高三上学期数学第一次月考试卷
高三第一次月考(数学)试卷含答案
高三第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.若{}{}2|22,|log (1)M x x N x y x =-≤≤==-,则M N =( )A.{}|20x x -≤<B. ﹛x| -1<x<0﹜C.{}2,0-D.{}21|≤<x x 2.(5分)2.复数imi212+-=A+B i (m 、A 、B ∈R),且A+B=0,则m 的值是 ( ) A. 32- B. 32 C.2 D.23.(5分)3.下列命题中,真命题是 ( )A .,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 4.(5分)4.函数212log 4f xx 的单调递增区间是( )A.(0,+∞)B. (-∞,0)C. (2,+∞)D. (-∞,-2)5.(5分)5.函数f(x)=-1x+log 2x 的一个零点落在下列哪个区间( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.(5分)6.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2-t),那么( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1) 7.(5分)7.函数()3cos 2xxf x x⋅=的部分图象大致是( )A .B .C .D .8.(5分)8.曲线y =e x +1在x =1处的切线与坐标轴所围成的三角形的面积为( )A.12e B .e 2 C .2e 2D .94e 2 9.(5分)9.已知函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(x).当0≤x≤1时,2()f x x =.若直线y =x +a 与函数y =f(x)的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是 ( ) A .0 B .0或-14 C .-14或-12 D.0或-1210.(5分)10.若函数x x f xx2sin 3)(1212++=+-在区间[-k,k](k>0)上的值域为[m,n],则m+n 等于( )A.0B.2C.4D.611.(5分)11.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是 ( )A.y=-2x+3B.y=xC. y=2x-1D.y=3x-212.(5分)12.设定义域为R 的函数2lg (>0)()-2(0)x x f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为( )A .3B .7C .5D .6二、 填空题 (本题共计4小题,总分20分)13.(5分)13.函数24ln(1)x y x -=+的定义域为_______________14.(5分)14.函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f (3)=________.15.(5分)15.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________16.(5分)16.已知定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有)('x f <3,则不等式 f (x)<3x -15的解集为________.三、 解答题 (本题共计7小题,总分80分) 17.(12分)17.(本大题满分12分)设p :函数y =log a (x +1)(a >0且a≠1)在(0,+∞)上单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p∧q 为假,p∨q 为真,求实数a 的取值范围.18.(12分)18.(本大题满分12分)已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.19.(12分)19.(本大题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据: 编号 1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足x≥175且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列.20.(12分)20. (本大题满分12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.21.(12分)21. (本大题满分12分)已知函数f(x)=ax -ln x ,a ∈R.(1)求函数f(x)的单调区间; (2)当x ∈(0,e]时,求g (x )=e 2x -ln x 的最小值; (3)当x ∈(0,e]时,证明:e 2x -ln x -x x ln >52.22.(10分)22.(本大题满分10分)选修4-4:坐标系与参数方程已知直线l :⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 213235 (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA|·|MB|的值.23.(10分)23. (本大题满分10分) 选修4-5:不等式选讲已知关于x 的不等式|ax -1|+|ax -a |≥1(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围答案一、单选题(本题共计12小题,总分60分)1.(5分)D2.(5分)A3.(5分)D4.(5分)D5.(5分)B6.(5分)A7.(5分)D8.(5分)A9.(5分)B10.(5分)D11.(5分)C12.(5分)B二、填空题(本题共计4小题,总分20分)13.(5分)13.(-1,0)∪(0,2]14.(5分) 14. 2715.(5分) 15.[-3,1]16.(5分) 16.(4,+∞)三、解答题(本题共计7小题,总分80分)17.(12分)17.1/2≤a<1或a>5/218.(12分)18.(1)f(x)最大值为5,最小值为1;(2)m的取值范围为(-∞,2]∪[6,+∞)19.(12分)19.(1)35件;(2)35×2/5=14件;(3)由题意,ξ的取值有0,1,2,P(ξ=0)=3/10,P(ξ=1)=3/5,P(ξ=2)=1/10,分布列为(2)f(x)的最大值为18,最小值为-8221.(12分)21.(1)综上,a≤0时,f(x)的单调递减区间是(0,+∞),无单调增区间;a>0时,f(x)的单调递减区间是(0,1/a),单调增区间是(1/a,+∞);(2)g(x)最小值为3;(3)略22.(10分)22.(1)x2+y2=2x;(2)|MA|·|MB|=1823.(10分)23.(1)(-∞,1/2]∪[5/2.+∞); (2)[4,+∞)。
高三第一次月考试卷数学
考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4$,则$f(1)$的值为()A. 1B. 2C. 3D. 42. 若$a > 0$,$b > 0$,则下列不等式中恒成立的是()A. $a^2 + b^2 \geq 2ab$B. $a^3 + b^3 \geq 2ab(a + b)$C. $\frac{a}{b} + \frac{b}{a} \geq 2$D. $a^2 + b^2 + c^2 \geq ab + bc + ca$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 50$,$S_8 = 80$,则$a_6 + a_7$的值为()A. 15B. 20C. 25D. 304. 函数$y = \log_2(x + 1)$的图像与直线$y = x - 1$的交点个数是()A. 0B. 1C. 2D. 35. 在直角坐标系中,点$A(1, 2)$关于直线$x + y = 1$的对称点$B$的坐标是()A. $(-2, -1)$B. $(-1, -2)$C. $(2, -1)$D. $(1, -2)$6. 已知复数$z = 3 + 4i$,则$|z|$的值为()A. 5B. 7C. 9D. 127. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,且$a_1 + a_2 + a_3 = 21$,$a_2 \cdot a_3 = 27$,则$q$的值为()A. 3B. $\frac{3}{2}$C. $\frac{2}{3}$D. 18. 在$\triangle ABC$中,$a = 3$,$b = 4$,$c = 5$,则$\sin A$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D.$\frac{5}{4}$9. 已知函数$f(x) = x^2 - 2x + 1$,则$f(x)$的对称轴方程是()A. $x = 1$B. $x = -1$C. $y = 1$D. $y = -1$10. 若平面直角坐标系中,点$P(2, 3)$在直线$l$上,且直线$l$的方程为$y = kx + b$,则$k$的值为()A. 2B. 3C. -2D. -3二、填空题(本大题共10小题,每小题5分,共50分。
2023-2024学年天津市南开中学高三上学期第一次月考数学试题及答案
南开中学2024届高三第一次月检测数学学科试卷考试时间:120分钟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共150分.考试结束后,请交回答题卡.第I卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}2|230A x x x =-->,{}1,2,3,4B =,则()A B ⋂=Rð()A. {}1,2 B. {}1,2,3 C. {}3,4 D. {}42. “sin 0x =”是“cos 1x =”的( )A 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件3. 函数()||sin 2f x x x =的部分图象可能是( )AB. C. D.4. 下列函数中,是奇函数且在()0,∞+上单调递减的是( )A. 2y = B. sin xy x=C. )lg2y x=- D. e e 2x xy --=5. 计算:0ln 228241.1e log 1lg10ln e log +-+++的值( )A. 0B.152C. 2D. 36. 已知1sin 3a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b<< B. a b c << C. b a c << D. c a b<<7.π2cos 63αα⎛⎫--= ⎪⎝⎭,则πsin 26α⎛⎫-= ⎪⎝⎭( )..A. 19-B.19C.13D.898. 将函数()π3sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象对应的函数为()y g x =,有下列命题:①函数()g x 的图象关于直线πx =对称 ②函数()g x 图象关于点π,012⎛⎫⎪⎝⎭对称③函数()g x 在π5π,2424⎡⎤-⎢⎥⎣⎦上单调递增 ④函数()g x 在[]0,2π上恰有5个极值点其中正确命题个数为( )A. 1B. 2C. 3D. 49. 设函数ln 2,0()π1sin ,π042x x x f x x x ω⎧+->⎪=⎨⎛⎫+--≤≤ ⎪⎪⎝⎭⎩有7个不同的零点,则正实数ω的取值范围为( )A. 131744⎡⎫⎪⎢⎣⎭,B. 174⎡⎢⎣C. 49121652⎡⎫⎪⎢⎣⎭, D. 65121732⎡⎫⎪⎢⎣⎭,第II 卷二、填空题(本大题共6小题,每小题5分,共30分.)10. 已知i 是虚数单位,化简32i12i-+的结果为____________.11.在代数式521x ⎫-⎪⎭的展开式中,常数项为_____________.12. 函数()()ππ2sin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则π=3f ⎛⎫⎪⎝⎭__________.的的13. 在亚运会女子十米跳台决赛颁奖礼上,五星红旗冉冉升起,在坡度15 的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60 和30 ,第一排A 点和最后一排E 点的距离为(如图所示),则旗杆的高度为____________米.14. 已知定义在[)0+∞,上的函数()f x ,当[0,2)x ∈时,()()1611f x x =--,且对任意的实数1[2222)n n x +∈--,(*2N n n ∈,≥),都有()1122x f x f ⎛⎫=- ⎪⎝⎭,若函数()()log a g x f x x =-有且仅有五个零点,则a 的取值范围__________.15. 记()ln f x x ax b =++(0a >)在区间[],2t t +(t 为正数)上的最大值为(),t M a b ,若{|(,)ln 3}R t b M a b a ≥+=,则实数t 的最大值为__________.三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16. 已知函数()()2π2sin πcos 2f x x x x ⎛⎫=+-+-⎪⎝⎭(1)求()f x 的最小正周期及对称轴方程;(2)当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.17. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中2C π≠,已知cos 2cos cos b c A a B C -=.(1)求角B 的大小;(2)若223125b c ac +=-,求ABC 面积的最大值.18. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,E 为棱PC 的中点.(1)证明://BE 平面PAD ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)求点D 到平面PBC 的距离.19. 已知椭圆()2222:10x y C a b a b +=>>,短轴长为.(1)求C 的方程;(2)如图,经过椭圆左顶点A 且斜率为()0k k ≠的直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且APM △,求k 的值.20. 已知函数()11lnx aF x x x =--+.(Ⅰ)设函数()()()1h x x F x =-,当2a =时,证明:当1x >时,()0h x >;(Ⅱ)若()0F x >恒成立,求实数a 取值范围;(Ⅲ)若a 使()F x 有两个不同的零点12,x x,证明:21a a x x e e -<-<-.的南开中学2024届高三第一次月检测数学学科试卷考试时间:120分钟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共150分.考试结束后,请交回答题卡.第I卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}2|230A x x x =-->,{}1,2,3,4B =,则()A B ⋂=Rð()A. {}1,2 B. {}1,2,3 C. {}3,4 D. {}4【答案】B 【解析】【分析】首先解一元二次不等式求出集合A ,再根据补集、交集的定义计算可得.【详解】由2230x x -->,即()()130x x +->,解得3x >或1x <-,所以{}2|230{|1A x x x x x =-->=<-或3}x >,所以{}|13A x x =-≤≤R ð,又{}1,2,3,4B =,所以(){}1,2,3A B ⋂=R ð.故选:B2. “sin 0x =”是“cos 1x =”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据充分性和必要性的定义结合同角三角函数的关系即可得出结论.【详解】解:因为sin 0x =,根据三角函数的基本关系式,可得cos 1x ==±,反之:若cos 1x =,根据三角函数的基本关系式,可得sin 0x ==,所以“sin 0x =”是“cos 1x =”的必要不充分条件.故选:C.3. 函数()||sin 2f x x x =的部分图象可能是( )A. B. C. D.【答案】C 【解析】【分析】根据()f x 是奇函数,排除B ,再取特殊值验证.