航天测控通信数传系统概述
测控系统概念

第一章1.1测控系统的概念测控系统是现代检测技术与现代控制技术发展的必然和现实的需要,是以检测为基础,以传输途径,以处理为手段,以控制为目的的闭环系统。
测控系统的基本构成由四个部分构成:传感检测部分:感知信息(传感技术、检测技术)信息处理部分:处理信息(人工智能、模式识别)信息传输部分:传输信息(有线、无线通信及网络技术)信息控制部分:控制信息(现代控制技术)1.3测控系统的基本特点❖设备软件化:简化硬件、缩小体积、降低功耗、提高可靠性。
❖过程智能化:以计算技术和人工智能为核心。
❖高度灵活性:实现组态化、标准化、分布式。
❖高度实时性:采集、传输、处理、控制高速化。
❖高度可视性:图形编程、三维技术、虚拟现实。
❖测控一体化:测量、控制、管理。
二、测控系统的分类和组成(ppt图10页)1.检测系统又称数据采集系统。
以通用计算或嵌入式计算系统为核心,单纯实现系统信号的检测、处理、记录和显示为目的的系统。
2.控制系统以通用计算机或嵌入式计算系统为核心,单纯以实现控制为目的的系统。
3. 测控系统以通用计算机或嵌入式计算机系统为核心,以实现检测、传输、处理和控制为目的的系统4. 局域分布式测控系统以通用计算机和网络为核心,以实现对分布在局部区域内的多个系统的检测、传输、处理和控制为目的的系统5. 广域分布式测控系统以通用计算机和网络为核心,以实现对分布在大范区域内的多个系统的检测、传输、处理和控制为目的的系统四、测控技术的发展方向◆微型化:向微机电系统方向发展◆网络化:向无线网、自组织网、物联网、泛在网方向发展◆智能化:向人工智能化方向发展◆虚拟化:向虚拟现实方向发展测控系统的网络化(1)有线测控网络工业总线、局域网络、广域网(2)无线测控网络ADhoc自组织网络、传感网(3)混合测控网络物联网、泛在网第二章MEMS器件的封装要求(1)封装应对传感器芯片提供一个或多个环境通路(接口);(2)封装给传感器带来的应力要尽可能的小;(3)封装与封装材料不应对应用环境造成不良影响;(4)封装应保护传感器及其电子器件免遭不利环境的影响;(5)封装必须提供与外界的通道。
航天器测控地面站中的实时数据传输与处理技术

航天器测控地面站中的实时数据传输与处理技术随着航天事业的发展和技术的进步,航天器测控地面站在航天任务的成功与失败中扮演着重要的角色。
实时数据传输与处理技术是航天器测控地面站中至关重要的一环,它直接决定了地面站对航天器状态的监测、指导和控制的效果。
本文将就航天器测控地面站中实时数据传输与处理技术的重要性、现行技术的应用与问题以及未来发展方向进行探讨。
在航天器测控地面站中,实时数据传输与处理技术的作用不可忽视。
航天器在轨运行时,需要实时、准确地向地面站传递各种监测数据,如姿态数据、遥测数据、图像数据等。
只有实时获取到这些数据,地面站才能及时反馈给航天器相关的监控指令,实现对航天器的及时控制与调整。
而这些数据的传输与处理则需要借助先进的技术手段,确保数据的及时性、准确性和安全性。
因此,实时数据传输与处理技术成为地面站中最为关键的环节之一。
目前,航天器测控地面站中实时数据传输与处理技术主要应用了以下几种方法。
首先是利用高速互联网传输技术,通过地面到空间的卫星通信链路,实现远程数据传输。
这种方式能够在广域范围内传输大量数据, 数据传输速度快,但也受到卫星通信链路的限制,一旦链路中断,数据传输将停止。
其次是利用局域网传输技术,通过局域网内部的高速数据传输设备,实现数据在地面站内部的快速传输。
这种方式能够满足地面站内部各个模块之间的数据传输需求,但无法实现跨地区的数据传输。
另外,还有基于存储介质传输的方法,即将数据存储在物理介质中,通过快速传输设备将存储介质传输到指定地点进行数据处理。
这种方式具有一定的灵活性,但数据传输速度较慢。
以上方法在实际应用中都发挥了重要的作用,但也都存在一些问题。
当前在航天器测控地面站中存在着一些现行技术的问题。
首先是数据传输速度不足。
由于航天器在轨运行时的监测数据量很大,而传统的数据传输方法无法满足实时传输的需求,导致数据传输速度不够快。
其次是数据安全性隐患。
航天器测控地面站中的数据传输往往涉及到一些敏感信息,如航天器的轨道参数、工作状态等。
我国载人航天器测控与通信技术发展

