人教版七年级下册数学试卷全集.pdf
人教版初一七年级数学下册《全册六套单元试卷》(详尽答案版)
![人教版初一七年级数学下册《全册六套单元试卷》(详尽答案版)](https://img.taocdn.com/s3/m/7cc03da38762caaedd33d46b.png)
人教版初一数学下册全册六单元试卷合集(精编答案版)第五章相交线与平行线试题汇总测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF(C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为().(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. () 12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D +∠A =______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( )∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.人教版初一数学下册 第六章《实数》试题汇总测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( )。
人教版七年级数学下册期末测试题及答案(共五套)pdf版
![人教版七年级数学下册期末测试题及答案(共五套)pdf版](https://img.taocdn.com/s3/m/2b789c9dbceb19e8b8f6bacf.png)
( 4) 2 =-4
3.已知 a> b> 0,那么下列不等式组中无解..的是( )
xa
xa
xa
A.
B.
C.
D
xb
xb
xb
xa
.
xb
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角
度可能为 ( )
(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40°
A1 2
D
B
C
22. 如图 , 已知 D 为△ ABC边 BC延长线上一点 ,DF⊥ AB于 F 交 AC于 E, ∠ A=35° ,? ∠ D=42° , 求∠ ACD的度数 .
A F
E
B
CD
23. 如图 , 已知 A( -4 ,-1 ),B(-5 ,-4 ),C( -1 ,-3 ),△ABC经过平移得到的△ A′B′C′, △ABC 中任意一点 P(x 1,y 1) 平移后的对应点为 P′(x 1+6,y 1+4) 。 ( 1)请在图中作出△ A′B′C′; ( 2)写出点 A′、 B′、 C′的坐标 .
1 ,则这个多边形的边数是 ( ) 2
A. 5 B . 6
C
.7 D .8
9.如图,△ A1B1C1 是由△ ABC沿 BC 方向平移了 BC长度的一半得到的,若△ ABC的面积为
20 cm 2,则四边形 A1DCC1 的面积为( )
A. 10 cm2
B. 12 c m2
C . 15 cm 2
D
.17 cm 2
ቤተ መጻሕፍቲ ባይዱ
-7
1
20. 解:原方程可化为
8x 9y 6 2x 7 y 17 0
最新人教版七年级下册数学试卷及答案(全册精品)
![最新人教版七年级下册数学试卷及答案(全册精品)](https://img.taocdn.com/s3/m/528f57da19e8b8f67c1cb93e.png)
七年级下册数学试卷一(时间:120分钟 满分:100分)一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。
图34.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.一个等腰三角形的两边长分别是3cm 和6cm,则它的周长是 cm. 8.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第 象限 。
10.一个多边形的每一个外角等于30,则这个多边形是 边形,其内角和是 。
11.直角三角形两个锐角的平分线所构成的钝角等于 度。
12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。
二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填2.以下列各组线段为边,能组成三角形的是( )A 、2cm, 3cm, 5cmB 、5cm, 6cm, 10cmC 、1cm, 1cm, 3cmD 、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形 B .长方形 C .正八边形 D .正六边形4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( )A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图4,下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180° 6.下列图形中有稳定性的是( )A .正方形 B.长方形 C.直角三角形 D.平行四边形三.作图题。
人教版七年级数学下册全册单元测试试卷及答案
![人教版七年级数学下册全册单元测试试卷及答案](https://img.taocdn.com/s3/m/7c6cb9f3f18583d048645938.png)
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等•其中错误的有()A . 1个B . 2个C . 3个D . 4个2 .点P 是直线I 外一点,,且PA=4 Cm 则点P 到直线I 的距离( )A .小于4 CmB .等于4 Cm C.大于4 CmD .不确定3 .如图,点在延长线上,下列条件中不能判定的是( )A .∠ 1 = ∠ 2B .∠ 3= ∠ 4 C.∠ 5=∠D .∠ +∠ BDC=180°7 .在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( )AV B.①② C.①②③ D.①②③④8.如图,DH // EG// BG DC// EF,那么与∠ DCB 相等的角(不包括∠ EFB 的个数为( ) A . 2个 B . 3个 C . 4个 D . 5个9•点P 是直线I 外一点,A 、B 、C 为直线I 上的三点,PA=4 Cm , PB=5 cm , PC=2 cm ,则点P 到直线I 的距离( )第3题图 第4题图4. 如图,,/ 3=108°,则∠ 1的度数是( )A . 72°B . 80°C. 82°D . 108°5.如图,BE 平分∠ ABC, DE// BC,图中相等的角共有( )A . 3对B . 4对 C. 5对 D . 6对C. 3个 D . 4个 第5题图第6题图 第8题图A .小于2 Cm B.等于2 CmC.不大于2 Cm D .等于4 Cm 10.两平行直线被第三条直线所截,同位角的平分线( A .互相重合 B .互相平行C.互相垂直D .相交二、填空题(共8小题,每小题3分,满分24分)∠ 1 =,则∠ 2= _____ .16. 如图,AB // CD,直线 EF 分别交 AB 、CD 于 E 、F,EG 平分∠ BEF,若∠ 1=72° ,则∠ 2= 17. 如图,直线 a // b ,第17题图18. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠三、解答题(共6小题,满分46分)第11题图12.如图,当剪子口∠ AoB 增大15°时,∠ CoD 增大C3DIlIri IB第13题图第14题图A 中,先作AB ⊥ CD,垂足为B,然后沿AB 开渠,能使所开第12题图13. 如图,计划把河水引到水池的渠道最短,这样设计的依据是14. 如图,直线 AB ,CD, EF相交于点O,且AB ⊥ CD,∠ 1与∠ 2的关系是 — 15. 如图,D 是 AB 上一点,CE// BD, CB// ED, EA ⊥ BA 于点 A ,若∠ ABC=38°,19.( 7分)读句画图:如图,直线CD与直线AB相交于C, 根据下列语句画图:(1)过点P作PQ// CD,交AB于点Q;(2)过点P作PF⊥ CD,垂足为R;3 )若∠ DCB=120 °,猜想∠ PQC是多少度?并说明理由. 第19题图20.( 7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1 ,则小鱼的面积为;21 . ( 8 分)已知:如图,∠ BAf+ Z APD= , Z 1 = Z 2.求证:∠ E = Z F.C P D第21题图1 = ∠2 , ∠3 = ∠ 4,∠ 5 = ∠ 6.求证:ED / FB.23 . ( 8 分)如图,CD 平分∠ ACB, DE// BC ,∠ AED=80°,求∠ EDC 的度数.E第23题图24. (8 分)如图,已知 AB / CD, / B=65°, CM 平分∠ BCE ∠ MCN=90°,求∠ DCN 的度若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
七年级下册数学试卷(人教版)
![七年级下册数学试卷(人教版)](https://img.taocdn.com/s3/m/4841c15b7cd184254b3535ae.png)
七年级(下)期末数学试卷一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A. B.C. D.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b3.下列各数中,无理数是()A.B.3.14 C.D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)二、填空题:(本大题共18分,每小题3分)11.化简:=.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:,结论:.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为.15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对.三、解答题(本大题共40分,每小题4分)17.计算:.18.解方程组:.19.解不等式:.并把解集在数轴上表示出来.20.求不等式组:的整数解.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC 作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠=180°(),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(),∴∠BOD=(等量代换)23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.24.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠().∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 5 4000火车货运站100 1.3 5 6600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?28.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800800≤x<900由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.。
人教版版七年级数学下册全套单元试卷含答案(共3套)
![人教版版七年级数学下册全套单元试卷含答案(共3套)](https://img.taocdn.com/s3/m/bdae6ed177232f60dccca14d.png)
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC 的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠111.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对15.(3分)如图,直线AB与CD交于点O,OE⊥AB于O,则图中∠1与∠2的关系是()A.对顶角B.互余C.互补D.相等16.(3分)如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6二、填空题17.(3分)小玮家在小强家的北偏西75度,则小强家在小玮家的坐标方向是度.18.(3分)若一个角的余角是30°,则这个角的补角为°.19.(3分)一个角与它的补角之差是20°,则这个角的大小是.20.(3分)如果一个角的补角是150°,那么这个角的余角是度.21.(3分)小明从点A沿北偏东60°的方向到B处,又从B沿南偏西25°的方向到C处,则小明两次行进路线的夹角为.22.(3分)把“同角的余角相等”写成“如果…,那么…”的形式为.23.(3分)如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=度.24.(3分)把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC=.25.(3分)如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=°,∠3=°,∠4=°.26.(3分)如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为.27.(3分)如图,直线l1∥l2,AB⊥CD,∠1=34°,求∠2的度数.28.(3分)如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD 的平分线FP相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=度.29.(3分)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.30.(3分)如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.请你认真完成下面的填空.证明:∵∠B=∠BGD(已知)∴AB∥CD()∵∠DGF=∠F;(已知)∴CD∥EF()∵AB∥EF()∴∠B+∠F=180°().三、计算题:31.(10分)如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=度,∠AOG=度.参考答案与试题解析一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交【考点】J7:平行线;J1:相交线.【分析】根据在同一平面内两直线的位置关系进行解答即可.【解答】解:同一平面内如果两条直线不重合,那么他们平行或相交;故选D.【点评】此题考查了平行线,掌握在同一平面内两直线的位置关系是本题的关键,是一道基础题.2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定【考点】JA:平行线的性质.【分析】由两条平行线被第三条直线所截,根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故选C.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°【考点】JA:平行线的性质.【专题】2B :探究型.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.【点评】本题考查的是平行线的性质,根据题意画出图形是解答此题的关键.4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【考点】JA:平行线的性质.【分析】延长BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据三角形外角的性质即可求解.【解答】解:延长BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【考点】J3:垂线.【专题】11 :计算题;32 :分类讨论.【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点评】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【考点】JB:平行线的判定与性质;J2:对顶角、邻补角.【专题】11 :计算题.【分析】本题首先应根据同位角相等判定两直线平行,再根据平行线的性质及邻补角的性质求出∠4的度数.【解答】解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选D.