150020701800(1)54000A B 9450A B (2)A B 34A B A {7x+3y =4,5x−2y =m−14x−3y =7m参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】由实际问题抽象出一元一次不等式组一元一次不等式组的应用【解析】根据程序运算进行了次才停止,即可得出关于的一元一次不等式组,解之即可得出的取值范围.【解答】解:解得:故选.2.【答案】C【考点】一元一次不等式组的整数解【解析】首先解不等式组求出该不等式组的解集,然后根据解集求整数解即可.【解答】3x x {\left\{ \begin{array} {l}{2\left(2x-3\right)-3\le 30} \\ {2\left[2\left(2x-3\right)-3\right]-3\gt 30} \\ {2\left(2x-3\right)-3}<x ≤518394C a −1<2,①解:解不等式,得,解不等式,得,∴不等式组的解集为,∴该不等式组的整数解为.故选.3.【答案】D【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:.不等式含两个未知数,∴二元不等式;.只有一个未知数,且未知数的次数是,∴是一元二次不等式;.是分式,不是整式,∴不是一元一次不等式;.只有一个未知数,且未知数的系数不是,次数是,∴是一元一次不等式,故选.4.【答案】A【考点】由实际问题抽象出一元一次不等式组【解析】设租用甲种汽车辆,则租用乙种汽车辆,根据题意可得两种车所载人数人,两种车载行李数件,根据不等关系列出不等式组即可.【解答】解:设租用甲种汽车辆,则租用乙种汽车辆,由题意得:,a −1<2,①2a +>3,②12①a <3②a >54<a <3542C A B 2C 2x D 01D x (12−x)≥520≥240x (12−x){50x+40(12−x)≥52015x+25(12−x)≥240故选:.5.【答案】C【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:,由①得,;由②得,,故此不等式组的解集为:,在数轴上表示为:故选.6.【答案】B【考点】一元一次不等式组的应用【解析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:∴.故选.7.【答案】C A 3x <2x+4①−x ≤−1②x+33x <4x ≥33≤x <4Cx <15,x >12,x >10,12<x <15B【考点】一元一次不等式组的整数解【解析】此题暂无解析【解答】解:,由①得:,由②得:,∴不等式组的解集为:,∴不等式组的整数解有共个.故选.8.【答案】B【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组.故①②④是一元一次不等式组.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】一元一次不等式组的应用【解析】{1−2x <3①x+1≤4②x >−1x ≤3−1<x ≤30,1,2,34C B 0<x ≤1此题暂无解析【解答】解:由题意得,解得:.故答案为:.10.【答案】,,【考点】一元一次不等式组的整数解【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解不等式①得;解不等式②得∴原不等式组的解是,∴不等式组的非负整数解,,,11.【答案】【考点】由实际问题抽象出一元一次不等式组解一元一次不等式组【解析】先设预定每组分配人,根据若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,列出不等式组,解不等式组后,取整数解即可.【解答】{x−2≤−1,x−2>−2,0<x ≤10<x ≤10126−3x ≥0>−2x−22x ≤2x >−2−2<x ≤201212x 1100190解:设预定每组分配人,根据题意得:解得:,∵为整数,∴,答:预定每组分配的人数是人.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:由不等式可得;由不等式可得;故不等式组的解集是.故答案为: .三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:设老人人,牛奶盒,则∴∴或或∴至少有人.【考点】一元一次不等式组的应用【解析】此题暂无解析x {8(x+1)>100,8(x−1)<90,11<x <121214x x =121212−2<x ≤−12−x ≥3x ≤−1x+1>x−13212x >−2−2<x ≤−1−2<x ≤−1x y {4x+28=y 1≤y−5x <424<x ≤27x =25262725略14.【答案】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.【考点】一元一次不等式组的整数解解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.15.【答案】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.【考点】二元一次方程组的应用——销售问题由实际问题抽象出一元一次不等式组+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10(1)设该专营店第一个月购进、两种型号手机的数量分别为部和部,根据用元购进、两种型号的手机,全部售完后获利元,列方程组求解;(2)设第二个月购进型号手机部,根据购进、两种型号手机共部,总费用不超过元,据此列不等式求解.【解答】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.16.【答案】解:根据题意,得①②,得,解得,把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.【考点】二元一次方程组的解【解析】先解方程组,求得、的值,即为原方程组的解,再将、的值代入,从而得出的值.【解答】解:根据题意,得①②,得,解得,A B x y 54000A B 9450A a A B 3454000(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10{7x+3y =4①,4x−3y =7②,+11x =11x =1x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8{7x+3y =4①4x−3y =7②x y x y 5x−2y =m−1m {7x+3y =4①,4x−3y =7②,+11x =11x =1把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8。

9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)033153

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)033153

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知,,是的三边,且满足,则的形状是 A.等腰三角形B.等边三角形C.任意三角形D.不能确定2. 如图在平面直角坐标系中,▱的两条对角线,交于原点,点的坐标是,则点的坐标是 A.B.C.D.3. 已知在中,,,则的度数为A.B.C.D.4. 七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )a b c △ABC ++=ab +bc +caa 2b 2c 2△ABC ()MNEF ME NF O F (3,2)N ()(−3,−2)(−3,2)(−2,3)(2,3)△ABC AB =AC ∠B =38∘∠A ( )72∘54∘104∘38∘A. B. C. D.5. 等腰三角形中,有一个角是,它的一条腰上的高与底边的夹角是 A.B.C.或D.或6. 如图,点是的中点,,,平分,下列结论:① ;② ;③ ;④.其中正确的是( )A.①②④40∘()20∘50∘25∘40∘20∘50∘E BC AB ⊥BC DC ⊥BC AE ∠BAD ∠AED =90∘∠ADE =∠CDE DE =BE AD =AB+CDB.①②③④C.②③④D.①③7. 如图,等边的顶点、分别在网格图的格点上,则的度数为( )A.B.C.D.8. 如图,在平面直角坐标系中,正方形的顶点在双曲线上,点,在轴上,延长至,使 ,连接交轴于点,连接,则的面积为 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,已知,等边的顶点在直线上,,则________.10. 如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接△ABC A B ∠α15∘20∘25∘30∘ABCD A y =(x >0)12x C D x BC P BC =2PC PD y F CF △DCF 3456l//m △ABC B m ∠1=20∘∠2=ABCD △BPC BP CP AD E F,,与相交于点.给出下列结论:①=; ②=;③; ④=,其中正确的是________.(填写正确结论的序号)11. 计算: ________.12. 一个等腰三角形的两边为和,则它的周长为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在中,,,,将绕点按顺时针旋转一定角度得到,当点的对应点恰好落在边上时,求的长.14. 如图,,点在边上,.(1)求证:;(2)若,求的度数;(3)若,当的外心在直线上时,,求的长. 15. 在中,,点是直线上一点(不与,重合),以为一边在的右侧作,使,,连接.BD DP BD CF H AF DE ∠ADP 15∘PD 2PH ⋅PB −+−+−+⋯+−=1222324252621992200237△ABC AB =4BC =7∠B =60∘△ABC A △ADE B D BC CD ∠A =∠B,AE =BE D AC ∠1=∠2△AEC ≅△BED ∠C =70∘∠AEB ∠AEC =90∘△AEC DE CE =2AE △ABC AB=AC D BC B C AD AD △ADE AD=AE ∠DAE=∠BAC CE如图,当点在线段上①如果,则________;②如果,则________;设,.①如图,当点在线段动,则,之间有怎样的数量关系?请说明理由;②当点在直线动,则,之间有怎样的数量关系?请直接写出你的结论.16. 如图,为的直径,点为左侧一动点,连接,,,过点作,在上取异于点的点,使.求证:四边形是平行四边形;①当________时,与相切;②当________时,四边形是菱形.(1)1D BC∠BAC=90∘∠BCE=∘∠BAC=100∘∠BCE=∘(2)∠BAC=α∠BCE=β2D BCαβD BCαβAB⊙O C⊙O AC BC OC O OE//ACOE O D AD=AO(1)ACOD(2)∠COD=AD⊙O∠COD=ACOD参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】因式分解的应用完全平方公式等腰三角形的判定因式分解-运用公式法等边三角形的判定【解析】利用完全平方公式进行局部因式分解,再根据非负数的性质进行分析.【解答】解:∵,∴,,∴,∴是等边三角形.故选.2.【答案】A【考点】平行四边形的性质坐标与图形性质【解析】++=ab +bc +ca a 2b 2c 22+2+2−2ab −2bc −2ca =0a 2b 2c 2(a −b +(a −c +(b −c =0)2)2)2a =b =c △ABC B要求点的坐标,根据平行四边形的性质和关于原点对称的规律写出点的坐标.【解答】解:在▱中,点和点关于原点对称,∵点的坐标是,∴点的坐标是.故选.3.【答案】C【考点】三角形内角和定理等腰三角形的性质【解析】利用等腰三角形的性质以及三角形的内角和定理得解.【解答】解:在中,,所以,所以.故选.4.【答案】C【考点】七巧板【解析】解答此题要熟悉七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.【解答】图中根据图、图和图形不符合,故不是由原图这副七巧板拼成的.5.【答案】N N MNEF F N F (3,2)N (−3,−2)A △ABC AB =AC ∠B =∠C =38∘∠A =−2×=180∘38∘104∘C C 74【答案】D【考点】等腰三角形的判定与性质【解析】分①角是顶角时,根据等腰三角形两底角相等求出,再根据直角三角形两锐角互余列式计算即可得解;②角是底角时,利用直角三角形两锐角互余列式计算即可得解.【解答】解:①角是顶角时,如图,,∵是高,∴;②角是底角时,如图,∵是高,∴;综上所述,它的一条腰上的高与底边的夹角是或.故选.6.【答案】A【考点】角平分线的性质全等三角形的性质与判定【解析】30∘∠B 30∘40∘1∠B =(−)=12180∘40∘70∘CD ∠BCD =−=90∘70∘20∘40∘2CD ∠BCD =−=90∘40∘50∘20∘50∘D过作于,易证得,得到,,;而点是的中点,得到,则可证得,得到,,也可得到,,即可判断出正确的结论.【解答】解:过作于,如图,∵,,平分,∴.∵,∴,∴,.∵点是的中点,∴,∴.∵,∴,故③错误.∵,,∴,∴,,故②正确,∴,故④正确.,,即,故①正确.故选.7.【答案】A【考点】等边三角形的性质【解析】根据等边三角形的性质和三角形内角和解答即可.【解答】E EF ⊥AD F Rt △AEF ≅Rt △AEB BE =EF AB =AF ∠AEF =∠AEB E BC EC =EF =BE Rt △EFD ≅Rt △ECD DC =DF ∠FDE =∠CDE AD =AF +FD =AB+DC ∠AED =∠AEF +∠FED =∠BEC =1290∘E EF ⊥AD F AB ⊥BC EF ⊥AD AE ∠BAD BE =EF AE =AE Rt △AEF ≅Rt △AEB(HL)AB =AF ∠AEF =∠AEB E BC EC =BE EC =EF DE >EC DE >BE DE =DE EC =EF Rt △EFD ≅Rt △ECD(HL)DC =DF ∠ADE =∠CDE AD =AF +FD =AB+CD ∵∠AED+∠AEB+∠DEC =2∠AEF +2∠FED =180∘∴∠AEF +∠FED =90∘∠AED =90∘A如图:由图可知:==,∵等边,∴=,∴==,∴===,8.【答案】A【考点】等边三角形的性质与判定全等三角形的性质与判定【解析】【解答】解:设,由得,即,∴.∵正方形,∴.∴.∴.即=.∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.∠BOE ∠OBE 45∘△ABC ∠ABC 60∘∠OFB −−180∘45∘60∘75∘∠BFG ∠α−90∘75∘15∘AD =BC =CD =a y =12x A(,a)12aOD =12a CP =BC =12a 2ABCD ∠DCP =90∘CP//OF =OD CD OF CP OF =⋅CP OD CD 6a =OF ⋅CD =⋅⋅a =3S △DCF 12126a A【答案】【考点】平行线的判定与性质等边三角形的性质【解析】过作直线,根据等边三角形性质求出,根据平行线的性质求出,,即可求出答案.【解答】解:∵是等边三角形,∴,过作直线,∵直线直线,∴直线直线,∵,,∴,∴,故答案为:.10.【答案】①②④【考点】正方形的性质等边三角形的性质全等三角形的性质与判定相似三角形的性质与判定【解析】先判断出==,===,再判断出==,===,进而得出==,即可判断出,即可得出结论;由等腰三角形的性质得出=,则可得出答案;证明,得出40∘C CM//l ∠ACB =60∘∠1=∠MCB ∠2=∠ACM △ABC ∠ACB =60∘C CM//l l//m l//m//CM ∠ACB =60∘∠1=20∘∠1=∠MCB =20∘∠2=∠ACM =∠ACB−∠MCB =−=60∘20∘40∘40∘BP PC BC ∠PBC ∠PCB ∠BPC 60∘AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)∠PDC 75∘△FPE ∽△CPB,设=,=,则=,得出=,则可求出答案;先判断出=,进而判断出,即可得出结论.【解答】∵是等边三角形,∴==,===,在正方形中,∵==,===,∴==,∴,∴=,∴=,∴=;故①正确;∵=,=,∴=,∴===.故②正确;∵==,∴是等边三角形,∴,∴,设=,=,则=,∵=,∴=,整理得:)=,解得:,则,故③错误;∵=,=,∴=,∵=,∴==,∵=,∴,∴,∴=,∵=,∴=;故④正确.11.【答案】PF x PC y DC y y (x+y)∠DPH ∠DPC △DPH ∽△CPD △BPC BP PC BC ∠PBC ∠PCB ∠BPC 60∘ABCD AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)AE DF AE−EF DF −EF AF DE PC CD ∠PCD 30∘∠PDC 75∘∠ADP ∠ADC −∠PDC −90∘75∘15∘∠FPE ∠PFE 60∘△FEP △FPE ∽△CPB PF x PC y DC y ∠FCD 30∘y (x+y)(1−y x PC CD ∠DCF 30∘∠PDC 75∘∠BDC 45∘∠PDH ∠PCD 30∘∠DPH ∠DPC △DPH ∽△CPD PD 2PH ⋅CP PB PC PD 2PH ⋅PB【考点】平方差公式【解析】先根据平方差公式进行计算,再算加法即可.【解答】解:原式.故答案为:.12.【答案】【考点】等腰三角形的性质三角形三边关系【解析】因为等腰三角形的两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】当为底时,其它两边都为,、、可以构成三角形,周长为;当为腰时,其它两边为和,因为=,所以不能构成三角形,故舍去.所以三角形的周长为.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,−20100=(1+2)(1−2)+(3−4)(3+4)+⋯+(199−200)(199+200)=−3−7−⋯−399=−(3+399)×1002=−20100−20100173737773173733+36<717△ABC A △ADE AB =AD =4∠B =60∘△ABD∴,∴.【考点】旋转的性质等边三角形的性质与判定【解析】由旋转的性质可得,可证为等边三角形,可得,即可求解.【解答】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,∴,∴.14.【答案】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.BD =AD =4CD =BC −BD =7−4=3AB =AD =4△ABD BD =AD =4△ABC A △ADE AB =AD =4∠B =60∘△ABD BD =AD =4CD =BC −BD =7−4=3∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√【考点】全等三角形的应用三角形的外角性质三角形的外接圆与外心【解析】本题主要考察了全等三角形的判定及性质、三角形的外角性质、三角形的外心、直角三角形斜边上的中线.【解答】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√15.【答案】,①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.【考点】全等三角形的性质与判定等腰三角形的性质【解析】(1)问要求的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:∵,∴,即.在与中,9080(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β∠BCE △ABD ≅△ACE α+β(1)∠BAC=∠DAE ∠BAC −∠DAC =∠DAE−∠DAC ∠BAD=∠CAE △ABD △ACE∴,∴.∴,∴;①当,,∴.②当,,∴.故答案为:.①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.16.【答案】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.,【考点】平行四边形的判定AB =AC,∠BAD =∠CAE,AD =AE,△ABD ≅△ACE(SAS)∠B =∠ACE ∠B+∠ACB=∠ACE+∠ACB ∠BCE=∠B+∠ACB =−∠BAC 180∘∠BAC=90∘∠BCE =−∠BAC 180∘∠BCE=90∘∠BAC=100∘∠BCE =−∠BAC 180∘∠BCE=80∘90,80(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD 135∘120∘三角形内角和定理平行线的判定与性质切线的性质菱形的性质【解析】利用条件证得两组对边分别平行,即可求证.利用平行线的性质求角.【解答】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.解:①,若与相切,则,又∵,∴,又∵,∴,可得,即时,与相切,故答案为:.②若四边形为菱形,则,又,∴为等边三角形,∴,则,即,四边形为菱形.故答案为:.(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD (2)AD ⊙O ∠OAD =90∘CO//AD ∠COA =∠OAD =90∘AD =AO ∠AOD =45∘∠COD =∠COA+∠AOD =135∘∠COD =135∘AD ⊙O 135∘ACOD AC =CO OC =OA △ACO ∠ACO =60∘∠COD =120∘∠COD =120∘ACOD 120∘。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)024750

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)024750

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一件衣服标价元,若以折降价出售,仍可获利,则这件衣服的进价是( )A.元B.元C.元D.元2.如图,根据图中提供的信息,可知一个茶壶的价格是( )A.元B.元C.元D.元3. 《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五;屈绳量之,不足一尺.问木长几何?”译文如下:用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺.问木条长多少尺?若设木条长为尺,根据题意列方程正确的是( )A.B.C.D. 4. 如图是某年的日历表,在此日历表上用一个矩形圈出个位置的个数(如,,,,,,,,).若用这样的矩形圈圈这张日历表的个数,则圈出的个数的和可能为下列数中的( )132910%1061051181081533353841 4.51x x+4.5=2(x+1)x+4.5=2(x−1)x+4.5=−1x 2x−4.5=−1x 23×3967813141520212299A.B.C.D.5. 按如图所示的程序计算,如果输入的值为非负整数,且最后输出的结果为,那么开始输入的值不可能是( )A.B.C.D.6. 《九章算术》中有一道题,原文是:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走步,走路慢的人只能走步.走路慢的人先走步,走路快的人走多少步才能追上走路慢的人?答( )A.步B.步C.步D.步7. 小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的,且两块地毯的面积和为平方米,小明很快便得出了两块地毯的面积为(单位:平方米) 81100108216n 2343n 183793468100601003002502001501320()4020A.,B.,C.,D.,8. 某商品打七折后价格为元,则原价为 ( )A.元B.元C.元D.元二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,是一块在电脑屏幕上出现的长方形色块图,由个不同颜色的正方形组成,已知中间最小的一个正方形的边长为,则这个长方形色块图的面积是________.10. 暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:________元暑假八折优惠,现价:元11. 某中学的学生自己动手整修操场,如果让初二学生单独工作,需要小时完成;如果让初三学生单独工作,需要小时完成.现在由初二、初三学生一起工作小时,完成了任务.根据题意,可列方程为________.12. 《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“人同吃一碗饭,人同吃一碗羹,人同吃一碗肉,共用个碗,问有多少客人?”设共有客人人,可列方程为________.4032033010155128a a a 10730%a a 7106216064x 23465x三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 一个数减去,再加上等于.求这个数. 14. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。