㊀V o l .31㊀N o .6㊀166㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀航㊀天㊀器㊀工㊀程S P A C E C R A F TE N G I N E E R I N G ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第31卷㊀第6期㊀2022年12月我国载人航天器测控与通信技术发展陈晓光㊀易予生㊀丁凯(北京空间飞行器总体设计部,北京㊀100094)摘㊀要㊀梳理了我国神舟载人飞船㊁天舟货运飞船和空间站的测控与通信技术设计状态和发展历程,提出了我国载人航天器测控与通信系统逐步小型化㊁集成化㊁通用化㊁高性能的发展趋势.结合未来载人航天新阶段测控与通信技术的需求,给出了未来载人航天器测控与通信可重构㊁智能化㊁批产化㊁一体化发展的重点方向和关键技术.关键词㊀载人航天器;空间站;地基测控;天基测控;出舱通信中图分类号:V 448㊀㊀文献标志码:A ㊀㊀D O I :10 3969/ji s s n 1673G8748 2022 06 020D e v e l o p m e n t o fT T &CC o m m u n i c a t i o n sT e c h n o l o g yf o rC h i n aM a n n e dS pa c e c r a f t C H E N X i a o g u a n g ㊀Y IY u s h e n g㊀D I N G K a i (B e i j i n g I n s t i t u t e o f S p a c e c r a f t S y s t e m E n g i n e e r i n g ,B e i j i n g 100094,C h i n a )A b s t r a c t :T h e d e s i g n s t a t u s a n dd e v e l o p m e n t o fC h i n a sS h e n z h o um a n n e ds pa c e c r a f t ,T i a n z h o u c a r g o s p a c e c r a f t a n ds p a c es t a t i o n T T&C (t e l e m e t r y ,t r a c k i n g an dc o mm a n d )c o mm u n i c a t i o n s t e c h n o l o g y a r es u r v e y e d .T h ed e v e l o p m e n t t r e n do fm a n n e ds pa c e c r a f tT T&Cc o mm u n i c a t i o n s s y s t e m ,w h i c hi s g r a d u a l l y m i n i a t u r i z e d ,i n t e g r a t e d ,u n i v e r s a la n dh i g h Gp e r f o r m a n c ei si n t r o Gd u c e d .C o mb i n e dw i t h t h e r e q u i r e m e n t s o fT T &Cc o m m u n i c a t i o n s t e c h n o l o g y i n t h e n e ws t a ge of f u Gt u r em a n n e d s p a c e ,t h e k e y d i r e c t i o n s a n d t e c h n o l og i e s f o r th e r e c o n fi g u r a b l e ,i n t e l l i g e n t ,b a t c h p r o d u c Gt i o n a n d i n t e g r a t e d d e v e l o p m e n t o f f u t u r em a n n e d s pa c e c r a f tT T &Cc o m m u n i c a t i o n a r e g i v e n .K e y w o r d s :m a n n e ds p a c e c r a f t ;s p a c es t a t i o n ;g r o u n d Gb a s e d T T&C ;s p ac e Gb a s ed T T&C ;E V A c o mm u n i c a t i o n s收稿日期:2022G10G08;修回日期:2022G12G10基金项目:中国载人航天工程作者简介:陈晓光,男,硕士,研究员,研究方向为载人航天器系统设计和测控通信.E m a i l :s u n r i s e 77@s i n a .c o m .㊀㊀载人航天器测控与通信技术包括测控技术及数据传输技术两部分.载人航天器入轨后,由器上测控与通信分系统和地面站系统㊁中继卫星系统一起,共同建立器地无线测控㊁测量及对地数据传输㊁中继数据传输通信链路,完成对载人航天器状态采集㊁轨道测量㊁运行控制㊁载荷数据下传地面等功能.载人航天器测控与通信系统是航天器在轨与地面沟通和数据传输通信的重要生命线,为载人航天器在轨正常工作提供各项信道保障条件[1G2].㊀㊀近年来,随着微电子㊁软件无线电等技术的发展,涌现了大量应用于测控与通信领域的新技术㊁新产品㊁新思路,呈现出一些新变化㊁新趋势[3G5].本文在梳理和总结我国载人飞船㊁货运飞船㊁空间站测控与通信技术发展现状的基础上,结合测控与通信技术的发展历程,总结提炼了载人航天器测控㊁导航㊁数传㊁星间等方面的发展趋势.最后,归纳并给出了未来载人航天器对测控与通信技术的需求,以及测控与通信技术未来发展的重点方向和关键技术.1㊀测控与通信技术发展现状载人航天测控与通信的主要任务是在天基中继卫星㊁导航星座㊁陆基测控站和海基测控船支持下,完成载人航天器(载人飞船㊁货运飞船㊁空间站)的跟踪测轨㊁遥测遥控㊁中继通信㊁高速数传㊁图像通信㊁话音通信㊁交会对接通信㊁出舱活动通信等功能,见图1.图1㊀载人航天器测控与通信系统F i g 1㊀M a n n e d s p a c e c r a f tT T&Cc o mm u n i c a t i o n s s ys t e m ㊀㊀由图1可知:通过对地测控与通信链路,实现天地遥测㊁遥控㊁话音数据的上下行传输;通过中继链路,实现天基遥测和指令数据㊁图像㊁话音㊁试验数据㊁延时数据㊁平台状态信息的传输;通过我国北761㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展斗(B D)星座,实现定位和测速;通过遥控指令系统,完成整器指令分发与执行;通过空空通信链路,实现目标飞行器㊁追踪飞行器之间的指令㊁遥测㊁定位数据及遥操作图像数据的传输;通过出舱通信链路及舱内外无线通信链路,实现航天员与空间站之间的话音及遥测数据传输.1 1㊀地基测控系统载人航天器地基测控系统主要采用统一S频段测控体制.如图2所示,统一S频段测控集跟踪㊁测距㊁测速㊁遥测㊁遥控等功能于一体,设备简单,可靠性高,测量精度适中,已在我国载人航天器中得到广泛应用.(1)载波调制体制.统一S频段测控采用频分复用调制体制,每个基带信号先调制到自身的副载波上,几个已调副载波合并之后,再对主载波进行角度调制.一般来说,地(海)面站上/下行载波都采用调相体制(P M/P M),航天器上的测控与通信设备采用相参工作体制;或者,地面站采用上行载波调频,下行载波调相体制(F M/P M),航天器上的测控与通信设备采用非相参体制.(2)测距㊁测速体制.纯侧音测距体制或伪随机码(P N码)测距体制,或音码混合体制.采用侧音测距时,最高侧音用来保精度,低侧音用来解距离模糊.测速采用连续播双程相干多普勒测速技术,载波同步后从载波或伪码中提取出多普勒频移进行测速.(3)遥控遥测体制.对上行遥控副载波进行脉冲编码(P C M)/相移键控(P S K)调制,或P C M/多频移键控(M F S K)调制,或P C M/幅移键控(A S K)调制等.编码遥测采用对下行遥测副载波进行P C M/ P S K调制,或P C M/差分相移键控(D P S K)调制.话音㊁数据㊁图像对通信副载波进行P S K或D P S K 调制.图2㊀载人航天器统一S频段测控系统F i g 2㊀U S BT T&Cs y s t e mo fm a n n e d s p a c e c r a f t1 2㊀天基测控系统中继卫星系统作为天基测控通信网,能够有效扩大中㊁低轨道飞行器测控㊁通信覆盖范围;中继终端设备利用我国第2代数据中继卫星系统支持,完成天地双向高速数据传输[6].中继天线终端主要实现功能包括:捕获并跟踪中继卫星信标信号;在中继卫星的可视弧段通过中继信道向地面传输数据;在中继卫星的可视弧段通过中继信道接收地面上行数据;完成规定的前向和返向信道数据处理;进行伪码测距[7G8].天链中继卫星系统利用地球同步轨道上的2~3颗中继卫星实现对载人航天器的跟踪㊁测控㊁通信甚至导航[9],如图3所示.体制上采用扩频测控体制,同时还有高数据率数传体制.采用P C M㊁偏移四相相移键控(O Q P S K)及P C M㊁码分多址(C D M A)㊁二相相移键控(B P S K)数据传输体制,跟踪导航统一采用单通道单脉冲测角㊁伪码测距的单站定轨体制,并利用星本体测控数据提高用户的跟踪导航精度,采用I,Q双通道调制,I路传送短P N码,Q路传送长P N码,短码引导长码捕获来解决无模糊测距和快速捕获问题.861㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀图3㊀载人航天器天基测控系统F i g 3㊀S p a c eGb a s e dT T&Cs y s t e mo fm a n n e d s p a c e c r a f t ㊀㊀2008年9月,神舟七号载人飞船首次使用天链一号01星进行天基测控和跟踪,传回的视频图像清晰,话音质量好,数据可靠,成功实现了我国天基信息传输的重大突破;2011年10月,天链一号01星和02星形成的双星系统,圆满完成神舟八号飞船和天宫一号目标飞行器的交会对接任务,极大地扩展了可数传和测控的轨道弧段,并首次实现同一波束内双目标的捕获跟踪和中继数传;2012年6月,神舟九号载人飞船发射升空,3名航天员成功完成与天宫一号的自动和手动对接任务,并进驻天宫一号,实现了多项首创.在轨13天中,大量数据㊁图像㊁音频㊁电邮及神舟G天宫组合体的测控等信息,通过中继卫星系统高质量地传到地面指控中心,为此次任务的圆满完成提供了有力的保障.1 3㊀导航定位系统载人航天器目前可同时处理我国B D二代卫星定位系统㊁G P S和格洛纳斯(G L O N A S S)卫星定位系统信号,并使用B D+G P S㊁G P S+G L O N A S S进行兼容定位,实现了全部B D和G P S卫星正常跟踪,在进行绝对定位解算前,优先选择B D导航卫星观测量.设备内部对导航处理板进行热备份,B DGG P S导航板采用B D+G P S兼容方式,处理B D卫星B1㊁B3频点和G P S卫星L1频点信号;全球导航定位系统(G N S S)导航板采用G P S+G L O N A S S兼容方式,处理G P S卫星L1和G L O N A S S卫星L1信号.系统框图如图4所示.在交会对接和撤离阶段,追踪飞行器B DGG P S兼容机通过空空通信设备获取目标飞行器原始测量数据,经过差分解算计算出2个飞行器间的相对位置和相对速度.绝对定位精度(3轴,1σ)不大于15m,绝对测速精度(3轴,1σ)不大于0 25m/s.相对测量模式分为载波固定解㊁双差伪距㊁位置差分3种.图4㊀载人航天器定位系统F i g 4㊀P o s i t i o n i n g s y s t e mo fm a n n e d s p a c e c r a f t1 4㊀空空通信系统空空通信子系统实现与来访飞行器间的数据交换,同时满足目标飞行器(天宫一号㊁天宫二号㊁天和核心舱)对追踪飞行器(载人飞船㊁货运飞船㊁光学舱)交会对接通信支持.在交会对接段与来访飞行器的空空通信设备建立双向空空通信链路,并实现手控遥操作任务.空空通信机根据距离远近具备961㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展大㊁小功率切换功能.空空交会对接模式可分为自动交会对接㊁手动遥操作及径向对接3种工作模式.自动交会对接和径向交会对接模式时,双向数据传输速率较低,空空通信采用扩频方式进行通信,空空通信机a/b采用双机热备份方式工作.手控遥操作通信模式下,双向数据传输速率较高,空空通信采用非扩频方式进行通信,空空通信机a/b采用双机发射冷备份方式工作.1 5㊀出舱通信系统在神舟七号飞船航天员出舱活动时,出舱通信子系统提供了超高频(UH F)的无线通信功能,实现了无线状态下出舱航天员与舱内航天员㊁出舱航天员与地面的双向通话及生理遥测数据的传输.空间站出舱通信方案在我国载人航天工程二期出舱方案基础上,重点解决了航天员在舱外跨小区切换和功率的远近效应问题.航天员在舱外活动时,通过在舱内配置出舱通信处理器㊁舱外配置的UH F收发天线与出舱航天服通信设备建立无线双向链路,传输数据包括语音㊁遥测信息等,并实现对舱外活动100%的无线通信覆盖,如图5所示.图5㊀神舟七号和空间站航天员出舱F i g 5㊀A s t r o n a u tE V Ai nS h e n z h o uG7a n dC h i n aS p a c eS t a t i o n1 6㊀图像话音系统我国载人航天工程一期和二期的图像话音设备采用了类似电路交换的设备进行切换,设备种类多,系统复杂,使用不便.鉴于地面因特网通信技术的发展,分组交换技术已经取代电路交换技术,具有切换时间快等很多突出优点,图像话音数据可在因特网上传输㊁处理和交换,再考虑到航天员信息服务㊁显示㊁空间站信息管理等需要,设计了高速通信网,传输图像㊁话音㊁空间站信息㊁航天员办公数据等中高速数据,另外还传输系统网综合数据和舱间通信的数据,以作为系统网的备份.载人空间站舱内㊁外摄像机采用集成化㊁网络化的设计思想,将图像(含伴音)采集㊁压缩编码及网络通信功能集于一身,不需要为摄像机配置专门的图像编码及网络通信接口设备.摄像机内部完成图像模拟信号的模拟/数字(A/D)变换㊁编码压缩,形成数字图像及伴音数据后,通过以太网通信模块的以太网接口直接与通信网交换机连接,实现摄像机的网络接入.载人航天器话音通信采用集中式的话音处理方案,由话音处理器实现所有话音终端的接入㊁管理㊁通信等功能,完成天地会议通话㊁专用通话㊁出舱通信㊁舱内会议等多种模式的话音通信.中继K a频段单址(K S A)信道㊁U S B链路㊁数传链路传输天地话音,互为备份.U S B上㊁下行链路提供2条高级多带激励(AM B E)体制话音通路,包括1路任务话和1路专用话,合计32k b i t/s.中继链路由于带宽允许,提供3条高级语音编码(A A C)体制的话音,包括1路任务话和2路专用话,合计576k b i t/s.2㊀载人航天测控与通信技术发展特点根据载人航天任务需求,载人航天器测控与通信系统的发展分为3个阶段.第一阶段为U S B地基测控;第二阶段为地基测控为主,天基测控为辅;第三阶段为基于天基测控的天地一体化网络通信,地基测控为辅.第一阶段,从神舟一号至神舟五号.从1992年载人航天工程立项至神舟五号载人飞船,测控与通信系统仅有地基测控,采用U S B统一测控体制,同时包括天地话音通信㊁图像传输㊁着落信标机等产品,本阶段测控覆盖率仅为16%.第二阶段,从神舟六号至神舟十一号,以及天宫一号和天宫二号.从神舟六号开始搭载海事终端,神舟七号搭载我国第1套中继终端,首次在国内实现了基于中继卫星系统的天基测控,测控覆盖率在071㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀神舟七号达到了44%.随着我国中继卫星系统的建设,在天宫二号时实现了3颗中继卫星的覆盖,测控覆盖率达到了88%.第三阶段,从天舟一号至空间站建成,包括神舟十二号及后续载人飞船㊁天舟一号至后续货运飞船㊁天和核心舱㊁问天实验舱㊁梦天实验舱及后续的光学实验舱.从天舟一号开始,到空间站三舱,以及后续的光学实验舱,测控与通信系统采用天地一体化网络通信,并首次在国内实现了基于I P 网络的天地通信,实现天地话音㊁图像和载荷数据的网络传输,实现空间站三舱㊁天舟货运飞船㊁光学实验舱的在轨组网通信.表1总结了载人航天器测控与通信技术的发展特点.表1㊀载人航天器测控与通信技术的发展特点T a b l e 1㊀D e v e l o p m e n t c h a r a c t e r i s t i c s o fm a n n e d s p a c e c r a f t T T &Cc o m m u n i c a t i o n s t e c h n o l o g y功能测控技术技术特点应用航天器地基测控㊀统一载波S 频段,遥控为P C M GP S K GP M ,遥测为C M GD P S K GP M ,测距为3~110k H z ㊀分立器件㊁直插元件,遥测16k b i t /s,质量5 1k g㊀神舟一号~神舟八号㊁天宫一号㊁天宫二号㊀集成芯片㊁表贴元件,采用了E S A 标准频率流程,遥测16~64k b i t /s 自适应,采用小型化设计,质量2 5k g㊀神舟九号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱数传㊀S 频段㊀两路768k b i t /s 数据分别为图像话音数据的I 支路㊁飞船平台数据的Q 支路㊀神舟一号~神舟十四号㊁天舟一号~天舟四号天基测控㊀S 链路㊁K a 链路:由高速通信处理器㊁中继综合单元㊁K a接收组件㊁K a 发射组件及中继天线组成,中继天线共用1套展开及伺服机构㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向B P S K+扩频,传输速率20k b i t /s ;K a 前向:S Q P S K ,传输速率50k b i t /s ;K a 返向:S Q P S K ,传输速率1 6M b i t /s ㊀神舟七号~神舟十四号㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向:B P S K+扩频,传输速率20k b i t /s ;K a 前向:S Q P S K ,传输速率5M b i t /s ;K a 返向:S Q P S K ,传输速率144M b i t /s㊀天舟一号~天舟四号㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向:B P S K+扩频,传输速率32k b i t /s ;K a 前向:S Q P S K ,传输速率10M b i t /s ;K a 返向:S Q P S K 和8P S K ,传输速率1 2G b i t /s㊀天和核心舱㊁问天实验舱㊁梦天实验舱(使用二代中继卫星)卫星导航系统㊀接收G P S 导航卫星信号㊀G P S :L 1频段㊀神舟一号~神舟七号㊀兼容B D ,G P S ,G L O N A S S 导航卫星系统㊀B D :B 1,B 3频段;G P S :L 1频段;G L O N A S S :L 1频段㊀神舟八号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱空空通信系统㊀自动交会对接㊁手控遥操作㊁径向交会对接㊁前向交会对接及转位㊀扩频模式为B P S K 调制,传输速率为2 8k b i t /s和28k b i t /s ;非扩频模式为D Q P S K 调制,传输速率为3 55625M b i t /s 和5 725M b i t /s ㊀神舟八号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱出舱通信系统㊀UH F 无线通信:舱通信处理器+舱内外出舱通信天线㊀UH F 无线通信(点对点通信)㊀神舟七号㊀前返向频分㊁码分体制,采用内㊁外环联合功率控制及R a k e 接收技术㊀天和核心舱㊁问天实验舱㊁梦天实验舱图像话音系统㊀M P E G 2/M P E G 4图像压缩算法/H 264编码㊀标清图像:M P E G 2图像压缩算法,单幅768k b i t /s图像(含伴音);话音采用集中混音策略,任务话㊁专用话㊀神舟一号~神舟六号㊀标清图像:M P E G 4图像压缩算法,单幅768k b i t /s图像(含伴音)或双幅384k b i t /s 图像(含伴音);图像编码器集中处理,统一调度,进行 6选2 或 6选1 图像切换;话音采用集中混音策略,任务话㊁专用话㊁协同话㊀神舟七号~神舟十四号㊀高清图像:采用H 264编码;舱内外摄像机采用集成化㊁网络化设计,集成图像采集㊁压缩编码;话音采用集中混音策略,任务话㊁专用话㊁协同话及在轨拨号的I P 电话㊀天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱㊀㊀(1)载人航天测控与通信系统的发展方向具有小型化㊁集成化㊁通用化㊁高性能的特点.(2)导航接收机的从单频到多频,从以G P S 为主份转换为B D 为主份.171㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展(3)在对地数据传输通信方面,数据传输在数据率㊁传输频段㊁设备集成度等方面均取得了较大的进展.速率由低向高㊁单通道向双通道发展㊁分立单机向集成化发展㊁空间站中继数传达到1 2G b i t/s.(4)测控与通信系统为增加鲁棒性,普遍采用了自主管理设计,当诊断出信道或基带因空间环境影响出现故障时进行自主复位或断电操作,使系统能够快速㊁自主恢复,减少了地面人为干预,提升了效率.(5)高速测控与通信㊁B D短报文㊁二代测控中继终端㊁在无地面干预自主测控技术,均已在载人航天器中得到应用验证.3㊀载人航天测控与通信技术发展趋势为满足载人航天发展新阶段对测控与通信技术的需求,载人航天测控与通信技术有以下发展趋势.(1)批产化㊁通用化.通过测控通信产品的标准化㊁模块化,以满足测控通信产品状态统一和批产化的需求.在批生产方面,需要由分立单机装配方式向采用先进构架㊁集成统一单板和无缆化装配方式转换,如采用统一功能板,通过配备不同软件来实现各种功能[10].(2)测控管理自主化㊁高效化.通过无依托自主测控㊁星间数据交互等有效测控手段,满足大规模多航天器的高效测控管理需求.(3)数字化㊁小型化.采用先进的数字技术降低成本,用软件技术实现相关功能,借用先进的工业技术成果,使设备集成度更高㊁性价比更高㊁成本更低.(4)通过推动以激光㊁K a频段高速数据传输为代表的先进技术应用,满足提升通信性能的需求.4㊀发展建议在载人航天测控与通信技术发展趋势牵引下,后续重点研究的几项测控与通信领域关键技术如下.(1)应答机抗干扰抗截获技术.充分利用在研载人航天器,推进扩跳频应答机在轨验证,建立型谱.开展宽带扩跳频技术研究,提升抗干扰性能.(2)导航接收机抗干扰技术.开展高精度抗干扰㊁干扰检测等技术攻关.(3)多模通用化测控终端设计技术.开展 技术状态系列化,硬件平台通用化,特殊模块组合化 先进硬件技术研究工作,应用软件无线电技术,形成多功能㊁多体制㊁通用化的多模测控终端工程化产品.(4)一体化通信架构技术.开展先进通信系统架构研究,基于标准化㊁通用化通信接口及平台处理模块,实现具有可重构㊁智能化能力的批产化一体通信产品.(5)新体制高速数传技术.针对Q/K a频段开展16A P S K/32A P S K高阶调制技术研究,实现自适应编码调制(AM C)技术,完成在轨载人航天器与地面数据传输平均速率最大化.参考文献(R e f e r e n c e s)[1]张越,洪家财.G N S S星间测控技术发展现状与趋势[J].电子测量技术,2018,41(23):117G122Z h a n g Y u e,H o n g J i a c a i.D e v e l o p m e n t t r e n d so fG N S S i n t e rGs a t e l l i t e st e c h n o l o g i e s[J].E l e c t r o n i c M e a s u r eGm e n tT e c h n o l o g y,2018,41(23):117G122(i nC h i n e s e) [2]单长胜,李于衡,孙海忠.中继卫星支持海量航天器在轨测控技术[J].中国空间科学技术,2017,37(1):89G96S h a nC h a n g s h e n g,L i Y u h e n g,S u nH a i z h o n g.T r a c k i n g a n dd a t a r e l a y s a t e l l i t e s y s t e mf o r h u g e n u m b e r s a t e l l i t e c o n t r o l[J].C h i n e s e S p a c e S c i e n c ea n d T e c h n o l o g y,2017,37(1):89G96(i nC h i n e s e)[3]闫林林.卫星测控数传一体化的设计与实现[D].南京:南京理工大学,2018Y a nL i n l i n.D e s i g na n dr e a l i z a t i o nt h eT T&Ca n dd a t a t r a n s m i s s i o n i n t e g r a t e ds y s t e mo f s a t e l l i t e s[D].N a n j i n g: N a n j i n g I n s t i t u t e o fT e c h n o l o g y,2018(i nC h i n e s e) [4]罗大成,刘岩,刘延飞,等.星间链路技术的研究现状与发展趋势[J].电讯技术,2014,54(7):1016G1024L u o D a c h e n g,L i u Y a n,L i u Y a n f e i,e ta l.P r e s e n t s t a t u s a n dd e v e l o p m e n t t r e n d s o f i n t e rGs a t e l l i t e l i n k[J].T e l e c o mm u n i c a t i o nE n g i n e e r i n g,2014,54(7):1016G1024(i nC h i n e s e)[5]C l a r k GJ,E d d y W,J o h n s o nS K,e ta l.A r c h i t e c t u r e f o rc o g n i t i v en e t w o r k i n g w i t h i n N A S A sf u t u r es p a c e c o mm u n i c a t i o n s i n f r a s t r u c t u r e[C]//P r o c e e d i n g so f t h e 34t hA I A AI n t e r n a t i o n a lC o n f e r e n c eo nS p a c eO p e r a t i o n s.W a s h i n g t o nD.C.:A I A A,2016:1G10[6]李佩珊.一体化测控通信传输体制研究[D].成都:电子科技大学,2016L i P e i s h a n.R e s e a r c ho nt h e i n t e g r a t e dT T&Ca n dc oGmm u n i c a t i o n t r a n s m i s s i o ns y s t e m[D].C h e n g d u:U n iGv e r s i t y o fE l e c t r o n i cS c i e n c ea n dT e c h n o l o g y o fC h i n a,2016(i nC h i n e s e)[7]I s r a e lDJ,H e c k l e rG W,M e n r a dRJ,e t a l.E n a b l i n g c o mm u n i c a t i o na n d n a v i g a t i o nt e c h n o l o g i e sf o rf u t u r e271㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀n e a r e a r t hs c i e n c em i s s i o n s[C]//P r o c e e d i n g so f I n t e rGn a t i o n a lC o n f e r e n c eo nS p a c e O p e r a t i o n s,2016.W a s hGi n g t o nD.C.:A I A A,2016:1G9[8]雷厉.航天测控通信技术发展态势与展望[J].电讯技术,2017,57(12):1464G1470L e i L i.D e v e l o p m e n t s t a t u sa n dt r e n d so f s p a c eT T&C a n d c o mm u n i c a t i o n t e c h n o l o g y[J].T e l e c o mm u n i c a t i o n E n g i n e e r i n g,2017,57(12):1464G1470(i nC h i n e s e) [9]蒋罗婷.国外小卫星测控通信网发展现状和趋势[J].电讯技术,2017,57(11):1341G1348J i a n g L u o t i n g.D e v e l o p m e n t a n d t r e n d s o f f o r e i g n T T&Ca n d c o mm u n i c a t i o nn e t w o r k s f o r s m a l l s a t e l l i t e s [J].T e l e c o mm u n i c a t i o n E n g i n e e r i n g,2017,57(11):1341G1348(i nC h i n e s e)[10]饶启龙.航天测控技术及其发展发向[J].信息通信技术,2011,5(3):77G83R a oQ i l o n g.S u r v e y o nd e e p s p a c eT T&Ca n d c o mm uGn i c a t i o n t e c h n o l o g y[J].I n f o r m a t i o na n dC o mm u n i c aGt i o n sT e c h n o l o g i e s,2011,5(3):77G83(i nC h i n e s e)(编辑:夏光)371㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展。
测控系统 (3)