【详解】因为()()||sin 2||sin 2()f x x x x x f x -=--=-=-所以()f x 是奇函数,排除B ,由02f ⎛⎫= ⎪⎝⎭π,排除A ,由44f ππ⎛⎫= ⎪⎝⎭,排除D .故选:C .【点睛】本题主要考查函数的图象和性质,还考查了数形结合的思想和理解辨析的能力,属于基础题.4. 下列函数中,是奇函数且在()0,∞+上单调递减的是( )A. 2y = B. sin x y x=C. )lg2y x=- D. e e 2x xy --=【答案】C 【解析】【分析】根据奇偶性定义、对数函数、指数函数单调性,结合复合函数的单调性依次判断各个选项即可.【详解】A 选项:()()2f x f x -==,不是奇函数,故A 选项错误;B 选项:()()()sin sin sin x x xf x f x x x x---====--,不是奇函数,故B 选项错误;C 选项:因为()f x 的定义域为R ,且()()))()22lg 2lg2lg 414lg10f x f x x x x x -+=++=+-==,∴()f x 是奇函数.设2t x ==因为t =()0,∞+上单调递减,lg y t =在()0,∞+上单调递增,由复合函数单调性知,()f x 在()0,∞+上单调递减,故C 选项正确;D 选项:()11e 2e x xf x ⎛⎫=- ⎪⎝⎭,因为1e e ,xxy y ==-在()0,∞+上都单调递增,所以()f x 在()0,∞+上单调递增,故D 选项错误,故选:C .5. 计算:0ln 228241.1e log 1lg10ln e log +-+++的值( )A. 0B.152C. 2D. 3【答案】B 【解析】【分析】根据指数及对数的运算法则计算可得;【详解】0ln 222423151.1e log 1lg10ln e log 812012log 222+-+++=+-+++=.故选:B6. 已知1sin 3a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b <<B. a b c <<C. b a c <<D. c a b<<【答案】A 【解析】【分析】化简得13c =,构造函数()sin ,0,2πf x x x x ⎛⎫=-∈ ⎪⎝⎭,通过导数可证得sin ,0,2πx x x ⎛⎫<∈ ⎪⎝⎭,可得a c <,而0.91133b c ⎛⎫=>= ⎪⎝⎭,从而可得答案.【详解】2711lg 912lg 31log 922lg 2723lg 33c ==⨯=⨯=.设()sin ,0,2πf x x x x ⎛⎫=-∈ ⎪⎝⎭,则有()cos 10f x x '=-<,()f x 单调递减,从而()(0)0f x f <=,所以sin ,0,2πx x x ⎛⎫<∈ ⎪⎝⎭,故11sin 33<,即a c <,而0.91133b c ⎛⎫=>= ⎪⎝⎭,故有a c b <<.故选:A .7.π2cos63αα⎛⎫--=⎪⎝⎭,则πsin26α⎛⎫-=⎪⎝⎭()A.19- B.19C.13D.89【答案】A【解析】【分析】利用三角恒等变换化简已知条件,结合诱导公式、二倍角公式求得正确答案.π2cos63αα⎛⎫--=⎪⎝⎭,12sin cos23ααα⎫+-=⎪⎪⎭,1π2cos sin263ααα⎛⎫+=+=⎪⎝⎭.πππsin2cos2626αα⎡⎤⎛⎫⎛⎫-=--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2ππcos2cosπ233αα⎡⎤⎛⎫⎛⎫=-=-+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2ππcos22sin136αα⎛⎫⎛⎫=-+=+-⎪ ⎪⎝⎭⎝⎭2212139⎛⎫=⨯-=-⎪⎝⎭.故选:A8. 将函数()π3sin26f x x⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度后,所得图象对应的函数为()y g x=,有下列命题:①函数()g x的图象关于直线πx=对称②函数()g x的图象关于点π,012⎛⎫⎪⎝⎭对称③函数()g x在π5π,2424⎡⎤-⎢⎥⎣⎦上单调递增④函数()g x 在[]0,2π上恰有5个极值点其中正确的命题个数为( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】根据函数图象平移变换的特点,利用正弦弦函数的对称性、单调性、最值,结合函数的极值点定义逐项判断即可求解.【详解】函数()π3sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度后,所得图象对应的函数为()πππ3sin 23sin 2666y g x x x ⎡⎤⎛⎫⎛⎫==-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,对于①,当πx =时,()π3π3sin 2π62g ⎛⎫=-=- ⎪⎝⎭,不是函数()y g x =的最值,故①错误;对于②,当π12x =时,πππ3sin 2012126g ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故②正确;对于③,当π5π,2424x ⎡⎤∈-⎢⎥⎣⎦时,πππ2,644x ⎡⎤-∈-⎢⎥⎣⎦,故函数在该区间上单调递增,故③正确;对于④,令(ππ2πZ 62x k k -=+∈,解得()ππZ 23k x k =+∈,当0,1,2,3k =时,π5π4π11π,,,3636x =,在[]0,2π上有4个极值点,故④错误.故选:B.9. 设函数ln 2,0()π1sin ,π042x x x f x x x ω⎧+->⎪=⎨⎛⎫+--≤≤ ⎪⎪⎝⎭⎩有7个不同的零点,则正实数ω的取值范围为( )A. 131744⎡⎫⎪⎢⎣⎭, B. 172144⎡⎫⎪⎢⎣⎭, C. 49121652⎡⎫⎪⎢⎣⎭, D. 65121732⎡⎫⎪⎢⎣⎭,【答案】C 【解析】【分析】分段函数分段处理,在1x >,01x <<各有1个零点,所以π0x -≤≤有5个零点,利用三角函数求出所有的零点,保证π0x -≤≤之间有5个零点即可.【详解】由题,当1x ≥时,()ln 2f x x x =+-,显然()f x 在()1,+∞上单调递增,且()110f =-<,()22ln 220f =+->,此时()f x 在()1,+∞在有一个零点;当01x <<时,()ln 2f x x x =--,1()10f x x'=-<,所以()f x 在()0,1上单调递减,2211()220e ef =+->,此时()f x 在()0,1上只有一个零点;所有当π0x -≤≤时,()π1sin 42f x x ω⎛⎫+- ⎪⎝⎭=有5个零点,令()0f x =,则π1sin 42x ω⎛⎫+= ⎪⎝⎭,即ππ2π46x k ω+=+,或π5π2π46x k ω+=+,k ∈Z ,解得π2π12k x ω-+=,或7π2π12k x ω-+=,k ∈Z ,当0k =时,12π7π1212,x x ωω--==;当1k =时,34π7π2π2π1212,x x ωω----==;当2k =时,56π7π4π4π1212,x x ωω----==;由题可得π0x -≤≤区间内的5个零点,即π4π12π7π4π12πωω⎧--⎪≥-⎪⎪⎨⎪--⎪<-⎪⎩,解得54912126ω≤<,即49651212ω⎡⎫∈⎪⎢⎣⎭,.故选:C.【点睛】分段函数的零点问题点睛:根据函数的特点分别考虑函数在每段区间上的单调性,结合零点存在性定理,得到每一段区间上的零点的个数,从而得出函数在定义域内的零点个数.第II 卷二、填空题(本大题共6小题,每小题5分,共30分.)10. 已知i 是虚数单位,化简32i12i-+的结果为____________.【答案】18i 55--【解析】分析】运用复数运算法则计算即可.【【详解】2232i (32i)(12i)36i 2i 4i 38i 418i 12i (12i)(12i)14i 1455-----+--====--++--+.故答案为:18i 55--.11.在代数式521x ⎫-⎪⎭的展开式中,常数项为_____________.【答案】-5【解析】【分析】写出二项式定理的通项,化简后,使得x 的指数幂为0,即可求得k 的值.【详解】521x ⎫-⎪⎭的展开式的通项为:()51552215521C C 1rrrr r r r T x x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭令5502r -=,解得1r =,所以()11215C 15T +=-=-,521x ⎫⎪⎭的展开式中的常数项为5-.故答案为:-512. 函数()()ππ2sin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则π=3f ⎛⎫⎪⎝⎭__________.【解析】【分析】根据函数()f x 的图象结合正弦函数的图象及性质,求得函数的解析式,再代入求值即可.【详解】由函数()f x 的图象可知,35ππ3π41234T ⎛⎫=--= ⎪⎝⎭,则2π=πT ω=,2ω=.把5π12x =代入()f x ,则5ππ22π122k ϕ⨯+=+,而ππ22ϕ-<<,所以π3ϕ=-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,所以ππππ=2sin 22sin 3333f ⎛⎫⎛⎫⨯-==⎪ ⎪⎝⎭⎝⎭.13. 在亚运会女子十米跳台决赛颁奖礼上,五星红旗冉冉升起,在坡度15 的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60 和30 ,第一排A 点和最后一排E 点的距离为(如图所示),则旗杆的高度为____________米.【答案】27【解析】【分析】根据已知可得30ECA ∠= ,在EAC 中由正弦定理可得AC ,再利用t ABC R 中计算可得答案.【详解】由图可得3609012012030∠=---= ECA ,在EAC sin 30= EA,即sin 452sin 30===EA AC ,在t ABC R 中,60CAB ∠= ,可得sin 6027=⨯== BC AC 米.故答案为:27.14. 已知定义在[)0+∞,上的函数()f x ,当[0,2)x ∈时,()()1611f x x =--,且对任意的实数1[2222)n n x +∈--,(*2N n n ∈,≥),都有()1122x f x f ⎛⎫=- ⎪⎝⎭,若函数()()log a g x f x x =-有且仅有五个零点,则a 的取值范围__________.【答案】1410⎛ ⎝【解析】【分析】写出()f x 的解析式并画出()f x 的图象,结合已知条件将问题转化为()y f x =图象与log a y x =图象在(0,)+∞上有且仅有5个交点,结合图象分析即可求得结果.【详解】当[0,2)x ∈,()16(1|1|)f x x =--,当2n =时,[2,6)x ∈,此时1[0,2)2x -∈,则11()(1)16(1|2|)8(1|2|)22222x x xf x f =-=⨯--=--,当3n =时,[6,14)x ∈,此时1[2,6)2x -∈,则1155()(1)8(1||)4(1||)2224242x x x f x f =-=⨯--=--,当4n =时,[14,30)x ∈,此时1[6,14)2x-∈,则111111()(1)4(1||)2(1||)2228484x x x f x f =-=⨯--=--,……因为()()log a g x f x x =-有且仅有5个零点,所以()y f x =图象与log a y x =图象在(0,)+∞上有且仅有5个交点,如图所示,由图可知,当log a y x =经过点(10,4)A 时,两函数图象有4个交点,经过点(22,2)B 时,两函数图象有6个交点,所以当()y f x =图象与log a y x =图象在(0,)+∞上有且仅有5个交点时,则1log 104log 222a aa >⎧⎪<⎨⎪>⎩,解得1410a <<.故答案为:1410(.15. 记()ln f x x ax b =++(0a >)在区间[],2t t +(t 为正数)上的最大值为(),t M a b ,若{|(,)ln 3}R t b M a b a ≥+=,则实数t 的最大值为__________.【答案】14##0.25【解析】【分析】由函数单调性性质及图象变换可画出()f x 的图象,进而可得(,)()t M a b f t ≥,结合已知条件可知只需()ln 3f t a ≥+,即(ln )ln 3t at b a -++≥+,由()(2)f t f t =+可得ln(2)ln 2(1)2t t a t b ++++=-,联立两者进而可求得结果.【详解】设()ln g x x ax b =++,(0a >),定义域为(0,)+∞,由单调性性质可知,()g x 在(0,)+∞上单调递增,当x 趋近于0时,()g x 趋近于-∞;当x 趋近于+∞时,()g x 趋近于+∞,设0()0g x =,则()g x 的图象如图所示,所以()f x 的图象如图所示,则由图象可知,{}max (),()(2)()(,)max (),(2)(2),()(2)t f t f t f t f x M a b f t f t f t f t f t ≥+⎧==+=⎨+<+⎩,所以(,)()t M a b f t ≥,如图所示,当()(2)f t f t =+时,有(ln )ln(2)(2)t at b t a t b -++=++++,则ln(2)ln 2(1)2t t a t b ++++=-,①又因为{|(,)ln 3}R t b M a b a ≥+=,所以()ln 3f t a ≥+,即(ln )ln 3t at b a -++≥+,所以ln ln 3b t at a ≤----,②由①②得ln(2)ln 2(1)ln ln 32t t a t t at a ++++≤-----,整理得ln(2)ln 2ln 3ln 9t t t +≥+=,即29t t +≥,所以14t ≤.故t 的最大值为14.故答案为:14【点睛】恒成立问题解题方法指导:方法1:分离参数法求最值.(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)()a f x ≥恒成立⇔max ()a f x ≥;()a f x ≤恒成立⇔min ()a f x ≤;()a f x ≥能成立⇔min ()a f x ≥;()a f x ≤能成立⇔max ()a f x ≤.方法2:根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解.三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16. 已知函数()()2π2sin πcos 2f x x x x ⎛⎫=+-+-⎪⎝⎭(1)求()f x 的最小正周期及对称轴方程;(2)当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.【答案】(1)πT =,()5ππ122k x k =+∈Z (2)min 1y =,max 2y =.【解析】【分析】(1)根据诱导公式以及二倍角公式化简,再根据周期公式、对称轴公式进行求解;(2)由x 的取值范围求出整体角的取值范围,再结合正弦型函数图像及性质得出结果.【小问1详解】()()2πcos 2sin πcos 2f x x x x ⎤⎛⎫=+-+⋅ ⎪⎥⎝⎭⎦)22sin cos 1cos2sin2x x x x x =+⋅=-+sin22sin 23x x x π⎛⎫=-=- ⎪⎝⎭,故周期为2ππ2T ==,令2π,32x k k ππ-=+∈Z ,解得()5ππ122k x k =+∈Z ,对称轴方程()5ππ122k x k =+∈Z ,【小问2详解】()2sin 23f x x π⎛⎫=- ⎪⎝⎭∵ππ42x ≤≤,∴ππ2π2,363t x ⎡⎤=-∈⎢⎥⎣⎦,当π6t =时,即π4x =时,()min π1sin sin 62t ==,此时min 1y =,当π2t =时,即5π12x =时,()max πsin sin 12t ==,此时max 2y =.17. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中2C π≠,已知cos 2cos cos b c A a B C -=.(1)求角B 的大小;(2)若223125b c ac +=-,求ABC 面积的最大值.