【点评】解答此题的关键是注意平行线的性质和判定定理的综合运用.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】JA:平行线的性质;IL:余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直【考点】J7:平行线;J3:垂线;J5:点到直线的距离;J8:平行公理及推论.【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【解答】解:A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过一点有且只有一条直线与已知直线平行,过直线外一点,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点评】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角【考点】JA:平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵l1∥l2,∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,∴∠1+∠2=180°,即∠1+∠2=90°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠1【考点】JA:平行线的性质.【专题】2B :探究型.【分析】过点C作CF∥AB,由AB∥DE可知,AB∥DE∥CF,再由平行线的性质可知,∠1=∠BCF,∠2+∠DCF=180°,故可得出结论.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选C.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个【考点】J9:平行线的判定.【专题】11 :计算题.【分析】①由∠1=∠2,利用内错角相等两直线平行得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,利用等式的性质一对内错角相等,进而得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,利用同旁内角互补得到AD∥BC,本选项不合题意.【解答】解:①由∠1=∠2,得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,得到∠ABC﹣∠4=∠ADC﹣∠3,即∠ABD=∠CDB,得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,得到AD∥BC,本选项不合题意,则符合题意的只有1个.故选C【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等【考点】JB:平行线的判定与性质;IL:余角和补角;J2:对顶角、邻补角.【分析】根据平行线的判定即可判断A;根据平行线的性质即可判断B;举出反例图形即可判断C;根据互余互补的性质即可判断D.【解答】解:A、内错角相等,两直线平行,正确,故本选项错误;B、两直线平行,同旁内角互补,正确,故本选项错误;C、如图CD⊥AB,则∠ADC=∠BDC,但两个角不是对顶角,错误,故半选项正确;D、等角的补角相等,正确,故本选项错误;故选C.【点评】本题考查了平行线的性质和判定,对顶角,互余互补当知识点,主要考查学生的辨析能力.13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角的定义,对每个图进行判断即可.【解答】解:(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点评】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对【考点】J9:平行线的判定.【分析】∠1、∠2是直线AE、DF被AD所截形成的内错角,根据内错角相等,两直线平行可知AE∥DF.【解答】解:∵∠1=∠2,∴AE∥DF(内错角相等,两直线平行).。
数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库
![数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库](https://img.taocdn.com/s3/m/041f2ad1cc175527062208b1.png)
数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x = C .322()2x x x ÷-=-D .236(2)2x x -=-3.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭4.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案. A .0 B .1 C .2 D .3 5.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12 B .15 C .10 D .12或15 6.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2567.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M的坐标是( ) A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)8.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .9.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=110.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题11.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.12.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.13.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 14.二元一次方程7x+y =15的正整数解为_____. 15.()7(y x -+________ 22)49y x =-. 16.若(x ﹣2)x =1,则x =___.17.若等式0(2)1x -=成立,则x 的取值范围是_________.18.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限. 19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.计算:22020×(12)2020=_____. 三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2. (1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .23.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.25.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项) A .a 2﹣b 2=(a +b )(a ﹣b ) B .a 2﹣2ab +b 2=(a ﹣b )2 C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020).26.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨? 27.已知:如图EF ∥CD ,∠1+∠2=180°. (1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.28.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) . (1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度, 运动时间为 t 秒,回答下列问题:①求点 P 在运动过程中的坐标,(用含 t 的式子表示,写出过程);②当 3 秒<t <5 秒时,设∠CBP =x °,∠PAD =y °,∠BPA =z °,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含 x ,y 的式子表示 z ,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边. 【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意; 故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.C解析:C 【解析】试题解析:A.不是同类项,不能合并,故错误. B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确.D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加. 同底数幂相除,底数不变,指数相减.3.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.C解析:C 【分析】设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论. 【详解】设小明买了签字笔x 支,练习本y 本, 根据已知得:2x+3y=10,解得:1032yx -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数, ∴只有两种购买方案. 故选:C . 【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.5.B解析:B 【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6 此时336+=,不满足三角形的三边关系定理 (2)当等腰三角形的腰为6时,三边为3,6,6 此时366+>,满足三角形的三边关系定理 则其周长为36615++= 综上,该三角形的周长为15 故选:B . 【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.6.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D .本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.7.A解析:A 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可. 【详解】∵M 到x 轴的距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2. ∵点M 在第四象限,∴M 坐标为(2,﹣5). 故选:A . 【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.8.A解析:A 【解析】 【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可. 【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误; 故选A . 【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.9.D解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326a a a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D .本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.D解析:D 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程. 【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意; 故选:D . 【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.【解析】 【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围. 【详解】 ∵3x - m+1>0, ∴3x> m -1, ∴x>,∵不等式3x - m+1> 解析:4<7m【解析】 【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围. 【详解】 ∵3x - m+1>0, ∴3x> m -1, ∴x>-13m ,∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得 4<7m ≤.故答案为:4<7m ≤. 【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.12.10°或50°或130° 【分析】分三种情况讨论:①当CE ⊥BC 时;②当CE ⊥AB 时;③当CE ⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论. 【详解】解:①如图1,当CE ⊥BC 时,解析:10°或50°或130° 【分析】分三种情况讨论:①当CE ⊥BC 时;②当CE ⊥AB 时;③当CE ⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论. 【详解】解:①如图1,当CE ⊥BC 时,∵∠A=60°,∠ACB=40°, ∴∠ABC=80°, ∵BM 平分∠ABC , ∴∠CBE=12∠ABC=40°, ∴∠BEC=90°-40°=50°; ②如图2,当CE ⊥AB 时,∵∠ABE=12∠ABC=40°, ∴∠BEC=90°+40°=130°; ③如图3,当CE ⊥AC 时,∵∠CBE=40°,∠ACB=40°, ∴∠BEC=180°-90°-40°-40°=10°; 综上所述:∠BEC 的度数为10°,50°,130°, 故答案为:10°,50°,130°. 【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.13.【分析】由是完全平方式,得到从而可得答案. 【详解】 解:方法一、 方法二、 由是完全平方式, 则有两个相等的实数根, ,故答案为: 【点睛】本题考查的是完全平方式 解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.14.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.15.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x--【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.16.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x ﹣2)x =1,∴x =0时,(0﹣2)0=1,当x =3时,(3﹣2)3=1,则x =0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.17.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.18.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1, 故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键. 三、解答题21.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.22.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.23.﹣5x 2﹣4xy +18,6.将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.【详解】原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy=﹣5x 2﹣4xy +18,当x =2,y =﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”; (2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10.代入2m =8+n ,得2(a +1)=8﹣10,解得:a =﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)A;(2)2;(3)2021 4040【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x2﹣y2=16,即(x+y)(x﹣y)=16,又x+y=8,可求出x﹣y的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a2﹣b2,图2拼接得到的图形面积为(a+b)(a﹣b)因此有,a2﹣b2=(a+b)(a﹣b),故答案为:A.(2)∵x2﹣y2=(x+y)(x﹣y)=16,又∵x+y=8,∴x﹣y=16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.26.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.27.(1)见解析;(2)∠ACB =80°【分析】(1)利用同旁内角互补,说明GD ∥CA ;(2)由GD ∥CA ,得∠A =∠GDB =∠2=40°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD =180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA ;(2)由(1)得:GD ∥CA ,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库