测控系统介绍测控系统是指一种利用各种传感器、仪器和控制装置进行实时监测、测量、控制和管理的系统。
它可以应用于各种领域,如工业生产、实验室研究、环境监测等。
测控系统不仅可以提供数据采集和实时监控功能,还可以实现自动化控制和远程管理,为生产和研究提供了更高的效率和便利。
测控系统的组成测控系统一般由传感器、信号传输、数据处理和控制装置等组成。
1. 传感器传感器是测控系统中的关键组件之一,其作用是将被测量转化为电信号,并将其送入测量仪器或控制器。
传感器的选择应根据被测量的属性和环境条件来确定,常见的传感器有温度传感器、压力传感器、湿度传感器等。
2. 信号传输信号传输是指将传感器采集的电信号传输到数据处理单元或控制装置的过程。
根据传输距离和传输速率的不同,信号传输可以采用有线传输或无线传输方式。
有线传输包括常见的串口、以太网和CAN总线等,无线传输包括蓝牙、Wi-Fi和LoRa等。
3. 数据处理数据处理是测控系统中的核心环节,它负责对采集到的信号进行数字化、滤波、放大等处理,以得到准确的测量结果。
数据处理还可以包括数据压缩、数据存储和数据分析等功能,并通过人机界面展示给用户。
4. 控制装置控制装置是测控系统的控制中心,它接收数据处理单元处理后的信号,并根据一定的算法和逻辑进行控制操作。
控制装置可以是嵌入式控制器、PLC、工控机等,根据具体的应用场景和要求来选择。
测控系统的应用测控系统广泛应用于各个领域,如工业生产、实验室研究、环境监测、医疗设备等。
1. 工业生产在工业生产中,测控系统可以用于生产过程的监测和控制。
通过实时采集机器的参数,如温度、压力、流量等,可以实现对生产过程的精确控制和故障检测。
测控系统还可以实现生产数据的记录和分析,为生产过程的改进提供可靠数据支持。
2. 实验室研究在科学研究和实验室环境中,测控系统可以帮助研究人员采集实验数据并对其进行分析。
通过测量和控制实验条件,可以提高实验的准确性和可重复性。
航天测控和通信系统(王新升)