【答案】(1)3π(2【解析】【分析】(1)根据正弦定理边化角或余弦定理化简原式,根据2C π≠,所以cos 0C ≠或2222a b c b+-≠,化简即可得出1cos 2B =,即可得出答案;(1)根据余弦定理结合第一问得出的角B 的大小得出222a c b ac +-=,结合已知223125b c ac +=-,得出224412a ac c ++=,根据基本不等式得出22412422a c ac a c +=-≥⋅⋅即32ac ≤,即可由三角形面积公式得出答案;或将224412a ac c ++=化简为2(2)12a c +=,由三角形面积公式结合基本不等式得出ABC 的面积212sin 222a c S ac B c +⎫===⋅≤=⎪⎭,即可得出答案.【小问1详解】方法一:由cos 2cos cos b c A a B C -=根据正弦定理边化角得:sin sin cos 2sin cos cos B C A A B C -=,即()sin sin cos 2sin cos cos A C C A A B C +-=,所以sin cos 2sin cos cos A C A B C =,因为2C π≠,所以cos 0C ≠,又sin 0A >,所以1cos 2B =,又0πB <<,所以3B π=.方法二:由cos 2cos cos b c A a B C -=根据余弦定理:得2222222cos 22b c a a b c b c a B bc ab+-+--=⋅,即2222222cos 22b c a a b c B b b -++-=⋅,因为2C π≠,所以22202a b c b+-≠,所以1cos 2B =,又0πB <<,得3B π=.小问2详解】方法一:由(1)及余弦定理知2221cos 22a cb B ac +-==,所以222a c b ac +-=,因为223125b c ac +=-,所以()2221235a c c ac ac +---=,化简得224412a ac c ++=,因为0,0a c >>,所以22412422a c ac a c +=-≥⋅⋅,所以32ac ≤,当且仅当2a c ==a c ==时取等号,所以ABC的面积1sin 2S ac B ==≤,所以ABC方法二:由(1)及余弦定理知2221cos 22a cb B ac +-==,所以222a c b ac +-=.因为223125b c ac +=-,所以()2221235a c c ac ac +---=,化简得224412a ac c ++=,即2(2)12a c +=,所以ABC的面积212sin 222a c S ac B c +⎫===⋅≤=⎪⎭,【当且仅当2a c ==a c ==时取等号,所以ABC 18. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,E 为棱PC 的中点.(1)证明://BE 平面PAD ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)求点D 到平面PBC 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)以A 为原点建立空间直角坐标系,利用向量法证明线面平行;(2)求出平面PBD 的一个法向量,再由向量法求解;(3)求出平面PBC 的法向量()2111,,n x y z =,再由向量法求解.【小问1详解】解:以点A 为原点,AB ,AD ,AP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系.可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,由E 为棱PC 的中点,得()1,1,1E ,向量()0,1,1BE = ,()1,0,0AB =,故0BE AB ⋅= ,又AB为平面PAD 的一个法向量,又BE ⊄面PAD ,所以//BE 平面PAD .【小问2详解】向量()1,2,0BD =-,()1,0,2PB =- ,()0,1,1BE = 设(),,n x y z = 为平面PBD 的法向量,则0n BD n PB ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y x z -+=⎧⎨-=⎩,令1y =,得()2,1,1n =为平面PBD 的一个法向量,所以cos ,n BE n BE n BE⋅===⋅所以直线BE 与平面PBD【小问3详解】向量()1,2,0BC = ,设平面PBC 的法向量()2111,,n x y z =,220n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即11112020x y x z +=⎧⎨-=⎩,令11y =-,得()22,1,1n =- 为平面PBC 的一个法向量,则22BD n d n ⋅===.19. 已知椭圆()2222:10x y C a b a b +=>>,短轴长为..(1)求C 的方程;(2)如图,经过椭圆左顶点A 且斜率为()0k k ≠的直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且APM △,求k 的值.【答案】(1)22142x y += (2)【解析】【分析】(1)根据题意得出,a b 的值,进而可得结果;(2)设直线l 的方程为()2y k x =+,将其与椭圆方程联立,得出EM 斜率,联立方程组得出M 点的坐标,利用点到直线距离公式式,结合韦达定理以及三角形面积公式将面积表示为关于k 的方程,解出即可得结果.小问1详解】由题意可得2222c e a b a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,b =,c =∴椭圆C 的方程为22142x y +=.【小问2详解】易知椭圆左顶点()2,0A -,设直线l 的方程为()2y k x =+,则()0,2E k ,()0,2H k -,由()222142y k x x y ⎧=+⎪⎨+=⎪⎩,消y 可得()2222128840k x k x k +++-=,设()11,A x y ,()22,B x y ,()00,P x y ,∴()()422644841216k k k ∆=--+=,【则有2122812k x x k +=-+,21228412k x x k-=+,∴()2012214212k x x x k =+=-+,()0022212=+=+k y k x k ,∴0012OP y k x k ==-,∴直线EM 的斜率2EM k k =,∴直线EM 的方程为22y kx k =+,直线AH 的方程为()2y k x =-+,∴点42,33M k ⎛⎫-- ⎪⎝⎭,∴点M 到直线:20l kx y k -+=的距离d =,∴AB ==∴1||2AP AB ==∴241132212APM k S AP d k =⋅=⨯==+△,解得k =.20. 已知函数()11lnx a F x x x =--+.(Ⅰ)设函数()()()1h x x F x =-,当2a =时,证明:当1x >时,()0h x >;(Ⅱ)若()0F x >恒成立,求实数a 的取值范围;(Ⅲ)若a 使()F x 有两个不同的零点12,x x ,证明:21a a x x e e -<-<-.【答案】(Ⅰ)证明见解析;(Ⅱ)2a ≤;(Ⅲ)证明见解析.【解析】分析】(Ⅰ)当2a =时对()h x 求导,证明1x >时,()0h x '>即可.(Ⅱ)设函数()()1ln 1a x f x x x -=-+,根据函数的单调性判断ln x 与()11a x x -+的关系,根据()0F x >恒成立,确定a 的取值范围;(Ⅲ)根据函数的单调性求出2121a a t t x x e e --<-<-,得到【21t t -==,证明结论成立即可.【详解】(Ⅰ)()()ln 111x a h x x x x ⎛⎫=--⎪-+⎝⎭当2a =时,()()()21ln 21ln 111x x h x x x x x x -⎛⎫=--=- ⎪-++⎝⎭()()()()()()()()2222221211111114x x x x h x x x x x x x x +---+-'=-==+++,当1x >时,()0h x '>,所以()h x 在()1,+∞上为单调递增函数,因为()10h =,所以()()10h x h >=,(Ⅱ)设函数()()1ln 1a x f x x x -=-+,则()()()222111x a x f x x x +-+'=+,令()()2211g x x a x =+-+,当1a ≤时,当0x >时,()0g x >,当12a <≤时,2480a a ∆=-≤,得()0g x ≥,所以当2a ≤时,()f x 在()0,∞+上为单调递增函数,且()10f =,所以有()101f x x >-,可得()0F x >.当2a >时,有2480a a ∆=->,此时()g x 有两个零点,设为12,t t ,且12t t <.又因为()12210t t a +=->,121t t =,所以1201t t <<<,在()21,t 上,()f x 为单调递减函数,所以此时有()0f x <,即()1ln 1a x x x -<+,得ln 011x a x x -<-+,此时()0F x >不恒成立,综上2a ≤.(Ⅲ)若()F x 有两个不同的零点12, x x ,不妨设12x x <,则12, x x 为()()1ln 1a x f x x x -=-+的两个零点,且11x ≠,21x ≠,由(Ⅱ)知此时2a >,并且()f x 在()10,t ,()2,t +∞为单调递增函数,在()12,t t 上为单调递减函数,且()10f =,所以()10f t >,()20f t <,因为()201a a a f e e -=-<+,()201aa a f e e =>+,1a a e e -<<,且()f x 图象连续不断,所以()11,a x e t -∈,()22,a x t e∈,所以2121a a t t x x e e--<-<-,因为21t t -==综上得:21||a a x x e e -<-<-.【点睛】方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.。
2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷(含答案)
2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|x 2−x−2≤0},B ={x|2x−3<0},则A ∩B =( )A. [−2,1]B. [−1,32)C. (−∞,32)D. (−∞,−1]2.下列函数中,既为偶函数,又在(0,+∞)上为增函数的是( )A. y =x 2+1xB. y =2−x 2C. y =x 2+log 2|x|D. y =2|x|−x 23.已知函数f(x)为定义在R 上的奇函数,对于任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,f(−1)=0,则xf(x)<0的解集为( )A. (−1,0)∪(1,+∞)B. (−1,0)∪[1,+∞)C. (−1,0)∪(0,1]D. (−1,0)∪(0,1)4.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是( )A. 62 B. 2 105 C. 1 D. 35.函数f(x)=3|x|⋅cos2x x的部分图象大致是( )A. B.C. D.6.已知随机变量X ~N(1,σ2).若P(1≤X ≤3)=0.3,设事件A =“X <1”,事件B =“|X|>1”,则P(A|B)=( )A. 38B. 35C. 58D. 277.已知函数f(x)={|log 3x|,x >03x ,x ≤0,若函数g(x)=[f(x)]2−(m +2)f(x)+2m 恰好有5个不同的零点,则实数m 的取值范围是( )A. (0,1]B. (0,1)C. [1,+∞)D. (1,+∞)8.已知f(x)是定义在R 上的函数,且满足f(3x−2)为偶函数,f(2x−1)为奇函数,则下列说法正确的( )①函数f(x)的图象关于直线x =1对称;②函数f(x)的图象关于点(−1,0)中心对称;③函数f(x)的周期为4;④f(2023)=0.A. ①②③B. ①②④C. ②③④D. ①③④二、多选题:本题共3小题,共18分。
天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷
天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷一、单选题1.已知集合{}R 13P x x =∈≤≤,{}2R 4Q x x =∈≥,则()R P Q =U ð( )A .{}2x x >B .{}23x x -<≤C .{}12x x ≤<D .{}21x x x ≤-≥或2.设x ∈R ,则“1x <”是“ln 0x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.函数y =2sin 2x x 的图象可能是A .B .C .D .4.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B C D .15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时6.已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c 的大小关系是( )A .a c b <<B .a b c <<C .c b a <<D .b c a <<7.等差数列 a n 的前n 项和为n S ,其中77S =,又2,1b ,2b ,3b ,8成等比数列,则2352b a a +的值是( ) A .4B .4-C .4或4-D .28.已知函数()sin()f x A x B ωϕ=++(0,0,)2A πωϕ>><的部分图象如图所示,则下列正确个数有( )①()f x 关于点π(,3)6对称;②()f x 关于直线π3x =对称; ③()f x 在区间π5π[,]26上单调递减;④()f x 在区间5ππ(,)1212-上的值域为(1,3). A .1个B .2个C .3个D .4个9.如图,在ABC V 中,π3BAC ∠=,2AD DB =u u ur u u u r ,P 为CD 上一点,且满足13AP mAC AB =+u u u r u u u r u u u r,若4AB AC ⋅=u u u r u u u r,则AP u u u r 的最小值为( )A .2B .3 CD .32二、填空题10.已知i 是虚数单位,化简113i12i+-的结果为. 11.8⎛⎫的展开式中22x y 的系数为. 12.已知13a <<,则131a a a +--的最小值是. 13.甲罐中有4个红球、2个白球和2个黑球,乙罐中有4个红球、3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.以1A 表示由甲罐取出的球是红球的事件,以M 表示由乙罐取出的球是红球的事件,则()1P M A =;()P M =. 14.在梯形ABCD 中,AB CD ∥,且3AB C D =,M ,N 分别为线段DC 和AB 的中点,若AB a u u u r r=,AD b u u u r r =,用a r ,b r 表示MN =u u u u r .若MN BC ⊥u u u u r u u u r,则DAB ∠余弦值的最小值为.15.函数(){}2min 2,,2f x x x x =-+,其中{}min ,,x y z 表示x ,y ,z 中的最小者.若函数22()2()9y f x bf x b =-+-有12个零点,则b 的取值范围是.三、解答题16.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos tan b C c B C +=. (1)求角C ;(2)若4b a =,ABC V 的面积为①求c②求()cos 2A C -.17.已知函数()4tan sin cos ππ23f x x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的定义域与最小正周期;(2)讨论()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的单调性.(3)若()065f x =,0π5π,122x ⎡⎤∈⎢⎥⎣⎦,求0sin2x 的值.18.在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB DC ,AB AD ⊥,112CD AD AB ===,45PAD ∠=o ,E 是PA 的中点,G 在线段AB 上,且满足CG BD ⊥.(1)求证://DE 平面PBC ;(2)求平面GPC 与平面PBC 夹角的余弦值.(3)在线段PA 上是否存在点H ,使得GH 与平面PGCAH 的长;若不存在,请说明理由.19.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,*n ∈N .数列{}n b 满足()()111n n nb n b n n +-+=+,*n ∈N ,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若21n n d a -=数列{}n d 的前n 项和为n M ,对任意的*n ∈N ,都有22n3n n M S a >+,求实数a 的取值范围; (3)记11m m c a -=,{}m c 的前m 项和记为m T,是否存在m ,*N t ∈,使得111m m t T t T t c +-=-+成立?若存在,求出m ,t 的值;若不存在,请说明理由.20.已知函数()2e cos222xf x x x x =+++-.()()2ln 2g x a x x a x =+-+,其中R a ∈.(1)求()f x 在0x =处的切线方程,并判断()f x 零点个数. (2)讨论函数()g x 的单调性;(3)求证:()()ln 21f x x ≥+;。