![数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库](https://img.taocdn.com/s3/m/fc8e97ad1711cc7930b71669.png)
数学新人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .22.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .3.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°5.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .6.下列方程中,是二元一次方程的是( )A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z7.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-48.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .9.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4 B .5 C .6 D .810.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题11.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.12.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________. 13.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________14.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.15.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.16.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 17.分解因式:m 2﹣9=_____.18.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 19.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.三、解答题21.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.22.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.23.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.24.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-25.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .26.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .27.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.5.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A、是平移;B、轴对称变换,不是平移;C、是旋转变换,不是平移.D、图形的大小发生了变化,不是平移.故选:A.【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.6.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.9.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解10.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题11.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x −4x −5=x −4x+4−4−5=(x −2) −9,所以m=2,k=−9,所以【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.12.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.13.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.15.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴14ab=⎧⎨=⎩,33ab=⎧⎨=⎩,52ab=⎧⎨=⎩,71ab=⎧⎨=⎩.a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.16.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.17.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.18.6【分析】把代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12xy=⎧⎨=-⎩代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把12xy=⎧⎨=-⎩代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.19.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.三、解答题21.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.22.73x +;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x 当2x =-时,原式14311. 【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.23.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 24.(1)5;(2)6a【分析】 (1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可;(2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a -⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解25.(1)见解析;(2)平行且相等; 9 .【分析】(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论【详解】(1)如图所示△DEF 即为所求;(2)∵△DEF 由△ABC 平移而成,∴AD ∥BE ,AD =BE ;线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S=⨯=故答案为:平行且相等;9【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键. 26.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.27.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】0=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。
最新最全,人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
![最新最全,人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)](https://img.taocdn.com/s3/m/d957932087c24028915fc3e8.png)
人教版初中七年级数学下册全册单元综合测试卷汇总一、第五章《相交线与平行线》单元综合测试卷(附详细参考答案)二、第六章《实数》单元综合测试卷(附详细参考答案)三、第七章《平面直角坐标系》单元综合测试卷(附详细参考答案)四、七年级下学期期中数学综合测试卷(附详细参考答案)五、第八章《二元一次方程组》单元综合测试卷(附详细参考答案)六、第九章《不等式与不等式组》单元综合测卷(附详细参考答案)七、第十章《数据的收集、整理与描述》单元综合测试卷(附详细参考答案)八、七年级下学期期末数学综合测试卷(附详细参考答案)七年级数学下册第五章《相交线与平行线》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )(A)75° (B)115° (C)65° (D)105°2.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )(A)100° (B) 105° (C) 110° (D) 115°3.下列图形中,只要用其中一部分平移一次就可以得到的有 ( )4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )(A)20° (B)25° (C)30° (D)35°5.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是( )(A)2 (B)4 (C)5 (D)66.某人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC 等于( )(A)75° (B)105° (C)45° (D)135°7.如图,已知AB∥CD,∠1 =∠2,∠E=n°,则∠F=( )(A)n° (B)2n° (C)90°-n° (D)40°二、填空题(每小题5分,共25分)8.“如果n是整数,那么2n是偶数”其中题设是_______,结论是_______,这是_______命题(填“真”或“假”).9.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=_______度.10.有一条直的等宽纸带,按图折叠时,纸带重叠部分中的∠α=_______度.11.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=_______.12.如图,在宽为30 m,长为40 m的矩形地面上修建两条宽都是1 m的道路,余下部分种植花草.那么,种植花草的面积为_______m2.三、解答题(共47分)13.(11分)如图,∠1=30°,AB⊥CD,垂足为O, EF经过点O.求∠2,∠3的度数.14.(12分)如图,a∥b,c∥d,∠1=113°,求∠2,∠3的度数.15.(12分)已知,如图,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.16.(12分)已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.七年级数学下册第五章《相交线与平行线》单元综合测试卷详细参考答案1.【解析】选D.如图,根据上下的两边平行可知∠1=∠3=75°,根据左右的平行可知∠2+∠3=180°,进而求得∠2=105°.2.【解析】选B.把图中的线适当延长,如下图因为∠1=65°,∠2=140°,所以∠4=75°.又因为a∥b,所以∠3=180°-∠4=180°-75°=105°.3.【解析】选B.判断一个图形是否由平移得到,要从两方面入手:①找到“基本图形”;②分析平移的方向和距离.其中第2个图形和第4个图形平移一次均能得到.4.【解析】选A.由图形可得,∠B=∠1+∠2=45°,∵∠1=25°,∴∠2=45°-25°=20°.5.【解析】选C.由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH,除∠1共5个.6.【解析】选C.按要求画出图形再计算.∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.7.【解析】选A.因为AB∥CD,知∠ABC =∠DCB,再由∠1=∠2,得∠EBC=∠FCB,由此得到EB∥FC,所以∠F=∠E=n°.8.【解析】“如果”开始的部分是题设,“那么”后面的部分是结论.答案:n是整数 2n是偶数真9.【解析】∵AB∥CD,∴∠B=∠2=40°,∵∠BED=∠1+∠B,∴∠BED=70°,∵EF平分∠BED,∴∠BEF=35°.答案:3510.【解析】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得展开图.由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠α=75°.答案:7511.【解析】由AB∥EF∥CD,可知∠BED=∠B+∠D.∵∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∵∠B-∠D=24°,所以∠D=∠B-24°.即∠B+∠B-24°=96°,解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.答案:30°12.【解析】利用平移,将两道路向上、向右平移(如图). 因此,种植花草的面积为:39×29=1 131(m2).答案:1 13113.【解析】由对顶角相等得∠3=∠1=30°,由AB⊥CD得∠BOD=90°,所以∠2=90°-∠3=90°-30°=60°. 所以∠2=60°,∠3=30°.14.【解析】∵a∥b(已知),∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知),∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).15.【解析】平行.由折叠可知,∠1=∠2,∠3=∠4,因为O′C∥BD,所以∠2=∠3,即∠1=∠4,所以O′D∥ AC.16.【证明】∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠BCA,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).七年级数学下册第六章《实数》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2π是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(C)(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b >0 (B)a-b >0 (C)ab >0 (D)ab>0 5.