七下数学全册同步练习、单元检测(含答案,100页)

七下数学全册同步练习、单元检测(含答案,100页)

七下数学全册同步练习、单元检测(含答案,100页)七下数学同步练习、单元检测第五章相交线与平⾏线5.1.1 相交线复习检测(5分钟):1、如图所⽰,∠1和∠2是对顶⾓的图形有( )A.1个B.2个C.3个 D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是⼀把剪⼑,其中?=∠401,则=∠2 ,其理由是。

4、如图三条直线AB,CD,EF 相交于⼀点O, ∠AOD 的对顶⾓是_____,12121221∠AOC 的邻补⾓是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____. OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,?求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补⾓都相等.( )2、⼀条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个⾓中,如果有三个⾓相等,那么这两条直线互相垂直.( )4、两条直线相交有⼀组对顶⾓互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂⾜,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂⾜,直线CD 过点O,且∠BOD=2∠AOC,则E (3)O D C B A(2)O D CB A (1)O DC B A ∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂⾜,CD ⊥AB,D 为垂⾜,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.⼩明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对⼩明的说法,你认为对吗?11、⽤三⾓尺画⼀个是30°的∠AOB,在边OA 上任取⼀点P ,过P 作PQ ⊥OB, 垂⾜为Q,量⼀量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位⾓、内错⾓、同旁内⾓复习检测(5分钟): E O DC BA F E D CB A DCBA1、如图(4),下列说法不正确的是()A.∠1与∠2是同位⾓B.∠2与∠3是同位⾓C.∠1与∠3是同位⾓D.∠1与∠4不是同位⾓2、如图(5),直线AB、CD被直线EF所截,∠A和是同位⾓,∠A和是内错⾓,∠A和是同旁内⾓.3、如图(6), 直线DE截AB, AC, 构成⼋个⾓:①、指出图中所有的同位⾓、内错⾓、同旁内⾓.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪⼀条直线截哪两条直线⽽成的什么⾓?4、如图(7),在直⾓ ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位⾓、内错⾓和同旁内⾓.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平⾏线复习检测(5分钟):1、在同⼀平⾯内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同⼀平⾯内,⼀条直线和两条平⾏线中⼀条直线相交,那么这条直线与平⾏线中的另⼀边必__________.4、两条直线相交,交点的个数是________,两条直线平⾏,交点的个数是_____个.判断题5、6、7、85、不相交的两条直线叫做平⾏线.( )6、如果⼀条直线与两条平⾏线中的⼀条直线平⾏, 那么它与另⼀条直线也互相平⾏.( )7、过⼀点有且只有⼀条直线平⾏于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外⼀点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三⾓尺、直尺验证.65ca34129、试说明三条直线的交点情况,进⽽判定在同⼀平⾯内三条直线的位置情况.5.2.2平⾏线的判定复习检测(10分钟):1、如图1所⽰,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4) 2、如图2所⽰,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF34DCBA21FE D CBA 876543219654321DCB A3、下列说法错误的是( )A.同位⾓不⼀定相等B.内错⾓都相等C.同旁内⾓可能相等D.同旁内⾓互补,两直线平⾏ 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a∥b的条件序号为()(5)A.①②B.①③C.①④D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 7、在同⼀平⾯内,若直线a,b,c 满⾜a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所⽰,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________. (2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠试判断直线a 、b 的位置关系,并说明理由.EDCB AD CBA2110、如图,已知DG∠,2=∠AEM∠,试问EF是否平⾏GH,并说明理1∠=由.11、如图所⽰,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.12、如图所⽰,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提⾼训练:如图所⽰,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平⾏吗??为什么?d ecb a 34125.3.1平⾏线的性质复习检测(10分钟):1、如图1所⽰,AB ∥CD,则与∠1相等的⾓(∠1除外)共有( )DCBAOFED C BADCB A 187654321DCBAGF EDCBA 12A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所⽰,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )A.35°B.30°C.25°D.20°3、如图3所⽰,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=?_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4)(5)E21DCB(6)5、如图5,在甲、⼄两地之间要修⼀条笔直的公路, 从甲地测得公路的⾛向是南偏西56°,甲、⼄两地同时开⼯,若⼲天后公路准确接通, 则⼄地所修公路的⾛向是_________,因为____________.6、河南)如图6所⽰,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG?平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的⼀个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?NMG F EDCB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所⽰,把⼀张长⽅形纸⽚ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所⽰,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,()⼜∵ AE 平分∠BAC ,CE 平分∠ACD ,()∴112B A C ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=?=.即∠1+∠2=90°.结论:若两条平⾏线被第三条直线所截,则⼀组同旁内⾓的平分线互相 .推⼴:若两条平⾏线被第三条直线所截,则⼀组同位⾓的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟): 1、判断下列语句是不是命题(1)延长线段AB ()(2)两条直线相交,只有⼀交点()(3)画线段AB 的中点()(4)若|x|=2,则x=2()(5)⾓平分线是⼀条射线() 2、下列语句不是命题的是() A.两点之间,线段最短B.不平⾏的两条直线有⼀个交点C.x 与y 的和等于0吗?D.对顶⾓不相等.3、下列命题中真命题是() A.两个锐⾓之和为钝⾓B.两个锐⾓之和为锐⾓C.钝⾓⼤于它的补⾓D.锐⾓⼩于它的余⾓4、命题:①对顶⾓相等;②垂直于同⼀条直线的两直线平⾏;③相等的⾓是对顶⾓;④同位⾓相等.其中假命题有() A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a ∥b,b ∥c,那么a ∥c (2)同旁内⾓互补,两直线平⾏ 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定⼀条直线;(2)等⾓的补⾓相等;(3)内错⾓相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下⾯各⼩题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180o ( ) (5)∵∠1=∠2,∴a ∥b( );(6)∵∠1+∠4=180o,∴a ∥b( ).8、已知:如图AB ⊥BC,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC,BC ⊥CD (已知)∴ = =90°()∵∠1=∠2(已知)∴ = (等式性质)ab 1 23c4C A BD EF1 2∴BE ∥CF () 9、已知:如图,AC ⊥BC,垂⾜为C,∠BCD 是∠B 的余⾓. 求证:∠ACD=∠B 证明:∵AC ⊥BC (已知)∴∠ACB=90°()∴∠BCD 是∠ACD 的余⾓∵∠BCD 是∠B 的余⾓(已知)∴∠ACD=∠B ()5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的()BD2、如图所⽰,△FDE 经过怎样的平移可得到△ABC.( )A.沿射线EC 的⽅向移动DB 长;B.沿射线EC 的⽅向移动CD 长C.沿射线BD 的⽅向移动BD 长;D.沿射线BD 的⽅向移动DC 长3、下列四组图形中,?有⼀组中的两个图形经过平移其中⼀个能得到-BDACFBA另⼀个,这组图形是( )4、如图所⽰,△DEF 经过平移可以得到△ABC,那么∠C的对应⾓和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平⾏且相等; B.互相垂直且相等 C.互相平⾏(或在同⼀条直线上)且相等 6、在平移过程中,平移后的图形与原来的图形________和_________都相同,?因-此对应线段和对应⾓都________.7、如图所⽰,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=?____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正⽅形ABCD 沿对⾓线AC ⽅向平移,且平移后的图形的⼀个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的⾯积是原正⽅形⾯积的_______OF ECB ADABCDOFECB AD9、直⾓△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB⽅向平移3cm,则边AB所经过的平⾯⾯积为____cm2。

2022-2023学年全国初中七年级下数学新人教版同步练习(含解析)

2022-2023学年全国初中七年级下数学新人教版同步练习(含解析)

2022-2023学年全国七年级下数学同步练习考试总分:33 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1. 已知的半径为,为线段的中点,若点在上,则的长( )A.等于B.等于C.小于D.大于2. 按照图的方式摆放一副三角板,画出 再按照图的方式摆放一副三角板,画出射线,则的大小为( )A.B.C.D.3. 如图,,且,则 的度数为 ( )⊙O 6cm P OA P ⊙O OA 6cm12cm6cm12cm1∠AOB 2OC ∠AOC 70∘75∘60∘65∘AB =,BC =AC =A 1B 1B 1C 1A 1C 1∠A =,∠B =110∘40∘∠C 1110∘A.B.C.D.4. 如图, ,则的度数为(( )A.B.C.D.AD / 人 2 →卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5. 如图,已知 点,在边上, ,点是边上的点,若使点,,构成等腰三角形的点恰好只有一个,则的取值范围是________.6. 如图,四边形是平行四边形,若________(添加一个条件),四边形是菱形.7. 如图用一张长方形纸条折成的.如果 ,那么的度数是________.8. 如图,在中,、是的弦,,则的度数是__________.110∘40∘30∘20∘∠1=,∠B =65∘65∘∠C =80∘∠2BL65∘80∘115∘100∘1AE BL C∠AOB =30∘M N OA OM =x,ON =x +2P OB P M N P x ABCD ABCD ∠1=100∘∠2⊙O AD BC ⊙O OA ⊥BC,∠AOB =,CE ⊥AD 52∘∠DCE9. 如图,已知,为的中点,若,则________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10. 如图所示,直线,连接,直线、及线段把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点落在某部分时连接、,构成,,三个角(提示:有公共端点的两条重合的射线所组成的角是角).当动点落在第①部分时, 、 、 之间有什么关系?并说明理由;当动点落在第②部分时,中结论是否依然成立?(直接回答成立或不成立)当动点落在第③部分时,全面探究之间的关系,直接写出动点的具体位置和相应的结论.11. 如图,已知,,垂足分别为,,,试说明.将下面的解答过程补充完整,并填空.证明:∵,(已知),∴ (垂直定义),∴________________(同位角相等,两直线平行),∴(________)又∵ (已知),∴ (________)∴________________(两直线平行,内错角相等),∴(________).AB//CF E DF AB =8,CF =5BD =AC//BD AB AC BD AB P PA PB ∠PAC ∠APB ∠PBD 0∘(1)P ∠PAC ∠APB ∠PBD (2)P (1)(3)P ∠PAC,∠APB,∠PBD P CD ⊥AB EF ⊥AB D F ∠B +∠BDG =180∘∠BEF =∠CDG CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘//∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG =∠CDG =∠BEF参考答案与试题解析2022-2023学年全国七年级下数学同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】B【考点】圆的有关概念【解析】点在圆上,则=;点在圆外,;点在圆内,(即点到圆心的距离,即圆的半径).【解答】根据点和圆的位置关系,得=,再根据线段的中点的概念,得==.2.【答案】B【考点】角的计算【解析】此题暂无解析【解答】解:,,.故选.3.【答案】C【考点】d r d >r d <r d r OP 6OA 2OP 12∵∠AOB =+=60∘90∘150∘∠BOC =+=45∘30∘75∘∴∠AOC =−=150∘75∘75∘B平行线的性质【解析】由三角形内角和定理求出=,再由证明,即可得出结果.【解答】解:∵在中,=,=,∴==.在和中,,∴.∴==;故选.4.【答案】D【考点】平行线的判定与性质【解析】此题暂无解析【解答】略二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5.【答案】或【考点】含30度角的直角三角形等腰三角形的判定与性质【解析】此题暂无解析∠C 30∘SSS △ABC ≅△A 1B 1C 1△ABC ∠A 110∘∠B 40∘∠C −∠A −∠B 180∘30∘△ABC △A 1B 1C 1 AB =A 1B 1BC =B 1C 1AC =A 1C1△ABC ≅△(SSS)A 1B 1C 1∠C ∠C 130∘C x >4x =2【解答】解:6.【答案】【考点】菱形的判定平行四边形的性质【解析】根据菱形的判定方法即可判断.【解答】解:当时,根据对角线互相垂直的平行四边形是菱形,可得四边形是菱形.故答案为:.7.【答案】【考点】平行线的性质【解析】根据折叠的性质可得,根据平行线的性质可得,最后根据即可求出的度数.【解答】解:如图所示:根据折叠的性质可得.AC ⊥BDAC ⊥BD ABCD AC ⊥BD 50∘∠2=∠3∠4=80∘∠2+∠3+∠4=180∘∠2∠2=∠3ABCD∵四边形是长方形,∴.∴.∴.∵,∴.解得.故答案为:.8.【答案】【考点】平行线的判定与性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】【考点】全等三角形的性质与判定平行线的性质【解析】根据平行线的性质得出 ,进而利用全等三角形的判定与性质得出答案.【解答】解:因为,所以,,在△和中,,∴Δ(),,∴.ABCD AD//BC ∠1+∠4=180∘∠4=−∠1=−=180∘180∘100∘80∘∠2+∠3+∠4=180∘2∠2+=80∘180∘∠2=50∘50∘64∘3∠A =∠ACF ∠AED =∠CEF AB//CF ∠A =∠ACF ∠AED =∠CEF AED △CEF ∠A =∠ACF∠AED =∠CEF DE =DFAED ≅△CEF AAS FC =AD =5ED =AB −AD =8−5=3故答案为:.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10.【答案】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作,∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,3(1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA结论是:.③当动点在的左侧时,结论是:.【考点】平行线的判定与性质【解析】()如图,延长交直线于点,由,可知.由,可知;()过点作的平行线,根据平行线的性质解答;()根据的不同位置,分三种情况讨论.【解答】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作 ,∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD 11BP AC E AC//BD ∠PEA =∠PBD ∠APB =∠PAE +∠PEA ∠APB =∠PAC +∠PBD 2P AC 3P (1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,结论是:.③当动点在的左侧时,结论是:.11.【答案】,,两直线平行,同位角相等,同旁内角互补,两直线平行,,,等量代换【考点】AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA ∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD EF CD ∠CDG ∠BCD平行线的判定与性质【解析】根据平行线的判定与性质即可完成证明过程.【解答】证明:, (已知),∴ (垂直定义),∴ (同位角相等,两直线平行),∴ (两直线平行,同位角相等),又∵ (已知),∴ (同旁内角互补,两直线平行),∴ (两直线平行,内错角相等),∴ (等量代换).故答案为:;;两直线平行,同位角相等;同旁内角互补,两直线平行; ;;等量代换.∵CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘EF//CD ∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG ∠CDG =∠BCD ∠CDG =∠BEF EF CD ∠CDG ∠BCD。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102916