9
2. 卫星测控信道传输及测控的基本原理
2.2航天通信技术的三种情况
对地观测卫星,除测控信道(点频)外,采用另一个 信道单独传送高数据率的遥感数据,该类信道是单 向下行; 载人航天器,除测控信道外,其通信信道中除对地 观测,空间科学实验和空间生产数据外,还有航天 器之间的话音通信,电视信号等,数据传输双向交 互,具有上行和下行; 专门分化出经营通信及广播的卫星,通信为双向, 广播为单向的。
LS LA LP
极化损耗;
L RP
为接收天线指向损耗; 为天线增益;
GR
L r c 接收天线至接收机之间馈线带来的馈线损耗; SF
为系统设计时预留的安全因素
14
3. 航天器测控与通信分系统设计
3.1遥测分系统设计
1)遥测基带信号格式
帧同 步码 帧号 1路 2路 3路 全帧 计数 副1'路 副2'路 N-3 路 N-2 路
d l ct l
;其中距离差是由两
个接收点接收电磁波的相位差 t 计统、角饲服系统、天线机座及与上述系统相配套的计算 机、时统、角引导设备等组成,原理是直接测出接收跟踪天线波束的指向,测角的精度取决于天线波 束的宽度,跟踪饲服系统的精度,接收机灵敏度等因素。
CAST2000平台
21
3. 航天器测控与通信分系统设计
3.3 小卫星测控系统实例
*小卫星的主要技术指标
22
3. 航天器测控与通信分系统设计
3.4跟踪分系统设计
跟踪分系统的功能包括:角跟踪、测距、测速功能
1)角跟踪方法
a)干涉仪法 卫星发出的无线电传输到地面相距为 L 的两个不同接收点 R1、R2 的距离差 d,则 c o s
航空航天测控系统