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③a a 的立方根;④.( ) (A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A表示的可能是( )(A)4的算术平方根(B)4的立方根(C)8的算术平方根(D)8的立方根7.如果m是2 012的算术平方根,那么2 012100的平方根为( )(A)m100± (B)m10(C)m10-(D)m±10二、填空题(每小题5分,共25分)8..9.3m-,则m的取值范围为___________.10.比较大小:用“<”或“>”号填空).11.若x,y y20-=,则x+y=_______.12.对于两个不相等的实数a、b,定义一种新的运算如下,>0),如:6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A,B,点B到点A的距离与点C到点O 的距离相等,设点C所表示的数为x,(1)请你写出数x的值;(2)求2(x的立方根.14.(12分)计算. (1)2121(2)-+--||;(2)15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d ≈r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)若a,b 为实数,且b 7=,求a+b 的平方根.七年级数学下册第六章《实数》 单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,ab<0, 故选项A 正确;选项B ,C ,D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】8==. 答案:89.【解析】3m -,∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*43==,所以6*31==. 答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22(x 11==,即2(x =1,1的立方根为1.14.【解析】(1)原式=1121144-+-=; (2)原式=3243655--+=-.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈16.【解析】由题意得a 2-4=0,且a+2≠0, 所以a=2,所以b=7, 所以a+b 的平方根为±3.七年级数学下册第七章《平面直角坐标系》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.点P在第二象限内,点P到x轴的距离为4,到y轴的距离为3,那么P点的坐标为( )(A)(4,3) (B)(3,4)(C)(-3,4) (D)(-4,3)2.若点P(x,y)的坐标满足xy=0,则点P 的位置是( )(A)在x轴上(B)在y轴上(C)是坐标原点(D)在x轴上或在y轴上或在原点3.点M(2,-1)向上平移2个单位长度得到的点的坐标是( )(A)(2,0) (B)(2,1) (C)(2,2) (D)(2,-3)4.正方形网格中的每个小正方形边长都为1,每个小方格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.如图所示,B,C两点的位置分别记为(2,0),(4,0),若格点三角形ABC是锐角三角形且面积为4,则满足条件的A点的位置是( )(A)(0,4) (B)(1,4)(C)(2,4) (D)(3,4)5.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为( )(A)(-5,4) (B)(4,3)(C)(-1,-2) (D)(-2,-1)6.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )(A)(4,2)或(-4,2) (B)(4,-2)或(-4,-2)(C)(4,-2)或(-5,-2) (D)(4,-2)或(-1,-2)7.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在的位置的点的坐标是( )(A)(1,1) (B)(-1,1) (C)(-1,-2) (D)(1,-2)二、填空题(每小题5分,共25分)8.如果点P(a,a-b)在第二象限,则点P′(-a,b-a)在第_______象限.9.如图所示,人头图形左边的嘴角的坐标是_________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为___________.11.若点P(x,y)的坐标满足x+y=xy,则称点P为和谐点,请写出一个和谐点的坐标.答:_________________________.12.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,该点A记作(30°,50),北偏西45°记作-45°,沿着此方向的反方向走20米记作-20,该点B记作(-45°,-20). 则(-75°,-15)表示的意义是____________,南偏西10°,沿着此方向走25米处的点C可记作___________.三、解答题(共47分)13.(10分)如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.(图中每个小正方形的边长均为1个单位长度)(1)请以国家AAAA级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:荷花池_________、平山堂__________、汪氏小苑_________;(2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以______为原点,以水平向右为x 轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:平山堂___________、竹西公园__________.14.(12分)如图,用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,问走哪条路吃到的胡萝卜最多? 走哪条路吃到的青菜最多?15.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.16.(13分)类比学习:一动点沿着数轴向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.七年级数学下册第七章《平面直角坐标系》单元综合测试卷详细参考答案1.【解析】选C.点P在第二象限内,横坐标为负数,纵坐标为正数,又“点P到x轴的距离为4,到y轴的距离为3”,所以点P的坐标为(-3,4).2.【解析】选D.由xy=0得,x=0或y=0或x=y=0,则点P在x轴上或在y轴上或在原点.3.【解析】选B.因为点M向上平移2个单位长度,横坐标不变,纵坐标加2,所以平移后得到的点的坐标是(2,1).4.【解析】选D.B,C两点与点(0,4)或(1,4)构成的格点三角形的面积为4,但不是锐角三角形;B,C两点与点(2,4)构成的格点三角形的面积为4,它是直角三角形.5.【解析】选A.A点平移到A′,是将A点向左平移6个单位,向上平移3个单位;B点按照同样的方法平移得到的点为(-5,4).6.【解析】选B.点M(3,-2)与点M′在同一条平行于x轴的直线上,所以y=-2,M′到y轴的距离等于4,所以|x|=4,所以x=±4.7.【解析】选B.长方形ABCD的周长为10,2 012÷10=201……2,说明细线绕了201圈,回到A点后又继续绕了2个单位,故到达B点,故选B.8.【解析】由题意知a<0,a-b>0,所以-a>0,b-a<0,所以点P′(-a,b-a)在第四象限.答案:四9.【解析】由图中所建立的坐标系可知,人头图形左边的嘴角的坐标是(-3,-1).答案:(-3,-1)10.【解析】点P(-1,4)向右平移2个单位长度后坐标为(1,4),再向下平移3个单位长度,则点P1的坐标为(1,1).答案:(1,1)11.【解析】答案不唯一,如(2,2),(0,0).答案:(2,2)(答案不唯一)12.【解析】由题意知,(-75°,-15)表示沿南偏东75°方向走15米;南偏西10°,沿着此方向走25米处的点C可记作(10°,-25).答案:南偏东75°,15米处 (10°,-25)13.【解析】(1)以瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置分别是:荷花池(-2,-3);平山堂(-1,3);汪氏小苑(2,-2);(2)以竹西公园为原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置分别是:平山堂(-4,0);竹西公园(0,0).(本题答案不唯一)14.【解析】(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜,所以可以类比点C 的坐标是(2,1),它表示的意义是放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示的意义是放置2个胡萝卜、2棵青菜;点E 的坐标是(3,3),它表示的意义是放置3个胡萝卜、3棵青菜;点F 的坐标是(3,2),它表示的意义是放置3个胡萝卜、2棵青菜. (2)若兔子走①A →C →D →B ,则可以吃到的胡萝卜数量是:3+2+2+2=9(个),吃到的青菜数量是:1+1+2+3=7(棵);走②A →F →D →B ,则可以吃到的胡萝卜数量是:3+3+2+2=10(个),吃到的青菜数量是:1+2+2+3=8(棵);走③A →F →E →B ,则可以吃到的胡萝卜数量是:3+3+3+2=11(个),吃到的青菜数量是:1+2+3+3=9(棵);由此可知,走第③条路吃到的胡萝卜、青菜都最多. 15.【解析】(1)图中格点△A ′B ′C ′是由格点△ABC 向右平移7个单位长度得到的;(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),则格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =115151522⨯⨯+⨯⨯=, 或S △DEF =11172427131222⨯-⨯⨯-⨯⨯-⨯⨯=73144522---=.16.【解析】(1){3,1}+{1,2}={4,3}, {1,2}+{3,1}={4,3}.(2)如图所示:最后的位置仍是点B.(3){2,3}+{3,2}+{-5,-5}={0,0}.七年级下学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(120分钟120分)一、选择题(每小题3分,共30分)1.下面四个图形中,∠1=∠2一定成立的是( )2. 4的算术平方根是( )(A)2 (B)-2 (C)±3.如图,∠ADE和∠CED是( )(A)同位角 (B)内错角(C)同旁内角 (D)互为补角4.课间操时,小华、小军、小刚的位置如图,小华对小刚说:如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )(A)(5,4) (B)(4,5) (C)(3,4) (D)(4,3) 5.下列实数中,无理数是( )(A)52-(B)π6.在平面直角坐标系中,点(-1,m 2+1)一定在( ) (A)第一象限 (B)第二象限(C)第三象限 (D)第四象限7.如图,把图①中的△ABC 经过一定的变换得到图②中的△A ′B ′C ′,如果图①中△ABC 上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P ′的坐标为( )(A)(a-2,b-3) (B)(a-3,b-2) (C)(a+3,b+2)(D)(a+2,b+3)8.计算( )(A)9.如图所示,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB 等于( )(A)40° (B)75° (C)85° (D)140°10.有个数值转换器,原理如下:当输入x为64时,输出y的值是( )(A) 4 (B)二、填空题(每小题3分,共24分)11.在伦敦奥运会主体育场“伦敦碗”一侧的座位席上,5排2号记为(5,2),则3排5号记为__________.12.计算: =__________.13.12_______12.(填“>”“<”或“=”)14.已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是______.15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=________°.5的相反数是________,绝对值是________.17.如图所示,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=________.18.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来:_________.三、解答题(共66分)19.(8分) 求下列各式中的x 的值. (1)(3x+2)2=16;(2)12(2x-1)3=-4. 20.(6分)如图为一辆公交车的行驶路线,“○”表示该公交车的中途停车点,现在请你帮助小明完成对该公交车行驶路线的描述:起点站→(1,1)→…→终点站.21.(8分)已知:如图,AB ∥CD ,EF 交AB 于点G ,交CD 于点F ,FH 平分∠EFD ,交AB 于点H ,∠AGE=50°. 求∠BHF 的度数.=+,求a+b的平方根.22.(8分)已知a,b b423.(8分)如图是某体育场看台台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标相比较有什么变化?(3)如果台阶有10级,你能求出该台阶的长度和高度吗?24.(8分)证明:两条平行线的同旁内角的角平分线互相垂直.25.(10分)中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,-2)上,试写出A,B,C,D四点的坐标.26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD.如图a,点P在AB,CD外部时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图b,将点P移到AB,CD内部,以上结论是否成立?若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.七年级下学期期中数学综合测试卷详细参考答案1.【解析】选B.选项A中,∠1与∠2是邻补角,∠1+∠2=180°;选项B中,∠1与∠2是对顶角,∠1=∠2;选项C中,根据平行线的性质及邻补角的定义可知∠1+∠2=180°;选项D中,根据三角形的内、外角之间的关系可知∠2>∠1.2.【解析】选A.因为22=4故选A.3.【解析】选B.∠ADE和∠CED在被截直线内部,在截线的两侧,是内错角.4.【解析】选D.以小华的位置为坐标原点建立平面直角坐标系,可知小刚的位置为(4,3).5.【解析】选B.选项A,C,D都是有理数;选项B是无理数.6.【解析】选B.由于一个数的平方具有非负性,所以(-1,m2+1)的纵坐标一定大于0,所以点在第二象限.7.【解析】选C.观察图形可知,△ABC经过向右平移3个单位长度,再向上平移2个单位长度得到△A′B′C′,所以点P′的坐标为(a+3,b+2).8.【解析】选D.=9.【解析】选C.∵AE,DB是正南正北方向,∴BD∥AE,∵∠EAB=45°,∴∠DBA=∠EAB=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-35°-60°=85°.10.【解析】选B.由题意知,64的立方根是4,4为有理数,需再取立方根,则输出的是11.【解析】由题意知,3排5号记为(3,5).答案:(3,5)12.【解析】-8的立方根是-2.答案:-213.【解析】2=,>1,所以11 22>.答案:>14.【解析】第二象限内点的横坐标为负,纵坐标为正;由角平分线的性质可知:角平分线上的一点到角的两边距离相等,故第二象限的角平分线上的点的横、纵坐标互为相反数,且横坐标为负,纵坐标为正.由此可得:(-3+a)+(2a+9)=0,即a=-2.答案:-215.【解析】因为∠1=∠2=70°,所以a∥b,因为∠3=60°,所以∠4=∠3=60°.答案:6016.的相反数是答案:5517.【解析】如图所示,∠4=90°-∠2=90°-35°=55°.由l1∥l2得∠3=180°-∠1-∠2-∠4=180°-35°-35°-55°=55°.答案:55°18.【解析】由题意可知(5,3),(6,3),(7,3)(4,1),(4,4)对应的字母分别是S,T,U,D,Y,这个英文单词是STUDY.答案:STUDY19.【解析】(1)由平方根的意义得,3x+2=±4,解得x=-2或x=23.