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102916

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列图形中,由如图经过一次平移得到的图形是( ) A. B. C.D.2. 如图,将周长为的沿方向向右平移个单位得到,则四边形的周长为A.B.C.4△ABC BC 1△DEF ABFD ()567D.3. 下列运动属于平移的是( )A.电风扇扇叶的转动B.石头从山顶滚到山脚的运动C.足球被踢飞后的运动D.缆车沿索道从山顶运动到山脚4. 如图,将周长为的沿方向平移个单位得到,则四边形的周长为( ) A.B.C. D.5. 图案中能够通过平移图案得到的是( )A.B.C.87△ABC BC 2△DEF ABFD 1691112A−DD.6. 如图,将向右平移个单位长度得到,且点,,,在同一条直线上,若=,则的长度是( )A.B.C.D.7. 图中不是由平移而得到的是( ) A. B. C.D.8. 如图,将沿所在直线向左平移得到,若,,则平移的距离为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )△ABC 8△DEF B E C F EC 4BC 11121314△DEF BC △ABC EC =1BF =5122.539. 如图,立方体棱长为,将线段平移到的位置上,平移的距离是________.10. 在一块边长为米的正方形草坪上修了横竖各两条宽都为米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为________平方米.11. 如图,将向右平移个单位长度得到,且点,,,在同一条直线上,若,则的长度是________.12. 某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图所示,在边长为的小正方形组成的网格中.将沿轴正方向向上平移个单位长度后,得到,请作出,并求出的长度;再将绕坐标原点顺时针旋转,得到,请作出,并直接写出点的坐标;2cm AC A 1C 1cm 10 1.5△ABC 5△DEF B E C F EC =4BC m △ABC 1cm (1)△ABC y 5△A 1B 1C 1△A 1B 1C 1A 1B 1(2)△A 1B 1C 1O 180∘△A 2B 2C 2△A 2B 2C 2B 2(1),(2)在的条件下,求线段在变换过程中扫过图形的面积和.14. 已知,,点为射线上一点.如图,若,,则________;如图,当点在延长线上时,此时与交于点,则,,之间满足怎样的关系,请说明你的结论;如图,当点在延长线上时,平分,且,,,求的度数.15. 在长为,宽为的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.16. 如图,在中,,,的垂直平分线交于点,交于点,,连接.求证:是直角三角形;求的面积.(3)(1),(2)AB AB//CD E FG (1)1∠EAF =25∘∠EDG =45∘∠AED =∘(2)2E FG CD AE H ∠AED ∠EAF ∠EDG (3)3E FG DP ∠EDC ∠EAP :∠BAP =1:2∠AED =32∘∠P =30∘∠EKD 12m 9m △ABC AB =4BC =8AC AC D BC E CE =3AE (1)△ABE (2)△ACE参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】生活中的平移现象【解析】利用平移的性质直接判断得出即可.【解答】解:根据平移的性质:平移时图形中所有点移动的方向一致,并且移动的距离相等.选项,,都改变了图象的方向,只有答案符合题意.故选.2.【答案】B【考点】平移的性质【解析】先根据平移的性质得出,,,再根据四边形的周长即可得出结论.【解答】解:∵将周长为的沿边向右平移个单位得到,∴,,,又∵,∴四边形的周长.A B D C C AD =1BF =BC +CF =BC +1DF =AC ABFD =AD+AB+BF +DF 4△ABC BC 1△DEF AD =1BF =BC +CF =BC +1DF =AC AB+BC +AC =4ABFD =AD+AB+BF +DF =1+AB+BC +1+AC =6故选3.【答案】D【考点】生活中的平移现象【解析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:、电风扇扇叶的转动,是风扇叶在空中不断的做旋转运动,不是平移;、石头从山顶滚到山脚的运动,有旋转运动,不是平移;、足球被踢飞后的运动,有旋转运动,不是平移;、符合平移的性质,是平移.故选:.4.【答案】C【考点】平移的性质【解析】根据平移的基本性质,得.即可得出四边形的周长为.【解答】解:根据题意,将周长为个单位的沿边向右平移个单位得到,∴,,,又∵,∴四边形的周长为.故选.5.【答案】B【考点】B.A B C D D ABFD AD+AB+BF +DF =2+AB+BC +2+AC7△ABC BC 2△DEF AD =2BF =BC +CF =BC +2DF =AC AB+BC +AC =7ABFD AD+AB+BF +DF =2+AB+BC +2+AC =11C生活中的平移现象【解析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,找各点位置关系不变的图形.【解答】解:观察图形可知,图案能通过平移图案得到.故选:.6.【答案】B【考点】平移的性质【解析】利用平移的性质求出即可解决问题.【解答】由题意,==,∵=,∴===,7.【答案】D【考点】生活中的平移现象【解析】根据平移和旋转的定义对各选项分析判断后利用排除法求解.【解答】解:、可以由平移得到,故本选项错误;、可以由平移得到,故本选项错误;、可以由平移得到,故本选项错误;、可以由旋转得到,不能由平移得到,故本选项正确.故选.B B BE BE CF 8EC 4BC BE+EC 6+412A B CD D8.【答案】B【考点】平移的性质【解析】因点平移后的对应点是点,所以只要求出线段的长,也就求出了平移的距离.【解答】解:由平移的性质可知,,,,,,平移的距离为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】平移的性质【解析】根据平移的性质即可得到结论.【解答】解:∵将线段平移到的位置上,平移的距离是立方体棱长,∴平移的距离是,故答案为:.10.【答案】【考点】B E BE BE =CF ∵BF =5EC =1∴BE+CF =5−1=4∴BE =CF =2∴2B 2AC A 1C 12cm 249生活中的平移现象【解析】把四条线路平移到两侧,再表示出未被小路覆盖的草坪的边长即可算出面积.【解答】解:如图所示:(平方米),故答案为:.11.【答案】【考点】平移的性质【解析】根据平移的性质可得,然后列式其解即可.【解答】解: 是由向右平移个单位长度得到的,,,.故答案为:.12.【答案】【考点】生活中的平移现象【解析】由平移性质求解.【解答】解:由平移可得,为.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )(10−3)×(10−3)=49499BC =EF,CF =5∵△DEF △ABC 5∴BC =EF CF =5∴BC =EF =EC +CF =4+5=998.45.8+2.6=8.48.4三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:如图所示,即为所求,;如图所示,即为所求,;在的条件下,线段在变换过程中扫过图形的面积和为:.【考点】作图-平移变换作图-旋转变换三角形的面积【解析】(1)分别将点、、向上平移个单位得到对应点,再顺次连接可得;(2)分别将点、、绕点顺时针旋转得到对应点,再顺次连接可得;(3)平行四边形的面积加上大半圆的面积与小半圆面积的差即可求得.【解答】解:如图所示,即为所求,;如图所示,即为所求,;在的条件下,线段在变换过程中扫过图形的面积和为:.14.(1)△A 1B 1C 1=3cm A 1B 12–√(2)△A 2B 2C 2(4,−4)B 2(3)(1)(2)AB 5×3+π×(4−π×(122–√)2122–√)2=(15+15π)cm 2A B C 5A B C O 90∘(1)△A 1B 1C 1=3cm A 1B 12–√(2)△A 2B 2C 2(4,−4)B 2(3)(1)(2)AB 5×3+π×(4−π×(122–√)2122–√)2=(15+15π)cm 2【答案】.理由:∵,∴.∵是的外角,∴,∴.∵,∴设,则.∵,∴,∴.∵平分,∴.∵是的外角,∴,解得:,∴,∴,∴.【考点】平行线的判定与性质三角形的外角性质【解析】此题暂无解析【解答】解:如图,延长交于,∵,∴.∵是的外角,∴.故答案为:..理由:∵,∴.70(2)∠EAF =∠AED+∠EDG AB//CD ∠EAF =∠EHC ∠EHC △DEH ∠EHG =∠AED+∠EDG ∠EAF =∠AED+∠EDG (3)∠EAP :∠BAP =1:2∠EAP =α∠BAE =3αAB//CD ∠DHK =∠BAE =3α∠PDC =∠DHA−∠EAP −∠P =3α−α−=2α−30∘30∘DP ∠EDC ∠EDH =2∠PDC =4α−60∘∠DHA △DHE 4α−+=3α60∘32∘α=28∘∠PAK =28∘∠AKP =−−=180∘28∘30∘122∘∠EKD =122∘(1)DE AB H AB//CD ∠EDG =∠AHE =45∘∠AED △AEH ∠AED =∠AHE+∠EAF =+=45∘25∘70∘70(2)∠EAF =∠AED+∠EDG AB//CD ∠EAF =∠EHC∵是的外角,∴,∴.∵,∴设,则.∵,∴,∴.∵平分,∴.∵是的外角,∴,解得:,∴,∴,∴.15.【答案】小矩形花圃的长和宽分别为,.【考点】生活中的平移现象【解析】由图形可看出:小矩形的个长+一个宽,小矩形的个宽+一个长,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为,宽为,由题意得:,解得:,即小矩形的长为,宽为.16.【答案】证明:∵的垂直平分线交于点,∴.,∴.在中,∵,∴是直角三角形.解:如图,过点作于点,∠EHC △DEH ∠EHG =∠AED+∠EDG ∠EAF =∠AED+∠EDG (3)∠EAP :∠BAP =1:2∠EAP =α∠BAE =3αAB//CD ∠DHK =∠BAE =3α∠PDC =∠DHA−∠EAP −∠P =3α−α−=2α−30∘30∘DP ∠EDC ∠EDH =2∠PDC =4α−60∘∠DHA △DHE 4α−+=3α60∘32∘α=28∘∠PAK =28∘∠AKP =−−=180∘28∘30∘122∘∠EKD =122∘5m 2m 2=12m 2=9m xm ym {2x+y =122y+x =9{x =5y =25m 2m (1)AC AC D AE =CE =3∵BC =8BE =5△ABE +=324252△ABE (2)A AF ⊥BC F,,.故的面积是.【考点】勾股定理的逆定理线段垂直平分线的性质三角形的面积【解析】(1)根据线段垂直平分线的性质可得==,根据线段的和差关系可求=,再根据勾股定理的逆定理可证是直角三角形;(2)根据三角形面积公式可求中边上的高,再根据三角形面积公式可求的面积.【解答】证明:∵的垂直平分线交于点,∴.,∴.在中,∵,∴是直角三角形.解:如图,过点作于点,,,.故的面积是.∵BE ⋅AF =AB ⋅AE1212∴AF ===2.4AB ⋅AE BE 4×35∴=CE ⋅AF =×2.4×3=3.6S △ACE 1212△ACE 3.6AE CE 3BE 5△ABE △ABE BE △ACE (1)AC AC D AE =CE =3∵BC =8BE =5△ABE +=324252△ABE (2)A AF ⊥BC F ∵BE ⋅AF =AB ⋅AE 1212∴AF ===2.4AB ⋅AE BE 4×35∴=CE ⋅AF =×2.4×3=3.6S △ACE 1212△ACE 3.6。

(新人教版)数学七年级下册同步练习试题及答案

(新人教版)数学七年级下册同步练习试题及答案
(
人教版七下《
课前感悟
1.如果∠α=110°,那么∠α的补角等于__________________.
2.如图,直线EF与AB相交于G,与CD相交于H,
则∠AGH的对顶角是___________;∠AGF与_______是
对顶角.∠AGH与_______是邻补角,∠GHD的邻补角
是________.
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.
参考答案
1.70 2.∠FGB,∠HGB,∠AGF,∠HGB,∠CHB,∠EHB 3.C 4.C
C.有公共顶点的且相等的角D.一个角的两边分别是另一个角两边的反向延长线
10.如图,已知直线AB.CD相交于点O,OA平分∠EOC,∠EOC=70°,
则∠BOD的度数等于( ).
A.30°B.35°C.20°D.40°
11.如图,AB交CD于O,OE是顶点为O的一条射线,图中的对顶角和邻补角各有( ).
2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)064336

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)064336

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 张磊比小海大岁,年前张磊的年龄是小海的年龄的两倍,小海现在的年龄为( )A.B.C.D.2. 我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走里,跑得慢的马每天走里,慢马先走天,快马几天可追上慢马?若设快马天可追上慢马,则由题意可列方程为( )A.B.C.D.3. 如图,小明将一个正方形纸剪出一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A.B.C.D.4. 某商品的标价为元,折销售仍赚元,则商品进价为( )A.元1051015202520012010x 120+10x =200x120x+200x =120×10200x =120x+200×10200x =120x+120×104cm 5cm 16cm 220cm 280cm 2160cm 2200840140B.元C.元D.元5. 甲、乙两人骑自行车同时从相距的两地相向而行,小时相遇,若甲比乙每小时多骑,则乙的时速是( )A.B.C.D.6. 若辆客车及个人,若每辆汽车乘人,则还有人不能上车;若每辆客车乘人,则只有人不能上车,有下列四个等式:;;;,其中正确的是( )A.B.C.D.7. 地铁号线在驶进深圳北站前,列车上共有人,停靠深圳北站后,上车人数是下车人数的倍,列车在驶离深圳北站时车上共有人,那么在深圳北站上车的人数有( )A.人B.人C.人D.人8. 如图,在中,,,点从点出发以每秒的速度向点运动,同时点从点出发以每秒的速度向点运动,其中一个动点到达端点时,另一个动点也随之停止运动,当时,点、点运动的时间是 12016010065km 2 2.5km 12.5km15km17.5km20kmm n 4010431(1)40m+10=43m+1(2)=n+1040n+143(3)=n−1040n−143(4)40m−10=43m−1(1)(2)(2)(4)(1)(3)(3)(4)4a 3b (a +b)(b −a)b −a 2(b −a)32△ABC AB =24cm AC =18cm P B 4cm A Q A 3cm C AP =AQ P Q ()A.秒B.秒C.秒D.秒二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 古代名著《算学启蒙》中有一题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走里,跑得慢的马每天走里.慢马先走天,快马________天可追上慢马.”10. 如图所示,是一块在电脑屏幕上出现的长方形色块图,由个不同颜色的正方形组成,已知中间最小的一个正方形的边长为,那么这个长方形色块图的面积为________.11. 互联网微商经营成为大众创业新途径.某微信平台上一件商品进价为元,按标价的八折销售仍可获利元,则这件商品的标价为________元.12. 一项工程,甲单独完成需要天,乙单独完成需要天,由甲先做天,然后甲、乙一起做,余下的部分还要做________天才能完成.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 若一个角的补角比他的余角的倍多度,求这个角的度数?14. 阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.233218724724015012611806020252310A B PQ AB R PQ R P Q A B PQ A B PQ解答下列问题:如图,在数轴上,点为原点,点表示的数为,点表示的数为.(1)①点,,分别表示的数为,,,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是,,,当点以每秒个单位长度的速度向正半轴方向移动时,线段同时以每秒个单位长度的速度向正半轴方向移动.设移动的时间为秒,问为何值时,线段上至少存在一点与点关于线段径向对称. 15. 如图,有一块长为米和宽为米的长方形土地,现准备在这块土地上修建一个长为米,宽为米的游泳池,剩余部分修建成休息区域.请用含和的代数式表示休息区域的面积;(结果要化简)若,,求休息区域的面积;若游泳池的面积和休息区域的面积相等,且,求此时游泳池的长与宽的比值.16. 已知有理数,,在数轴上的位置如图所示,且.求的值;化简.1O A −1M 2B C D −3323B C D A OM E x A E OM x H K L −5−4−3H 1KL 3t(t >0)t KL H OM (m+3n)(2m+n)(m+2n)(m+n)(1)m n (2)m=10n =20(3)n ≠0a b c |a|=|b|(1)(a +b)5(2)|a|−|a +b|−|c −a|+|c −b|+|ac|−|−2b|参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】一元一次方程的应用——其他问题【解析】设年前乙的年龄为岁,则年前甲的年龄为岁,根据甲比乙大岁,即可得出关于的一元一次方程,解之即可得出的值,将其代入,即可求出现在乙的年龄.【解答】解:设年前小海的年龄为岁,则年前张磊的年龄为岁,根据题意得:,解得:,∴.故选.2.【答案】D【考点】一元一次方程的应用——路程问题【解析】设快马天可追上慢马,根据“快马走的总路程=慢马走的总路程”即可列出方程.【解答】解:设快马天可追上慢马,根据题意,得.故选.5x 52x 15x x x+55x 52x 2x−x =10x =10x+5=15B x x 200x =120x+120×10DC【考点】一元一次方程的应用——面积问题【解析】首先根据题意,设原来正方形纸的边长是,则第一次剪下的长条的长是,宽是,第二次剪下的长条的长是,宽是;然后根据第一次剪下的长条的面积第二次剪下的长条的面积,列出方程,求出的值是多少,即可求出每一个长条面积为多少.【解答】解:设原来正方形纸的边长是,则第一次剪下的长条的长是,宽是,第二次剪下的长条的长是,宽是,则,去括号,可得:,移项,可得:,解得:,.所以每一个长条的面积为.故选.4.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】利用售价进价,设未知数,列方程求解即可.【解答】解:设该商品的进价为元,根据题意得:,解得故选.5.【答案】xcm xcm 4cm x−4cm 5cm =x xcm xcm 4cm (x−4)cm 5cm 4x =5(x−4)4x =5x−205x−4x =20x =2020×4=80(c )m 280cm 2C −=40x 200×0.8−x =40x =120.B一元一次方程的应用——工程进度问题【解析】本题属于相遇问题,等量关系为:甲走的路程+乙走的路程,甲路程甲速甲用的时间,乙路程乙速乙用的时间.依此列出方程.【解答】解:设乙每小时骑千米,则甲每小时骑千米,由题意列方程:,解得:.答:乙每小时骑千米.故选.6.【答案】C【考点】由实际问题抽象出一元一次方程【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是,错误,正确;根据客车数列方程,应该为);错误,正确;所以正确的是.故选.7.【答案】D【考点】列代数式一元一次方程的应用——其他问题=65=×=×x (x+2.5)(x+x+2.5)×2=65x =1515B 40m+10=43m+1(4)(1)=n−1040n−143(2)(3)(1)(3)C【解析】读清题意,根据题目信息,列出正确代数式即可.【解答】解:设下车人数为,则上车人数为,由题意:,∴,上车人数为.故选.8.【答案】D【考点】一元一次方程的应用——路程问题【解析】此题暂无解析【解答】解:设运动的时间为,在中,,,点从点出发以每秒的速度向点运动,点从点同时出发以每秒的速度向点运动,当时,,即,解得.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】一元一次方程的应用——路程问题【解析】x 3x a +3x−x =b x =b −a 2×3=b −a 23(b −a)2D x △ABC AB =24cm AC =18cm P B 4cm A Q A 3cm C AP =AQ AP =24−4x AQ =3x24−4x =3x x =247D 20设良马天能够追上驽马,根据路程=速度时间结合二者总路程相等,即可得出关于的一元一次方程,解之即可得出结论.【解答】解:设良马天能够追上驽马.根据题意得:,解得:.故答案为:10.【答案】【考点】一元一次方程的应用——面积问题【解析】设第二个小正方形的边长是,则其余正方形的边长为:,,,,根据矩形的对边相等得到方程,求出的值,再根据面积公式即可求出答案.【解答】解:设第二个小正方形的边长是,则其余正方形的边长为:,,,,则根据题意得:,解得:,∴,,,∴这个长方形色块图的面积为:.故答案为:.11.【答案】【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设这件商品的标价为元,x ×x x 240x=150×(12+x)x=2020.143x x x+1x+2x+3x+x+(x+1)=x+2+x+3x D x x x+1x+2x+3x+x+x+1=x+2+x+3x =4x+1=5x+2=6x+3=71+4×4+4×4+5×5+6×6+7×7=143143300x根据题意得:,解得:.故答案为:.12.【答案】【考点】一元一次方程的应用——工程进度问题【解析】工作量问题常用等量关系:工效时间工作总量.本题的等量关系为:甲工作量+乙工作量,还需注意甲比乙多工作天.【解答】解:设余下部分需天完成,则,解得:.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】度【考点】一元一次方程的应用——面积问题【解析】设这个角为度,根据题意列出方程即可求解.【解答】解:设这个角为度.由题意得:解得:答:这个角为度.14.【答案】0.8x−180=60x =30030010×==12x (2+x)+x =1120125x =101050x x −x =3(−x)+180∘90∘10∘x =5050,,若点与点关于线段径向对称,设点表示的数为,则的取值范围是,∴满足条件的的值满足:,解得.【考点】一元一次方程的应用——其他问题数轴一元一次方程的应用——工程进度问题【解析】(1)①根据径向对称的定义判断即可.②求出当点是的中点时的值,再求出点是的中点时的值即可解决问题.(2)若点与点关于线段径向对称,设点表示的数为,则的取值范围是,构建不等式即可解决问题.【解答】①根据径向对称的定义,点,与点关于线段径向对称.②当点是的中点时,=,当点是的中点时=,∴满足条件的的值为.故答案为,,.若点与点关于线段径向对称,设点表示的数为,则的取值范围是,∴满足条件的的值满足:,解得.15.【答案】解:由题意可知,休息区域的面积是.当,时,(平方米).若游泳池的面积和休息区域的面积相等,则,即.∵,∴,∴,∴此时游泳池的长与宽的比值为.【考点】列代数式整式的混合运算——化简求值列代数式求值C D 1≤x ≤5H E OM E x x 5−t ≤x ≤9−t t 5−t−(−3)≤3t ≤9−t−(−4)2≤t ≤134O AE x M AE x H E OM E x x 5−t ≤x ≤9−t C D A OM O AE x 1M AE x 5x 1≤x ≤5C D 1≤x ≤5H E OM E x x 5−t ≤x ≤9−t t 5−t−(−3)≤3t ≤9−t−(−4)2≤t ≤134(1)(m+3n)(2m+n)−(m+2n)(m+n)=+4m+m 2n 2(2)m=10n =20+4mn+=+4×10×20+=1300m 2n 2102202(3)(m+n)(m+2n)=+4mn+m 2n 2mn =n 2n ≠0m=n ==m+2n m+n 3n 2n 323:2【解析】暂无暂无暂无【解答】解:由题意可知,休息区域的面积是.当,时,(平方米).若游泳池的面积和休息区域的面积相等,则,即.∵,∴,∴,∴此时游泳池的长与宽的比值为.16.【答案】解:因为,由图又可得与互为相反数,所以,所以.由图可知,,,所以,,,,,所以原式.【考点】相反数绝对值的意义数轴整式的加减绝对值【解析】(1)解:因为由图又可得与互为相反数,所以,所以(2)由图可知,,所以,,,,,原式【解答】(1)(m+3n)(2m+n)−(m+2n)(m+n)=+4m+m 2n 2(2)m=10n =20+4mn+=+4×10×20+=1300m 2n 2102202(3)(m+n)(m+2n)=+4mn+m 2n 2mn =n 2n ≠0m=n ==m+2n m+n 3n 2n 323:2(1)|a|=|b|a b a +b =0(a +b =0)5(2)c <b <0a >0a +b =0c −a <0c −b <0ac <0−2b >0=a −0+c −a −c +b −ac +2b =3b −ac |a|=|b|a b a +b =0(a +b =0)5c <b <0a >0a +b =0c −a <0c −b <0ac <0−2b >0=a −0+c −a −c +b −ac +2b =3b −ac解:因为,由图又可得与互为相反数,所以,所以.由图可知,,,所以,,,,,所以原式.(1)|a|=|b|a b a +b =0(a +b =0)5(2)c <b <0a >0a +b =0c −a <0c −b <0ac <0−2b >0=a −0+c −a −c +b −ac +2b =3b −ac。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)051106