高三数学上学期第一次月考试题含解析
一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。
【详解】因为,所以【点睛】交集是取两集合都有的元素。
是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。
【详解】,因为是纯虚数,所以。
【点睛】假如复数是纯虚数,那么。
3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。
【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。
【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。
的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。
【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。
综上所述,递增区间是。
【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。
5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。
【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。
内蒙古赤峰红旗中学2024-2025学年高三上学期第一次月考数学试题
内蒙古赤峰红旗中学2024-2025学年高三上学期第一次月考数学试题一、单选题1.已知集合{|53}A x x =->,{|16}B x x =-<<,则A B =I ( ) A .(2,6). B .(1,2)- C .(1,)-+∞D .(,6)-∞2.已知复数2(2i)6z =--,则||z =( )A B .17C .5D .253.已知向量(1,2)a =-r ,(1,1)b =-r ,且()(2)ka b a b -⊥+r rr r ,则k =( )A .−2B .47-.C .47.D .24.已知3π1sin 23α⎛⎫+= ⎪⎝⎭,则cos α=( )A .3B .3-C .13.D .13-5.在ABC V 中,角A ,B ,C 的对边分别是a ,b ,c ,且24b c ==,1cos 4A =,则a =( ) A .2B .4C .6D .86.一纸片上绘有函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭一个周期的图象,现将该纸片沿x 轴折成直二面角后,原图象上的最高点和最低点之间的空间距离是ω=( ) A .1B .π4C .2D .π27.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于(,A B A 在第一象限)两点,O 为坐标原点,若39AB BF ==,则OAB △的面积是( )A .B .6C .D .128.已知直线2y x b =+是函数21()e 23(0)2x f x ax x x =-+->图象的切线,则a 的取值范围是( ) A .[e,)+∞ B .(,e]-∞ C .[1,)+∞D .(,1]-∞二、多选题9.某地农研所为研究新的大豆品种,在面积相等的80块豆田上种植一种新型的大豆,得到各块豆田的亩产量(单位:kg ),将所得数据按[)150,160,[)160,170,[)170,180,[)180,190,[)190,200,[]200,210分成六组,得到如图所示的频率分布直方图:则下列结论正确的是( )A .这80块豆田的亩产量的中位数低于180kgB .这80块豆田的亩产量的极差不高于60kgC .在这80块豆田中,亩产量不低于190kg 的豆田所占比例为20%D .这80块豆田的亩产量的第75百分位数高于180kg10.若函数()y f x =与()y f x =-在区间[,]a b 上的单调性相同,则称区间[,]a b 是函数()y f x =的“稳定区间”.下列函数存在“稳定区间”的是( )A .()|3|f x x =+B .()42x x f x =+C .23()2x f x +=D .32()391f x x x x =--+11.如图,在棱长为12的正方体1111ABCD A B C D -中,E 、F 、G 分别是棱CD 、11B C 、BC 的中点,点H 是AG 上的动点,则( )A .1⊥BD EF .B .三棱锥1A EFH -的体积为定值C .三棱锥11B A EF -外接球的表面积为210πD .平面1A EF截该正方体所得的截面图形的周长是25+三、填空题12.若()f x 是定义在R 上的奇函数,且当0x ≥时,223()3x mf x x +=+,则m =. 13.《九章算术》中将正四棱台称为方亭,现有一方亭1111ABCD A B C D -,1136AB A B ==,14.已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为F ,直线l 过点F ,在第四象限与双曲线C 的渐近线交于点M ,且直线l 与圆222x y a +=切于点N ,若||5||MF NF =,则双曲线C 的离心率是.四、解答题15.已知等差数列 a n 的前n 项和为n S ,且56a =,3313S a +=. (1)求 a n 的通项公式; (2)已知()1231nn n n n b a a ++=-⋅,数列 b n 的前n 项和为n T ,求4T 的值. 16.如图,在四棱锥P ABCD -中,AD BC ∥,224PA BC AD AB ====,AD ⊥平面PAB ,PA AB ⊥,E 、F 分别是棱PB 、PC 的中点.(1)证明://DF 平面ACE ;(2)求平面ACE 与平面PAD 的夹角的正弦值.17.良好的用眼习惯能够从多方面保护眼睛的健康,降低近视发生的可能性,对于保护青少年的视力具有不可替代的重要作用.某班班主任为了让本班学生能够掌握良好的用眼习惯,开展了“爱眼护眼”有奖知识竞赛活动,班主任将竞赛题目分为,A B 两组,规定每名学生从,A B 两组题目中各随机抽取2道题作答.已知该班学生甲答对A 组题的概率均为23,答对B 组题的概率均为12.假设学生甲每道题是否答对相互独立.(1)求学生甲恰好答对3道题的概率;(2)设学生甲共答对了X 道题,求X 的分布列及数学期望.18.已知椭圆2222:1(0)x y C a b a b +=>>A 、B 分点是椭圆C 的左、右顶点,P 是椭圆C 上不同于A 、B 的一点,ABP V 面积的最大值是2.(1)求椭圆C 的标准方程;(2)记直线AP 、BP 的斜率分别为1k 、2k ,且直线AP 、BP 与直线6x =分别交于D 、E 两点. ①求D 、E 的纵坐标之积;②试判断以DE 为直径的圆是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.19.若函数()f x 在[],a b 上存在()1212,x x a x x b <<<,使得()1()()f b f a f x b a-'=-,()2()()f b f a f x b a-'=-,则称()f x 是[],a b 上的“双中值函数”,其中12,x x 称为()f x 在[],a b 上的中值点.(1)判断函数()3231f x x x =-+是否是[]1,3-上的“双中值函数”,并说明理由;(2)已知函数()21ln 2f x x x x ax =--,存在0m n >>,使得()()f m f n =,且()f x 是[],n m 上的“双中值函数”, 12,x x 是()f x 在[],n m 上的中值点. ①求a 的取值范围; ②证明:122x x a +>+.。
江苏无锡市玉祁高级中学2024-2025学年高三上学期第一次月考 数学试卷+(含解析)
江苏无锡市玉祁高级中学2024-2025学年高三数学上第一次月考试卷一.选择题(共7小题)1.某校A 、B 、C 、D 、E 五名学生分别上台演讲,若A 须在B 前面出场,且都不能在第3号位置,则不同的出场次序有()种.A .18B .36C .60D .722.对两组变量进行回归分析,得到不同的两组样本数据,第一组对应的相关系数,残差平方和,决定系数分别为1r ,21S ,21R ,第二组对应的相关系数,残差平方和,决定系数分别为2r ,22S ,22R ,则()A .若12r r >,则第一组变量比第二组的线性相关关系强B .若2212r r >,则第一组变量比第二组的线性相关关系强C .若2212S S >,则第一组变量比第二组变量拟合的效果好D .若2212R R >,则第二组变量比第一组变量拟合的效果好3.有5个形状大小相同的球,其中3个红色、2个蓝色,从中一次性随机取2个球,则下列说法正确的是()A .“恰好取到1个红球”与“至少取到1个蓝球”是互斥事件B .“恰好取到1个红球”与“至多取到1个蓝球”是互斥事件C .“至少取到1个红球”的概率大于“至少取到1个蓝球”的概率D .“至多取到1个红球”的概率大于“至多取到1个蓝球”的概率4.对于一个古典概型的样本空间Ω和事件A ,B ,C ,D ,其中(Ω)60n =,()30n A =,()10n B =,()20n C =,()30n D =,()40n A B = ,()10n A C = ,()60n A D = ,则()A .A 与B 不互斥B .A 与D 互斥但不对立C .C 与D 互斥D .A 与C 相互独立5.掷红蓝两个均匀的骰子,观察朝上的面的点数,记事件1A :红骰子的点数为2,2A :红骰子的点数为3,3A :两个骰子的点数之和为7,4A :两个骰子的点数之和为9,则()A .1A 与2A 对立B .3A 与4A 不互斥C .1A 与3A 相互独立D .2A 与4A 相互独立6.抛掷三枚硬币,若记出现“三个正面”“两个正面一个反面”“两个反面一个正面”分别为事件A ,B ,C ,则下列说法错误的是()A .事件A ,B ,C 两两互斥B .7()()()8P A P B P C ++=C .()()4()P B P C P A +=D .事件A B +,B C +相互独立7.甲箱中有3个黄球、2个绿球,乙箱中有2个黄球、3个绿球(这10个球除颜色外,大小、形状完全相同),先从甲箱中随机取出2个球放入乙箱,记事件A ,B ,C 分别表示事件“取出2个黄球”,“取出2个绿球”,“取出一黄一绿两个球”,再从乙箱中摸出一球,记事件D 表示摸出的球为黄球,则下列说法正确的是()A .A ,B 是对立事件B .事件B ,D 相互独立C .()1635P D =D .()135P CD =二.多选题(共4小题)8.设a 为常数,的定义域为R ,1(0),()()()()()2f f x y f x f a y f y f a x =+=-+-,则().A .1()2f a =B .1()2f x =成立C .()2()()f x y f x f y +=D .满足条件的()f x 不止一个9.第一组样本数据12,,,n x x x ,第二组样本数据1y ,2y ,…,n y ,其中21i i y x =-(1,2,,i n =⋅⋅⋅),则()A .第二组样本数据的样本平均数是第一组样本数据的样本平均数的2倍B .第二组样本数据的中位数是第一组样本数据的中位数的2倍C .第二组样本数据的样本标准差是第一组样本数据的样本标准差的2倍D .第二组样本数据的样本极差是第一组样本数据的样本极差的2倍10.已知在伯努利试验中,事件A 发生的概率为()01p p <<,我们称将试验进行至事件A 发生r 次为止,试验进行的次数X 服从负二项分布,记作(),X NB r p ~,则下列说法正确的是()A .若11,2X NB ⎛⎫~ ⎪⎝⎭,则()12kP X k ⎛⎫== ⎪⎝⎭,1,2,3,k =⋅⋅⋅B .若(),X NB r p ~,则()()1k rr P X k p p -==-,,1,2,k r r r =++⋅⋅⋅C .若(),X NB r p ~,(),Y B n p ~,则()()P X n P Y r ≤=≥D .若(),X NB r p ~,则当k 取不小于1r p-的最小正整数时,()P X k =最大11.某校体育活动社团对全校学生体能情况进行检测,以鼓励学生积极参加体育锻炼.学生的体能检测结果X 服从正态分布()75,81N ,其中检测结果在60以上为体能达标,90以上为体能优秀,则()附:随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<<+=,()220.9544P μσξμσ-<<+=,()330.9974P μσξμσ-<<+=.A .该校学生的体能检测结果的期望为75B .该校学生的体能检测结果的标准差为81C .该校学生的体能达标率超过0.98D .该校学生的体能不达标的人数和优秀的人数大致相等三.填空题(共4小题)12.若直线()0y kx b b =+<是曲线2e x y -=的切线,也是曲线ln y x =的切线,则b =.13.“曼哈顿距离”是人脸识别中的一种重要测距方式,其定义如下:设()11,A x y ,()22,B x y ,则A ,B 两点间的曼哈顿距离()1212,d A B x x y y =-+-.已知()4,6M ,点N 在圆22:640C x y x y +++=上运动,若点P 满足(),2d M P =,则PN 的最大值为.14.随着杭州亚运会的举办,吉祥物“琮琮”、莲莲”、宸宸”火遍全国.现有甲、乙、丙3位运动员要与“琮琮”、莲莲”、宸宸”站成一排拍照留念,则这3个吉祥物互不相邻的排队方法数为.(用数字作答)15.曲线sin xy x=在(π,0)M -点处的切线方程为.四.解答题(共2小题)16.为考察药物M 对预防疾病A 以及药物N 对治疗疾病A 的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)药物M疾病A未患病患病合计未服用301545服用451055合计7525100(1)依据0.1α=的独立性检验,分析药物M对预防疾病A的有效性;(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物N进行治疗.已知药物N的治愈率如下:对未服用过药物M的动物治愈率为12,对服用过药物M的动物治愈率为34.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为X,求X的分布列和数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,n a b c d=+++.α0.1000.0500.0100.001xα 2.7063.841 6.63510.82817.某大学数学建模社团在大一新生中招募成员,由于报名人数过多,需要进行选拔.为此,社团依次进行笔试、机试、面试三个项目的选拔,每个项目设置“优”、“良”、“中”三个成绩等第;当参选同学在某个项目中获得“优”或“良”时,该同学通过此项目的选拔,并参加下一个项目的选拔,否则该同学不通过此项目的选拔,且不能参加后续项目的选拔.通过了全部三个项目选拔的同学进入到数学建模社团.现有甲同学参加数学建模社团选拔,已知该同学在每个项目中获得“优”、“良”、“中”的概率分别为16,2p,3p,且该同学在每个项目中能获得何种成绩等第相互独立.(1)求甲同学能进入到数学建模社团的概率;(2)设甲同学在本次数学建模社团选拔中恰好通过X个项目,求X的概率分布及数学期望.1.B【分析】因为A 在B 的前面出场,且A ,B 都不在3号位置,分A 在1号位置,A 在2号位置,A 在4号位置三种情况进行分类,在利用排列公式及可求出结果.