3.深空通信技术
深空通信距离的遥远,除了导致传输信号强度的 巨大损耗外,还会引起通信的极大时延,
3.深空通信技术
为了应对深空通信中信号的巨大损耗和时延,通常采 用以下措施:
* 提高载波频率; * 采用低温制冷的低噪声放大器; * 增加地面站接收天线和探测器上对地天线的口径; * 增加大发射功率,提高功率利用率,降低系统解调门限信噪比; * 提高频带利用率,减少对邻道信号的干扰; * 采用信道编码、译码技术以获取编码增益; * 采用信源压缩技术以减少传输数据量; * 不依赖地面的实时控制,充分保障探测器自身的自主控制能力 。
2.航空航天测控系统的发展
(1)分离测控体制发展阶段
最初测控系统是由相互分离的跟踪测轨设备 、遥测设备、遥控设备组合而成的, 因而称之为分 离测控系统。
2.航空航天测控系统的现状与发展
(1)分离测控体制发展阶段
单台雷达
被动式基 线干涉仪
卫星跟踪和数据 获取网(STADAN)
2.航空航天测控系统的发展
谢谢!!
航空航天测控系统
• 航空航天测控系统的概念 • 航空航天测控系统的发展 • 深空通信技术 • 美国深空测控通信网
2.航空航天测控系统的发展
测控体制发展中的三个里程牌, 可划分为下列三个发 展阶段: (1)分离测控体制发展阶段 (2)统一载波测控体制发展阶段 (3)跟踪与数据中继卫星系统(Tracking and Data RelaySatellite System) 体制发展阶段
航空航天测控系统
• 航空航天测控系统的概念 • 航空航天测控系统的发展 • 深空通信技术 • 美国深空测控通信网
4.美国深空测控通信网
美国深空测控通信网简称深空 网,即DSN(Deep Space Network)。
航天测控通信原理及应用

航天测控通信原理及应用航天测控通信原理及应用随着现代科技的不断发展,航天技术也得到了迅速的发展。
而航天测控通信就是航天技术中不可缺少的一部分。
下面将从原理和应用两个方面介绍航天测控通信。
一、原理1.航天测控的基本原理:航天器在太空中运行时,通过地面站向航天器发送指令,收集空间信息,控制航天器,保证其安全降落。
这就需要航天测控系统。
2.航天测控通信的原理:在航天测控过程中,必须采用通信方式完成地面站和卫星之间的数据传输。
这就是航天测控通信。
通信利用无线电波传播。
一般采用发射功率较小的卫星遥测遥控技术,通过地面站向卫星发出指令,并从卫星收到数据,完成数据传输。
3.航天测控通信系统的构成:航天测控通信系统由地面站和卫星两部分组成。
地面站主要包括天线、收发设备、终端设备、数据处理设备等。
其中最主要的装备为卫星接收机和卫星发射机。
卫星上装配有天线控制装置(ACU)、卫星通信模块、遥控遥测模块等电子设备。
二、应用1.卫星通信:在航天测控中,卫星通信是必不可少的一部分。
利用航天测控技术的无线电波传导特点,将指令传输到卫星,使卫星按指令完成任务。
2.星载测控:随着卫星的发展,测控技术也不断进步。
星载测控技术就是指在卫星上安装测控设备,实现卫星测控的一种技术。
3.深空测控:深空测控是指对行星、卫星、彗星等天体进行跟踪观测,并根据观测结果进行数据分析和处理。
4.测量和确定地球重力场:航天测控通信技术也可以用于测量和确定地球的重力场,帮助科学家更好地研究地球的内部结构和演化历史。
综上所述,航天测控通信是航天技术中不可缺少的一部分,它为航天器的安全运行提供了难以替代的保障。
同时,在工况监测、环境监测、人类生活等多个领域也有广泛应用。
随着信息技术的不断进步,航天测控通信技术也将不断完善和发展。
航空航天工程师的航空器通信和导航系统设计原理

航空航天工程师的航空器通信和导航系统设计原理航空航天工程师在航空器通信和导航系统设计方面发挥着重要的作用。
本文将介绍航空器通信和导航系统设计原理,并探讨其在航空航天领域的重要性。
一、航空器通信系统设计航空器通信系统是为了在飞行中实现航空器与地面通信以及航空器之间的通信而设计的。
它包括无线电通信和数据链通信两个主要部分。
1.无线电通信无线电通信是航空器与地面的主要通信方式之一。
其原理是利用无线电波进行信号传输。
航空器通过无线电台与地面控制站进行通信,实现航空器与地面的信息传输和交流。
在设计航空器的无线电通信系统时,需要考虑频率使用、信号传输强度、信道选择等因素。
2.数据链通信数据链通信是指通过数据链路实现航空器之间相互通信的方式。
数据链通信采用数字化的方式传输信号,相比于无线电通信具有更高的带宽和更稳定的传输性能。
在设计航空器的数据链通信系统时,需要考虑数据格式、传输速率、加密技术等因素。
二、航空器导航系统设计航空器导航系统是为了确定航空器在空中准确定位、确定航向和确定位置而设计的。
它包括惯导系统、GPS定位系统和地面导航系统等。
1.惯性导航系统惯性导航系统是利用航空器内部的陀螺仪和加速度计等设备,通过对航空器的运动状态进行测量和分析,实现航空器的准确定位和航向确定。
惯导系统具有较高的精度和可靠性,但随着时间的推移会出现累积误差。
2.GPS定位系统GPS定位系统是通过接收地面卫星发射的GPS信号,利用三角测量和时差测量等原理来确定航空器的位置和速度。
GPS定位系统具有全球覆盖、高精度和高可用性的特点,成为航空器导航系统中重要的一部分。
3.地面导航系统地面导航系统主要包括航空器地面雷达和无线电导航设备等。
航空器地面雷达通过接收航空器发送的信号,确定航空器的位置和高度。
无线电导航设备包括VOR导航台、ILS系统等,通过提供导航信号来辅助航空器进行导航。
三、航空器通信和导航系统在航空航天领域的重要性航空器通信和导航系统是航空航天工程中不可或缺的一部分。
航空航天信息概论第2讲机载通信系统