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)051106

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分■■则被遮盖的两个数据依次是( )A.,B.,C.,D.,2. 某家外贸公司在年月份利润变化情况如图所示,以下说法与图中反映的信息相符的是()A.月份利润的众数是万元B.月份利润的中位数是万元C.月份利润的平均数是万元D.月份的利润持续攀升3. 一组数据,,,,,的众数是( )A.B.C.D.581778082808180808080281220201−61−61301−61251−61201−6−1−3260201234. 抽样调查了某年级名女生所穿鞋子的尺码,数据如下(单位:码)码号人数那么这名女生所穿鞋子的尺码的中位数、众数分别是 A.,B.,C.,D.,5. 某班在统计全班人的体重时,算出中位数与平均数都是千克,但后来发现在计算时,将其中一名学生的体重千克错写成了千克,经重新计算后,正确的中位数为千克,正确的平均数为千克,那么( )A.B.C.D.无法判断6.小明同学本学期的数学测试成绩如下表:测试类别平时期中期末得分(分)如果规定平时成绩、期中成绩、期末成绩按照计算得出总成绩,则本学期小明的数学总成绩为 A.分B.分C.分D.分7. 已知一组数据,,,,,的众数是,则这组数据的中位数是( )A.B.30333435363776151130()343534.535353535374554505a b a <ba =ba >b8480941:2:2()8686.487885796x 8776C.D.8. 如图是根据某地某月天的每天最低气温绘成的折线图,那么这段时间最低气温的平均数、众数、中位数依次是A.,,B.,,C.,,D.,,二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 一组数据、、的平均数与中位数是相等的整数,则的值为________.10. 某单位招聘工作人员,考试分笔试和面试两部分,笔试成绩与面试成绩按记入总成绩,若小李笔试成绩为分,面试成绩为分,则他的总成绩是________分.11. 已知一组数据,,,,,,的众数为,则这组数据的中位数为________.12. 一组数据,,,,的中位数是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 为响应市政府关于“生活垃圾分类”的倡议,某居民小区举行了有关知识竞答,并随机抽取了部分答卷的成绩绘制了统计表和扇形统计图,部分信息如下:本次调查一共随机抽取了________份答卷的成绩,统计表中________;扇形统计图中的“ 组”的圆心角为________,所抽取答卷的成绩的中位数落在“组别”是________(填,,或);7.5810()4544.55 4.545 4.54.55468x x 6:49080334x 556334546(1)a =(2)B ∘A B C D已知抽取的答卷中,甲、乙、丙、丁、戊五人获得并列最高分,若从其中任选两人参加市级知识竞答,求甲、乙两人同时被选中的概率. 14. 为传承中华文化,激发学生爱国情怀,提高学生对中华民族的文化自信,某学校组织了一次“传统文化知识”竞赛,每班各选名同学参加比赛,成绩分别为,,,四个等级,其中相应等级的得分依次记为分、分、分、分,学校将九年级一班和二班的成绩整理并绘制成如下两幅统计图.请将一班竞赛成绩统计图补充完整.求出下表中,,的值.平均数中位数众数一班二班根据中的数据,请你对这次竞赛成绩的结果进行分析.15. 为准备参加某市年度中小学生机器人竞赛,学校对甲、乙两支机器人制作小队所创作的机器人分别从创意、设计、编程与制作三方面进行量化,各项量化满分分,根据量化结果择优推荐,它们三项量化得分如下表:如果根据三项量化的平均分择优推荐,哪队将被推荐参赛?根据本次中小学生机器人竞赛的主题要求,如果学校根据创意、设计、编程与制作三项量化得分按的比例确定每队最后得分的平均分择优推荐,哪队将被推荐参赛?并对另外一队提出合理化建议.16. 为了了解某校学生的眼睛近视度情况,随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表:近视度情况分组表(单位:度)组别近视度(3)40A B C D 100908070(1)(2)a b c a90c 88b 90(3)(2)2019100(1)(2)5:3:2Ax ≤50B 50<x <100根据图表提供的信息,回答下列问题:样本中,男生的近视度众数在________组,中位数在________组;样本中,女生近视度在组的人数有________人;已知该校共有男生人,女生人,请估计近视度为的学生共约有________人.C100≤x <150D150≤x <200E x ≥200(1)(2)E (3)600480150≤x <200参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】众数算术平均数【解析】根据平均数的计算公式求出丙的得分,再根据表格信息即可得出答案.【解答】解:根据题意得:(分),则丙的得分是分;众数是分.故选.2.【答案】B【考点】加权平均数中位数众数【解析】先从统计图获取信息,再对选项一一分析,选择正确结果.【解答】80×5−(81+77+80+82)=808080B解:,月份利润的众数是万元,故本选项错误;,月份利润的中位数是万元,故本选项正确;,月份利润的平均数是万元,故本选项错误;,由图可知,月份的利润并没有持续攀升,故本选项错误.故选.3.【答案】C【考点】众数【解析】众数是一组数据中出现次数最多的数据,依此求解即可.【解答】因为这组数据出现次数最多的数据是,所以这组数据的众数是.4.【答案】A【考点】中位数众数【解析】根据众数与中位数的意义分别进行解答即可.【解答】解:∵共有双女生所穿的鞋子的尺码,∴中位数是第、个数的平均数,这组数据的第、个数都是,∴这组数据的中位数是;出现了次,出现的次数最多,则这组数据的众数是;故选.5.【答案】A 1−6120B 1−6125C 1−6(110+120+130+120+140+150)=163853D 1−6B 2230151615163434351235AA【考点】算术平均数中位数【解析】根据中位数和平均数的定义分别判断出、与的大小关系,据此可得答案.【解答】解:原数据中在中位数的左边,新数据中,所以中位数,新数据比原数据增加了,而数据的个数没有变化,所以平均数,则.故选.6.【答案】B【考点】加权平均数【解析】此题暂无解析【解答】解:分.故选.7.【答案】A【考点】中位数a b 5455450<54a =5445b >54b >a A 84×1+80×2+94×21+2+2=86.4B众数【解析】先根据众数的定义得出的值,继而根据中位数的定义可得答案.【解答】解:数据,,,,,的众数是,则,即这组数据为,,,,,,∴这组数据的中位数是.故选.8.【答案】C【考点】众数中位数【解析】此题暂无解析【解答】解:这段时间温度的中位数是:,众数是,平均数.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】或或【考点】中位数算术平均数【解析】x 5796x 87x =7567789=77+72A =C 4+52 4.5∘C 5∘(2+5+5+6+4+5+4+6+2+1)÷10=C4∘C 4710根据平均数与中位数的定义分三种情况,,时,分别列出方程,进行计算即可求出答案.【解答】解:当时,中位数与平均数相等,则得到:,解得;当时:,解得:;当时:,解得;所以的值为或或;故答案为:或或.10.【答案】【考点】加权平均数【解析】根据加权平均数的定义计算即可.【解答】解:他的总成绩为(分).故答案为:.11.【答案】【考点】中位数众数【解析】先根据众数定义求出,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】x ≥8x ≤66<x <8x ≥8(6+8+x)=813x =10x ≤6(6+8+x)=613x =46<x <8(6+8+x)÷3=xx =7x 4710471086=8690×6+80×46+4864x解:数据,,,,,,的众数为,出现的次数是次,,数据重新排列是:、、、、、、,∴中位数是.故答案为:.12.【答案】【考点】中位数【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为,,,,,最中间的数是,则中位数是.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】,,根据题意,画树状图如图所示:共有种等可能的情况数,其中甲、乙两人同时被选中的有种,则甲、乙两人同时被选中的概率是.【考点】扇形统计图频数(率)分布表中位数∵334x 5563∴33∴x =333345564443445644450872C (3)202=220110列表法与树状图法【解析】根据组的频数和所占的百分比求出总份数,再用总份数乘以所占的百分比即可得出;用乘以“组”所占的百分比得出“B 组”的圆心角度数,根据中位数的定义即可得出所抽取答卷的成绩的中位数落在组;根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】解:本次调查一共随机抽取答卷的成绩份数是(份),则.故答案为:;.“组”的圆心角为,由可知,共有份答卷的成绩,则中位数是第,个数的平均数,则所抽取答卷的成绩的中位数落在“组别”是.故答案为:;.根据题意,画树状图如图所示:共有种等可能的情况数,其中甲、乙两人同时被选中的有种,则甲、乙两人同时被选中的概率是.14.【答案】解:一班等级人数为.补全条形统计图如下:一班成绩的平均数,二班成绩的中位数,(1)D A a (2)360∘B C (3)(1)=501836%a =50×16%=8508(2)B ×=360∘105072∘(1)502526C 72C (3)202=220110(1)C 40−16−10−6=8(2)a ==89100×16+90×10+80×8+70×640b =90一班成绩的众数.从平均数看,一班成绩要比二班好;从中位数看,一班,二班是一样的;从众数看,一班是,二班是.总体上,一班成绩要比二班好.【考点】条形统计图中位数众数算术平均数【解析】无无无【解答】解:一班等级人数为.补全条形统计图如下:一班成绩的平均数,二班成绩的中位数,一班成绩的众数.从平均数看,一班成绩要比二班好;从中位数看,一班,二班是一样的;从众数看,一班是,二班是.总体上,一班成绩要比二班好.15.【答案】解:因为,c =100(3)10090(1)C 40−16−10−6=8(2)a ==89100×16+90×10+80×8+70×640b =90c =100(3)10090(1)=×(85+70+64)=73x ¯¯甲队13×(72+66+84)=74队1,所以乙队将被推荐参赛;因为,,所以甲队将被推荐参赛.建议:乙队应加强机器人创意方面的开发.【考点】加权平均数算术平均数【解析】此题暂无解析【解答】解:因为,,所以乙队将被推荐参赛;因为,,所以甲队将被推荐参赛.建议:乙队应加强机器人创意方面的开发.16.【答案】,【考点】条形统计图众数中位数扇形统计图【解析】(1)根据每组人数多少确定众数,众数在人数最多那一组,按近视度从低到高排序,第,两人的度数的平均数叫中位数求解即可.(2)用总女生总人数乘以女生组占的百分比计算即可.(3)全校男生人数乘以男生组占的百分比再加上全校女生总人数乘以女生组占的百分比,计算=×(72+66+84)=74x¯¯乙队13(2)=85×0.5+70×0.3+64×0.2=76.3x¯¯ 甲队=72×0.5+66×0.3+84×0.2=72.6x ¯¯乙队(1)=×(85+70+64)=73x¯¯甲队13=×(72+66+84)=74x ¯¯乙队13(2)=85×0.5+70×0.3+64×0.2=76.3x¯¯ 甲队=72×0.5+66×0.3+84×0.2=72.6x ¯¯乙队B C 21922021E D D即可.【解答】解:直方图中,组人数为,最多,样本中,男生的近视度众数在组;样本中,男生总人数为:(人),按近视度从低到高的顺序,第,两人都在组,样本中,男生的近视度中位数在组.故答案为:;.样本中,男生有人,男生、女生的人数相同,∴样本中,女生有人,样本中,女生近视度在组的人数为:(人).故答案为:.(人).故答案为:.(1)∵B 12∴B ∵4+12+10+8+6=402021C ∴C B C (2)4040E 40×(1−17.5%−37.5%−25%−15%)=40×5%=22(3)600×+480×15%=120+72=192840192。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)015952

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)015952

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列长度的三条线段能组成三角形的是( )A.,,B.,,C.,,D.,,2. 木匠师傅在做完门框后,为防止门框变形,常象如图的方式斜拉两个木条,这样做的数学道理( )A.两点之间线段最短B.三角形的稳定性C.矩形的四个角时直角D.长方形的对称性3. 等腰三角形的一边长等于,一边长等于,则它的周长是( )A.B.C.D.或4. 若是的中线,则下列结论正确的是( )A.B.C.D.且5. 已知:如图,在中, .以点为圆心,为半径画弧,347348335337731013171314AD △ABC BD =CDAD ⊥BC∠BAD =∠CAD BD =CD AD ⊥BC△ABC AB =AC ,∠C =,BC =72∘5–√B BC交于点,则线段的长为 ( )A.B.C.D.6. 如图,是的重心,则图中与面积相等的三角形个数为( )A.B.C.D.7. 如图,在等腰三角形的腰上取一点作等腰三角形,且,连接,,取,的中点,,连接,,.下列结论;①;②;③是等边三角形;④若是的中点,则 ,其中结论正确的序号是 ( )A.②③④B.①③④C.①②④D.①②③8. 下列说法正确的是 ( )AC D AD 22–√23–√5–√6–√O △ABC △ABD 3456ABC AB D ADE ∠BAC =∠EAD BD CD BE CD M N MN AM AN △ACD ≅△ABE △ABC ∼△AMN △AMN D AB =2S △ACD S △ADEA.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,将两个完全相同的含有角的三角板拼接在一起,则拼接后的的形状是________.10. 如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形()若等边三角形的边长为,则勒洛三角形的周长为________;()若勒洛三角形的面积为 ,则等边三角形的边长为________.11. 已知是的角平分线,是边上一点, ,如果,那么________.12. 如图,点为的边中点,,过点作直线交与点,交于点,若,,则________ .三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 已知:如图,是半径为的上的一点,是延长线上的一动点,过作的切线,切点为,设,.(1)当时,求的值;(2)上是否存在点,使为等边三角形?若存在,请求出此时的值;若不存在,请说明理由;(3)当为何值时,上存在唯一点和构成以为底的等腰三角形?并直接答出:此时上能与构成等腰三角形的点共有几个?30∘△ABD .1328π−83–√BD △ABC E AB DE//BC DE =5BE =E △ABC AC CN //AB E AB M CN N MB =6cm CN =4cm AB =cm A 2⊙O P OA P ⊙O B PA =m PB =n n =4m ⊙O C △PBC m m ⊙O M PB PB ⊙O PB14. 在平行四边形中;—,点在线段上,点在线段上,,连接,如图①,易证(不需证明).当绕点顺时针方向旋转至如图②.图③的位置时,猜想线段,之间有怎样的数量关系?请写出你对图②、图③的猜想,并选择一种情况给予证明.15. 如图,是等边三角形,是边上的高,延长到使,试判断的形状,并说明理由.16.已知:如图, 是的一个外角,平分, ,求证: .ABCD AB BC E AD F CD DE =DF EF AE =DF △DEF D AE CF △ABC BD AC BC E CE =CD △DEB ∠DAC △ABC AE ∠DAC AE//BC AB =AC参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】三角形三边关系【解析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:,,∴,,不能组成三角形,故本选项错误;,,∴,,不能组成三角形,故本选项错误;,,∴,,能组成三角形,故本选项正确;,,∴,,不能组成三角形,故本选项错误.故选.2.【答案】B【考点】三角形的稳定性【解析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】A ∵3+4=7347B ∵3+4<8348C ∵3+3>5335D ∵3+3<7337C解:结合图形,为防止变形钉上两条斜拉的木条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故选.3.【答案】C【考点】三角形三边关系等腰三角形的性质【解析】本题已知了等腰三角形的两边的长,但没有明确这两边哪边是腰,哪边是底,因此要分类讨论.【解答】解:当三边是,,时,,不符合三角形的三边关系;当三边是,,时,符合三角形的三边关系,此时周长是.因此等腰三角形的周长为.故选.4.【答案】A【考点】三角形的角平分线、中线和高【解析】此题暂无解析【解答】解:若是的中线,则点是的中点,则.故选.5.【答案】C【考点】B 3373+3=6<77737+7+3=1717C AD △ABC D BC CD =BD A三角形【解析】此题暂无解析【解答】解:在中,,.所以,因为,所以,所以,所以.故选.6.【答案】C【考点】三角形的重心【解析】根据题干条件、、为三边的中点,故得,又知与的高相等,于是得到与的面积相等并且为面积的一半,同理可得与,与面积相等,并且都为面积的一半,即可求出与面积相等的三角形个数,【解答】解:∵是的重心,∴,又∵与的高相等,∴与的面积相等,同理可知:与,与面积相等,并且都为面积的一半,∴图中与面积相等的三角形个数为个,故选.7.【答案】C【考点】全等三角形的性质与判定等腰三角形的性质与判定三角形的面积△ABC AB =AC ∠C =72∘∠B =,∠A =12∘36∘BC =BD ∠BDC =72∘∠ABD =36∘AD =BD =BC =5–√C D E F △ABC BD =CD △ABD △ADC △ABD △ACD △ABC △CBE △ABE △ACF △BCF △ABC △ABD O △ABC BD =CD △ABD △ADC △ABD △ACD =12S △ABC △CBE △ABE △ACF △BCF △ABC △ABD 5C三角形的中线相似三角形的性质与判定【解析】①根据证明;②先证明,得也是等腰三角形,且顶角与的顶角相等,所以;③由,可得为等腰三角形;④根据三角形的中线将三角形面积平分得:,,则.【解答】解:①在和中,∵,∴,所以①正确;②∵,∴,,又∵,分别为,的中点,∴,在和中,∵,∴,∴,,∴,∵,∴,∴,∴,所以②正确;③∵,∴为等腰三角形,所以③不正确;④∵,∴,∵点、分别是、的中点,∴,,∴,∵是的中点,∴,所以④正确;综上所述,正确的结论有:①②④.故选.8.SAS △ACD ≅△ABE △ACN ≅△ABM △AMN △ABC △ABC ∽△AMN AN =AM △AMN =2S △ACD S △ACN =2S △ABE S △ABM =2=2S △ABC S △ACD S △ABE △ACD △ABE AC =AB∠BAC =∠DAE AD =AE△ACD ≅△ABE(SAS)△ACD ≅△ABE CD =BE ∠NCA =∠MBA M N BE CD CN =BM △ACN △ABMAC =AB ∠ACN =∠ABM CN =BM△ACN ≅△ABM(SAS)AN =AM ∠CAN =∠BAM ∠BAC =∠MAN AB =AC ∠ACB =∠ABC ∠ABC =∠AMN △ABC ∽△AMN AN =AM △AMN △ACN ≅△ABM =S △ACN S △ABM M N BE CD =2S △ACD S △ACN =2S △ABE S △ABM =S △ACD S △ABE D AB =2=2S △ABC S △ACD S △ABE C【答案】D【考点】等边三角形的性质等腰三角形的性质【解析】根据钝角三角形、锐角三角形、直角三角形、等边三角形和等腰三角形之间的关系,分别进行判断,即可求出答案.【解答】解:,一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;,一个等腰三角形不一定是锐角三角形,或直角三角形,也可能是钝角三角形,故本选项错误;,一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;,一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】等边三角形【考点】等边三角形的判定【解析】根据等边三角形的判定定理(有一内角为的等腰三角形为等边三角形)进行答题.【解答】解:∵,∴是等腰三角形;又∵,∴,∴是等边三角形;故答案是:等边三角形.10.【答案】A B C D D 60∘AB =AD △ABD ∠BAC =∠CAD =30∘∠BAD =60∘△ABD,【考点】扇形面积的计算弧长的计算【解析】此题暂无解析【解答】解:由题意可知,勒洛三角形的周长.勒洛三角形的面积为,解得.故答案为:.11.【答案】【考点】角平分线的定义平行线的性质等腰三角形的判定【解析】根据角平分线的定义得到,根据平行线的性质得到,由等量代换得到,根据等腰三角形的判定得到,即可得到的值.【解答】解:如图,是的平分线,,,,3π4(1)=3×=3π60π×3180(2)−2×=8π−8180π×r 23603–√4r 23–√r =43π;45∠ABD =∠CBD ∠EDB =∠DBC ∠EDB =∠EBD DE =BE BE ∵BD ∠ABC ∴∠ABD =∠CBD ∵DE//BC ∴∠EDB =∠CBD,,,.故答案为:.12.【答案】【考点】全等三角形的判定全等三角形的性质平行线的性质【解析】先证,得出,那么就可求的长.【解答】解:∵,∴,又∵是中点,∴,而,,∴,∴.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:(1)解法一:连接.∵切于,∴,∴,∵,,,∴∠EDB =∠EBD ∴BE =DE ∵DE =5∴BE =5510△CNE ≅△AME AM =CN AB CN //AB ∠NCE =∠MAE E AC AE =CE ∠AEM =∠CEN △NCE ≅△MAE AM =CN AB =AM +BM =CN +BM =4+6=1010OB PB ⊙O B ∠OBP =90∘P =P +O O 2B 2B 2PO =2+m PB =n OB =2(2+m =++4m=)22222∴;时,解得:(舍去),.∴的值为.解法二:延长交于,为割线.又∵切于,∴,∵,,,∴,当时,解得(舍去),,∴的值为.(2)存在点,使为等边三角形;当时,过点作的另一条切线,为切点,∴,,∴,∴为等边三角形;连接,,,得,∴.(3)如图,设为线段的垂直平分线,垂足为,当与相切于点时,符合要求;连接、,∵,,,∴四边形为正方形,∴,∴.由(1)得时,,∴当时,上存在唯一点和构成以为底的等腰三角形,此时上共有个点能与构成等腰三角形.(这点分别是,,.其中是中垂线与的切点,是延长与的交点,是点关于的对称点)【考点】切线的性质等腰三角形的判定与性质等边三角形的判定勾股定理切割线定理【解析】(2+m =++4m=)2n 222m 2n 2n =4=−2−2m 15–√=2−2m 25–√m 2−25–√PO ⊙O Q PAQ ⊙O PB ⊙O B P =PA ⋅PQ B 2PB =n PA =m PO =m+4=+4m n 2m 2n =4=−2−2m 15–√=2−2m 25–√m 2−25–√C △PBC ∠OPB =30∘P ⊙O PC C PB =PC ∠OPB =∠OPC ∠BPC =60∘△PBC OB ∠OBP =90∘OB =2OP =4m=PA =OP −OA =2EF PB D EF ⊙O M M OB OM OB//DM OB =BD =OM =DM ∠OBD =90∘OMDB BD =DM =OM =2n =PB =4n =4m=2−25–√m=2−25–√⊙O M PB PB ⊙O 3PB 3M M 1M 2M PB ⊙O M 1BO ⊙O M 2B OP(1)此题可有两种解法:①连接,利用勾股定理求解,②延长交于另外一点,利用切割线定理求解;(2)若是等边三角形,则必有,由于是的切线,且在上,那么若存在符合条件的点,则必与相切,且切点为(切线长定理).若是等边三角形,则,,可连接,在中,通过解直角三角形即可求得的长即的值;(3)若存在等腰,且以为底,那么点必在线段的垂直平分线上,而上存在唯一点,那么线段的中垂线与相切,且切点为.连接,易证得四边形是正方形,则,即,在中,利用勾股定理即可求得的长,进而可得到即的值.在上面已经求得,若能与构成等腰三角形(不一定是底边),可有两种情况考虑:①,由于的半径为,那么过作的直径,此时点就符合题意;②,此种情况与(2)题相同,此时、重合,即与相切,且切点为.由于在上面已经讨论过,所以能与构成等腰三角形的共有点.【解答】解:(1)解法一:连接.∵切于,∴,∴,∵,,,∴;时,解得:(舍去),.∴的值为.解法二:延长交于,为割线.又∵切于,∴,∵,,,∴,当时,解得(舍去),,∴的值为.(2)存在点,使为等边三角形;当时,过点作的另一条切线,为切点,∴,,∴,∴为等边三角形;连接,,,得,∴.(3)如图,设为线段的垂直平分线,垂足为,当与相切于点时,符合要求;连接、,∵,,,OB PO ⊙O △PBC PB =PC PB ⊙O C ⊙O C PC ⊙O C △PBC ∠BPC =60∘∠BPO =30∘OB Rt △OBP AP m △PBM PB M PB ⊙O M PB ⊙O M OM OBDM BP =2BD =2OB =4n =4Rt △OBP OP AP m PB =4M PB PB BM =PB =4⊙O 2B ⊙O BM M PB =PM =4M C PM ⊙O M BM =PM PB 3OB PB ⊙O B ∠OBP =90∘P =P +O O 2B 2B 2PO =2+m PB =n OB =2(2+m =++4m=)2n 222m 2n 2n =4=−2−2m 15–√=2−2m 25–√m 2−25–√PO ⊙O Q PAQ ⊙O PB ⊙O B P =PA ⋅PQ B 2PB =n PA =m PO =m+4=+4m n 2m 2n =4=−2−2m 15–√=2−2m 25–√m 2−25–√C △PBC ∠OPB =30∘P ⊙O PC C PB =PC ∠OPB =∠OPC ∠BPC =60∘△PBC OB ∠OBP =90∘OB =2OP =4m=PA =OP −OA =2EF PB D EF ⊙O M M OB OM OB//DM OB =BD =OM =DM ∠OBD =90∘∴四边形为正方形,∴,∴.由(1)得时,,∴当时,上存在唯一点和构成以为底的等腰三角形,此时上共有个点能与构成等腰三角形.(这点分别是,,.其中是中垂线与的切点,是延长与的交点,是点关于的对称点)14.【答案】解:图②的猜想:图③的猜想:图②证明:在平行四边形中,∴平行四边形是菱形.∴∵∴又,∴∴【考点】等边三角形的性质【解析】【解答】解:图②的猜想:图③的猜想:图②证明:在平行四边形中,∴平行四边形是菱形.∴∵∴又,∴∴15.【答案】OMDB BD =DM =OM =2n =PB =4n =4m=2−25–√m=2−25–√⊙O M PB PB ⊙O 3PB 3M M 1M 2M PB ⊙O M 1BO ⊙O M 2B OP AE =CFAE =CFABCD AB =BCABCD AD =CD∠EDF =∠ADC∠EDA =∠FDCDE =DF △ADE ≅△CDFAE =CFAE =CFAE =CFABCD AB =BCABCD AD =CD∠EDF =∠ADC∠EDA =∠FDCDE =DF △ADE ≅△CDFAE =CF解:是等腰三角形.理由如下:∵是等边三角形,∴.∵,∴.∵,∴.∵,∴,∴,∴,∴是等腰三角形.【考点】等腰三角形的判定等边三角形的性质【解析】此题暂无解析【解答】解:是等腰三角形.理由如下:∵是等边三角形,∴.∵,∴.∵,∴.∵,∴,∴,∴,∴是等腰三角形.16.【答案】证明:,∴, ,∵平分,∴,∴,∴.△DEB △ABC ∠ABC =∠ACB =60∘BD ⊥AC ∠DBC =∠ABC =1230∘CE =CD ∠CDE =∠E ∠ACB =∠CDE+∠E ∠E =30∘∠DBE =∠E BD =DE △DEB △DEB △ABC ∠ABC =∠ACB =60∘BD ⊥AC ∠DBC =∠ABC =1230∘CE =CD ∠CDE =∠E ∠ACB =∠CDE+∠E ∠E =30∘∠DBE =∠E BD =DE △DEB ∵AE//BC ∠DAE =∠B ∠EAC =∠C AE ∠DAC ∠DAE =∠EAC ∠B =∠C AB =AC【考点】角平分线的定义平行线的性质等腰三角形的性质与判定【解析】利用平行和角平分线可求得,即可得到.【解答】证明:,∴, ,∵平分,∴,∴,∴.∠B =∠C AB =AC ∵AE//BC ∠DAE =∠B ∠EAC =∠C AE ∠DAC ∠DAE =∠EAC ∠B =∠C AB =AC。