(2)原方程变为:(2x-1)3=-8,由立方根的意义得,2x-1=-2,解得x=12 .20.【解析】起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→终点站.21.【解析】因为AB∥CD,∠AGE=50°.所以∠EFC=50°,所以∠EFD=130°,因为FH平分∠EFD,所以∠HFD=12∠EFD=65°,所以∠BHF=180°-65°=115°.22.【解析】由于a-5≥0,∴a≥5,同理10-2a≥0,∴a≤5,∴a=5.当a=5时,b+4=0,∴b=-4,∴a+b=5-4=1.∴a+b的平方根为±1.23.【解析】(1)以A点为原点,水平向右为x轴正方向,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.24.【解析】如图所示,直线a,b被直线c所截,且a∥b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:因为a∥b,所以∠CAE+∠ACF=180°.因为直线AB平分∠CAE,直线CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.∠1+∠2=12∠CAE+12∠ACF=90°,所以AB⊥CD.25.【解析】(1)如图(2)A(3,-1),B(2,0),C(6,2),D(7,-1)26.【解析】(1)不成立,结论是∠BPD=∠B+∠D. 延长BP交CD于点E,因为AB∥CD,所以∠B=∠BED.又∠BPD=∠BED+∠D,所以∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.又因为∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°. 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.七年级数学下册第八章《二元一次方程组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.二元一次方程组x y 4x y 2,-=⎧⎨+=⎩的解是( ) x 3(A)y 7=⎧⎨=-⎩ x 1(B)y 1=⎧⎨=⎩ x 7(C)y 3=⎧⎨=⎩ x 3(D)y 1=⎧⎨=-⎩2.方程ax-y=3的解是x 1y 2,,=⎧⎨=⎩则a 的取值是( ) (A)5 (B)-5 (C)2 (D)13.解方程组3x y z 42x 3y z 12x y 2z 3,①,②③-+=⎧⎪+-=⎨⎪+-=⎩以下解法中不正确的是( )(A)由①、②消去z,再由①、③消去z(B)由①、②消去z,再由②、③消去z(C)由①、③消去y,再由①、②消去y(D)由①、②消去z,再由①、③消去y4.由方程组2x m 1y 3m,+=⎧⎨-=⎩可得出x 与y 的关系是( )(A)2x+y=4(B)2x-y=4 (C)2x+y=-4 (D)2x-y=-4 5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )x y 50(A)6(x y)320,+=⎧⎨+=⎩ x y 50(B)6x 10y 320,+=⎧⎨+=⎩ x y 50(C)6x y 320,+=⎧⎨+=⎩ x y 50(D)10x 6y 320,+=⎧⎨+=⎩6.我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是( )(A)鸡24只,兔11只(B)鸡23只,兔12只 (C)鸡11只,兔24只 (D)鸡12只,兔23只7.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( )(A)6种 (B)5种 (C)4种 (D)3种二、填空题(每小题5分,共25分)8.方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为_____________.9.已知x 1y 2,=⎧⎨=⎩是关于x,y 的二元一次方程组2ax by 3ax by 6,-=⎧⎨+=⎩的解,则a+b=_________. 10.已知-2x m-1y 3和12x n y m+n 是同类项,则(n-m)2 012=________. 11.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需________元.12.三轮摩托车的轮胎安装在前轮上行驶12 000千米后报废,安装在左后轮和右后轮则分别只能行驶7 500千米和5 000千米.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3个轮胎最多可行驶_________千米.三、解答题(共47分)13.(12分)(1)解方程组:3x2y5,x3y9;-=⎧⎨+=⎩(2)解方程组x y8,3x y12.-=⎧⎨+=⎩14.(10分)若方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩求(a+b)2-(a-b)(a+b).15.(12分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳:75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少?16.(13分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A ,B 两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型盒子?多少个B 型盒子?(1)根据题意,甲和乙两同学分别列出的方程组如下:甲:x 2y 140,4x 3y 360;+=⎧⎨+=⎩乙x y 140,34x y 3602+=⎧⎪⎨+=⎪⎩:, 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义:甲:x 表示_________,y 表示;__________乙:x 表示_________,y 表示____________;(2)求出做成的A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)?七年级数学下册第八章《二元一次方程组》单元综合测试卷详细参考答案1.【解析】选D.x y 4,(1)x y 2,(2)-=⎧⎨+=⎩ (1)+(2)得,2x=6, 解得,x=3,代入(1)得,3-y=4,y=-1,故原方程组的解是x 3,y 1.=⎧⎨=-⎩2.【解析】选A.把x 1,y 2=⎧⎨=⎩代入方程ax-y=3,得a-2=3,解得a=5.3.【解析】选D.因为每个方程中均含有三个未知数,所以两次所消去的未知数必须相同,才能得到二元一次方程组,而选项D 中两次所消去的未知数不同,不能得到二元一次方程组,是错误的.4.【解析】选A.由2x+m=1,得m=1-2x ;由y-3=m ,得m=y-3,∴1-2x=y-3,即2x+y=4.5.【解析】选B.由题意得,x y 50,6x 10y 320.+=⎧⎨+=⎩6.【解析】选B.设鸡有x 只,兔有y 只,根据题意得x y 35,2x 4y 94,+=⎧⎨+=⎩解得x 23,y 12,=⎧⎨=⎩即有鸡23只,兔12只. 7.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人, 则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意.故学生分组方案有5种.故选B.8.【解析】两方程相加得5x=5,解得x=1,把x=1代入3x+y=3得3×1+y=3,解得y=0,所以方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为x 1,y 0.=⎧⎨=⎩答案:x 1y 0=⎧⎨=⎩9.【解析】把x 1y 2,=⎧⎨=⎩代入方程组2ax by 3ax by 6,-=⎧⎨+=⎩得2a 2b 3a 2b 6,,-=⎧⎨+=⎩解方程组得a 33b ,2,=⎧⎪⎨=⎪⎩代入a+b=92. 答案:9210.【解析】由同类项的概念得m 1n,m n 3.-=⎧⎨+=⎩解得m 2,n 1.=⎧⎨=⎩把m 2,n 1=⎧⎨=⎩代入(n-m)2 012得(1-2)2 012=1.答案:111.【解析】设一个单人间需要x 元,一个双人间需要y 元.根据题意得3x 6y 1 020,x 5y 700,①②+=⎧⎨+=⎩化简①得:x+2y=340③,②-③得:3y=360,y=120,把y=120代入③得:x=100,所以5(x+y)=1 100.答案:1 10012.【解析】三轮摩托车每行驶1千米,前胎、左后胎和右后胎分别损耗112 000,17 500和15 000,所以3个轮胎最多行驶3÷111()12 0007 500 5 000++=7 200千米. 设行驶x 千米时,把前胎和右后胎对换,再走y 千米,把左右后胎对换,再走z 千米,报废.x y z 1,12 000 5 0007 500x y z 1,7 5007 500 5 000x y z 1.5 00012 00012 000⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解得4x 3 428,73y 3 171,7z 600.⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩x+y+z=7 200. ∴行驶43 4287千米时,把前胎和右后胎对换,再走33 1717千米,把左右后胎对换,再走600千米,报废.答案:7 20013.【解析】(1)3x2y5, x3y9,①②-=⎧⎨+=⎩②×3-①,得11y=22,y=2;将y=2代入②,得x+6=9,x=3.∴方程组的解为x3, y 2.=⎧⎨=⎩(2)x y8, 3x y12,①②-=⎧⎨+=⎩①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8, 解得y=-3,所以方程组的解是x5, y 3.=⎧⎨=-⎩14.【解析】∵方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩∴a1b,1b a,+=⎧⎨-=⎩解得a0,b1,=⎧⎨=⎩所以(a+b)2-(a-b)(a+b)=(0+1)2-(0-1)(0+1)=1+1=2.15.【解析】(1)设掷到A区和B区的得分分别为x分,y分.根据题意,得5x3y77,3x5y75.+=⎧⎨+=⎩解得x10,y9.=⎧⎨=⎩答:掷中A区一次得10分,掷中B区一次得9分.(2)由(1)可知,4x+4y=76(分).答:小明的得分是76分.16.【解析】(1)甲:x表示能做成A型盒子的个数,y表示能做成B型盒子的个数.乙:x表示做一个A型盒子用正方形纸板的张数,y表示做一个B型盒子用正方形纸板的张数.(2)解方程组x2y140,4x3y360+=⎧⎨+=⎩得x60,y40.=⎧⎨=⎩答:做成的A型盒子有60个,做成的B型盒子有40个.七年级数学下册第九章《不等式与不等式组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列各数中,是不等式2x-3>0的解是( )(A)-1 (B)0 (C)-2 (D)22.如果a >b ,那么下列不等式不成立的是( )(A)a-5>b-5 (B)-5a >-5b (C)a b55> (D)-5a <-5b3.不等式-2x <4的解集是( )(A)x >-2 (B)x <-2(C)x >2 (D)x <24.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )x 2(A)x 1>⎧⎨≤-⎩x 2(B)x 1<>⎧⎨-⎩x 2(C)x 1<⎧⎨≥-⎩x 2(D)x 1<⎧⎨≤-⎩5.不等式组2x 4x, x 24x 1 ≤+⎧⎨+-⎩①<②的正整数解有( )(A)1个 (B)2个 (C)3个 (D)4个6.下列说法中,错误的是( )(A)不等式x <2的正整数解有一个(B)-2是不等式2x-1<0的一个解(C)不等式-3x >9的解集是x >-3。
人教版初一七年级数学下册《全册12套单元试卷》(精编答案版)
![人教版初一七年级数学下册《全册12套单元试卷》(精编答案版)](https://img.taocdn.com/s3/m/075948a083d049649b66586b.png)
人教版初一数学下册全套单元试卷合集 (附答案)每单元2套试卷,共12套第五章《相交线与平行线》水平测试题班级 学号 姓名 成绩一、填空题(每小题3分,共30分)1.如图1,直线AB 、CD 、EF 相交于O ,∠1=40°,∠2=60°,则∠3= .2.如图2,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4= .3.如图3,已知∠A=75°,∠B=105° 则_____∥_______.4.如图4,已知AB ∥CD ,∠B=30°,∠D=40°,则∠E=_____度.5.如图5,AC ⊥BC, 且BC=5,AC=12,AB=13,则点A 到BC 的距离是 点B 到点A 的距离是 .6.如图6,现有一条高压线路沿公路l 旁边建立,某村庄A 需进行农网改造,必须要从这条高压线上架接一条线路去村庄A ,为了节省费用,请你帮他们规划一下,并说明理由.理由是7.如图7,AB 、CD 相交于O ,OE 、OF 分别是∠AOD 和∠BOD 的平分线,试判断直线OE 、OF 的位置关系_________.8.如图8,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=70°,则∠2=______. 9.如图9,AB ∥CD ,AD ∥BC ,则图中与∠A 相等的角有_____个.10.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30°时,B F E D OC A 12 3 图 1 ba2 c 1 43 图2AC D 图3A BC D E 图 4 A ED F BC OA l 图 6 C AB 图5 图8E BCF D A 图9∠BOD的度数是.二、选择题 (每小题3分,共18分)11. 下列说法正确的是()A.同一个平面内,不相交的两条线段是平行线B.同一个平面内,两条直线不相交就重合C.同一个平面内,没有公共点的两条直线是平行线D.不相交的两条直线是平行线12. 已知两直线相交, 则下列结论成立的是( )A.所构成的四个角中,有一个角是直角 B. 四个角都相等C.相邻的两个角互补 D. 对顶角互补13.如图10,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )A.AD∥BC B.∠B=∠CC.∠2+∠B=180° D.AB∥CD14.下列图形中,由AB∥CD,能得到∠1=∠2,的是()15.如图11,ABCRt 中,∠ACB=90°,DE 过点C,且DE∥AB,若∠ACD=55°,则∠B的度数是()A.35°B.45°C.55°D.65°16. 下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个三、根据下列证明过程填空(每空1分,共18分)17.如图12,(1)因为∠A=_____(已知),所以AC∥ED( )(2)因为∠2=_____(已知),所以AC∥ED( )(3)因为∠A+_____=180°(已知),所以AB∥FD( )(4)因为AB∥_____(已知),所以∠2+∠AED=180°( )(5)因为AC∥_____(已知),所以∠C=∠3( )18.如图13,∠1=∠2 ,CF⊥AB ,DE⊥AB ,求证:FG∥BC证明:因为CF⊥AB ,DE⊥AB ()所以∠BED=90°,∠BFC=90°()所以∠BED=∠BFC ()所以ED∥FC ()所以∠1=∠BCF ()因为∠2=∠1 ()1DBGFCAE2A CBD12ACBD12A.B.1 2ACBDC.BDCAD.1 2BCD1 2图10A BE图11CFAEBD123图12所以 ∠2=∠BCF ( ) 所以 FG ∥BC ( )四、解答题19.画图题:把小船ABCD 通过平移后到''''D C B A 的位置,请你根据题中信息,画出平移后的小船位置.(5分)20.如图:已知∠1+∠2=180° , ∠3=110°, 求∠4的度数.(7分)21.如图:AB ,CD ,EF 相交于O 点,AB ⊥CD ,OG 平分∠AOE ,∠FOD=30°,求∠BOE 及∠AOG 的度数.(8分)22.如图:已知AB ∥DC ,AD ∥BC ,求证:∠B=∠D (8分)3l 5643214l 2l 1l O E CG F D B A A DCB 图1323.如图,AD ⊥BC 于D,EG ⊥BC 于G ,∠E =∠1,那么AD 平分∠BAC 吗? 试说明理由(8分)参考答案:一、填空题1.80°提示:从图上可以知道∠1+∠2+∠3=180°,所以∠3=80°2.140°提示:∠1与∠2是对顶角,所以∠2=80°,又因为∠2=2∠3,所以∠3=40°,又因为∠4=180°-∠3,所以∠4=140°3.AD ∥BC 提示:因为∠A+∠B=1800,所以AD ∥BC4.70°提示:过点E 作EF 根据平行线的性质可知∠BED=∠BEF+∠FED=∠B+∠D=70°. 