短波通信
短波通信是指利用频率为3MHz - 30MHz的电磁 波进展的无线电通信。
与其他通信手段相比,短波通信有通信距离远、 机动性好、生存能力强等独特优点,被认为是有 效而经济的远程通信手段。
短波通信
短波波段主要以天波的方式传播。天波依靠电离层对电波 的反射,可建立上千千米的远距离通信链路。
随着飞机性能的不断提高,战场敌我态势瞬息万 变,战机稍纵即逝,话音通信方式已不能满足实 时掌握战场态势的要求。特别是雷达、各种传感 器高速开展,大量的情报再也无法用话音来传送, 机载数据链路应运而生。
数据链
数据链是为了发送和接收数据而把两点连接起来 的方法。数据链包括发送和接收数据终端,以及 控制数据传输过程的链路协议。
超短波通信
超短波通信的频率覆盖30MHz至几个GHz的VHF 和局部UHF频段。超短波信号主要靠直线方式传 输,称为视距通信。当飞机高度为10000米,地 面天线高度为15m时,受地球曲率影响,视距大 约为400km。这样,超短波地一空最大通信距离 一般为350km左右。超短波通信的工作频带较宽, 可以传输多路话音和高速率数据信号。
机载通信系统
机载通信的历史
无线电通信是利用无线电波来传输信息,它起源于19世 纪末。
1864年,英国人麦克斯韦从理论上预言了电磁波的存在, 并证明了它在真空中是以光速传播的。
德国人赫兹于1887年用实验方法实现了电磁波的产生和接 收。
1895年,意大利人马可尼和俄国人波波夫分别进展了无线 电通信实验,并研制成功无线电收发信机。
短波信道除自由空间传播损耗外,还有电离层吸收损耗、 地面反射损耗和系统额外损耗等附加损耗。
在短波通信信道中还存在着干扰,主要有大气噪声、工业 干扰和其他电台的干扰。
航天智能测运控系统体系架构与应用-航天工程论文-工程论文

航天智能测运控系统体系架构与应用-航天工程论文-工程论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:随着商业航天的快速发展,各类卫星星座项目的持续推进,航天器的商业应用日趋普及,在轨航天器呈现出数量多、平台多、种类多、用途广等趋势,重点依靠资源投入和人力增加的测控模式,已经难以适应未来多星、多任务、多用户的测控服务的发展需要。
近年来,人工智能技术不断取得突破,在多类单项测试中超越人类。
将人工智能的发展成果应用到测控系统中,在自主测控、自主故障诊断、任务规划、资源分配方面,采用智能化方法,促进测运控以平台载荷为核心的管理模式向以数据业务为核心的管理模式转变, 提高测控任务的完成效率和资源利用率。
关键词:测控; 智能化; 故障自主诊断; 自主测控; 数据挖掘; 机器学习;1 、商业航天智能测运控需求分析1.1 、航天器数量快速增加近年来,万物互联成为人类社会的基本要求,许多全球性或者全天候航天任务越来越复杂,卫星将在今后一个时期内迎来快速发展,航天器的在轨数量将会激增。
卫星星座在信息传输、定位导航、侦察观测等领域,具有全球覆盖、实时性好等先天优势,应用日益广泛。
星座中卫星的数量从数十颗,发展到数百颗,数千颗,Space X 公司布局的Starlink星座计划发射约42000颗卫星。
星座构型在卫星轨道基础上,通过合理的时空布局,适应各种应用功能的需要。
1.2 、测运控系统日益复杂在轨航天器数量将越来越多,规模越来越大,类型与应用模式越来越复杂,管控要求和难度大幅提升。
相对于数量激增的在轨航天器,地面测运控系统将面临着数量不足、设备短缺的问题。
小卫星需要大天线,但是小卫星的寿命通常比较短,而地面测运控设备投入又比较大,因此要求地面测运控资源必须能够组网重复使用。
在传统单颗卫星的测运控任务外,对多星的同时测运控支持、多星及星座在轨运行管理等,对地面测运控网络如何提供及时、有效、灵活的测运控服务提出了极高的要求,增加了航天测运控系统的负担和操作复杂性。
航天测控的原理和应用

航天测控的原理和应用一、航天测控的概述航天测控是指通过测量和控制手段对航天器进行监测、导航、控制和处理数据的技术,是航天任务顺利完成的关键环节。
航天测控系统由地面站和航天器组成,通过通信链路进行信息的传递,从而实现对航天器的测量和控制。
二、航天测控的原理航天测控的原理主要涉及到航天器的测量和控制两个方面。
2.1 航天器的测量原理航天器的测量是指对航天器各种状态参数和数据的获取和分析,包括航天器的位置、速度、姿态、姿态稳定性等。
测量主要通过以下几种方式实现:•遥测测量:通过航天器上的传感器采集航天器的姿态、温度、气压等数据,并通过通信链路传输到地面站进行分析和处理。
•测距测速:通过测距仪和测速仪等设备,对航天器与地面站之间的距离和相对速度进行测量。
•星敏感器测量:通过星敏感器对航天器相对于恒星的视线角进行测量,从而确定航天器的姿态。
•惯性测量单元:通过惯性测量单元对航天器的加速度和角速度进行测量,从而获取航天器的位置和速度。
2.2 航天器的控制原理航天器的控制是指通过对航天器的姿态、轨道、飞行速度等参数进行控制,确保航天器按照任务要求进行运行。
控制主要通过以下几种方式实现:•推力控制:通过推进系统对航天器施加推力,改变航天器的轨道和速度。
•姿态控制:通过姿态控制系统对航天器的姿态进行调整,保持航天器稳定。
•电动控制:通过电动机、电液系统等设备对航天器的各个部件进行控制,实现对航天器的各种功能的操作和控制。
•控制算法:通过编写控制算法,对航天器的状态和参数进行监测和控制,确保航天器按照任务要求进行运行。
三、航天测控的应用航天测控技术在航天领域有着广泛的应用,主要包括以下几个方面:3.1 航天器的轨道控制航天测控技术可以通过对航天器的推力、姿态和速度等参数进行控制,实现对航天器轨道的调整和控制。
例如,对于地球同步轨道的通信卫星,需要保持恒定的轨道位置,航天测控技术可以实现对其轨道位置的控制,从而确保通信卫星能够始终覆盖特定地区。
测控系统通信与网络

测控系统通信与网络1. 引言测控系统通信与网络在现代工业和科学研究中起着至关重要的作用。
随着科技的快速发展和网络技术的普及,越来越多的测控系统开始采用通信和网络来实现数据传输和远程控制。
本文将介绍测控系统通信与网络的基础知识、常用的通信方式以及网络技术的应用。
2. 测控系统通信基础知识2.1 通信原理通信是指信息在发送方和接收方之间的传递过程。
在测控系统中,通信主要用于传输传感器的测量数据、控制命令和状态信息等。
通信原理主要包括信号的产生、调制与解调、传输和接收等基本过程。
2.2 通信协议通信协议是指在通信过程中约定的一套规则和格式,用于确保信息的正确传输和处理。
常见的通信协议包括串口通信协议(如RS-232、RS-485)、以太网通信协议(如TCP/IP、UDP)等。
2.3 数据传输方式数据传输方式包括串行传输和并行传输两种。
串行传输是指逐位地将数据进行传输,适用于远距离传输;并行传输是指同时传输多个数据位,适用于短距离高速传输。
3. 常用的通信方式3.1 串口通信串口通信是指通过串行接口进行数据传输的方式。
串口通信具有简单、稳定的特点,适用于小型测控系统。
常见的串口通信协议包括RS-232和RS-485。
RS-232是单工通信,即只能单向传输数据;RS-485是半双工通信,可以双向传输数据。
3.2 以太网通信以太网通信是指基于以太网协议进行数据传输的方式。
以太网具有传输速度快、支持并行传输等优点,被广泛应用于大型测控系统。
常见的以太网通信协议包括TCP/IP、UDP等。
3.3 无线通信无线通信是指通过无线信号进行数据传输的方式。
无线通信具有无需布线、灵活性高等特点,适用于移动测控系统。
常见的无线通信技术包括Wi-Fi、蓝牙、ZigBee等。
4. 网络技术的应用4.1 局域网局域网是指在一定范围内建立的互联网络。
测控系统可以通过局域网进行设备之间的数据传输和通信。
常见的局域网技术包括以太网、令牌环网等。
航天测控.ppt