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)111148

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)111148

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知一组数据,,,,,,,,,,下列各组中频率为的是( )A.B.C.D.2. 某校为了解本校名学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频数分布直方图(不完整),则图中的值是( )A.B.C.D.3. 体育老师对八年级班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是( )108610913111110100.25.5−7.57.5−9.59.5−11.511.5−13.52000m 450400350300(2)A.B.C.D.4. 小欢为一组数据制作频数分布表,他了解到这组数据的最大值是,最小值是,准备分组时取组距为.为了使数据不落在边界上,他应将这组数据分成 A.组B.组C.组D.组5. 为了解中学生的体能情况,教育局抽取了某中学同年级名学生进行分钟跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图(各组只含最小值,不含最大值).已知图中从左到右各组的频率分别是,设跳绳次数不低于次的学生有人,则的值分别是 A.B.C.D.6. 某公路上的测速仪,在某一时间段内测得辆汽车的速度(单位: ),其最大值和最小值分别是,.为了制作频数直方图,以为组距,这样可以把数据分成( )A.组B.组C.组D.组7. 为庆祝建党周年,某班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:、“北斗卫星”:、“时代”;、“智轨快运系统”;、“东风快递”;、“高铁”.统计同学们所选内容的频数,绘制如16%24%30%40%40164()6789501a ,0.3,0.4,0.2100b a ,b ()0.2,300.3,300.1,200.1,3030km/h 805654561099A B 5G C D E图所示的折线统计图,则选择“时代”的频率是( )A.B.C.D.8. 小华和同学做“抛掷质地均匀的硬币试验”获得的数据如下表:抛掷次数正面朝上的频数若抛掷硬币的次数为,则正面朝上的频数最接近( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 一个射手连续射击次,其射击情况如下表所示:环数次数则这位射手射中环的频率是________.10. 已知一个样本的数据个数是,在样本的频率直方图中各个小长方形的高的比依次为,则第二小组的频数为________.11. 下面的频数分布折线图分别表示我国市与市在年月份的日平均气温的情况,记该月市和市日平均气温是的天数分别为天和天,则________.5G 0.250.32530100200300400500529815520124912004006008009002010987a 78310302:4:3:1A B 20144A B 8C ∘a b a +b =12. 已知一组数据有个,其中最大值是,最小值是.若取组距为,则可分为________组.三、解答题(本题共计 4 小题,每题 10 分,共计40分)13. 在一个不透明的盒子里装有黑、白两种颜色的球共只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:若从盒子里随机摸出一只球,则摸到白球的概率的估计值为________;(精确到)试估算盒子里黑球有几只;某小组在“用频率估计概率”的试验中,与这一结果相似的试验最有可能是()A.掷一枚质地均匀的硬币,落地时结果是“正面朝上”.B.掷一个从一副扑克牌中任意抽取一张,这张牌是“梅花”.C.质地均匀的正六面体骰子(点数分别为到),落地时面朝上的点数小于14. 截至年月,山西省政府大力实施的建设“山西农谷”战略成果初现,“山西农谷”通过组建山西农谷生物科技研究院,逐步建成大学生“互联网+农业”创新创业园.某校科技小组到该创业园的全环境智能番茄特色小镇进行综合实践活动,随机调查了株“农谷一号”番茄的挂果数量(单位:个),并绘制了如下不完整的统计图表:请结合图表中的信息解答下列问题:统计表中,_______,若绘制“农谷一号”番茄挂果数量扇形统计图,则挂果数量在“”所对应扇形的圆心角度数为________;将频数分布直方图补充完整;50142985100(1)0.01(2)(3)16 5.2019560x(1)a=35≤x<45(2)若所种植的“农谷一号”番茄有株,请估计挂果数量在“”范围的番茄株数. 15. 为了了解某中学九年级名学生的视力情况,从中抽测了一部分学生的视力,数据整理如下:(1)填写表中未完成的部分;(2)画出频数分布直方图及频数折线图.分组频数 频率合计 16. 市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分分),根据测试成绩(最低分为分)分别绘制了如下统计图表:被调查的学生为________人,补全频数分布直方图;若此次测试成绩的中位数为分,请直接写出之间的人数最多有多少人?若全市参加考试的学生大约有人,请估计成绩优秀的学生约有多少人(分以上为优秀)?(3)100055≤x <653003.95∼4.2520.044.25∼4.5560.124.55∼4.85254.85∼5.155.15∼5.4510.02110053(1)(2)7878.5∼89.5(3)450080参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】频数与频率【解析】根据题意可得:共个数据,频率为的频数为,确定各个选项中频数是的,即可确定.【解答】.的频率为=,不符合题意;.的频率为=,符合题意;.的频率为=,不符合题意;.的频率为=,不符合题意;2.【答案】C【考点】频数(率)分布直方图【解析】此题暂无解析【解答】略3.【答案】100.222A 5.5−7.51÷100.1B 7.5−9.52÷100.2C 9.5−11.56÷100.6D 11.5−13.51÷100.1D【考点】频数(率)分布折线图【解析】从图中可知总人数为人,其中最喜欢篮球的有人,根据频率的计算公式进行计算即可.【解答】解:读图可知:共有(人),其中最喜欢篮球的有人,故最喜欢篮球的学生的频率为.故选.4.【答案】B【考点】频数(率)分布表频数(率)分布直方图【解析】根据极差与组距的关系可知这组数据的组数.【解答】解:∵这组数据的最大值是,最小值是,分组时取组距为.∴极差.∵,又∵数据不落在边界上,∴这组数据的组数组.故选.5.【答案】D【考点】频数(率)分布直方图5020(4+12+6+20+8)=5020×100%=40%2050D 40164=40−16=2424÷4=6=6+1=7B频数与频率【解析】此题暂无解析【解答】解:根据频数、频率之间的关系得,,,故选6.【答案】B【考点】频数(率)分布直方图【解析】根据组数(最大值最小值)组距,即可得到答案.【解答】解:.故可以把数据分成组.故选.7.【答案】B【考点】频数(率)分布折线图频数与频率【解析】先计算出八年级(3)班的全体人数,然后用选择“时代”的人数除以八年级(3)班的全体人数即可.【解答】a =1−0.3−0.4−0.2=0.1b =(0.4+0.2)×50=30D.=−÷(80−56)÷5=24÷5=4.8≈55B 5G解:由图知,全体人数为:(人),选择“时代”的人数为人,∴选择“时代”的频率是.故选.8.【答案】B【考点】频数(率)分布表【解析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到附近,所以抛掷硬币的次数为,则“正面朝上”的频数最接近(次).故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】频数与频率频数(率)分布表【解析】本题考查了频率的求法,频数分布表.【解答】解:由题意可得,,解得,则这位射手射中 环的频率是.故答案为:.10.25+30+10+20+15=1005G 305G =0.330100B 0.512001200×0.5=600B 0.1a +7+8+3=20a =2∴10=0.12200.1【答案】【考点】频数(率)分布直方图【解析】根据比例关系分别求出各组的频率,再由频数总数频率即可得出第二组的频数.【解答】解:∵各个小长方形的高依次为,∴第二组的频率,∴第二小组的频数是:.故答案为:.11.【答案】【考点】频数(率)分布折线图【解析】根据折线图即可求得、的值,从而求得代数式的值.【解答】解:根据图表可得:,,则.故答案为:.12.【答案】【考点】频数(率)分布表【解析】根据组数=(最大值-最小值)组距计算.12=×2:4:3:1===0.442+4+3+12530×0.4=121212a b a =10b =2a +b =10+2=12129÷【解答】∵极差为=,∴可分组数为,三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】由估计白球个数 个,估计黑球数 个. 答:活计盒内黑球数为个.B【考点】频数与频率【解析】大量重复实验下摸球频率可以估计摸球概率, 当 时 , 故摸到白球的概率估计值为.由中求得的概率可估计白球个数 个,估计黑球数 个.根据各选项中的事件发生频率估计事件发生的概率,比较即可求解.【解答】解:大量重复实验下摸球频率可以估计摸球概率, 当 时 ,故摸到白球的概率估计值为.故答案为:.由估计白球个数 个,估计黑球数 个. 答:活计盒内黑球数为个. ,掷硬币有“正面”受面”两种结果,概率均为, ; ,一副牌张,其中梅花张, , ,朝上点数小于,即可能为,,,, .故选项中的概率最接近.故选.14.142−984444÷5≈90.25(2)(1)100×0.25=25100−25=7575(1)n =3000=0.248≈0.25m n 0.25(2)(1)100×0.25=25100−25=75(3)(1)n =3000=0.248≈0.25m n0.250.25(2)(1)100×0.25=25100−25=7575(3)A 12P(正面向上)==0.512B 5413P (梅花)=≈0.241354C 51234P ==≈0.674623B B【答案】,:,: ,补全的频数分布直方图如图所示:(株)答:估计挂果数量在“”范围的番茄约为株. 【考点】频数(率)分布直方图频数与频率【解析】此题暂无解析【解答】解:,“”所对应扇形的圆心角度数:.故答案为:.:,: ,补全的频数分布直方图如图所示:(株)答:估计挂果数量在“”范围的番茄约为株.15.0.2572∘(2)35≤x <450.2×60=1255≤x <6560−6−15−12−9=18(3)1000×=300186055≤x <65300(1)a ==0.25156035≤x <450.2×=360∘72∘0.25;72∘(2)35≤x <450.2×60=1255≤x <6560−6−15−12−9=18(3)1000×=300186055≤x <65300【答案】解:(1)总人数人,的频率为;段的频率,频数;如图:分组频数 频率合计 (2)频数分布直方图如右边所示:频数折线图如下图:【考点】频数(率)分布直方图频数(率)分布表频数(率)分布折线图【解析】由公式:频率,则抽测的总人数人,则段的频率;由各组频率的和等于可知段的人数的频率;段的人数的频数;【解答】==5020.044.55−4.85=25÷50=0.54.85−5.15=1−0.04−0.12−0.5−0.02=0.32=50×0.32=163.95∼4.2520.044.25∼4.5560.124.55∼4.85250.504.85∼5.15160.325.15∼5.4510.02501=频数总数==5020.04 4.55−4.85==0.525501 4.85−5.15=1−0.04−0.12−0.5−0.02=0.32 4.85−5.15=50×0.32=16解:(1)总人数人,的频率为;段的频率,频数;如图:分组频数 频率合计 (2)频数分布直方图如右边所示:频数折线图如下图:16.【答案】由于共有人,中位数是第个人的成绩为,则分以上的人数是.∵分以上的有人,∴分之间的人数最多有.根据题意得成绩优秀的人数为.答:全市成绩优秀的有人.【考点】频数(率)分布直方图频数(率)分布表【解析】==5020.044.55−4.85=25÷50=0.54.85−5.15=1−0.04−0.12−0.5−0.02=0.32=50×0.32=163.95∼4.2520.044.25∼4.5560.124.55∼4.85250.504.85∼5.15160.325.15∼5.4510.0250145(2)452378789+8+5=22(人)89.5878.5 89.522−8=14(人)(3)4500×=2000(人)20452000【解答】解:由于分以上的有人,分以下的有人,故这次参加测试的总人数为(人).故答案为:.由于共有人,中位数是第个人的成绩为,则分以上的人数是.∵分以上的有人,∴分之间的人数最多有.根据题意得成绩优秀的人数为.答:全市成绩优秀的有人.(1)59.54259.5342+3=4545(2)452378789+8+5=22(人)89.5878.5 89.522−8=14(人)(3)4500×=2000(人)20452000。

人教版七年级下册数学同步练习全套(含答案解析)