5.AC ,AB ∥AB ,6.作图:过点A 作l 的垂线段最短. 7.垂直 8.110°9.3个 提示:分别是∠FDC ,∠C ,∠CBE.10.60°或120° 提示:点C 与D 在AB 的同侧或异侧两种情况. 二、选择题 11.C12.C 提示:只有当两直线垂直时A 、B 、D 才成立.13.B 提示:∠1=∠B 可得AD ∥BC ,∠2+∠B=180°根据∠C=∠2可得AD ∥BC 故选B 14.B15.A 提示:DE ∥AB 所以∠B=∠BCE ,所以∠B=180°-90°-55°=35° 16.A 提示:只有(2)对 三、根据下列证明过程填空 17.(1)∠BED 同位角相等,两直线平行(2)∠DFC 内错角相等,两直线平行(3)∠AFD 同旁内角互补,两直线平行(4)DF 两直线平行,同旁内角互补(5)ED 两直线平行,同位角相等18.已知,等式的性质,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,已知,等量代换,内错角相等,两直线平行 四、解答题19.将小船向左移9个格子,再向上移1个格子(画图略) 20.解:因为∠1+∠2=180° 所以l 1∥l 2 所以∠3=∠6又因为∠4+∠6=180° 所以∠4=180°-∠3 又因为∠3=110°ACB E D G 1 2 3所以∠4=70°21.解:因为∠FOD=30°,∠COE与∠FOD是对顶角,所以∠EOC=30°因为AB⊥CD所以∠BOC=90°,∠BOE=∠BOC -∠EOC =60°因为∠AOE=90°+∠EOC=120°且OG平分∠AOE所以∠AOG=60°22.解:因为AB∥DC(已知)所以∠B+∠C=180°(两直线平行,同旁内角互补)因为AD∥BC(已知)所以∠D+∠C=180°(两直线平行,同旁内角互补)所以∠B=∠D(等角的补角相等)23.解:AD平分∠BAC理由:因为AD⊥BC于D,EG⊥BC于G所以EG∥AD(垂直于同一条直线的两直线平行)所以∠1=∠2(两直线平行,内错角相等)∠E=∠3(两直线平行,同位角相等)又因为∠E=∠1所以∠3=∠2(等量代换)所以AD平分∠BAC(角平分的定义)人教版初一数学下册第五章《相交线与平行线》水平测试题班级学号姓名成绩一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是().(A)平行线间的距离相等(B)两点之间,线段最短(C)垂线段最短(D)两点确定一条直线2.如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是()A. 同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到()图2A.②B.③C.④D.⑤4.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为().A.4 B.3 C.2 D.15.如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ). A.互相垂直 B.互相平行 C.即不垂直也不平行 D.不能确定6.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ). A.a ∥b B.c ∥d C.a ⊥d D.任两条都无法判定是否平行7.汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( )A.1个B.2个C.3个D.4个8.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A . 18° B .54° C .72° D .70°9.在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( ) A .1个 B .2个 C .3个 D .4个10.如图6所示,已知∠3=∠4,若要使∠1=∠2,则还需( ) A .∠1=∠3 B .∠2=∠3 C .∠1=∠4 D .AB ∥CD 二、填空题(每题3分,共30分)11.如图7,当剪刀口∠AOB 增大21°时,∠COD 增大 。
七年级下册数学人教版试卷【含答案】
![七年级下册数学人教版试卷【含答案】](https://img.taocdn.com/s3/m/11a17c4e6ad97f192279168884868762caaebbaf.png)
七年级下册数学人教版试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是?A. 32厘米B. 36厘米C. 40厘米D. 46厘米3. 下列哪个比例尺表示的图形最大?A. 1:10B. 1:100C. 1:1000D. 1:100004. 一个正方形的边长是4厘米,那么它的面积是?A. 8平方厘米B. 16平方厘米C. 32平方厘米D. 64平方厘米5. 下列哪个数是偶数?A. 101B. 103C. 105D. 107二、判断题(每题1分,共5分)1. 任何一个正方形都是矩形。
()2. 两条平行线之间的距离是相等的。
()3. 1千米等于1000米。
()4. 任何一个三角形的内角和都是180度。
()5. 任何一个正数都有两个平方根。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个等边三角形的三个角都是______度。
3. 任何一个正方形的对角线都相等,且长度为边长的______倍。
4. 两个互质的数的最小公倍数是它们的______。
5. 任何一个偶数都可以表示为2的______倍。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 什么是等边三角形?3. 什么是比例尺?4. 什么是质数?5. 什么是偶数?五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求它的面积。
2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,求这个三角形的周长。
3. 两个数的最大公约数是5,最小公倍数是35,求这两个数。
4. 一个正方形的边长是6厘米,求它的对角线长度。
5. 一个数的平方根是9,求这个数。
六、分析题(每题5分,共10分)1. 已知一个三角形的两个内角分别是30度和60度,求这个三角形的第三个内角的度数。
部编数学七年级下册数学(人教版七年级下册全部)(全解全析)含答案
![部编数学七年级下册数学(人教版七年级下册全部)(全解全析)含答案](https://img.taocdn.com/s3/m/426548bb0875f46527d3240c844769eae109a319.png)
2022-2023学年下学期期末考前必刷卷七年级数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版七下全部。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列每组图形中,左边的图形平移后可以得到右边图形的是()A.B.C.D.【答案】D【解析】【解答】解:选项A中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项B中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项C中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项D中的两个图形,左边的图形平移后能得到右边的图形,故该选项符合题意;故答案为:D.【分析】根据平移的性质对每个选项一一判断即可。
,,,2.1212212221中,是有理数的个数是( )2.0,2π,3A.2B.3C.4D.5【答案】C【解析】【解答】解:= 43 ,所以在0, 2π , 37 ,, , 2.1212212221 中,有理数是:0, 37 , , 2.1212212221 ,共4个.故答案为:C .【分析】整数和分数统称为有理数,根据有理数的定义进行判断即可。
3.如图,明明和乐乐下棋,明明执圆形棋子,乐乐执方形棋子,若棋盘中心的圆形棋子位置用(-1,1)表示,乐乐将第4枚方形棋子放入棋盘后,所有棋子构成轴对称图形,则乐乐放方形棋子的位置可能是( )A .(−1,−1)B .(−1,3)C .(0,2)D .(−1,2)【答案】D【解析】【解答】解:如图:正确的点为(-1,2),故答案为:D .【分析】先确定坐标轴,再确定对称轴即可。
人教版七年级下学期期末考试数学试卷共五套(含答案解析)
![人教版七年级下学期期末考试数学试卷共五套(含答案解析)](https://img.taocdn.com/s3/m/671aa08dad02de80d5d84028.png)
人教版七年级下学期期末考试数学试卷(一)一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3)B.(﹣3,0)C.(﹣1,2) D.(﹣2,﹣3)2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣13.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣34.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C. D .5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180° C.∠FDC=∠C D.∠FDC=∠A 6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个B.2个C.3个D.4个8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x>12A.18户B.20户C.22户D.24户9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB 沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2) B.(4,6) C.(4,4)D.(2,4)10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2= .12.(5分)5﹣的整数部分是.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.16.(8分)解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC 的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD ∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3)B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3【分析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据可判断C;根据立方根的定义可判断D.【解答】解:,故A错误;=±3,故B错误;=|﹣3|=3,故C错误;正确.故选D.【点评】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.4.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.【分析】根据数轴上的解集,大于﹣1小于等于2,可得答案.【解答】解:数轴上表示的解集:﹣1<x≤2,B不等式组的解集是大于﹣,小于等于2,故选:B.【点评】本题考查了在数轴上表示不等式组的解集,观察数轴上的表示的解集是解题关键.5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180°C.∠FDC=∠C D.∠FDC=∠A【分析】根据平行线的判断对每一项分别进行分析即可得出答案.【解答】解:A、∵∠C=∠CBE,∴DC∥AB,故本选项错误;B、∵∠C+∠ABC=180°,∴DC∥AB,故本选项错误;C、∵∠FDC=∠C,∴AD∥BC,故本选项正确;D、∵∠FDC=∠A,∴DC∥AB,故本选项错误;故选C.【点评】本题考查的是平行线的判定,熟练掌握内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行是本题的关键.6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:∵了解某种型号节能灯的使用寿命,选择抽样调查,∴选项A不符合题意;∵了解电视剧《人民的名义》的收视率,选择抽样调查,∴选项B符合题意;∵端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择抽样调查,∴选项C不符合题意;∵对神舟十一号宇宙飞船上某种零部件的检查,选择全面调查,∴选项D不符合题意.故选:B.【点评】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定.7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个B.2个C.3个D.4个【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,﹣3.14159,0,,0.是有理数,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x>12A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B 两组)的百分率可得答案.【解答】解:∵被调查的户数为=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2)B.(4,6)C.(4,4)D.(2,4)【分析】先根据点A、B的坐标确定出平移规律,再求解即可.【解答】解:∵点A(﹣4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,4).故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2= 30°.【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答】解:如图,∵a∥b,∴∠3=∠1=60°,∴∠2=180°﹣90°﹣∠3=180°﹣90°﹣60°=30°.故答案为:30°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.12.(5分) 5﹣的整数部分是 2 .【分析】先估计的近似值,然后判断5﹣的近似值,最后得出5﹣的整数部分.【解答】解:∵4<5<9,∴2<<3,∴﹣3<<﹣2.∴2<5﹣<3.故5﹣的整数部分是2.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是7 .【分析】将已知的双向不等式转化为一个一元一次不等式组,求出不等式组的解集,找出解集中的所有整数解,求出之和即可.【解答】解:不等式:2≤3x﹣7<8可化为:,由不等式①移项合并得:3x≥9,解得:x≥3;由不等式②移项合并得:3x<15,解得:x<5,∴不等式组的解集为3≤x<5,即整数解为:3,4,则原不等式的所有整数解的和为3+4=7.故答案为:7【点评】此题考查了一元一次不等式组的整数解,以及一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是(0,3)或(3,﹣3).【分析】根据点到x轴的距离是纵坐标的绝对值,可得答案.【解答】解:由题意,得2a﹣1=3或2a﹣1=﹣3,解得a=2,或a=﹣1.点P的坐标是(0,3)或(3,﹣3),故答案为:(0,3)或(3,﹣3).【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.【分析】(1)本题涉及二次根式化简、开立方和乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)两边直接开平方可得x﹣2=±3,再解一元一次方程即可.【解答】解:(1)原式=﹣4++1=﹣4=﹣=﹣;(2)开平方得:x﹣2=±3,x﹣2=3,x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题主要考查了实数的运算,以及一元二次方程的解法,关键是掌握二次根式化简、开立方和乘方运算,掌握实数的运算顺序.16.(8分)解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.