系统组成
① 跟踪测量系统:跟踪航天 器,测定其弹道或轨道。 ② 遥测系统:测量和传送航 天器内部的工程参数和用敏 感器测得的空间物理参数。 ③ 遥控系统:通过无线电对 航天器的姿态、轨道和其他 状态进行控制。 ④ 计算系统:用于弹道、轨 道和姿态的确定和实时控制 中的计算。 ⑤ 时间统一系统:为整个 测控系统提供标准时刻和时 标。 ⑥ 显示记录系统:显示航 天器遥测、弹道、轨道和其 他参数及其变化情况,必要 时予以打印记录。 ⑦ 通信、数据传输系统: 作为各种电子设备和通信网 络的中间设备,沟通各个系 统之间的信息,以实现指挥 调度。
总体设计中必须解决的问题
在总体设计中必须解决的问题有:①全系统 所要具备的功能和实现这些功能的手段;②测 控站布局的合理性;③控制的适时性和灵活性; ④各种设备的性能、速度和精度;⑤长期工 作的可靠性;⑥最低的投资和最短的建成时 间。
电子测控系统
跟踪测量、遥测和遥控系统是整个测控系统的基本部分。电子测控 跟踪测量、遥测和遥控系统是整个测控系统的基本部分。 和遥控系统是整个测控系统的基本部分 系统的优点是可以对航天器全天候跟踪, 系统的优点是可以对航天器全天候跟踪,而且有较好的灵活性和足够的 精度。从系统工程的角度来看,对航天器跟踪测量所得的数据, 精度。从系统工程的角度来看,对航天器跟踪测量所得的数据,经过计 可给出弹道、轨道或位置的信息;而遥测所提供的数据,经过处理、 算,可给出弹道、轨道或位置的信息;而遥测所提供的数据,经过处理、 分析可给出航天器的状态信息;它们都是系统中反馈回路的重要信息源。 分析可给出航天器的状态信息;它们都是系统中反馈回路的重要信息源。 遥控则是控制系统中的执行机构。 遥控则是控制系统中的执行机构。 电子测量和控制系统的地面部分, 电子测量和控制系统的地面部分,必须与装在航天器上的电子设备 相配合才能完成测控任务。对于测量, 相配合才能完成测控任务。对于测量,航天器上必须有相应的信标机或 应答机,它们发回地面跟踪和测速用的射频信号, 应答机,它们发回地面跟踪和测速用的射频信号,应答机还发回测距信 对于遥测, 息。对于遥测,航天器上必须有检测各种参数的传感器和发送这些参数 的射频发射机。对于遥控,航天器上必须有指令接收机。因此, 的射频发射机。对于遥控,航天器上必须有指令接收机。因此,航天器 上的和地面的两部分电子设备在设计时应该结合起来统一考虑。 上的和地面的两部分电子设备在设计时应该结合起来统一考虑。 为了提高测量的精确性和扩大信息的传输量, 为了提高测量的精确性和扩大信息的传输量,测控设备所用的无线 电频率大部分已经提高到微波波段。为了减少航天器上电子设备的重量、 电频率大部分已经提高到微波波段。为了减少航天器上电子设备的重量、 体积,特别是要减少天线的数目, 体积,特别是要减少天线的数目,将各种测控功能适当地综合在一个统 一的射频载波上是一个重要的发展。这种系统称为微波统一测控系统 微波统一测控系统。 一的射频载波上是一个重要的发展。这种系统称为微波统一测控系统。 中国研制的微波统一测控系统,灵活多用 可进行单站或多站测量。 灵活多用,可进行单站或多站测量 中国研制的微波统一测控系统 灵活多用 可进行单站或多站测量。
测绘技术卫星测控系统介绍

测绘技术卫星测控系统介绍随着科技的不断发展,测绘技术在各个领域的应用变得愈发重要。
而测绘技术卫星测控系统作为测绘技术领域的重要组成部分,也逐渐受到人们的关注。
本文将对测绘技术卫星测控系统进行介绍,包括其定义、组成以及应用等方面。
通过本文,读者能够了解测绘技术卫星测控系统的基本情况,以及其在测绘技术领域中的重要性。
首先,我们来了解一下测绘技术卫星测控系统的定义。
测绘技术卫星测控系统是指通过卫星对地球上的地理信息进行测量、记录和处理的系统。
它由多个组件组成,包括地面站、通信系统以及测量和控制设备等。
这些组件相互配合,实现了对卫星的监控和操控,同时完成对地球地理信息的获取和处理。
测绘技术卫星测控系统的组成包括地面站、通信系统和测量控制设备。
首先,地面站是测绘技术卫星测控系统最重要的组件之一。
地面站主要用于与测绘技术卫星进行通信,接收和发送指令,以控制卫星的运行和测量任务。
通信系统是地面站与卫星之间的纽带,保证了双方能够进行有效的通信。
测量控制设备是对卫星进行测量和控制的关键设备,它通过传感器和执行器实现对卫星位置、姿态等参数的测量和控制。
测绘技术卫星测控系统在测绘技术领域中有着广泛的应用。
首先,它可以用于地图制作和更新。
通过测绘技术卫星测控系统,可以获取高精度的地理信息数据,包括地表地貌、地理坐标等。
这些数据可以用于地图的制作和更新,为人们提供精准的地理信息服务。
其次,测绘技术卫星测控系统还可以用于灾害监测和预警。
卫星可以对灾害发生地区的地理信息进行实时监测,及时获取相关数据,并通过地面站传输给指挥中心,为灾害的预防和救援提供支持。
此外,测绘技术卫星测控系统还可以应用于资源调查和环境监测等方面。
测绘技术卫星测控系统的发展也面临着一些挑战。
首先,技术的不断更新迫使测绘技术卫星测控系统必须不断更新和改进。
例如,随着地球观测技术的发展,对地球数据的要求越来越高,卫星测绘技术也需要不断提高,提供更精准的地理信息数据。
航天测控知识点总结高中

航天测控知识点总结高中一、航天测控概述航天测控是指对航天器进行姿态测量、轨道测量、姿态控制及导航等操作,是航天领域的重要组成部分。
航天测控系统是航天任务成败的关键,主要包括航天器姿态测量与控制、航天器轨道测量与控制、通信与地面站、数据处理与传输、导航与授时等内容。
下面将结合航天测控系统的构成以及关键技术进行详细的介绍。
二、航天测控系统构成航天测控系统主要由地面站和航天器组成,地面站是航天器与地面之间的桥梁,起到与航天器通信、接收数据、发送指令等作用。
而航天器中包含了姿态测量与控制、轨道测量与控制、通信与数据系统等子系统。
1.姿态测量与控制姿态测量与控制是指对航天器的姿态(包括姿态角、角速度、角加速度等)进行测量与控制,以确保航天器在航天任务中保持特定的姿态。
姿态测量可以通过陀螺仪、陀螺组和星敏感器等设备来进行,而姿态控制可以通过推进装置、姿态控制装置等设备来实现。
2.轨道测量与控制轨道测量与控制是指对航天器轨道的测量与控制,在航天任务中保持航天器的轨道稳定。
轨道测量可以通过地面测控系统和航天器自身测控设备来实现,而轨道控制则可以通过推进装置、空气动力学控制等来实现。
3.通信与地面站通信与地面站是指航天器与地面之间的通信与数据传输系统,地面站主要包括地面测控站和卫星通信站等,通过这些地面站与航天器进行通信。
4.导航与授时导航与授时是指航天器在航天任务中的导航与定位系统,以及时间授时系统。
导航与授时可以通过全球定位系统、星座定位系统、时间授时系统等来实现。
5.数据处理与传输数据处理与传输是指航天器中的数据处理系统、存储系统以及数据传输系统,用于对航天器的数据进行处理、存储和传输。
三、航天测控关键技术航天测控系统中,涉及了许多关键技术,下面将对其中的一些关键技术进行介绍。
1.姿态测量与控制技术姿态测量与控制技术是航天测控中的关键技术,主要包括陀螺仪、星敏感器、姿态控制装置等技术。
陀螺仪是一种能够测量角速度和角度的装置,可以通过陀螺仪来实现对航天器姿态的测量。
航天测控通信系统多业务传送设备(SMSTP)技术

源 I 通 盘 盘 c c 盘 ( 盘 源 西1 东1 B) 盘 1 盘 道 ( 或数 ( A) C)
( ) ( ) 盘 1 1 2 据盘
盘 盘 理 盘
音 通信 、帧中继交换等子 系统 。由于地
球 曲率的影响 ,以无线 电微 波传播为基 础的测控 系统 ,用一个地 点的地面站不 可能实现对运 载火箭 ,航 天器进行全航
程 观 测 ,需 要 用 分 布 在 不 同 地 点 的 多 个
以太 网 接
口
一 L 园j
]窭 垫厂
一
^P ,AS I
公 公务话机 务 E 1 支
El
叉 路
E 1 支
r 监 时 O 'Q T 路 Hf H 数 控 钵 , , 处
电 I 据 电
OL T T OL
处 理
路 处
理 。结合综合 网管系统 ,提供对各单 元 接 ,来 自东侧的 S TM一1 光信号 则经东
图 1 MS P 能原理模 型 S T 功
L 图像 、电视和 电话 等信息 的互 连互通 , 也 可以将 以太 网业 务适配 到 MP S层 ,
是 关系航天任务 成败的关键 所在 。
了网管配 置难 度 。L AS可以根据业务 C
然 后 映 射 到 RP 层 ,最 后 映 射 到 S R DH 流量对所分配 的虚容器带宽进行动态调 通 道 中传 送 。
路带 宽 ,提 高 了传送效 率 ,并大大简 化 能力 ,在 实际应 用中既可以配置作传输
圈 今・3 电0 日2月 子0 8 年
维普资讯
航空航天数据总线技术综述(一)