【详解】因为A 在B 的前面出场,且A ,B 都不在3号位置,则情况如下:①A 在1号位置,B 又2、4、5三种位置选择,有33318A =种次序;②A 在2号位置,B 有4,5号两种选择,有33212A =种次序;③A 在4号位置,B 有5号一种选择,有336A =种;故共有1812636++=种.故选:B.2.B【分析】由线性相关系数r 与决定系数2R 的意义及残差平方和2S 与2R 的关系即可求解.【详解】线性相关系数r 越大,两个变量的线性相关性越强,故A 错误,B 正确;残差平方和2S 越小,则决定系数2R 越大,从而两个变量拟合的效果越好,残差平方和2S 越大,则决定系数2R 越小,从而两个变量拟合的效果越差,故C 、D 错误.故选:B 3.C【分析】根据互斥事件的概念可判断AB ;分别计算对应的概率可判断CD.【详解】当取出的两球为一红一蓝时,可得“恰好取到1个红球”与“至少取到1个蓝球”均发生,即A 错误;当取出的两球为一红一蓝时,可得“恰好取到1个红球”与“至多取到1个蓝球”均发生,即B 错误;记“至少取到1个红球”为事件A ,“至少取到1个蓝球”为事件B ,“至多取到1个红球”为事件C ,“至多取到1个蓝球”为事件D ,故()21133225910C C C P A C +==,()21123225710C C C P B C +==,()21123225710C C C P C C +==,()21133225910C C C PD C +==,显然()()P A P B >,()()P C P D <,即C 正确,D 错误;故选:C.4.D【分析】由已知条件结合事件的运算判断事件间的互斥、对立关系,根据(),()()P A C P A P C ⋂的关系判断事件是否独立.【详解】由()30n A =,()10n B =,()40n A B = ,即()()()n A B n A n B =+ ,故A 、B 互斥,A 错误;由()()()(Ω)60n A D n A n D n =+== ,A 、D 互斥且对立,B 错误;又()20n C =,()10n A C = ,则()10n D C = ,C 与D 不互斥,C 错误;由()1(2(Ω))n A n P A ==,()1(3(Ω))n C n P C ==,()(Ω)1()6P A C C n n A ⋂⋂==,所以()()()P A C P A P C ⋂=,即A 与C 相互独立,D 正确.故选:D 5.C【分析】根据事件的对立与互斥的概念判断AB ;利用()()()P A P B P AB =是否成立来判断CD.【详解】对于A ,事件1A :红骰子的点数为2,2A :红骰子的点数为3,1A 与2A 互斥但不对立,因为红骰子的点数还有其他情况,比如4,A 错误;对于B ,3A :两个骰子的点数之和为7,4A :两个骰子的点数之和为9,3A 与4A 不可能同时发生,故3A 与4A 互斥,B 错误;对于C ,两个骰子的点数之和为7的情况有162534435261+=+=+=+=+=+,则()()()13131611,,666666P A P A P A A ====⨯⨯,所以()()()1313P A P A P A A =,所以1A 与3A 相互独立,C 正确;对于D ,两个骰子的点数之和为9的情况有36455463+=+=+=+,()()()242414111,,66696636P A P A P A A =====⨯⨯,所以()()()2424P A P A P A A ≠,D 错误.故选:C.6.C【分析】对于A ,利用互斥事件的定义判断;对于B ,利用互斥事件概率加法公式求解;对。
宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)
银川一中2025届高三年级第一次月考数 学 试 卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题(共8小题,满分40分,每小题5分)1.命题p :x ∀∈R ,2210x mx -+>的否定是A .x ∀∈R ,2210x mx -+≤B .x ∃∈R ,2210x mx -+<C .x ∃∈R ,2210x mx -+>D .x ∃∈R ,2210x mx -+≤2.已知函数21(1),()2(1).x x f x x x x -+<⎧=⎨-≥⎩则((1))f f -的值为A .﹣2B .﹣1C .0D .33.“3a > ”是“函数2()(2)2f x a x x =-- 在(1,+)∞上单调递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知2081.5.12,,log 42a b c -⎛⎫ ⎝⎭=⎪==,则,,a b c 的大小关系为A .c<a<bB .c b a<<C .b a c <<D .b<c<a 5.在同一个坐标系中,函数()log a f x x =,()x g x a -=,()a h x x =的图象可能是A .B .C .D .6.函数()f x ax x =的图象经过点(1,1)-,则关于x 的不等式29()(40)f x f x +-<解集为 A .(,1)(4,)-∞-+∞ B .(1,4)-C .(,4)(1,)∞∞--⋃+D .(4,1)-7.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为a,b,c的三角形,其面积S 可由公式S =1=)2p a b c ++(,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足14,6a b c +==,则 此三角形面积的最大值为A .6B .C .12D .8.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为A .2B .4C .6D .8二.多项选择题(共3小题,满分18分,每小题6分)9.下列运算正确的是A=B .()326a a =C .42log 32log 3=D .2lg5lg2log 5÷=10. 已知函数()y f x =是定义域为R 上的奇函数,满足(2)()f x f x +=-,下列说法正确的有A .函数()y f x =的周期为4B .(0)0f =C .(2024)1f =D .(1)(1)f x f x -=+11.已知函数()24,0,31,0,x x x x f x x -⎧-≥=⎨-<⎩其中()()()f a f b f c λ===,且a b c <<,则A .()232f f -=-⎡⎤⎣⎦B .函数()()()g x f x f λ=-有2个零点C .314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭D .()34log 5,0abc ∈-三、填空题(共3小题,满分15分,每小题5分)12.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A B 中有且只有一个元素,则实数a 的值为 .13.已知函数()()231m f x m m x +=+-是幂函数,且该函数是偶函数,则f 的值是 .14.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为 .(精确到0.01)四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.16.(15分)已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=. (1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.17.(15分)已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值; (2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.18.(17分)已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得)(1)2(x f x mf -≥成立,求m 的取值范围; (3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 19.(17分)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈2025届高三第一次月考试卷答案一、单选题1. D 2. C 3. A 4. B5. C 6. B 7. B 8. B二、多选题9. BD 10. ABD 11. ACD.三、填空题12.2. 13.4 14.1.56.四、解答题15.已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.【详解】(1)令2461x y z k ===>,则2log x k =,4log y k =,6log z k =,11log 2log 4log 8k k k x y ∴+=+=,1log 6k z=.1k > ,log 8log 6k k ∴>,111x y z∴+>.(2)6log 4z = ,64z ∴=,则244x y ==,2x ∴=,1y =,4664log 4log 256z ∴==.3462566<< ,63log 2564∴<<,342y z x ∴<<.16.已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=.(1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.【详解】(1)()()1212111442x x f x f x m m +=+=++,即()()()()2112242444x x x x m m m m +++=++()()121212242444444x x x x x x m m m +⋅++=+⇒+()()()12122224444442x x x x m m m m ⇒=++=+---,()()()()()121222442024420x x x x m m m m ⇒---+=⇒-++-=,12444x x +≥== ,当且仅当1244x x =,即12x x =取等号,又0m >,124420,2x x m m ∴++->∴=.(2)由()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,得 ()10n n n a f f f n n -⎫⎫⎛⎛=+++ ⎪ ⎪⎝⎝⎭⎭,又当121x x =+时,()()1212f x f x +=所以两式相加可得 ()()1112002n n n n n a f f f f f f n n n n ⎡⎤⎡-⎤⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,所以 14n n a +=17.已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值;(2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.【详解】(1)因为2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=,所以()(e)ln e 3f a -=+=,解得2a =;(2)由(1)可得22ln(),0()23,0x x f x x x x +-<⎧=⎨-++≥⎩,当0x <时()2ln()f x x =+-,函数()f x 在(),0∞-上单调递减,且()R f x ∈;当0x ≥时()22()2314f x x x x =-++=--+,则()f x 在[]0,1上单调递增,在()1,∞+上单调递减,且()14f =,()03f =,即()(],4f x ∞∈-;所以()f x 的图象如下所示:因为函数()()=-g x f x k 在R 上恰有两个零点,即函数()y f x =与y k =在R 上恰有两个交点,由图可知3k <或4k =,即实数k 的取值范围为(){},34∞-⋃.18.已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得()()21mf x f x -…成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 【详解】(1)由题意可得()()()()()11ln 1ln 1x g x g x x x ϕ=++-=++-.由1010x x +>⎧⎨->⎩,得11x -<<,故()1,1D =-.又()()2ln 1x x ϕ=-,且(]210,1x -∈,()x ϕ∴的值域为(],0-∞;(2)()()21mf x f x -…,即2e 1e x x m -…,则211e e x xm -…. 存在x D ∈,使得()()21mf x f x -…成立,2min 11ee x x m ⎛⎫∴- ⎪⎝⎭….而2211111e e e24x x x ⎛⎫-=-- ⎪⎝⎭,∴当11e 2x =,即ln2x D =∈时,211e ex x -取得最小值14-,故14m -…;(3)设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1e e x a t x b +=-+是奇函数,则()()110e e e e x a x a t x t x b b -++-+=-+-=++恒成立,()()()()1122e e 2e 2e e e e 0e e e e x a x a x a x a a x a x ab +-+-+++-++++-+++∴=++恒成立,所以()()1122e e 2e 2e e e e 0x a x a x a x a a b +-+-+++++-+++=恒成立,所以22(12e)(e e )2(e e e )0x a x a a b b b +-+-++--=,因为上式对任意实数x 恒成立,所以2212e 0e e e 0a b b b -=⎧⎨--=⎩,得12e 1b a ⎧=⎪⎨⎪=⎩,所以函数()1e y f x =+图象的对称中心为11,2e ⎛⎫ ⎪⎝⎭.19.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈【答案】(1)11.3n n a -=,0.50.5n b n =+,N n *∈(2)采用甲方案获得的扣除本息后的净获利更多【详解】(1)对于甲方案,1年后,利润为1(万元).2年后,利润为111(10.3) 1.3+=⨯,3年后,利润为211.3(10.3) 1.3+=⨯(万元),……故n 年后,利润为11.3n -(万元),因此11.3n n a -=,N n *∈对于乙方案,1年后,利润为1(万元).2年后,利润为10.5+,3年后,利润为0.50.510.521++=+⨯(万元),……故n 年后,利润为()10.51n +⨯-(万元),因此()10.510.50.5n b n n =+⨯-=+,N n *∈(2)甲方案十年共获利109(1.3)11(130%)(130%)42.631.31-+++⋯++==-(万元),10年后,到期时银行贷款本息为1010(10.1)25.94+=(万元),故甲方案的净收益为42.6325.9416.7-≈(万元),乙方案十年共获利1 1.5(190.5)32.5++⋯++⨯=(万元),贷款本息为119101111(110%)(110%)(110%)17.530.1⋅-+++⋯++++=≈(万元),故乙方案的净收益为32.517.5315-=(万元),由16.715>,故采用甲方案获得的扣除本息后的净获利更多。
高三第一次月考数学试卷
高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。
2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
黑龙江省实验中学2023-2024学年度高三学年上学期第一次月考数学学科试题
A.恒大于 0
B.恒小于 0
C.等于 0
D.无法判断
第1页 共4页
8.函数 f ( x) 的定义域为 D,若对于任意 x1, x2 D ,当 x1 x2 时,都有 f ( x1 ) f ( x2 ) ,则称函数 f ( x) 在 D
上为非减函数,设函数
f
(
x)
在 0,1 上为非减函数,且满足以下三个条件:①
B.若 x 1 ,则函数 y = 3x + 1 的最大值为 −1
3
3x −1
C.若 x 0 , y 0 , x + y + xy = 3 ,则 xy 的最大值为1
D.函数 y =
x2 + 6 x2 + 4 的最小值为 2
2
12.地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.里氏震级的计算公式为
f
(x)
=
1+ ln x
x
,则
f
(
x
)
在区间
a,
a
+
2 3
(
a
0) 上存在极值的一个充分不必要条件是(
)
A.