人教版七年级下册数学同步练习全套(含答案解析)

人教版七年级下册数学同步练习全套第五章相交线与平行线5.1.1《相交线》同步练习一、填空题(共15小题)1、下列各图中的∠1和∠2是对顶角的是()A、B、C、D、2、如图所示,直线a,b相交于点O,若∠1等于50°,则∠2等于()A、50°B、40°C、140°D、130°3、如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A、75°B、15°C、105°D、165°4、如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A、145°B、110°C、70°D、35°5、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是()A、40°B、50°C、80°D、100°6、下列图形中∠1与∠2是对顶角的是()A、 B、C、 D、7、如图,三条直线a,b,c相交于点O,则∠1+∠2+∠3等于()A、90°B、120°C、180°D、360°8、如图所示,直线AB和CD相交于点O,OE、OF是过点O的射线,其中构成对顶角的是()A、∠AOF和∠DOEB、∠EOF和∠BOEC、∠COF和∠BODD、∠BOC和∠AOD9、如图,∠PON=90°,RS是过点O的直线,∠1=50°,则∠2的度数是()A、50°B、40°C、60°D、70°10、下列语句正确的是()A、相等的角是对顶角B、不是对顶角的角都不相等.C、不相等的角一定不是对顶角D、有公共点且和为180°的两个角是对顶角.11、如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个12、如图所示,三条直线AB,CD,EF相交于一点O,则∠AOE+∠DOB+∠COF等于( )A、150°B、180°C、210°D、120°13、下列说法正确的有( ) ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A、1个B、2个C、3个D、4个14、如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC 的度数为( )A、62°B、118°C、72°D、59°15、如图所示,直线L1, L2, L3相交于一点,则下列答案中,全对的一组是( )A、∠1=90°,∠2=30°,∠3=∠4=60°;B、∠1=∠3=90°,∠2=∠4=30°C、∠1=∠3=90°,∠2=∠4=60°;D、∠1=∠3=90°,∠2=60°,∠4=30°二、填空题(共5小题)16、如图,直线a、b相交于点O,∠1=50°,则∠2=________度.17、如图,直线AB、CD、EF相交于点O,若∠DOF=30°,∠AOE=20°,则∠BOC =________°.18、已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=________°.19、如图,直线AO与CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠COM=________°.20、下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180°.其中正确的有________(填序号)三、解答题(共5小题)21、如图所示,直线AB、CD、EF相交于点O,∠AOE=40°,∠BOC=2∠AOC,求∠DOF.22、∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.23、如图,直线AB、CD、EF相交于点O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度数.24、如图,已知直线AB与CD相交于点O , OE平分∠AOC ,射线OF⊥CD 于点O ,且∠BOF=32°,求∠COE的度数.25、如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.答案解析部分一、填空题(共15小题)1、【答案】D【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.选项A和选项C中∠1和∠2均没有公共端点,所以不是对顶角.选项B中∠1和∠2有公共端点,但是两条边不是互为反向延长线,所以选项B错误.选项D满足对顶角的所有条件,所以选D.【分析】掌握对顶角的概念是解答本题的关键.本题考查对顶角.2、【答案】A【考点】对顶角、邻补角【解析】【解答】两直线相交,对顶角相等.图中∠1和∠2是对顶角,∠1=50°,所以∠2=50°.选A.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.3、【答案】C【考点】对顶角、邻补角【解析】【解答】∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选C.【分析】掌握邻补角的性质是解答本题的关键.本题考查邻补角.4、【答案】B【考点】对顶角、邻补角【解析】【解答】∵射线OC平分∠DOA.∴∠AOD=2∠AOC,∵∠COA=35°,∴∠DOA =70°,∴∠BOD=180°-70°=110°,故选:B.【分析】掌握邻补角的性质是解答本题的关键.本题考查邻补角.5、【答案】A【考点】对顶角、邻补角【解析】【解答】根据角平分线的定义计算.∵∠BOC=80°,∴∠AOD=∠BOC =80度.∵OE平分∠AOD,∴∠AOE=∠AOD=80°÷2=40度.故选A.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.6、【答案】D【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.由此可以推导出:只有选项D中的∠1和∠2是对顶角.所以选D.【分析】掌握对顶角的定义是解答本题的关键.本题考查对顶角.7、【答案】C【考点】对顶角、邻补角【解析】【解答】两条直线相交,对顶角相等.由图可知,∠1+∠2+∠3的对顶角=180°,所以∠1+∠2+∠3=180°,所以选C.【分析】掌握对顶角和性质解答本题的关键.本题考查对顶角的性质.8、【答案】D【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.根据对顶角的含义及图形,即可选出正确选项D.【分析】掌握对顶角和性质解答本题的关键.本题考查对顶角的性质.9、【答案】B【考点】对顶角、邻补角【解析】【解答】根据对顶角的性质,结合图形,我们可以得知:∠MOQ=∠PON =90°.又因为∠MOQ=∠MOS+∠2,所以∠2=∠MOQ-∠MOS;因为∠MOS与∠1是对顶角,所以∠MOS=50°,所以∠2=90°-50°=40°,所以选B.【分析】掌握对顶角和性质解答本题的关键.本题考查对顶角的性质.10、【答案】C【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.由此可以推导出:对顶角一定相等,不相等的角一定不是对顶角.但是,有些相等的角,并不是对顶角,所以选项A和B错误;对顶角相等,但并不一定互补,所以选项D错误;所以选C.【分析】掌握对顶角和性质解答本题的关键.本题考查对顶角的性质.11、【答案】A【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.根据对顶角的概念,从图中去判断,只有一组为对顶角,所以选A.【分析】掌握对顶角的概念是解答本题的关键.本题考查对顶角.12、【答案】B【考点】对顶角、邻补角【解析】【解答】因为∠COF与∠EOD是对顶角,所以∠AOE+∠DOB+∠COF等于∠AOE+∠DOB+∠EOD=∠AOB,因为A、O、B三点共线,所以其和为180°.所以选B.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.13、【答案】B【考点】对顶角、邻补角【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角,互为对顶角的两个角相等.所以,可以判断①③正确,②错误.若两个角不是对顶角,但是两个角也有可能相等,所以④错误.所以选B.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.14、【答案】A【考点】对顶角、邻补角【解析】【解答】若∠AOD与∠BOC的和为236°,则∠AOC与∠BOD的和为360°-236°=124°.因为∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD=124°÷2=62°.所以选B.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.15、【答案】D【考点】对顶角、邻补角【解析】【解答】∠1与∠3是对顶角,∠1=∠3=180°-30°-60°=90°.根据对顶角的概念,从图中还可以直接看出∠2=60°,∠4=30°.所以选D.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.二、填空题(共5小题)16、【答案】50【考点】对顶角、邻补角【解析】【解答】直接根据对顶角相等即可求解∵直线a、b相交于点O,∴∠2与∠1是对顶角.∵∠1=50°,∴∠2=∠1=50°.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.17、【答案】130【考点】对顶角、邻补角【解析】【解答】根据平角定义和∠DOF=30°,∠AOE=20°先求出∠AOD的度数,再根据对顶角相等即可求出∠BOC的度数.∵∠DOF=30°,∠AOE=20°,∴∠AOD=180°-∠DOF-∠AOE=180°-30°-20°=130°,∴∠BOC=∠AOD=130°.【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.18、【答案】180【考点】对顶角、邻补角【解析】【解答】根据邻补角定义可知,∠1+∠3=180°,由对顶角的性质:对顶角相等可得∠1=∠2,所以∠2+∠3=180°(等量代换).【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.19、【答案】38【考点】对顶角、邻补角【解析】【解答】直接根据对顶角相等,得到∠AOC=∠BOD=76°.又因为OM平分∠AOC,所以∠COM=76°÷2=38°.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.20、【答案】①【考点】对顶角、邻补角【解析】【解答】①满足对顶角的性质,所以正确,②邻补角是特殊位置的补角,由互补的性质可知其和应180°,而不是∠1=∠2,所以不正确;③中的∠1与∠2不是对顶角是从位置上看的,但它们在数量上是可以相等,所以也不正确;④的原因同③. 所以本题填①.【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.三、解答题(共5小题)21、【答案】解:设∠AOC=x°,则∠BOC=(2x)°.因为∠AOC与∠BOC是邻补角,所以∠AOC+∠BOC=180°所以x+2x=180解得x=60所以∠AOC=60°.因为∠DOF与∠EOC是对顶角,所以∠DOF=∠EOC=∠AOC-∠AOE=60°-40°=20°【考点】对顶角、邻补角【解析】【解答】图形中∠BOC与∠AOC互为邻补角,结合已知条件:∠BOC=2∠AOC,则可求出∠AOC,要求∠DOF只需求它的对顶角∠EOC即可,本题可用方程求解.【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.22、【答案】解:由已知∠1=∠2,∠1+∠2=162°,解得:∠1=54°,∠2=108°.∵∠1与∠3是对顶角,∴∠3=∠1=54°.∵∠2与∠4是邻补角,∴∠4=180°-∠2=72°.【考点】对顶角、邻补角【解析】【解答】本题首先根据方程思想,求出. ∠1、∠2的度数,再根据对顶角、邻补角的关系求出∠3与∠4的度数.【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.23、【答案】解:∵∠1=30°,∠2=45°∴∠EOD=180°-∠1-∠2=105°∴∠COF=∠EOD=105°又∵OG平分∠COF,∴∠3=∠COF=52.5°.【考点】对顶角、邻补角【解析】【解答】根据对顶角的性质,∠1=∠BOF,∠2=∠AOC,从而得出∠COF =105°,再根据OG平分∠COF,可得∠3的度数.【分析】掌握对顶角和邻补角的性质是解答本题的关键.本题考查对顶角和邻补角.24、【答案】解:∵∠COF是直角,∠BOF=32°,∴∠COB=90°﹣32°=58°,∴∠AOC=180°﹣58°=122°又∵OE平分∠AOC ,∴∠AOE=∠COE=61°【考点】垂线【解析】【解答】利用图中角与角的关系即可求得.【分析】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.25、【答案】解:∵∠1=∠2,∠1=2∠3∴∠2=2∠3又∵∠3=∠4,∴∠2=2∠4∵∠2=65°∴∠4=32.5°.【考点】对顶角、邻补角【解析】【解答】根据对顶角的性质,∠1=∠2,∠3=∠4,再根据∠1=2∠3,∠2=65°,可得∠4的度数.【分析】掌握对顶角的性质是解答本题的关键.本题考查对顶角.第五章相交线与平行线5.1.2《垂线》一、1、下面说法中错误的是()A、两条直线相交,有一个角是直角,则这两条直线互相垂直B、若两对顶角之和为1800,则两条直线互相垂直C、两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D、两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直2、如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A、2个B、3个C、4个D、1个3、如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A、120°B、130°C、135°D、1404、点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC =2cm,则点P到直线的距离为()A、4cmB、5cmC、小于2cmD、不大于2cm5、如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC -∠COD=∠BOC.A、①②③B、①②④C、①③④D、②③④6、如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( •).A、26°B、64°C、54°D、以上答案都不对7、在下列语句中,正确的是().A、在平面上,一条直线只有一条垂线;B、过直线上一点的直线只有一条;C、过直线上一点且垂直于这条直线的直线有且只有一条;D、垂线段就是点到直线的距离8、如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC;②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC 的距离; ⑥线段AB是点B到AC的距离; ⑦AD>BD.A、2个B、4个C、7个D、0个9、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A、35°B、45°C、55°D、65°10、已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A、3个B、4个C、5个D、6个11、已知直线AB , CB , l在同一平面内,若AB⊥l ,垂足为B , C B⊥l ,垂足也为B ,则符合题意的图形可以是()A、 B、 C、 D、12、下列语句正确的是()A、两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B、两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C、两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D、两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直13、过线段外一点画这条线段的垂线,垂足一定在()A、线段上B、线段的端点上C、线段的延长线上D、以上情况都有可能14、如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A、线段AC的长B、线段AD的长C、线段BC的长D、线段BD的长15、如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A、两点确定一条直线B、经过一点有且只有一条直线和已知直线垂直C、过一点只能作一条垂线D、垂线段最短16、当两条直线相交所成的四个角中________,叫做这两条直线互相垂直,其中的一条直线叫________,它们的交点叫________.17、过直线上或直线外一点,________与已知直线垂直.18、如图所示,若AB⊥CD于O,则∠AOD=________;若∠BOD=90°,则AB________CD.19、如图所示,已知AO⊥BC于O,那么∠1与∠2________.20、如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为________.21、如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD与∠DOE之间有怎样的关系?说明理由.22、如图,∠1=30°,AB⊥CD ,垂足为O , EF经过点O .求∠2、∠3的度数.23、如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,(1)图中除直角外,还有相等的角吗?请写出两对:①________;②________ .(2)如果∠AOD=40°,则①∠BOC=________;②OP是∠BOC的平分线,所以∠COP =________度;③求∠BOF的度数________ .24、如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;(2)猜想∠EOF与∠AOB的数量关系;(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?25、直线AB、CD相交于点O.(1)OE、OF分别是∠AOC、∠BOD的平分线.画出这个图形.(2)射线OE、OF在同一条直线上吗?(直接写出结论)(3)画∠AOD的平分线OG.OE与OG有什么位置关系?并说明理由.答案解析部分一、1、【答案】C【考点】垂线【解析】【解答】垂线的概念是:当两条直线相交,有一个角是直角时,即两条直线互相平行.依据此概念,我们可以判断,选项A正确.选项B中,两对顶角之和为180°,则说明两对顶角均为90°,选项B也正确.在选项D中,两条直线相交,所构成的四个角中,若有三个角相等,根据对顶角的性质,说明四个角都相等,又因为四个角的度数和为360°,则说明四个角都是90°,选项D也正确.因为两条直线相交,形成两对对顶角,对顶角是相等的,但是不能说明该角一定是90°,所以选项C错误.【分析】掌握相交线形成的对顶角知识,以及垂线的概念,就能轻松解答本题.本题考查垂线.2、【答案】B【考点】垂线【解析】【解答】两条直线互相垂直,其所形成的夹角都是直角.根据题意,AB⊥CD,则∠ADC和∠BDC都是直角;同时,AC⊥BC,所以∠ACB也是直角.为此,图形中一共有3个直角.【分析】掌握垂线的概念,就能轻松解答本题.本题考查垂线.3、【答案】C【考点】垂线【解析】【解答】两条直线互相垂直,其所形成的夹角都是直角.根据题意,EO⊥CD,则∠EOD和∠EOC都是直角;又因为AB平分∠EOD,所以∠AOD为45°.∠AOD 与∠COB是对顶角,所以∠COB也是45°.因为∠COB与∠BOD互补,所以∠BOD =180°-45°=135°.【分析】掌握垂线的概念,以及角平分线和对顶角的性质,就能轻松解答本题.本题考查垂线.4、【答案】D【考点】垂线段最短,点到直线的距离【解析】解答:点到直线的最短距离为过点作出的与已知直线的垂线段.在题干中,已知的最短距离为2cm,则选项A和选项B都是不正确的.又因为题干中没有明确告诉PC是否垂直于直线,当两线垂直时,则点P到直线的距离为2cm;若两直线不垂直,则点P到直线的距离为小于2cm.所以,只能选D.分析:点到直线的最短距离为过点作出的与已知直线的垂线段,是解答本题的关键.本题考查点垂线段最短.5、【答案】C【考点】垂线【解析】【解答】由题意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同时,OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正确.又因为不能推断出∠AOB与∠COD的具体角度,所以②不正确.∠AOD=∠AOB+∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因为∠AOB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正确.为此,选C.【分析】在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.6、【答案】B【考点】垂线【解析】【解答】由题意可知,AB⊥CD于点O,所以∠BOC=∠AOD=90°,同时,∠1与∠DOF是对顶角,∠1=26°,所以∠DOF=26°.∠AOD=∠AOF+∠DOF,所以∠AOF=∠AOD-∠DOF=90°-26°=64°.所以选B.【分析】在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.7、【答案】D【考点】垂线【解析】【解答】概念理解型题.垂直于一条直线的垂线有无数条,所以选项A 错误.两点之间才只有一条直线,过一点的直线有无数条,所以选项B错误.选项C是最容易出现混淆的地方.在概念中,同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条;但是,在该选项中,没有注明同一平面,所以选项C错.点到直线的距离就是垂线段,所以选项D正确.【分析】概念理解型题,在解答时要注意对概念的正确理解,尤其是像选项C这种属于特别容易混淆的题目.本题考查垂线.8、【答案】B【考点】垂线,点到直线的距离【解析】【解答】根据题意,∠BAC=90,所以AB⊥AC,①正确.AD⊥BC于D,所以AD与AC不垂直,②不正确.点到直线的距离为垂线段,所以点C到AB的垂线段是线段AB,③正确.点D到BC的距离应为过D点垂直于AC的垂线段,AD与AC不垂直,所以④错误.因为AB⊥AC,点B到AC的距离为AB,所以⑤⑥正确.AD与BD的具体长度无法推断,所以不能确定二者的大小关系,⑦错误.【分析】概念理解型题,掌握垂直和点到直线的具体的概念,是解答本题的关键.本题考查垂线.9、【答案】C【考点】垂线【解析】【解答】由射线OM平分∠AOC ,∠AOM=35°,得出∠MOC=35°,由【解答】∵射线OM平分∠AOC ,ON⊥OM ,得出∠CON=∠MON﹣∠MOC得出答案.∠AOM=35°,∴∠MOC=35°,∵ON⊥OM ,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.【分析】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.10、【答案】B【考点】垂线【解析】【解答】已知每个小方格的边长为1,所以每个小方格的面积为1个平方单位.要使点C也在小方格的顶点上,且以A,B,C为顶点的三角形的面积为1个平方单位,需要从两个方面来思考:一是以A为三角形的顶点,则A到BC 是距离为1,BC的距离为2时才能使面积为1个平方单位,于是,这样的点有2个.同理,若以B为三角形的顶点,这样的点也同样有2个.所以,选B.【分析】从点到直线的距离,以及三角形的面积计算方法入手,就能轻松解答.本题考查垂线.11、【答案】A【考点】垂线【解析】解答:根据题意画出图形即可.故选:C分析:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.12、【答案】C【考点】垂线【解析】【解答】概念理解型题.两条直线相交,其中有一个夹角是直角,说明这两条直线互相垂直.同时,两条直线相交,形成四个角,分为两对对顶角,对顶角是相等的.但是,两条直线垂直必须相交,两条直线相交未必垂直,所以,可以推断出选项A、选项B都错误.在选项D中,两条直线任意相交,都能满足有两个角互补,所以D错误.在选项C中,有三个角相等,可以推导出这四个角都相等,并且都是直角,所以选项C正确.【分析】概念理解型题,掌握垂直的概念,是解答本题的关键.本题考查垂线.13、【答案】D【考点】垂线【解析】【解答】由于线段有两个端点,所线段的长度是固定的.由于点的位置不确定,所以过线段外一点画这条线段的垂线,垂足有可能在线段上、线段的端点上和线段的延长线上.这个知识点可以从三角形的高的画法上得到验证.所以,选D.【分析】概念理解型题,掌握垂直的作法,是解答本题的关键.本题考查垂线.14、【答案】D【考点】点到直线的距离【解析】【解答】点到直线的距离为垂线段,因为直线AD⊥BD,垂足为D,所以点B到线段AC的距离是线段BD的长,所以选D.【分析】概念理解型题,掌握到直线的距离为垂线段,是解答本题的关键.本题考查点到直线的距离.15、【答案】B【考点】垂线【解析】【解答】概念理解型题.经过一点有且只有一条直线与已知直线垂直.因为OM⊥NP,ON⊥NP,两条经过O点的直线都垂直于NP,所以选B.【分析】概念理解型题,掌握经过一点有且只有一条直线与已知直线垂直,是解答本题的关键.本题考查垂线.16、【答案】有一个直角;另一条直线的垂线;垂足【考点】垂线【解析】【解答】概念理解型题.两条直线相交,所形成的夹角中,有一个角为直角,说明这两条直线互相垂直.相互垂直的两条直线,其中一条直线叫另一条直线的垂线.两条直线互相垂直,它们的交点叫垂足.【分析】概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.17、【答案】有且只有一条直线【考点】垂线【解析】【解答】概念理解型题.过直线外一点,有且只有一条直线与已知直线垂直.【分析】概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.18、【答案】90°;⊥【考点】垂线【解析】【解答】概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.如果两条直线相交,所形成的夹角中,有一个角为90°,则这两条直线互相垂直.【分析】概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.19、【答案】互余【考点】垂线【解析】【解答】概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.因为AO⊥BC于O,所以∠AOC=90°.因为∠1+∠2=∠AOC.所以,∠1与∠2互余.【分析】概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.20、【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】垂线【解析】【解答】概念理解型题.过直线外一点有且只有一条直线与已知直线垂直.因为CD⊥AB于D,所以自CD上任一点向AB作垂线,那么所画垂线均与CD 重合.【分析】概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.21、【答案】相等,理由:∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC +∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.【考点】垂线【解析】【解答】由题意可知,∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.【分析】掌握相交线相关知识,是解答本题的关键.本题考查垂线.22、【答案】∵∠1与∠3是对顶角∴∠1=∠3,因为∠1=30°∴∠3=30°.∵AB⊥CD∴∠BOD=90°∵∠2+∠3=∠BOD∴∠2=90°-∠3=60°.【考点】垂线【解析】【解答】因为∠1与∠3是对顶角,所以∠1=∠3,因为∠1=30°,所以∠3=30°.因为AB⊥CD ,所以∠BOD=90°,因为∠2+∠3=∠BOD,所以∠2=90°-∠3=60°.【分析】掌握相交线相关知识,是解答本题的关键.本题考查垂线.23、【答案】(1)∠AOD=∠BOC;∠BOP=∠COP(2)40°;20°;50°【考点】垂线【解析】【解答】由题意可知,∠AOD与∠BOC是对顶角,所以二者相等.因为OP是∠BOC的角平分线,所以∠BOP=∠COP.由第一问得到的答案,)如果∠AOD =40°,所以∠BOC=40°.OP是∠BOC的平分线,所以∠COP=20°.因为OF⊥CD,所以∠COF=90°,所以∠BOF=90°-40°=50°.【分析】掌握相交线相关知识,是解答本题的关键.本题考查垂线.24、【答案】(1)∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+60°=150°.∵OE平分∠AOC,∴∠EOC=150°÷2=75°.∵OF平分∠BOC,∴∠COF=60°÷2=30°.∵∠EOC =∠EOF+∠COF,∴∠EOF=75°-30°=45°.(2)∵OE平分∠AOC,OF平分∠BOC.∴∠COE=∠AOC,∠COF=∠BOC∵∠AOB =∠AOC-∠BOC∴∠EOF=∠COE-∠COF=∠AOC-∠BOC=(∠AOC-∠BOC)=∠AOB(3)∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC,∠COF=∠BOC,∴∠EOF=∠AOC-∠BOC=(∠AOC-∠BOC)=∠AOB.又∵∠AOB+∠EOF =156°,∴∠EOF=52°.【考点】垂线【解析】【分析】此题难度较大,要通过角度转换.本题考查相交线所形成的角度.25、【答案】(1)如图中红线所示(2)射线OE、OF在同一条直线上(3)OE⊥OG理由:∵EF平分∠AOC和∠BOD,并且∠AOC=∠BOD,∴∠AOE =∠DOF.∵OG平分∠AOD,∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG =180°,∴∠DOF+∠DOG=180°÷2=90°,∴OE⊥OG.【考点】垂线【解析】【分析】此题掌握了角平分的性质是解题的关键.本题考查垂线和角平分线.5.1.3《同位角、内错角、同旁内角》一、选择题(共15题)1、如图,三条直线两两相交,则图中∠1和∠2是()A、同位角B、内错角C、同旁内角D、互为补角2、如图所示,下列说法错误的是()A、∠1和∠4是同位角B、∠1和∠3是同位角C、∠1和∠2是同旁内角D、∠5和∠6是内错角3、下列图形中,∠1和∠2不是同位角的是()A、 B、C、 D、4、如图,下列判断正确的是()A、∠2与∠5是对顶角B、∠2与∠4是同位角C、∠3与∠6是同位角D、∠5与∠3是内错角5、下列四幅图中,∠1和∠2是同位角的是()A、⑴⑵B、⑶⑷C、⑴⑵⑶D、⑵、⑶⑷6、如图,∠1与∠2是()A、对顶角B、同位角C、内错角D、同旁内角7、如图,已知AB∥CD,与∠1是同位角的角是()A、∠2B、∠3C、∠4D、∠58、如图,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠59、如图,下列各语句中,错误的语句是()A、∠ADE与∠B是同位角B、∠BDE与∠C是同旁内角C、∠BDE与∠AED是内错角D、∠BDE与∠DEC是同旁内角10、如图,在所标识的角中,同位角是()A、∠1和∠2B、∠1和∠3C、∠1和∠4D、∠2和∠311、已知:如图,直线AB、CD被直线EF所截,则∠EMB的同位角是()A、∠AMFB、∠BMFC、∠ENCD、∠END12、如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有()A、2对B、4对C、6对D、8对13、如图,下列说法中错误的是()A、∠3和∠5是同位角B、∠4和∠5是同旁内角C、∠2和∠4是对顶角D、∠1和∠4是内错角14、如图所示,与∠α构成同位角的角的个数为( )A、1B、2C、3D、415、如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有 ( )A、1个B、2个C、3个D、4个二、填空题(共5题)16、如图,根据图形填空.(1)∠A________,________是同位角;(2)∠B和________,________是内错角;(3)∠A和________,__ ________,________是同旁内角.17、如图所示,与∠C构成同旁内角的有________个.18、如图,与图中的∠1成内错角的角是________ .。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)064423