航空航天数据总线技术综述(一)国科环宇航空航天数据总线技术发展综述(一)70年代以来,随着微电子、计算机、控制论的发展,使得航空电子系统的发展更为迅速。
1980年美国专门制定了军用1553系列标准和ARINC系列标准,使数据总线更加规范化。
目前自动化程度较高的军、民用飞机,如F-16、F-117、幻影2000、空中客机A340等都采用了数据总线技术。
数据总线技术在我国航空电子系统设计中已有十几年的设计和使用经验,本文针对具有代表性的总线标准,包括MIL-STD-1553B、ARINC429、MIL-STD-1773、ARINC629、STANAG3910、RS485及CAN总线技术进行介绍。
-STD-1553BMIL-STD-1553B总线全称为飞行器内部时分命令/响应式多路数据总线,它由美国自动化工程师协会在军方和工业界的支持下制定,正式公布于1978年,1986-1993年进行了修改和补充。
我国与之对应的标准是GJB289A-97。
该总线采用冗余的总线型拓扑结构,传输数据率可达1 Mb/S,足以满足第三代作战飞机的要求。
1553B总线系统主要由总线控制器BC和远程终端RT和组成,其字长度20bit,数据有效长度为16bit,半双工传输方法,双冗余故障容错方式,传输媒介为屏蔽双绞线,1553B总线的冗余度设计,提高了子系统和全系统的可靠性。
1553B总线的主要功能是为所有连接到总线上的航空电子系统提供综合化、集中式的系统控制和标准化接口。
该总线技术首先运用于美国空军F-16战斗机。
在过去的30年中,MIL-STD-1553B已成功地应用于多种战机,并且成功应用于其它控制领域,如导弹控制、舰船控制等,在海军和陆军的武器和维护系统中已经开始采用1553B总线。
随着国防现代化的建设和武器系统的升级换代,我军也开始将1553B协议大量应用到武器系统的设计中。
2.ARINC429ARINC429总线协议是美国航空电子工程委员会(Airlines Engineering Committee)于1977年7月发表并获得批准使用的,它的全称是数字式信息传输系统(DITS)。
航天测控通信原理及应用新视角

航天测控通信原理及应用新视角航天测控通信是指在航天器发射、在轨运行和返回过程中,通过测量、控制和通信手段对航天器的运行状况进行监测和控制,并与地面设备进行数据交流的技术。
在航天工程中,测控通信起着至关重要的作用,它不仅直接影响到航天器的运行安全和任务成功,还对科学研究和遥感探测等领域的发展起到推动作用。
本文将从新视角探讨航天测控通信原理及应用的多个方面。
一、航天测控通信的原理及技术1. 测量技术航天测控通信中的测量技术包括航天器的姿态测量、轨道测量和运行参数测量等。
姿态测量可以通过陀螺仪、星敏感器和加速度计等传感器来实现;轨道测量则可以利用地面站的测角、测频和测时等手段来获取航天器的轨道信息;而运行参数测量主要是监测航天器的电力、温度和气压等运行参数。
这些测量技术的准确性和精度对航天任务的顺利进行起着决定性的作用。
2. 控制技术航天测控通信中的控制技术包括航天器轨道控制、姿态控制和能源管理等方面。
轨道控制旨在根据任务需求,通过火箭发动机的点火、停火和推力调整等手段,使航天器达到预定的轨道;姿态控制则通过推进器、陀螺仪和姿态控制器等设备,对航天器的姿态进行控制,保证其朝向正确的方向,并稳定运行。
能源管理是指对航天器电力系统的管理和优化,以提供稳定的电源供应和有效能量利用。
控制技术的高效应用能够保证航天器的准确运行和稳定控制。
3. 通信技术航天测控通信中的通信技术主要包括天线系统、调制解调器和通信协议等。
天线系统负责航天器与地面站之间的信号传输,通过天线的定向接收和发射,实现双向通信。
调制解调器则是将数字信号转换为模拟信号,或将模拟信号转换为数字信号,以实现航天器与地面设备之间的信号转换和数据传输。
通信协议则是约定双方通信规则和数据格式的一系列约定。
二、航天测控通信的应用领域1. 载人航天载人航天是航天工程中最具挑战性和技术含量最高的领域之一。
测控通信在载人航天中起着重要作用,如实时监测航天器的状态、提供与地面的通信以及保障航天器的安全返回等。
测控通信系统的工作原理

测控通信系统的工作原理测控通信系统是指一种用于采集、传输、处理和控制实时数据的系统。
它包括了传感器、数据采集设备、通信设备、计算机处理和控制单元等多个部分。
测控通信系统的工作原理可以通过以下几个方面来详细说明。
首先,在测控通信系统中,传感器是非常重要的组成部分。
传感器可以通过感知物理量的变化,将其转换为对应的电信号。
常见的传感器包括温度传感器、压力传感器、湿度传感器等。
传感器是整个系统的源头,其准确性和可靠性对整个系统的性能至关重要。
其次,数据采集设备是用于采集传感器输出的电信号,并将其转换为数字信号的设备。
数据采集设备通常包括模数转换器(ADC)和信号调理电路。
模数转换器将模拟信号转换为数字信号,信号调理电路则对信号进行放大、滤波等处理,以提高信号质量和可靠性。
数据采集设备的设计能够确保传感器的输出准确、稳定和可靠。
然后,通信设备是用于传输采集到的数字信号的设备。
通信设备可以使用有线或无线通信技术,实现数据的传输。
常见的有线通信技术包括以太网、RS-232、RS-485等,而无线通信技术包括Wi-Fi、蓝牙、ZigBee等。
通信设备的选择依据系统的要求和实际应用环境来确定。
接下来,计算机处理和控制单元是测控通信系统中的核心部件。
它负责接收、存储、处理和分析采集到的数据。
计算机可以使用专用的硬件设备,也可以通过软件实现。
在处理数据时,计算机可以进行数据分析、绘图、报警、控制命令等操作。
计算机处理和控制单元的性能和稳定性直接影响到系统的实时性和可靠性。
最后,人机界面是测控通信系统中与用户进行交互和监控的接口。
人机界面可以采用各种形式,如计算机界面、触摸屏、显示器等。
通过人机界面,用户可以实时监视系统的状态、设置参数、查看数据曲线等。
人机界面的友好性和易用性是测控通信系统的一个重要考虑因素。
综上所述,测控通信系统通过传感器采集物理量的变化,通过数据采集设备将模拟信号转换为数字信号,然后使用通信设备传输数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航天测控数传通信系统概述
1 应用背景
数传系统做为航天测控数传通信系统的组成部分,在未来天地一体化信息网络系统建设中发挥越来越重要的作用。
应用领域如下:
1)气象、测绘、航侦、预警、侦察等卫星开展业务工作,向地面发送遥感信息。
2)接收空间导航卫星发射的无线电信号,形成定位信息。
3)与通信卫星进行数据收发。
4)深空通信(以遥测方式接收)
5)进出空间任务时飞行器参数实时传输,用于飞行状态判决。
(区别于遥测)
6)中继星
实现在轨飞行器与地面之间的天地数传通信一般有三种实现途径:
1)地面应用系统的专用地面接收站直接接收星上应用数据。
2)利用中继卫星系统中转星上应用数据,其优势在于能大大减少测控网覆盖盲区,如神舟系列任务中采用了这种方式。
3)利用统一测控设备的载波搭载传输,测控中心收到后将数据转发给用户单位。
当前未单独建设地面接收站的用户单位一般采用这种方式,针对微小卫星的发展有较好工程应用价值。
建设专用地面接收站作为传统的数传通信模式,其成本较大,考虑到未来卫星商业应用前景广阔,且数传需求将持续增大,建设专用地面站经济效益低下,利用卫星测控系统实现数传通信成为一种经济高效的选择。
目前,许多新研测控设备均已考虑测控数传一体化功能,部分已列装的测控设备也根据任务需求在基带进行了改造,增加了数传功能。
2 典型的数传系统
3 发展方向
1)测控数传一体化,最大化利用信道;统筹利用现有地面设备资源。
但其面临的主要问题在于现行卫星测控网是基于S频段,无法满足高速率传输需求。
2)发展上行数传。
3)提高工作频段,实现更高速率数据传输。
4)加大天基中继平台建设,组建天地一体化信息网络,为数传提供高速通道(欧洲“太空数据高速路”EDRS)
5)星间、星地激光通信。