2 3
,1
B.
0,
2 3
C.
0,
1 3
D.
1 3
,1
6.已知 a x
|
(1)x 3
−
x
=
0 ,则
f
(x)
=
loga (x2
−
4x
+ 3)
的减区间为(
)
A. (−,1)
B. (−, 2)
M
=
lg
Amax (其中常数 A0
湖南省2025届高三上学期第一次月考数学试题含答案
2025届高三月考试卷(一)数学(答案在最后)命题人:高三数学备课组审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ()A.{}32xx -≤≤∣ B.{32}xx -≤<∣C.{12}xx <≤∣ D.{12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2.若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于()A.2B.54C.D.2【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3.已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上的投影向量为()A.()6,3- B.()4,2- C.()2,1- D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =()A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为()附:若()2,X N μσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6.已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=()A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.1,3⎛⎫ ⎪ ⎪⎝⎭B.1,5⎛⎫⎪ ⎪⎝⎭C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以5e <,又1e >,所以双曲线的离心率的取值范围是1,5⎛⎫⎪ ⎪⎝⎭.故选:B8.已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1-∞⋃ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0ff x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是()A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 242x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=,所以()f x 的图象关于点2,1对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2xf x h x =e,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】231,3⎡⎢⎣⎦【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()13,,1,0,cos ,sin 22A B C θθ⎛⎫ ⎪ ⎪⎝⎭,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()13cos ,sin ,1,022θθλμ⎛⎫=+ ⎪ ⎪⎝⎭,整理得1cos ,sin 22λμθλθ+==,解得cosλμθ==-,则323ππcos cos sin ,0,3333λμθθθθθ⎛⎫⎡⎤+=-=+=+∈ ⎪⎢⎝⎭⎣⎦,ππ2ππ,,sin 33332θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎣⎦⎝⎭⎣⎦所以231,3λμ⎡+∈⎢⎣⎦.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB 的中点时,123332k λμ=+==,所以231,3λμ⎡⎤+∈⎢⎥⎣⎦故答案为:231,3⎡⎢⎣⎦四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB 于点,313,13D AD DB ==CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a =(2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在1,+∞上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17.已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,2BC AB BC PA PB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD 所成角的余弦值为14.【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.【小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos 14θ=,得sin 14θ=.所以314sin cos ,14m EF m EF m EF θ⋅====,整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD 所成角的余弦值为7014.18.在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240rx r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111712222PQ PE -≥-=-=≥,所以当232ι=时,线段PQ 长度取最小值12-.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴.设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b -=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=.同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--.代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+(b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张1.91.982.22.362.432.592.682.762.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式:()()()1122211ˆˆ,n niii ii i nni i i i x x y y x y nx yay bx x xx nx====---==---∑∑∑∑.【答案】(1)673220710001200y t =+(2)433774nn P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.42.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a=-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故1493(7284n n P --=--,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中[]x 表示取整函数,当347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
2023-2024学年天津市耀华中学高三上学期第一次月考数学试题及答案
天津市耀华中学2024届高三年级第一次月考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1 已知集合{}220A x x x =+-<,{}lg 1B x x =<,A B = ( )A. ()2,10-B. ()0,1C. ()2,1-D. (),10-∞2. 设x ∈R ,则“11||22x -<”是“31x <”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()3ln xf x x=的部分图象是A. B.C. D.4. 5G 技术在我国已经进入调整发展的阶段,5G 手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:.时间x12345销售量y (千只)0.50.81.01.21.5若x 与y 线性相关,且线性回归方程为 0.24y x a=+,则下列说法不正确的是( )A. 由题中数据可知,变量y 与x 正相关,且相关系数1r <B. 线性回归方程 0.24y x a=+中 0.26a =C. 当解释变量x 每增加1个单位时,预报变量 y 平均增加0.24个单位D. 可以预测6x =时,该商场5G 手机销量约为1.72(千只)5. 已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( )A. a b c <<B. a c b<< C. b<c<a D. c<a<b6. 已知4log a a =,则2log a a +=( )A 11或238-B. 11或218-C. 12或238-D. 10或218-7. “送出一本书,共圆读书梦”,某校组织为偏远乡村小学送书籍的志愿活动,运送的卡车共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开2箱都是英语书的概率为( )A.29B.18C.112D.588. 将函数()π2sin 23f x x ⎛⎫=- ⎪⎝⎭的图像上所有点横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图像,有下述四个结论:①()π2sin 6g x x ⎛⎫=-⎪⎝⎭②函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增③点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心④当ππ,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的最大值为2其中所有正确结论的编号是( )A. ①②③B. ②③C. ①③④D. ②④.9. 已知函数()()()()()()22121,1,11,1,1a x a x x f x a x ax x x ⎧-++-∈-⎪=⎨-++∉-⎪⎩有且只有3个零点,则实数a 的取值范围是( )A. ()0,1 B. ()(),80,1-∞- C. [)0,1 D. (][),80,1-∞- 第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分,请将答案填写在答题卡上.10. 复数()21i 1iz -=+(i 为虚数单位),则z =______.11.在6的二项展开式中,2x 的系数为___________.12.若2sin sin αβ+=3π2αβ+=,则sin α=________;cos 2β=________.13. 某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率均为23,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,则(2)P X ==___________;()E X =___________.14. 已知0a >,0b >的最大值为________.15. 设R ω∈,函数()2π2sin ,0,6314,0,22x x f x x x x ωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭=⎨⎪++<⎪⎩()g x x ω=.若()f x 在1π,32⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 图象有三个交点,则ω的取值范围是________.三、解答题:本大题共5小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案卡上.16. 已知ABC 的内角A ,B ,C 的对边分别为a,b ,c ,满足22cos c b A =+.(1)求角B ;(2)若1cos 4A =,求sin(2)A B +的值;(3)若7c =,sin b A =b 的值.的17. 已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ,若存在求出PM MC 的值,若不存在,说明理由.18. 已知{}n a 为等差数列,6,2,n n n a n b a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 通项公式;(2)证明:当5n >时,n n T S >.19. 如图,已知椭圆E :22221(0)x y a b a b +=>>()F 且斜率为k 的直线交椭圆E 于,A B 两点,线段AB 的中点为M ,直线l :40x ky +=交椭圆E 于,C D 两点.(1)求椭圆E 的方程;(2)求证:点M 在直线l上;的(3)是否存在实数k ,使得3BDM ACM S S ∆∆=?若存在,求出k 的值,若不存在,说明理由.20 已知函数()()1211222x f x x ex x -=--++,()()24cos ln 1g x ax x a x x =-+++,其中a ∈R .(1)讨论函数()f x 的单调性,并求不等式()0f x >的解集;(2)用{}max ,m n 表示m ,n 的最大值,记()()(){}max ,F x f x g x =,讨论函数()F x 的零点个数..天津市耀华中学2024届高三年级第一次月考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1. 已知集合{}220A x x x =+-<,{}lg 1B x x =<,A B = ( )A. ()2,10-B. ()0,1C. ()2,1-D. (),10-∞【答案】B 【解析】【分析】根据解一元二次不等式的解法,结合对数函数的单调性、集合交集的定义进行求解即可.【详解】因为{}()2202,1A x x x =+-<=-,{}()lg 10,10B x x =<=,所以A B = ()0,1,故选:B2. 设x ∈R ,则“11||22x -<”是“31x <”的A. 充分而不必要条件B 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<,由31x <⇔1x <..据此可知1122x -<是31x <的充分而不必要条件.本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.3. 函数()3ln xf x x =的部分图象是A. B.C. D.【答案】A 【解析】【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x =>,排除CD ,得到答案.【详解】()()()33ln ln ,x xf x f x f x x x =-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.4. 5G 技术在我国已经进入调整发展的阶段,5G 手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:时间x12345销售量y (千只)0.50.8 1.0 1.2 1.5若x 与y 线性相关,且线性回归方程为 0.24y x a=+,则下列说法不正确的是( )A. 由题中数据可知,变量y 与x 正相关,且相关系数1r <B. 线性回归方程 0.24y x a=+中 0.26a =C. 当解释变量x 每增加1个单位时,预报变量 y 平均增加0.24个单位D. 可以预测6x =时,该商场5G 手机销量约为1.72(千只)【答案】ACD 【解析】【分析】根据已知数据,分析总体单调性,结合增量的变化判断A 选项;根据已知数据得到样本中心点,代入回归方程求解即可判断B 选项;根据回归方程判断CD 选项.【详解】从数据看y 随x 的增加而增加,故变量y 与x 正相关,由于各增量并不相等,故相关系数1r <,故A 正确;由已知数据得()11234535=++++=,()10.50.8 1.0 1.2 1.515y =++++=,代入ˆˆ0.24yx a =+中得到ˆ130.240.28a =-⨯=,故B 错;根据线性回归方程ˆ0.240.28yx =+可得x 每增加一个单位时,预报变量ˆy 平均增加0.24个单位,故C 正确.将6x =代入ˆ0.240.28yx =+中得到ˆ0.2460.28 1.72y =⨯+=,故D 正确.故选:ACD.5. 已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( )A. a b c << B. a c b<< C. b<c<a D. c<a<b【答案】A 【解析】【分析】由指数函数与对数函数的单调性求解即可【详解】因为0.20.20.21log 0.5log log 2a ==<=,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <.又12225log 0.4log log 212c ==>>,所以a b c <<,故选:A.6. 已知4log a a =,则2log a a +=( )A. 11或238-B. 11或218-C. 12或238-D. 10或218-【答案】A 【解析】【分析】对4log a a =43log 2a =或32-,讨论43log 2a =或32-时2log a a+的值,即可得出答案.