【点评】此题考查的是解二元一次方程组,关键是先化简在运用加减消元法解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣1,解不等式②得:x<0.8,∴不等式组的解集为﹣1≤x<0.8,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【分析】由AB∥CD得到∠AGE=∠CFG,又FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.【点评】两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?【分析】可直接设两车间的人数,根据题意找出两个等量关系:①甲车间的人数﹣10=乙车间的人数;②甲车间的人数+10=2×(乙车间的人数﹣10),根据这两个等量关系可列出方程组.【解答】解:设甲车间有x名工人,乙车间有y名工人,由题意得:,整理得,解得.答:甲车间有70名工人,乙车间有50名工人.【点评】本题主要考查二元一次方程组的应用,关键在于理解清楚题意,找出等量关系,列出方程组求解.20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC 的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.【分析】(1)根据点C的坐标,即可找出x、y轴的位置,以此建立直角坐标系即可;(2)找出点A、B、C平移后的点A′、B′、C′,将其两两相连即可;(3)由△A′B′C′的面积等于矩形的面积减去三个小三角线的面积,即可求出△A′B′C′的面积.【解答】解:(1)如图所示建立直角坐标系,点B的坐标为(﹣2,1).(2)依照题意平移△ABC,得到△A′B′C′,如图所示.(3)S=3×4﹣×4×2﹣×3×2﹣×1×2=4.△A′B′C′【点评】本题考查了作图中的平移变换以及三角形的面积,解题的关键是:(1)根据点B的坐标确定x、y轴的位置;(2)找出点A、B、C平移后的点A′、B′、C′;(3)利用分割图形法求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中羽毛球所占百分比即可得.【解答】解:(1)80÷32%=250,答:这次活动一共调查了250名学生;(2)篮球的人数为250﹣(80+60+40)=70,补全图形如下:(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角为360°×=100.8°;(4)2000×=320,答:估计该学校选择羽毛球项目的学生人数为320人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD ∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.【分析】①根据平行线的性质得出∠1=∠BAD,求出∠2=∠BAD,根据平行线的判定得出即可;②根据平行线的性质得出∠B=∠CDG,求出∠2=∠CDG,根据平行线的判定得出即可.【解答】证明:①∵EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG;②∵AB∥DG,∴∠B=∠CDG,∵∠2=∠B,∴∠2=∠CDG,∴DG平分∠ADC.【点评】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m 的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于x、y的二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式组;(3)确定花费最多的方案.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.人教版七年级下学期期末考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)不等式3x<18 的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<02.(3分)下列各对数值,是方程2x﹣3y=6的解是()A.B.C.D.3.(3分)x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<0 4.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B.C. D.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.>D.﹣3a>﹣3b7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,38.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A. B. C. D.9.(3分)若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>110.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4二.填空题(每题3分,共24分)11.(3分)已知点A(﹣2,0),B(3,0),C(5,﹣4),则S= .△ABC12.(3分)已知二元一次方程组为,则x+y= .13.(3分)不等式4x≤12的自然数解是:.14.(3分)若|x+2|+(2y﹣x)2=0,则x= ,y= .15.(3分)如图,AB∥CD,CE平分∠BCD,∠DCE=16°,则∠B等于.16.(3分)若不等式组的解集是空集,则a、b的大小关系是.17.(3分)若点(m﹣3,m+2)在第二象限,则m的取值范围是.18.(3分)已知方程组,当m 时,x+y>0.三、解答题(共3小题,满分36分)19.(22分)解方程组或不等式(组)(1)(代入法)(2)(3)1+≥2﹣(4)解不等式组,并把解集表示在数轴上,再写出这个不等式组的整数解.20.(6分)x为何值时,代数式﹣的值不大于1?21.(8分)某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人,问该宾馆底层有多少间客房?四.学以致用(10分)22.(10分)甲、乙两班同学去购买苹果,价格如下表购买苹果a 千克α<30 30≤α≤50 α>50每千克价格(元) 3 2.5 2甲班同学分两次共买了70千克(第二次多于第一次),共付189元,而乙班同学一次性购买70千克.(1)乙班同学比甲班同学少付多少元?(2)甲班同学第一、二次分别购买苹果多少千克?参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)不等式3x<18 的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<0【分析】不等式x系数化为1,即可求出解集.【解答】解:不等式3x<18,解得:x<6,故选B【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.2.(3分)下列各对数值,是方程2x﹣3y=6的解是()A.B.C.D.【分析】根据使二元一次方程左右相等的未知数的值,可得答案.【解答】解:把x=0,y=4代入2x﹣3y=6得:2×0﹣3×4=﹣12≠6,左边≠右边,∴选项A不是方程2x﹣3y=6的解;把x=1,y=﹣2.5代入2x﹣3y=6得:2×1﹣3×(﹣2)=8≠6,左边≠右边,∴选项B不是方程2x﹣3y=6的解;把x=2,y=﹣1代入2x﹣3y=6得:2×2﹣3×(﹣1)=7≠6,左边≠右边,∴选项C不是方程2x﹣3y=6的解;把x=3,y=0代入2x﹣3y=6得:2×3﹣3×0=6,左边=右边,∴选项D是方程2x﹣3y=6的解;故选:D.【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.3.(3分) x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根【分析】A、根据平方根的定义即可判定;B、根据无理数的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、0.64的平方根为±0.8,故选项A错误;B、带根号的数不一定都是无理数,例如,故选项B错误;C、x是125的立方根,说法错误,故选项C错误;D、说法正确,故选项正确.故选D.【点评】此题主要考查了立方根、平方根、无理数的定义,要求学生熟练掌握平方根,立方根及无理数的含义.5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x﹣5≥﹣1的解集是x≥2,大于应向右画,且包括2时,应用实心表示,据此可判断答案.【解答】解:不等式2x﹣5≥﹣1的解集为x≥2.故选B.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.>D.﹣3a>﹣3b【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a﹣5>b﹣5,故A选项正确;B、3+a>b﹣3,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,3【分析】把代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.【点评】本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.8.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A.B.C.D.【分析】利用长方形的周长=2×(长+宽),得出2(x+y)=10;由长比宽的2倍少1得出x=2y﹣1.根据这两个等量关系,可列方程组.【解答】解:设长为x,宽为y,由题意得或.。
人教版七年级下册数学试卷全集(免费下载)
![人教版七年级下册数学试卷全集(免费下载)](https://img.taocdn.com/s3/m/5625541feff9aef8941e062e.png)
9、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为。
10、A(–3,–2)、B(2,–2)、C(–2,1)、D(3,1)是坐标平面内的四个点,则线段AB与CD的关系是_________________。
13、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )
A、(-2,2),(3,4),(1,7);B、(-2,2),(4,3),(1,7);
C、(2,2),(3,4),(1,7);D、(2,-2),(3,3),(1,7)
10、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )
A.(2,2) B.(3,2) C.(3,3) D.(2,3)
11、若x轴上的点P到y轴的距离为3,则点P的坐标为( )
A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)
12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为。
二、选择题(每小题3分,共30分)
1、若∣-a∣=-a则有
(A) a≥0 (B) a≤0 (C) a≥-1 (D)-1≤a≤0
2、不等式组的最小整数解是()
A.6折B.7折C.8折D.9折
三、解答题(1~2共10分,3~4共12分,5~6共20分)
1、解不等式组2、求不等式组的整数解
人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
![人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)](https://img.taocdn.com/s3/m/487cdc8b856a561252d36fb8.png)
1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(
)
D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(
)
A. 2 个
9. 81的平方根是
。
10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =
。
12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A
最新人教版七年级数学下册全册单元测试(附答案)
![最新人教版七年级数学下册全册单元测试(附答案)](https://img.taocdn.com/s3/m/0fee7768aeaad1f346933fc6.png)
人教版数学七年级下册 第五章 平行线与相交线 单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线l 1沿AB 的方向得到直线l 2,若∠1=50°,则∠2的度数是( )A .40°B .50°C .90°D .130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .︒30B .︒20C .︒15D .︒143.如图,∠1+∠2=180°,∠3=100°则∠4等于( )A .70°B .80°C .90°D .100° 4.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1= 20°,则∠2的度数为( )A .60°B .45°C .40°D .30° 5.如图,已知直线a ∥b ,∠1=131°,则∠2等于( )A.39°B.41°C.49°D.59°6.如图,直线a ∥b ,∠1=72°,则∠2的度数是( )A.118°B.108°C.98°D.72°7.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110°8.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A .30°B .60°C .80°D .120°9.下列命题的逆命题不正确的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等11.如图。
初一下册数学试题及答案pdf
![初一下册数学试题及答案pdf](https://img.taocdn.com/s3/m/2013c3c3294ac850ad02de80d4d8d15abf230066.png)
初一下册数学试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个选项是正确的比例关系?A. 2:3 = 4:6B. 3:5 = 6:10C. 4:7 = 8:14D. 5:8 = 10:12答案:B2. 计算下列哪个选项的结果等于0?A. 3x - 3xB. 5y + 2yC. 7z - 5zD. 4a * 0答案:D3. 一个数的平方等于16,这个数是?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是多少?A. 24立方厘米B. 12立方厘米C. 6立方厘米D. 8立方厘米答案:A5. 下列哪个是正比例函数?A. y = 3x + 2B. y = -2xC. y = x^2D. y = 5答案:B6. 一个圆的半径是5cm,那么它的周长是多少?A. 31.4cmB. 62.8cmC. 10πcmD. 20πcm答案:B7. 下列哪个选项是正确的不等式?A. 3x > 2xB. 5y ≤ 2yC. 7z < 7zD. 4a ≥ 4a答案:A8. 计算下列哪个选项的结果大于1?A. (1/2)^2B. √2C. 2^(1/2)D. 3^0答案:B9. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是多少?A. 16cmB. 21cmC. 26cmD. 31cm答案:B10. 一个数的立方等于-8,这个数是?A. 2B. -2C. 4D. -4答案:B二、填空题(每题2分,共20分)1. 一个数的相反数是-5,那么这个数是____。
答案:52. 一个数的绝对值是7,那么这个数可以是____或____。
答案:7或-73. 一个数的平方根是3,那么这个数是____。
答案:94. 一个数的立方根是2,那么这个数是____。
答案:85. 如果a=3,b=-2,那么a+b的值是____。
答案:16. 如果一个角的补角是120°,那么这个角是____。
数学人教版七年级下册数学全册单元期末试卷及答案-百度文库
![数学人教版七年级下册数学全册单元期末试卷及答案-百度文库](https://img.taocdn.com/s3/m/b07c17debb68a98270fefa50.png)