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)064423

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知方程组,则的值为( )A.B.C.D.2. 已知是方程组’的解,则的值是( )A.B.C.D.3. 用加减法解方程组最简单的方法是( )A.①②B.①②C.①②D.①②4. 对于解方程组①②下面是四位同学的解法,所用的解法比较简便的是( )小红:均用代入法. 小华:均用加减法.小丽:①用代入法,②用加减法. 小虎:①用加减法,②用代入法.A.小红{2x−y+z =−13x+6y−z =16x+y 4536{x =2y =1{ax+b =5bx+ay =1a +b −1234{2a +2b =3①,3a +b =4②,×3−×2×3+×2+×2−×2{y =2x+1,6x+5y =−11,{2x+3y =10,2x−3y =−6,C.小丽D.小虎5. 若二元一次方程组的解是二元一次方程的一个解,则为( )A.B.C.D.6. 解方程组①和②,采用较为简单的解法应为( )A.均用代入法B.①用代入法,②用加减法C.均用加减法D.①用加减法,②用代入法7. 已知二元一次方程组 用方程①减去方程②,得( )A.B.C.D.8. 下列四组数中,是方程组的解的是( )A.B.C.{x−y =a,x+y =3a3x−5y−7=0a 3579{x =y+3,5x+7y =−9{8x+9y =23,17x−6y =74{2x+5y =9①,2x−3y =−1②,2y =82y =108y =88y =10{x+y =7,x−y =1,{x =3,y =4{x =5,y =2{x =6,y =1二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知 则的值为________.10. 关于,的二元一次方程有公共解,则的值为________. 11. 若方程是关于,的二元一次方程,则 ________; ________.12. ,则________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.14. 解方程组:(1)用代入法解;(2)用加减法解.15. 已知关于,的二元一次方程组当方程组的解为时,求的值;若时,求方程组的解;小明同学模仿第问,提出一个新问题:“当方程组的解为时,求的值”.小明提出的问题对吗?若对,请你解答;若不对,请你分析原因.16. 解方程组.{2a −b =5,a −2b =4,a −b x y 3x−y =7,2x+3y =1,y =kx−9k 2+4=1x 2a+b−4y 3a−2b−3x y a =b =|3a +2b +7|+(5a −2b +1=0)2a +b =(1){3x+y =4,y =2x−1.(2){3x+4y =8,4x+3y =−1.{3x+4y =22x−y =5{5x+2y =253x+4y =15x y {x+2y =a,2x−y =1.(1){x =1,y =1,a (2)a =−2(3)(1){x =−2,y =−2a {4x−3y =112x+y =13参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】加减消元法解二元一次方程组【解析】本题考查了加减消元法解二元一次方程组.【解答】解:根据方程组的特点,分别把两个方程相加可得:,即,故选.2.【答案】【考点】代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:把代入方程组得: 得:,则,故选.5x+5y =15x+y =3C {x =2y =1{2a +b =5a +2b =1①+②3(a +b)=6a +b =2B【答案】D【考点】加减消元法解二元一次方程组【解析】通过观察知,未知数的系数分别为,如果消去未知数,需要把系数变为则两个方程都需要变化,而未知数的系数分别为,如果消去未知数,只要把第二个方程乘以就可以了,【解答】解:②,得,则,所以用加减消元法解此方程组的最简单方法为②,消去.故选.4.【答案】C【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:方程组①有的形式,用代入法比较简单;方程组②中未知数的系数绝对值相等,用加减法比较简单.故选.5.【答案】Ca 2,3a 6,b 2,1b 2{2a +2b =3①,3a +b =4②,①−2×2a +2b −6a −2b =3−84a =5①−2×b D y =2x+1C二元一次方程组的解【解析】先用含的代数式表示,,即解关于,的方程组,再代入中可得的值.【解答】解:由①②,可得,∴.将代入①,得.∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程,可得,∴.故选.6.【答案】B【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】根据方程组的系数特点采用代入消元法或加减消元法,如果有未知数系数为,则采用代入消元法简单些,否则加减消元法简单些.【解答】解:方程组①中前面的系数为,故采用代入法比较简单;方程组②中,前面系数不同,采用代入消元法会产生分数,运算复杂,故采用加减消元法比较简单.故选.7.【答案】D【考点】a x y x y 3x−5y−7=0a {x−y =a ①,x+y =3a ②,+2x =4a x =2a x =2a y =2a −a =a {x =2a ,y =a3x−5y−7=06a −5a −7=0a =7C 1x 1x y B【解析】根据等式的性质,方程的两边相减即可求出答案.【解答】解: ,①-②得:,即.故选8.【答案】D【考点】代入消元法解二元一次方程组加减消元法解二元一次方程组【解析】利用加减消元法求解即可.【解答】解:①②可得,解得,将代入①可得,∴方程组的解为故选.二、 填空题 (本题共计 4 小题 ,每题5 分 ,共计20分 )9.【答案】【考点】加减消元法解二元一次方程组{2x+5y =9①2x−3y =−1②(2x+5y)−(2x−3y)=9−(−1)8y =10D.{x+y =7,①x−y =1,②+2x =8x =4x =4y =3{x =4,y =3,D 3【解答】解:令①②得,则的值为.故答案为:.10.【答案】【考点】代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:解方程组,得,把代入得,解得.故答案为:.11.【答案】,【考点】二元一次方程的定义加减消元法解二元一次方程组【解析】根据二元一次方程的定义列出关于,的二元一次方程组,通过解方程组来求,的值.{2a −b =5,①a −2b =4,②+3a −3b =9a −b 9÷3=334{3x−y =72x+3y =1{x =2y =−1{x =2y =−1y =kx−9−1=2k −9k =4421a b a b解:根据题意,得解得,故答案是:;.12.【答案】【考点】代入消元法解二元一次方程组非负数的性质:绝对值非负数的性质:偶次方【解析】由,可得:和,解方程组可得和的值,问题可求.【解答】解:由题意,得解得∴.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:把代入得:,即,解得,把代入得:,则方程组的解为{2a +b −4=1,3a −2b −3=1,{a =2,b =1.21−3|3a +2b +7|+(5a −2b +1=0)23a +2b +7=05a −2b +1=0a b {3a +2b +7=0,5a −2b +1=0,{a =−1,b =−2,a +b =−3−3(1){3x+y =4①,y =2x−1②,②①3x+2x−1=45x =5x =1x =1②y =2×1−1=1{x =1,y =1.(2){3x+4y =8①,4x+3y =−1②,∴,把代入得,∴,∴方程组的解为【考点】代入消元法解二元一次方程组加减消元法解二元一次方程组【解析】方程组利用代入消元法求出解即可.方程组利用加减消元法求出解即可.【解答】解:把代入得:,即,解得,把代入得:,则方程组的解为得,得④,得,∴,把代入得,∴,∴方程组的解为14.【答案】解:(1)由②得:③把③代入①得:把 代入③得:故该方程组的解为.x =−4x =−4①−12+4y =8y =5{x =−4,y =5.(1)(2)(1){3x+y =4①,y =2x−1②,②①3x+2x−1=45x =5x =1x =1②y =2×1−1=1{x =1,y =1.(2){3x+4y =8①,4x+3y =−1②,①×39x+12y =24③②×416x+12y =−4④−③7x =−28x =−4x =−4①−12+4y =8y =5{x =−4,y =5.{3x+4y =2①2x−y =5②y =2x−53x+8x−20=211x =22x =2x =2y =−1{x =2y =−1.把代入①得:故方程组的解为.【考点】代入消元法解二元一次方程组加减消元法解二元一次方程组【解析】(1).本小题考查用代入法解方程组的运算能力.(2).本小题考查用加减法解方程组的能力.【解答】解:(1)由②得:③把③代入①得:把 代入③得:故该方程组的解为.(2)①②得:.把代入①得:故方程组的解为.15.【答案】解:将代入方程,得.当时,则方程组为解得小明同学提出的问题不对,因为不是方程的解,所以不是该方程组的解,x =5x =525+2y =25y =0{x =5y =0 {3x+4y =2①2x−y =5②y =2x−53x+8x−20=211x =22x =2x =2y =−1{x =2y =−1{5x+2y =25①3x+4y =15②×2−7x =35x =5x =525+2y =25y =0{x =5y =0 (1){x =1,y =1,x+2y =a a =1+2=3(2)a =−2{x+2y =−2,2x−y =1,{x =0,y =−1.(3){x =−2,y =−2,2x−y =1{x =−2,y =−2,x =−2,则不能代入中求的值.【考点】二元一次方程组的解加减消元法解二元一次方程组【解析】无无无【解答】解:将代入方程,得.当时,则方程组为解得小明同学提出的问题不对,因为不是方程的解,所以不是该方程组的解,则不能代入中求的值.16.【答案】解:得,, 得,, 解得,把代入②得,,解得..【考点】代入消元法解二元一次方程组【解析】本题考查二元一次方程组的解法.用加减消元法解答.{x =−2,y =−2,x+2y =a a (1){x =1,y =1,x+2y =a a =1+2=3(2)a =−2{x+2y =−2,2x−y=1,{x =0,y =−1.(3){x =−2,y =−2,2x−y =1{x =−2,y =−2,{x =−2,y =−2,x+2y =a a {4x−3y =11①,2x+y =13②②×24x+2y =26③③−①5y =15y =3y =32x+3=13x =5∴{x =5y =3【解答】解:得,, 得,, 解得,把代入②得,,解得..{4x−3y =11①,2x+y =13②②×24x+2y =26③③−①5y =15y =3y =32x+3=13x =5∴{x =5y =3。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)024715