【详解】由4log aa =()(4log 44log log aa=()49249log log4a ==,所以43log 2a =或32-.当43log 2a =时,33242a ===8,所以22log 8log 811a a +=+=;当43log 2a =-时,32148a -==,所以221123log log 888a a +=+=-,综上,a +2log 11a =或238-,故选:A.7. “送出一本书,共圆读书梦”,某校组织为偏远乡村小学送书籍的志愿活动,运送的卡车共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开2箱都是英语书的概率为( )A.29B.18C.112D.58【答案】A 【解析】【分析】剩下9箱中任意打开2箱都是英语书的情况整体分为三种情况:丢失的英语书、数学书和语文书,计算出每种情况的概率即可.【详解】设事件A 表示丢失一箱后任取两箱是英语书,事件k B 表示丢失的一箱为,1,2,3k k =分别表示英语书、数学书、语文书.由全概率公式得()()()2223554222219999C C C 11382|2C 5C 10C C 9k k k P A P B P A B ===⨯+⨯+⨯==∑.故选:A8. 将函数()π2sin 23f x x ⎛⎫=- ⎪⎝⎭的图像上所有点横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图像,有下述四个结论:①()π2sin 6g x x ⎛⎫=-⎪⎝⎭②函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增③点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心④当ππ,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的最大值为2其中所有正确结论的编号是( )A. ①②③ B. ②③C. ①③④D. ②④【答案】B 【解析】【分析】根据图象变换可得()π2sin 3g x x ⎛⎫=-⎪⎝⎭,结合正弦函数的性质逐项分析判断.【详解】由题意可得:()π2sin 3g x x ⎛⎫=-⎪⎝⎭,故①错误;因为π0,2x ⎛⎫∈ ⎪⎝⎭,则πππ,336x ⎛⎫-∈- ⎪⎝⎭,且sin y x =在ππ,36⎛⎫- ⎪⎝⎭上单调递增,所以函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,故②正确;因为4π4ππ2sin 2sin π0333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心,故③正确;因为ππ,2x ⎡⎤∈-⎢⎥⎣⎦,则π4ππ,336x ⎡⎤∈-⎢⎥⎣⎦-,所以当π4π33x -=-,即πx =-时,函数()g x 的最大值为()4ππ2sin 3g ⎛⎫-=-= ⎪⎝⎭,故④错误;故选:B.9. 已知函数()()()()()()22121,1,11,1,1a x a x x f x a x ax x x ⎧-++-∈-⎪=⎨-++∉-⎪⎩有且只有3个零点,则实数a 的取值范围是( )A. ()0,1 B. ()(),80,1-∞- C. [)0,1 D. (][),80,1-∞- 【答案】B【解析】【分析】先求1a =时函数()f x 的零点,再考虑1a ≠时,函数()f x 在(][),11,-∞+∞ 的零点,由此确定函数()f x 在()1,1-上的零点个数,结合二次函数性质求a 的取值范围.【详解】当1a =时,()()[)(]31,1,1,1,0,,1x x f x x x x x ∞∞⎧-∈-⎪=+∈+⎨⎪∈--⎩,所以区间(],1-∞-内的任意实数和13都为函数()f x 的零点,不满足要求;当1a ≠时,若(],1x ∈-∞-,则()()21f x a x ax x =-+-,令()0f x =,可得0x =(舍去),或=1x -,所以=1x -为函数()f x 的一个零点;若[)1,x ∞∈+,则()()21f x a x ax x =-++,令()0f x =,则()210a x ax x -++=,所以11a x a +=-,若111a a+≥-,即01a ≤<,则函数()f x 在[)1,+∞上有一个零点;若1a >或a<0时,则函数()f x 在[)1,+∞上没有零点;当01a ≤<时,函数()f x 在(][),11,-∞-⋃+∞上有两个零点;当1a >或a<0时,函数()f x 在(][),11,-∞-⋃+∞上有一个零点,因为当01a ≤<时,函数()f x 在(][),11,-∞-⋃+∞上有两个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有一个零点,即方程()()21210a x a x -++-=在()1,1-上有一个根,由()()()22418a a a a ∆=++-=+,当0a =时,方程()()21210a x a x -++-=的根为1x =(舍去),故0a =时,方程()()21210a x a x -++-=在()1,1-上没有根,矛盾当01a <<时,0∆>,设()()()[]2121,1,1g x a x a x x =-++-∈-,函数()()()2121g x a x a x =-++-的对称轴为2122a x a+=>-,函数()g x 的图象为开口向下的抛物线,由方程()()21210a x a x -++-=在()1,1-上有一个根可得()()10,10g g >-<,所以()()()()1210,1210a a a a -++->--+-<,所以01a <<,当1a >时,则函数()f x 在(][),11,-∞-⋃+∞上有一个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有两个零点,即方程()()21210a x a x -++-=在()1,1-上有两个根,由()()()[]2121,1,1g x a x a x x =-++-∈-可得函数()g x 的图象为开口向上的抛物线,函数()()()2121g x a x a x =-++-的对称轴为222a x a+=-,则()()()224180a a a a ∆=++-=+>,21122a a+-<<-, ()()10,10g g >->,所以4a >,()()()()1210,1210a a a a -++->--+->,满足条件的a 不存在,当a<0时,则函数()f x 在(][),11,-∞-⋃+∞上有一个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有两个零点,即方程()()21210a x a x -++-=在()1,1-上有两个根,由()()()[]2121,1,1g x a x a x x =-++-∈-可得函数()g x 的图象为开口向下的抛物线,函数()()()2121g x a x a x =-++-的对称轴为222a x a+=-,则()()()224180a a a a ∆=++-=+>,21122a a +-<<-, ()()10,10g g <-<,所以8a <-,a<0,()()()()1210,1210a a a a -++-<--+-<,所以8a <-,故实数a 的取值范围是()(),80,1-∞- .故选:B【点睛】关键点睛:含绝对值函数的相关问题的解决的关键在于去绝对值,将其转化为不含绝对值的函数,分段函数的性质的研究可以分段研究.第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分,请将答案填写在答题卡上.10. 复数()21i 1iz -=+(i 为虚数单位),则z =______.【解析】【分析】先利用复数的运算化简复数,再利用模长的公式求解模长.【详解】()()()()()21i 2i 1i 2i i 1i 1i 1i 1i 1i 1i z ----====--=--+++-.所以z ==.11. 在6的二项展开式中,2x 的系数为___________.【答案】38-【解析】【详解】试题分析:因为6263166((1)2r r r r r r r r T C C x ---+==-,所以由32r -=得1r =,因此2x 的系数为1463(1)28C --=-考点:二项式定理【方法点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n≥r );第二步是根据所求的指数,再求所求解的项的系数.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.12. 若2sin sin αβ+=3π2αβ+=,则sin α=________;cos 2β=________.【答案】 ①. ②. 35##0.6【解析】【分析】由2sin sin αβ+=3π2αβ+=,可得出2sin cos αα-=,再结合同角平方关系即可求出sin α=,从而算出sin β=3cos 25β=.【详解】 2sin sin αβ+=3π2αβ+=,3π2sin sin()2αα∴+-=2sin cos αα-=,cos 2sin αα∴=-,又22sin cos 1αα+= ,∴(22sin 2sin 1,αα+=解得sin α=∴2sin β+=,解得sin β=,23cos 212sin 5ββ∴=-=.综上,sin α=3cos 25β=.,35.13. 某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率均为23,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,则(2)P X ==___________;()E X =___________.【答案】①. 49; ②. 2512##1212.【解析】【分析】根据独立事件概率的公式,结合数学期望的公式进行求解即可.【详解】3223223224(2)(1(1(1)4334334339P X ==-⨯⨯+⨯-⨯+⨯⨯-=;3221(0)(1)(1(1)43336P X ==-⨯-⨯-=,3223223227(1)(1(1)(1)(1)(1)(143343343336P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,3221(3)4333P X ==⨯⨯=,所以174125()012336369312E X =⨯+⨯+⨯+⨯=,故答案为:49;251214. 已知0a >,0b >的最大值为________.【解析】【分析】利用基本不等式可得答案.【详解】因为0a >,0b >,所以=≤==,当且仅当2a a b=+即a b=等号成立..15. 设Rω∈,函数()2π2sin,0,6314,0,22x xf xx x xωω⎧⎛⎫+≥⎪⎪⎪⎝⎭=⎨⎪++<⎪⎩()g x xω=.若()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增,且函数()f x与()g x的图象有三个交点,则ω的取值范围是________.【答案】23⎤⎥⎦.【解析】【分析】利用()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增可得1243ω≤≤,函数()f x与()g x的图象有三个交点,可转化为方程23610x xω++=在(),0x∈-∞上有两个不同的实数根可得答案.【详解】当π0,2x⎡⎫∈⎪⎢⎣⎭时,πππ,626ωω⎡⎫++⎪⎢⎣⎭x,因为()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增,所以()π0ππ2624133π12sin62ω⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤,又函数()f x与()g x图象有三个交点,所以在(),0x∈-∞上函数()f x与()g x的图象有两个交点,即方程231422x x xωω++=在(),0x∈-∞上有两个不同的实数根,即方程23610x xω++=在(),0x∈-∞上有两个不同的实数根,的所以22Δ3612003060102ωωω⎧=->⎪⎪-<⎨⎪⨯+⨯+>⎪⎩,解得ω>当0x ≥时,令()()π2sin 6ωω⎛⎫-=+- ⎪⎝⎭f xg x x x ,由0x =时,()()10f x g x -=>,当π5π66ω+=x 时,7π3ω=x ,此时,()()7π203-=-<f x g x ,结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,23ω⎤∈⎥⎦.故答案为:233⎤⎥⎦.【点睛】关键点点睛:解题的关键点是转化为方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根.三、解答题:本大题共5小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案卡上.16. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c,满足22cos c b A =+.(1)求角B ;(2)若1cos 4A =,求sin(2)AB +的值;(3)若7c =,sin b A =b 的值.【答案】(1)6π.(2.(3【解析】【分析】(1)由正弦定理化边为角后,由诱导公式和两角和的正弦公式化简后可求得B ;(2)由二倍角公式求得sin 2,cos 2A A 后再由两角和的正弦公式可求值;(3)由正弦定理求得a ,再由余弦定理求得b .【详解】(1)∵22cos c b A =+,由正弦定理得,2sin 2sin cos C A B A=+∴2(sin cos cos sin )2sin cos A B+A B A B A =+,即2sin cos A B A =.∵sin 0A ≠,∴cos B =又0B π<<,∴6B π=(2)由已知得,sin A ==∴sin 22sin cos A A A ==,27cos 22cos 18A A =-=-∴sin(2)sin(2sin 2cos cos 2sin 666A B A A A πππ+++==.(3)由正弦定理sin sin a b A B =,得sin sin b A a B =.由(1)知,6B π=,∴a =由余弦定理得,2222cos 19b a c ac B =+-=.∴b =【点睛】本题考查正弦定理、余弦定理、考查两角和的正弦公式、二倍角公式、诱导公式,同角间的三角函数关系,考查公式较多,解题关键是正确选择应用公式的顺序.在三角形中出现边角关系时,常常用正弦定理进行边角转换.17. 已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ,若存在求出PM MC 的值,若不存在,说明理由.【答案】(1)证明见解析(2(3)存在;1PM MC =或15PM MC =【解析】【分析】(1)法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,证明出平面//EGHF 平面ADQP ,利用面面平行的性质可证得结论成立;法二:以点A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)利用空间向量法可求得平面PCQ 与平面CDQ 夹角的余弦值;(3)假设存在点M ,使得PM PC λ= ,其中[]0,1λ∈,求出向量AM 的坐标,利用空间向量法可得出关于λ的方程,解之即可.【小问1详解】的证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,又因为FH GH H = ,FH 、GH Ì平面EGHF ,所以平面//EGHF 平面ADQP ,因为EF ⊂平面EGHF ,所以//EF 平面ADQP ;法二:因为ABCD 为正方形,且PA ⊥平面ABCD ,所以AP 、AB 、AD 两两互相垂直,以点A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 、()3,0,0B 、33,0,22E ⎛⎫⎪⎝⎭、31,3,22F ⎛⎫ ⎪⎝⎭,所以()0,3,1EF =- ,易知平面PADQ 的一个法向量()1,0,0a = ,所以0a EF ⋅= ,所以E F a ⊥ ,又因为EF ⊄平面ADQP ,所以//EF 平面ADQP .【小问2详解】解:设平面PCQ 的法向量(),,m x y z = ,()3,3,3PC =- ,()3,0,1CQ =- ,则333030m PC x y z m CQ x z ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩ ,取1x =,可得()1,2,3m = ,所以平面PCQ 的一个法向量为()1,2,3m = ,易知平面CQD 的一个法向量()0,1,0n = ,设平面PCQ 与平面CQD 夹角为θ,则cos cos ,m n m n m n θ⋅=====⋅ ,所以平面PCQ 与平面CQD【小问3详解】解:假设存在点M ,使得()3,3,3PM PC λλλλ==- ,其中[]0,1λ∈,则()()()0,0,33,3,33,3,33AM AP PM λλλλλλ=+=+-=- ,由(2)得平面PCQ 的一个法向量为()1,2,3m = ,由题意可得c os ,AM = ,整理可得212810λλ-+=.即()()21610λλ--=,因为01λ≤≤,解得16λ=或12,所以,15PM MC =或1PM MC=.18. 已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.【答案】(1)23n a n =+;(2)证明见解析.【解析】【分析】(1)设等差数列{}n a 的公差为d ,用1,a d 表示n S 及n T ,即可求解作答.(2)方法1,利用(1)的结论求出n S ,n b ,再分奇偶结合分组求和法求出n T ,并与n S 作差比较作答;方法2,利用(1)的结论求出n S ,n b ,再分奇偶借助等差数列前n 项和公式求出n T ,并与n S 作差比较作答.