数学人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 4.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±8 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .146.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0B .1C .3D .7 7.下列计算正确的是( ) A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 8.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1) 9.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.13.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.如图,根据长方形中的数据,计算阴影部分的面积为______ .16.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.17.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.18.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .三、解答题21.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-222.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 02221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.24.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+- 26.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2;(3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1).27.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.28.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE .【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行).故选:B .此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解3.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.D解析:D【解析】试题分析:∵(x±4)2=x 2±8x+16,所以m=±2×4=±8.故选D .考点:完全平方式.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.A解析:A【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.7.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.【详解】解:A 、a +a 2不是同类项不能合并,故本选项错误;B 、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a 5•a 2=a 7,故本选项错误;C 、根据幂的乘方法则:底数不变,指数相乘,(﹣2a 4)4=16a 16,故本选项错误;D 、(a ﹣1)2=a ﹣2,根据幂的乘方法则,故本选项正确;故选:D .【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.8.C解析:C直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.9.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】10.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.13.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.14.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.16.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.17.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.a >﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.三、解答题21.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+ 252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.24.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.25.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可;(2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a -⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.26.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=312⎛⎫- ⎪⎝⎭ 18=-;(2)m 2•m 4+(﹣m 3)2=m 6+m 6=2m 6;(3)(x +y )(2x ﹣3y )=2x 2﹣3xy +2xy ﹣3y 2=2x 2﹣xy ﹣3y 2;(4)(x +3)2﹣(x +1)(x ﹣1)=x 2+6x +9﹣x 2+1=6x +10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.27.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.28.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b - =()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯ =14;(4)66a b + =()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦ =()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX年春季期七年级数学第九章复习测试题一、填空题(每空2分,共28分)1、不等式的负整数解是2、若_______ ;不等式解集是,则取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了道题。
4、不等式组的解集是。
5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是6、若代数式1-x-22 的值不大于1+3x3 的值,那么x的取值范围是_______________________。
7、若不等式组无解,则m的取值范围是.8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。
9、若,则点在第象限。
10、已知点M(1-a,a+2)在第二象限,则a的取值范围是_______________。
11、在方程组的取值范围是____________________12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。
某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。
则该学生第二次购书实际付款元。
12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为。
二、选择题(每小题3分,共30分)1、若∣-a∣=-a则有(A) a≥0 (B) a≤0 (C) a≥-1 (D) -1≤a≤02、不等式组的最小整数解是()A.-1 B.0 C.2 D.33、不等式组的解集在数轴上的表示正确的是()A BC D4、在ABC中,AB=14,BC=2x,AC=3x,则x的取值范围是()A、x>2.8B、2.8<x<14C、x<14D、7<x<145、下列不等式组中,无解的是()(B) (C) (D)6、如果0<x<1则1x ,x,x2 这三个数的大小关系可表示为()(A)x< 1x < x2 (B)x <x2< 1x (C) 1x <x<x2 (D) x2<x<1x7、在平面直角坐标系中,点(-1,3m2+1)一定在()A.第一象限. B.第二象限. C.第三象限. D.第四象限8、如图2,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为()A、○□△B、○△□C、□○△D、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6折B .7折C .8折D .9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组2、求不等式组 的整数解3、已知方程组 , 为何值时, > ?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km 以内都需付车费10元),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计)。
现在某人乘这种出租车从甲地到乙地,支付车费17.2元,试问从甲地到乙地的路程最多是多少?5、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)设生产x 件A 种产品,写出其题意x 应满足的不等式组;(2)由题意有哪几种按要求安排A 、B 两种产品的生产件数的生产方案?请您帮助设计出来。
6、足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分。
一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分。
请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?第六章平面直角坐标系基础训练题一、填空题1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为3、已知点M ()y x ,与点N ()3,2−−关于x 轴对称,则______=+y x 。
4、已知点P ()3,3b a +与点Q ()b a 2,5+−关于x 轴对称,则___________==b a 。
5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。
6、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。
7、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。
9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。
10、A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。
11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。
12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;13、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。
14、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。
线段PQ 的中点的坐标是________________。
15、已知P 点坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是_________________________________________________。
16、已知点A (-3+a ,2a+9)在第二象限的角平分线上,则a 的值是____________。
17、已知点P (x ,-y )在第一、三象限的角平分线上,由x 与y 的关系是_____________。
18、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第____________象限。
19、如果点M (x+3,2x -4)在第四象限内,那么x 的取值范围是______________。
20、已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P 。
点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。
21、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________。
22、已知0=mn ,则点(m ,n )在 。
二、选择题1、在平面直角坐标系中,点()1,12+−m 一定在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、如果点A (a.b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限3、点P (a ,b )在第二象限,则点Q(a-1,b+1)在( )(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D)第四象限4、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )A 、(5,4)B 、(-5,4)C 、(-5,-4)D 、(5,-4)6、△DEF (三角形)是由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-1),则点B (1,1)的对应点E 、点C (-1,4)的对应点F 的坐标分别为( )A 、(2,2),(3,4)B 、(3,4),(1,7)C 、(-2,2),(1,7)D 、(3,4),(2,-2)7、过A (4,-2)和B (-2,-2)两点的直线一定( )A .垂直于x 轴B .与Y 轴相交但不平于x 轴B . 平行于x 轴 D .与x 轴、y 轴平行 8、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( )A 、b a 2,3−B 、b a 2,3−C 、a b 3,2−D 、a b 3,2−9、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A (-1,1) B (-1,2) C (-2,1) D (-2,2)10、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)11、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)12、在直角坐标系内顺次连结下列各点,不能得到正方形的是( )A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2);B 、(0,0) (2,0) (2,2) (0,2) (0,0);C 、(0,0) (0,2) (2,-2) (-2,0) (0,0);图3相帅炮D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
13、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A 、(-2,2),(3,4),(1,7);B 、(-2,2),(4,3),(1,7);C 、(2,2),(3,4),(1,7);D 、(2,-2),(3,3),(1,7)14、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位14、若点P(m −1, m )在第二象限,则下列关系正确的是( )A 10<<mB 0<mC 0>mD 1>m三、解答题1、在图所示的平面直角坐标系中表示下面各点:A (0,3);B (1,-3);C (3,-5);D (-3,-5);E (3,5);F (5,7);G (5,0)(1)A 点到原点O 的距离是 。