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)024715

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,与关于点成中心对称,则下列结论不成立的是( )A.点与点是对称点B.C. D.2. 下列图案中,既是轴对称图形又是中心对称图形的是( ) A. B.C.D.3. 如图,四边形与四边形关于一个点成中心对称,则这个点是( )A.B.△ABC △A'B'C'O A A'BO =B'O∠ACB =∠C'A'B'△ABC ≅△A'B'C'ABCD FGHE O 1O 2C.D.4. 下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.5.如图,与关于点成中心对称,下列结论中不成立的是( )A.B.C.D.6. 下列图形是轴对称图形的是 ( )A.B.O 3O 4△ABC △A'B'C'O OC =OC'OA =OA'BC =B'C'∠ABC =∠A'C'B'C.D.7. 下列表示我国古代窗棂样式结构的图案中,是中心对称图形但不是轴对称图形的是() A.B.C.D.8. 若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.正确的是( )A.①②③B.①③④C.①②④D.①②③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 在四张背面完全相同的卡片上分别印有等边三角形、平行四边形、菱形和矩形的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为________.10. 在线段、角、长方形、圆这四个图形中,是轴对称图形但不是中心对称图形是________.11. 请写出两个既是轴对称图形形又是中心对称图形的平面何图形名称________、________.12. 平行四边形可以由三角形绕一边中点旋转________度而得.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 在如图方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是________.14.如图,已知各定点的坐标分别为,,.画出以点为旋转中心,按顺时针方向旋转后得到的;1,2,3,4△ABC A(−3,−4)B(−1,−3)C(−4,−1)(1)△ABC B 90∘△B A 1C 1画出与关于点对称的;求的面积.15. 图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图①中画一个(画出一个即可)以线段为对角线的四边形,且点和点均在小正方形的顶点上,四边形为中心对称图形, ;在图②中画出一个(画出一个即可)以线段为对角线的四边形,且点和均在小正方形的顶点上,四边形为轴对称图形,,直接写出四边形的面积.16. 如图,方格纸中,有一个和一点,的顶点和点均与小正方形的顶点重合.在方格纸中,已知与关于点成中心对称,请画出;在方格纸中,将绕点顺时针旋转 得到 请画出;(2)△ABC O △A 2B 2C 2(3)△ABC 1AC (1)AC ABCD B D ABCD ∠ABC =45∘(2)AC AECF E F AECF ∠AEC =45∘AECF △ABC O △ABC O (1)△ABC △A 1B 1C 1O △A 1B 1C 1(2)△ABC C 90∘△C A 2B 2△C A 2B 2参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】中心对称【解析】根据中心对称的性质解答.【解答】解:∵与关于点成中心对称,∴点与点是对称点,,,,∴结论错误.故选.2.【答案】C【考点】轴对称图形中心对称图形【解析】根据轴对称图形和中心对称图形的概念逐个判定即可【解答】解:,不是轴对称图形,是中心对称图形,不符合题意;△ABC △A'B'C'O A A'BO =B'O'△ABC ≅△A'B'C'∠ACB =∠A'C'B'∠ACB =∠C'A'B'C A,是轴对称图形,不是中心对称图形,不符合题意;,既是轴对称图形,也是中心对称图形,符合题意;,是轴对称图形,不是中心对称图形,不符合题意.故选.3.【答案】A【考点】中心对称【解析】连接任意两对对应点,连线的交点即为对称中心;【解答】解:如图,连接和交于,故选.4.【答案】C【考点】轴对称图形中心对称图形【解析】此题暂无解析【解答】此题暂无解答5.【答案】DB C D C HC DE O 1A【解析】根据中心对称的性质即可判断.【解答】解:因为对应点的连线被对称中心平分,所以,,故,正确;因为成中心对称图形的两个图形是全等图形,所以,,故正确,错误.故选.6.【答案】A【考点】中心对称图形轴对称图形【解析】根据轴对称图形的概念求解.【解答】解:根据轴对称的概念得:是轴对称图形,故本选项正确;不是轴对称图形,故本选项错误;不是轴对称图形,故本选项错误;不是轴对称图形,故本选项错误.故选.7.【答案】D【考点】中心对称图形OC =OC'OA =OA'A B BC =B'C'∠ABC =∠A'B'C'C D D A B C D A此题暂无解析【解答】解:选项,既是轴对称图形又是中心对称图形,不合题意;选项,既是轴对称图形又是中心对称图形,不合题意;选项,是轴对称图形但不是中心对称图形,不合题意;选项,是中心对称图形但不是轴对称图形,符合题意.故选.8.【答案】A【考点】中心对称【解析】如果把一个图形绕着某一点旋转度后能与另一个图形重合,那么我们就说,这两个图形成中心对称.中心对称的性质有①关于中心对称的两个图形是全等形,②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,根据以上内容即可判断①②③,根据关于中心对称的两个图形不一定是关于一条直线对称的轴对称图形即可判断④.【解答】解:∵关于中心对称的两个图形是全等形,∴①正确;∵关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,∴②正确;∵如果把一个图形绕着某一点旋转度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,对称点与旋转中心的连线所成的角是一个平角,正好是旋转角,∴③正确;∵关于中心对称的两个图形不一定是关于一条直线对称的轴对称图形,∴④错误;即正确的有①②③,故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A B C D D 180180A 1【考点】列表法与树状图法中心对称图形【解析】根据轴对称图形的定义得到等边三角形、矩形和圆是轴对称图形,然后用、、、分别表示等边三角形、平行四边形、矩形、圆,画树状图展示所有种等可能的结果数,其中抽到的卡片上印有的图案都是轴对称图形有种,再利用概率的定义计算即可.【解答】解:等边三角形、矩形和圆是轴对称图形,用、、、分别表示等边三角形、平行四边形、矩形、圆,画树状图如下:共有种等可能的结果数,其中抽到的卡片上印有的图案都是轴对称图形有种结果,所以抽到的卡片上印有的图案都是轴对称图形的概率为.故答案为:.10.【答案】角【考点】中心对称图形轴对称图形【解析】结合线段、角、长方形、圆的性质并根据轴对称图形和中心对称图形的概念即可解答.【解答】解:线段既是轴对称图形又是中心对称图形;角是轴对称图形,但不是中心对称图形;长方形既是轴对称图形又是中心对称图形;圆既是轴对称图形又是中心对称图形.故在线段、角、长方形、圆这四个图形中,是轴对称图形但不是中心对称图形的是角.12A B C D 126A B C D 126=6121212故答案为:角.11.【答案】线段、菱形、正方形、矩形、圆、正六边形等(写出两个即可)【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转度后两部分重合.故答案为:线段、菱形、正方形、矩形、圆、正六边形等.12.【答案】【考点】中心对称【解析】根据旋转前、后的图形全等,结合两组对边分别相等的四边形是平行四边形作答.【解答】解:将任意一个三角形绕着其中一边的中点旋转,所得的图形和原图形全等,组成四边形.∴两组对边分别相等,∴所得图形与原图形可拼成一个平行四边形.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】180180180∘1804【考点】中心对称图形中心对称【解析】此题暂无解析【解答】解:由题易知,涂.故答案为:.14.【答案】解:如图所示:如中图:即为所求..【考点】三角形的面积作图-旋转变换中心对称【解析】此题暂无解析【解答】44(1)(2)(1)△A 2B 2C 2(3)=9−2×3×−1×2×−1×3×S △ABC 121212=9−3−1−32=3.5解:如图所示:如中图:即为所求..15.【答案】解:如图,四边形即为所求.如图,四边形即为所求..【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】(1)(2)(1)△A 2B 2C 2(3)=9−2×3×−1×2×−1×3×S △ABC 121212=9−3−1−32=3.5(1)ABCD (2)AECF =×5×12=30S 四边形AECF 12解:如图,四边形即为所求.如图,四边形即为所求..16.【答案】解:如图所示.如图所示.【考点】中心对称作图-旋转变换【解析】此题暂无解析【解答】解:如图所示.如图所示.(1)ABCD (2)AECF =×5×12=30S 四边形AECF 12(1)△A 1B 1C 1(2)△C A 2B 2(1)△A 1B 1C 1(2)△C A 2B 2。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)051053

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)051053

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 将如图绕某点逆时针旋转后,得到的图形是( ) A. B. C. D.2. 如果一个四边形绕对角线的交点旋转,所得四边形与原四边形重合,那么这个四边形一定是( )A.平行四边形B.矩形C.菱形D.正方形3. 如图,将绕点旋转得到,点与点是对应点,点在上,下列说法错误的是( )A.B.C.平分D.90∘90∘△ADE D △CDB A C C DE AD =DCAE//BDDE ∠ADBAE =BC4. 如图所示,在的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( )A.点B.点C.点D.点5. 如图,将绕着点顺时针旋转得到,若,则旋转角度是( )A.B.C.D.6. 如图,两个同心圆中有两条互相垂直的直径,其中大圆的半径是,则图中阴影部分的面积是( )A.B.C.D.7. 下列图形中既是轴对称图形,又是旋转对称图形的是( )4×4△MNP △M 1N 1P 1ABCD△AOB O △COD ∠AOB =40∘,∠BOC =25∘25∘15∘40∘65∘24π3π2ππA.①②B.①②③C.②③④D.①②③④8. 如图,中,=,线段绕点逆时针旋转得到线段,过点作射线于点,则的度数是( )A. B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,将绕点按逆时针方向旋转得到图形,连接,若,则旋转角的度数为________.10. 如图,是等边三角形,是边上的一点,连接,把绕着点逆时针旋转,得到,连接,若,,则的周长是________.Rt △ABC ∠ACB 90∘BC B (0<α<180)α∘BD A AE ⊥CD E ∠CAE 90−αα△ABC A △AB 1C 1BB 1∠A B =B 165∘∘△ABC D AC BD △BCD B 60°△BAE DE BC =7BD =5△ADE11. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________.12. 在等腰三角形、平行四边形、等腰梯形、五角星及圆中共有________个旋转对称图形.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在边长为的小正方形组成的网格中,的三个顶点均在格点上,点,的坐标分别为,,在第一象限内以点为位似中心,位似比为得到.在网格中画出,并标上字母;将线段绕点逆时针旋转得到线段,画出线段;点的坐标为________.14. 在平面直角坐标系中,三个顶点的坐标分别为,,.平移后,其中点移到点,画出平移后得到的;把绕点按逆时针方向旋转,画出旋转后的,并写出点的对应点的坐标_______.请判断以为顶点的三角形的形状(无需说明理由).121△AOB A B (3,2)(1,3)O 1:2△O A 1B 1(1)△O A 1B 1(2)A 1B 1A 190∘A 1B 2A 1B 2(3)B 2△ABC A(2,3)B(1,1)C(5,1)(1)△ABC A (4,5)A 1△A 1B 1C 1(2)△A 1B 1C 1A 190∘△A 2B 2C 2B 1B 2(3),,A 1C 1C 215. 如图,已知和点请画出绕点顺时针旋转后得到的.16. 将两个全等的和按图①的方式摆放,其中,,点落在上,所在直线交所在直线于点.(1)求证:;(2)若将图①中的绕点按顺时针方向旋转角,且,其他条件不变,请在图②中画出变换后的图形,并直接写出中的结论是否仍然成立?(3)若将图①中的绕点按顺时针方向旋转角,且,如图③,其他条件不变.(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请写出线段,与之间的数量关系,并加以证明.△ABC O.△ABC O 90∘△A 1B 1C 1Rt △ABC Rt △DBE ∠ACB =∠DEB =90∘∠A =∠D =30∘E AB DE AC F AF +EF =DE △DBE B α<α<0∘60∘(1)△DBE B β<β<60∘180∘AF EF DE参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】生活中的旋转现象【解析】抓住几个关键图形逆时针旋转后的位置,结合选项进行判断即可.【解答】解:绕某点逆时针旋转后,得到的图形是.故选.2.【答案】D【考点】旋转对称图形【解析】根据旋转对称图形的概念与平行四边形、矩形、菱形和正方形的性质作答.【解答】解:、平行四边形绕对角线交点旋转能够与原来的图形重合的最小的度数是度,错误;、矩形绕对角线交点旋转能够与原来的图形重合的最小的度数是度,错误;、菱形绕对角线交点旋转能够与原来的图形重合的最小的度数是度,错误;、正方形绕对角线交点旋转能够与原来的图形重合的最小的度数是度,正确.故选.3.【答案】90∘90∘C A 180B 180C 180D 90D【答案】B【考点】旋转的性质平行线的性质【解析】由旋转的性质可得,,,,可得平分,利用排除法可求解.【解答】解:∵旋转到,∴,,,故选项和不符合题意,∴平分,故选项不符合题意.故选.4.【答案】B【考点】旋转的性质旋转对称图形【解析】连接、、,分别作、、的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵绕某点旋转一定的角度,得到,∴连接,,,如图所示,作的垂直平分线过,,,作的垂直平分线过,,作的垂直平分线过,AD =CD AE =BC ∠E =∠B ∠ADE =∠EDB DE ∠ADB △ADE △CDB AD =CD AE =BC ∠ADE =∠EDB A D DE ∠ADB C B PP 1NN 1MM 1PP 1NN 1MM 1△MNP △M 1N 1P 1PP 1NN 1MM 1PP 1B D C NN 1B A MM 1B∴三条线段的垂直平分线正好都过,即旋转中心是.故选.5.【答案】D【考点】旋转的性质【解析】由旋转的性质可得旋转角为.【解答】解:∵,,∴.∵将绕着点顺时针旋转,得到,∴旋转角为.故选.6.【答案】C【考点】生活中的旋转现象【解析】根据图形可得阴影部分面积为大圆一半面积,利用圆的面积公式进行计算即可.【解答】解:阴影部分面积:,故选:.7.【答案】C【考点】B B B ∠AOC =65∘∠AOB =40∘∠BOC =25∘∠AOC =65∘△AOB O △COD ∠AOC =65∘D π×=2π1222C旋转对称图形轴对称图形【解析】直接利用轴对称图形的定义结合旋转对称图形定义得出答案.【解答】解:①不是轴对称图形,是旋转对称图形,故此选项错误;②是轴对称图形,是旋转对称图形,故此选项正确;③是轴对称图形,是旋转对称图形,故此选项正确;④是轴对称图形,是旋转对称图形,故此选项正确.故选.8.【答案】C【考点】旋转的性质【解析】先利用旋转的性质得=,=,再根据等腰三角形的性质和三角形内角和定理得到=,然后利用互余表示出,从而利用互余可得到的度数.【解答】∵线段绕点逆时针旋转得到线段,∴=,=,∴=,∴==,∵=,∴===,∵,∴==.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】C ∠CBD αBC BD ∠BCD −90∘α∠ACE ∠CAE BC B (0<α<180)α∘BD ∠CBD αBC BD ∠BCD ∠BDC ∠BCD (−α)180∘−90∘α∠ACB 90∘∠ACE −∠BCD 90∘−(−90∘90∘α)αAE ⊥CE ∠CAE −∠ACE 90∘−90∘α【考点】旋转的性质【解析】根据旋转的性质,旋转角(对应点与旋转中心连线的夹角)的概念来解答即可.【解答】解:由旋转的性质可得,,∵,∴,∴,即旋转角为.故答案为:.10.【答案】【考点】旋转的性质【解析】此题暂无解析【解答】解:∵是等边三角形,∴,∵由逆时针旋旋转得出,∴,,,∴,∵,,∴是等边三角形,因此的周长.故答案为:.11.【答案】【考点】50AB =AB 1∠A B =B 165∘∠AB =B 165∘∠BA =−B 1180∘∠AB −∠A B =B 1B 150∘50∘5012△ABC AC =AB =BC =7△BAE △BCD 60∘AE =CD BD =BE ∠EBD =60∘AE+AD =AD+CD =AC =10∠EBD =60∘BE =BD △BDE △ADE =AD+AE+DE =AC +BD =121272∘生活中的旋转现象【解析】先求出时钟上的分针匀速旋转一分钟时的度数为,再求分钟分针旋转的度数.【解答】解:因为时钟上的分针匀速旋转一周的度数为,时钟上的分针匀速旋转一周需要分钟,则时钟上的分针匀速旋转一分钟时的度数为:,那么经过分钟,分针旋转了.故答案为:.12.【答案】【考点】旋转对称图形【解析】根据旋转对称图形的定义:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解答即可.【解答】解:在等腰三角形、平行四边形、等腰梯形、五角星及圆中只有五角、圆、平行四边形是旋转对称图形.故答案为.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:6∘20360∘60÷60=360∘6∘1212×=6∘72∘72∘33(1)(2)【考点】作图-旋转变换【解析】(1)利用旋转的性质得出,的位置,即可得出所要图形;(2)利用关于原点对称点的坐标性质得出即可;(3)利用(1)中图形得出点的坐标;【解答】解:由可知,点坐标为.(4,0)A 1B 1A 1(1)(2)(3)(2)B 2(4,0)(4,0).故答案为:14.【答案】解:如图,即为所求;如图,即为所求.故.因为是绕点按逆时针方向旋转得到的,所以,,故以为顶点的三角形是等腰直角三角形.【考点】作图-旋转变换旋转的性质作图-平移变换【解析】(1)根据图形平移的性质画出平移后的即可;(2)根据图形旋转的性质画出旋转后的即可.【解答】解:如图,即为所求;如图,即为所求.(4,0).(1)△A 1B 1C 1(2)△A 2B 2C 2(6,4)B 2(3)△A 2B 2C 2△A 1B 1C 1A 190∘∠=C 1A 1C 290∘=A 1C 1A 1C 2,,A 1C 1C 2△A 1B 1C 1△A 2B 2C 2(1)△A 1B 1C 1(2)△A 2B 2C 2故.因为是绕点按逆时针方向旋转得到的,所以,,故以为顶点的三角形是等腰直角三角形.15.【答案】解:如图所示.【考点】作图-旋转变换【解析】此题暂无解析【解答】解:如图所示.(6,4)B 2(3)△A 2B 2C 2△A 1B 1C 1A 190∘∠=C 1A 1C 290∘=A 1C 1A 1C 2,,A 1C 1C 216.【答案】解:(1)证明:连接,如图①.∵,∴.∵,∴.∵,∴.∴.又,∴.(2)画出正确图形如图②,(1)中的结论仍然成立.(3)不成立,线段,与之间的数量关系为.证明:连接,如图③.∵,∴.∵,∴和是直角三角形.在 和中,BF △ABC ≅△DBE BC =BE ,AC =DE ∠ACB =∠DEB =90∘∠BCF =∠BEF =90∘BF =BF Rt △BFC ≅Rt △BFE CF =EF AF +CF =AC AF +EF =DE AF +EF =DE AF EF DE AF −EF =DE BF △ABC ≅△DBE BC =BE ,AC =DE ∠ACB =∠DEB =90∘△BCF △BEF Rt △BCF Rt △BEF BC =BE∴,∴.∴.∴.【考点】旋转的性质【解析】此题暂无解析【解答】解:(1)证明:连接,如图①.∵,∴.∵,∴.∵,∴.∴.又,∴.(2)画出正确图形如图②,(1)中的结论仍然成立.{BC =BEBF =BFRt △BCF ≅Rt △BEF(HL)CF =EF AF =AC +FC =DE+EF AF −EF =DE BF △ABC ≅△DBE BC =BE ,AC =DE ∠ACB =∠DEB =90∘∠BCF =∠BEF =90∘BF =BF Rt △BFC ≅Rt △BFE CF =EF AF +CF =AC AF +EF =DE AF +EF =DE(3)不成立,线段,与之间的数量关系为.证明:连接,如图③.∵,∴.∵,∴和是直角三角形.在 和中,∴,∴.∴.∴.AF EF DE AF −EF =DE BF △ABC ≅△DBE BC =BE ,AC =DE ∠ACB =∠DEB =90∘△BCF △BEF Rt △BCF Rt △BEF {BC =BEBF =BFRt △BCF ≅Rt △BEF(HL)CF =EF AF =AC +FC =DE+EFAF −EF =DE。

人教版七年级数学下册全册同步练习及单元测验卷及答案

人教版七年级数学下册全册同步练习及单元测验卷及答案

人教版七年级数学下册全册同步练习及单元测验卷及答案5.1.1相交复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。

图(3)214、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba341212121221E(3)O D CBA (2)O D CBA (1)ODC BA5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?E DC B FE DC B ACBA5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线8765cba3412复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L 1与L 2相交点A ,如果L 1//L ,那么L 2与L ( )3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3、下列说法错误的是( )A.同位角不一定相等B.内错角都相等34D C BA 21F E D C B A 876543219654321DCB AC.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件: •①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 7、在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.ED CB Acba321DCBA 21DCBAOFED C BAD CB A 112、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)87654321DCBA 56北乙甲北GF EDCBA 12E21DCB2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4) (5) (6) 5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.NMG F EDCBA10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°. 证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112BAC ∠=∠,122ACD ∠=∠,( ) ∴001112()1809022BAC ACD ∠+∠=∠+∠=⨯=. 即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 . 推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟): 1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.对顶角不相等.3、下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a∥b,b∥c,那么a∥c (2)同旁内角互补,两直线平行6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等.7、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3( );(2)∵∠1=∠3,∴a∥b( );(3)∵a∥b,∴∠1=∠2( );(4) ∵a∥b,∴∠1+∠4=180º( )(5)∵∠1=∠2,∴a∥b( );(6)∵∠1+∠4=180º,∴a∥b( ).8、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF证明:∵AB⊥BC,BC⊥CD(已知)∴= =90°()∵∠1=∠2(已知)∴= (等式性质)∴BE∥CF()9、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角.求证:∠ACD=∠B证明:∵AC⊥BC(已知)∴∠ACB=90°()∴∠BCD是∠ACD的余角∵∠BCD是∠B的余角(已知)∴∠ACD=∠B()5.4 平移ab123c4CABDEF12B D AC复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长 C.沿射线BD 的方向移动BD 长; D.沿射线BD 的方向移动DC 长3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C 的对应角和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=•____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______ 9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. ( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( )12.有一条公共边的两个角是邻补角. ( )13.如果两个角是邻补角,那么它们一定互为补角. ( )14.对顶角的角平分线在同一直线上. ( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. ( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( )12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条(B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( )∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( ) ∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE .90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;。

相关文档
最新文档