【小问1详解】设等差数列{}n a 的公差为d ,而6,21,N 2,2n n n a n k b k a n k*-=-⎧=∈⎨=⎩,则112213316,222,626b a b a a d b a a d =-==+=-=+-,于是41314632441216S a d T a d =+=⎧⎨=+-=⎩,解得15,2a d ==,1(1)23n a a n d n =+-=+,所以数列{}n a 的通项公式是23n a n =+.【小问2详解】方法1:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*-=-⎧=∈⎨+=⎩,当n 为偶数时,12(1)34661n n b b n n n -+=--++=+,213(61)372222n n n T n n ++=⋅=+,当5n >时,22371()(4)(1)0222n n T S n n n n n n -=+-+=->,因此n n T S >,当n 奇数时,22113735(1)(1)[4(1)6]52222n n n T T b n n n n n ++=-=+++-++=+-,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n -=+--+=+->,因此n n T S >,所以当5n >时,n n T S >.方法2:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*-=-⎧=∈⎨+=⎩,当n 为偶数时,21312412(1)3144637()()222222n n n n n n n T b b b b b b n n --+--++=+++++++=⋅+⋅=+ ,当5n >时,22371()(4)(1)0222n n T S n n n n n n -=+-+=->,因此n n T S >,当n 为奇数时,若3n ≥,则为132411231144(1)61()()2222n n n n n n n T b b b b b b --+-++-+-=+++++++=⋅+⋅ 235522n n =+-,显然111T b ==-满足上式,因此当n 为奇数时,235522n T n n =+-,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n -=+--+=+->,因此n n T S >,所以当5n >时,n n T S >.19. 如图,已知椭圆E :22221(0)x y a b a b +=>>()F 且斜率为k 的直线交椭圆E 于,A B 两点,线段AB 的中点为M ,直线l :40x ky +=交椭圆E 于,C D 两点.(1)求椭圆E 的方程;(2)求证:点M 在直线l 上;(3)是否存在实数k ,使得3BDM ACM S S ∆∆?若存在,求出k 的值,若不存在,说明理由.【答案】(1)22141x y +=(2)详见解析(3)存在,且k =【解析】【分析】(1)根据离心率和焦点坐标列方程组,解方程组求得,a b 的值,进而求得椭圆E 的方程.(2)写出直线AB 的方程,联立直线的方程和椭圆的方程,求得中点M 的坐标,将坐标代入直线l 的方程,满足方程,由此证得点M 在直线l 上.(3)由(2)知,A B 到l 的距离相等,根据两个三角形面积的关系,得到M 是OC 的中点,设出C 点的坐标,联立直线l 的方程和椭圆的方程,求得C 点的坐标,并由此求得k 的值.【详解】解:(1)解:由c a c ⎧=⎪⎨⎪=⎩,解得2a =,1b =所以所求椭圆的标准方程为22141x y +=(2)设()11,A x y ,()22,B x y ,()00,M x y,(2244y k x x y ⎧=+⎪⎨+=⎪⎩,消x 得,()2222411240k x x k +-+-=,解得12012022x x x y y y ⎧+==⎪⎪⎨+⎪==⎪⎩将()00,M x y 代入到40x ky +=中,满足方程所以点M 在直线l 上.(3)由(2)知,A B 到l 的距离相等,若BDM ∆的面积是ACM ∆面积的3倍,得3DM CM =,有DO CO =,∴M 是OC 的中点,设()33,C x y ,则302y y =,联立224044x ky x y +=⎧⎨+=⎩,解得3y =,=解得218k =,所以k =.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查根与系数关系,考查方程的思想,属于中档题.要证明一个点在某条直线上,那么先求得这个点的坐标,然后将点的坐标代入直线方程,如果方程成立,则这个点在直线上,否则不在这条直线上.20. 已知函数()()1211222x f x x e x x -=--++,()()24cos ln 1g x ax x a x x =-+++,其中a ∈R .(1)讨论函数()f x 的单调性,并求不等式()0f x >的解集;(2)用{}max ,m n 表示m ,n 的最大值,记()()(){}max ,F x f x g x =,讨论函数()F x 的零点个数.【答案】(1)增函数;()1,+∞;(2)答案见解析.【解析】【分析】(1)先对函数求导,得到()()()111x f x x e-'=--,根据导数的方法,即可判定其单调性,进而可求出不等式的解集.(2)1x >时,()0F x >恒成立,当11x -<<时,()0f x <恒成立,故()F x 的零点即为函数()g x 的零点,讨论()g x 在11x -<<的零点个数得到答案.【详解】(1)()()()()111111x x f x x e x x e --'=--+=--,当1x >时,10x ->,110x e -->,∴()0f x ¢>,当1x <时,10x -<,110x e --<,∴()0f x ¢>,当1x =时,()0f x '=,所以当x ∈R 时,()0f x '≥,即()f x 在R 上是增函数;又()10f =,所以()0f x >的解集为()1,+∞.(2))函数()F x 的定义域为(1,)-+∞由(1)得,函数()f x 在x ∈R 单调递增,()10f =当1x >时,()0f x >,又()max{(),()}F x f xg x =,所以1x >时,()0F x >恒成立,即1x >时,()0F x =无零点.当11x -<<时,()0f x <恒成立,所以()F x 零点即为函数()g x 的零点下面讨论函数()g x 在11x -<<的零点个数:1()214sin 1g x ax a x x '=--++,所以21()24cos (11)(1)g x a a x x x ''=---<<+①当0a >时,因为11x -<<,cos (cos1,1)x ∈又函数cos y x =在区间π0,2⎛⎫ ⎪⎝⎭递减,所以π1cos1cos 32>=即当11x -<<时,12cos 0x -<,21()2(12cos )0(1)g x a x x ''=--<+所以()g x '单调递减,由()00g '=得:当10x -<<时()0g x '>,()g x 递增的当01x <<时()0g x '<,()g x 递减当1x →-时ln(1)x +→-∞,()g x ∴→-∞,当0x =时(0)40g a =>又(1)14cos1ln 2g a a =-++,()10f =当1ln 2(1)014cos1g a ->⇒>+时,函数()F x 有1个零点;当1ln 2(1)014cos1g a -=⇒=+时,函数()F x 有2个零点;当1ln 2(1)0014cos1g a -<⇒<<+时,函数()F x 有3个零点;②当0a =时,()ln(1)g x x x =+-,由①得:当10x -<<时,()0g x '>,()g x 递增,当01x <<时,()0g x '<,()g x 递减,所以max ()(0)0g x g ==,(1)ln 210g =-<,所以当0a =时函数()F x 有2个零点③当a<0时,()2()4cos ln(1)g x a x x x x =+-++()24cos 0a x x +<,ln(1)0x x -++≤,即()0g x <成立,由()10f =,所以当a<0时函数()F x 有1个零点综上所述:当1ln 214cos1a ->+或a<0时,函数()F x 有1个零点;当1ln 214cos1a -=+或0a =时,函数()F x 有2个零点;当1ln 2014cos1a -<<+时,函数()F x 有3个零点.【点睛】思路点睛:导数的方法研究函数的零点时,通常需要对函数求导,根据导数的方法研究函数单调性,极值或最值等,有时需要借助数形结合的方法求解.。
湖南省长沙2025届高三上学期月考(一)数学试题含答案
2025届高三月考试卷(一)数学(答案在最后)本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合[),A a =+∞,()1,2B =-,若A B =∅ ,则()A.1>-aB.2a > C.1a ≥- D.2a ≥【答案】D 【解析】【分析】根据题意,结合集合的交集的运算,即可求解.【详解】由集合[),A a =+∞,()1,2B =-,因为A B =∅ ,则满足2a ≥.故选:D.2.已知复数z 满足22z -=,z 的取值范围为()A.[]0,2 B.()0,2 C.[]0,4 D.()0,4【答案】C 【解析】【分析】根据题意,利用复数模的几何意义,得到复数z 在复平面内对应的轨迹,进而结合圆的性质,即可求解.【详解】由题意知复数z 满足22z -=,可得复数z 在复平面内对应的轨迹为以(2,0)A 为圆心,2r =为半径的圆,且z 表示圆上的点到原点(0,0)O 的距离,则max min 224,220z OA r z OA r =+=+==-=-=,所以z 的取值范围为0,4.故选:C.3.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC=A.1B.2C.2D.2【答案】C 【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v .【点睛】本题主要考查平面向量的线性运算.4.若函数()2211x x f x x ++=+的最大值为M ,最小值为N ,则M N +=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】将函数解析式化为()211xf x x =++,令()21xg x x =+,判断()g x 的奇偶性,然后利用函数的奇偶性求解即可.【详解】()2222221111111x x xf x x x x x x x +==+=+++++++,令()21x g x x =+,则其定义域为R ,又()()()2211x x g x g x x x --==-=-+-+,所以()21xg x x =+为奇函数,则()()max min 0g x g x +=,所以()()()()max min max min 112f x f x g x g x +=+++=,则2M N +=.故选:B.5.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面AB,是线段ED 的中点,则A.BM EN =,且直线,BM EN 是相交直线B.BM EN ≠,且直线,BM EN 是相交直线C.BM EN =,且直线,BM EN 是异面直线D.BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF , 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.6.tan10tan503tan50︒+︒+︒︒的值为()A.3B.3C.3D.33【答案】B 【解析】【分析】利用正切的和角公式,逆用即可求出结果.【详解】tan10tan503tan10tan50︒+︒︒︒()()tan 10501tan10tan 503tan 50=︒+︒-︒︒+︒︒)31tan10tan503tan 50=-︒︒+︒︒33tan10tan503tan50=-︒︒︒︒3=故选:B.7.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A.第一次朝上面的数字是偶数B.第一次朝上面的数字是1C.两次朝上面的数字之和是8D.两次朝上面的数字之和是7【答案】D 【解析】【分析】根据题意,由相互独立事件的定义,对选项逐一判断,即可得到结果.【详解】抛掷骰子两次,共有6636⨯=个基本事件数,则()()()()()()()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,3,1,3,2,3,3,3,4,3,5,3,6M =,()()()()()()}5,1,5,2,5,3,5,4,5,5,5,6共18个基本事件,则()181362P M ==,设事件E 为第一次朝上面的数字是偶数,则事件M 与事件E 是对立事件,故A 错误;设事件F 为第一次朝上面的数字是1,则F M ⊆,故B 错误;设事件N 为两次朝上面的数字之和是8,则()()()()(){}2,6,3,5,4,4,5,3,6,2N =共5个基本事件,则()536P N =,且()(){}3,5,5,3MN =,则()213618P MN ==,()()()P MN P M P N ≠⋅,所以C 错误;设事件Q 两次朝上面的数字之和是7,则()()()()()(){}1,6,2,5,3,4,4,3,5,2,6,1Q =,则()61366P Q ==,且()()(){}1,6,3,4,5,2MQ =,则()313612P MQ ==,因为()()()P MQ P M P Q =⋅,所以事件M 与事件Q 相互独立.故选:D8.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房,…,以此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数,则10a =()A.10B.55C.89D.99【答案】C 【解析】【分析】根据给定条件,求出数列{}n a 的递推公式,再依次计算求出10a .【详解】依题意,12n n n a a a --=+(*n ∈N ,3n ≥),11a =,22a =,所以34567893,5,8,13,21,34,55,a a a a a a a =======1089a =.故选:C二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知一组样本数据1x ,2x ,…,()201220x x x x ≤≤≤ ,下列说法正确的是()A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差D.若1x ,2x ,…,10x 的均值为2,方差为1,11x ,12x ,…,20x 的均值为6,方差为2,则1x ,2x ,…,20x 的方差为5【答案】BC 【解析】【分析】由百分位数的定义即可判断A ;由极差的定义即可判断C ,由频率分布直方图中中位数、平均数的求法画出图形即可判断B ;由方差计算公式即可判断D.【详解】对于A ,由2060%12⨯=,所以样本数据的第60百分位数为12132x x +,故A 错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如下图,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,故B 正确;对于C ,剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差,故C 正确;对于D ,由10102642020x =⨯+⨯=,则()()22210101112426420202s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦,所以则1x ,2x ,…,20x 的方差为112,故D 错误.故选:BC.10.在平面直角坐标系中,O 为坐标原点,抛物线()220y px p =>的焦点为F ,点()1,2M ,()11,A x y ,()22,B x y 都在抛物线上,且0FA FB FM ++=ruu r uu r uuu r ,则下列结论正确的是()A.抛物线方程为22y x= B.F 是ABM 的重心C .6FA FM FB ++= D.2223AFO BFO MFO S S S ++=△△△【答案】BCD 【解析】【分析】把点代入可得抛物线的方程,结合向量运算可得F 是ABM 的重心,利用抛物线的定义可得6FA FM FB ++= ,利用三角形面积公式及122x x +=,可得2223AFO BFO MFO S S S ++=△△△.【详解】对于A ,由()1,2M 在抛物线上可得42p =,即抛物线方程为24y x =,错误;对于B ,分别取,AB AM 的中点,D E ,则2FA FB FD +=uu u u r uu r u r ,2FM FD =-uuu r uu u r,即F 在中线MD 上,同理可得F 也在中线BE 上,所以F 是ABM 的重心,正确;对于C ,由抛物线的定义可得121,2,1FA x FM FB x =+==+uu r uuu r uu r,所以124++=++FA FM FB x x uu r uuu r uu r.由()10F ,是ABM 的重心,所以12113x x ++=,即122x x +=,所以1246++=++=FA FM FB x x uu r uuu r uu r,正确;对于D ,112AFO S OF y =△,221114AFO S y x ==△;同理222214BFOSy x ==△,21MFO S =△,所以2221213AFO BFO MFO S S S x x ++=++=△△△,正确.故选:BCD.11.已知函数()()()322,,R ,f x x ax bx c a b c f x =-++'∈是()f x 的导函数,则()A.“0a c ==”是“()f x 为奇函数”的充要条件B.“0a b ==”是“()f x 为增函数”的充要条件C.若不等式()0f x <的解集为{1xx <∣且1}x ¹-,则()f x 的极小值为3227-D.若12,x x 是方程()0f x '=的两个不同的根,且12111x x +=,则0a <或3a >【答案】ACD 【解析】【分析】根据函数的奇偶性和充分、必要条件的判定方法,可判定A 正确;结合导数和函数的单调性间的关系,结合充分、必要条件的判定方法,可判定B 错误;利用导数求得函数()f x 的单调性,进而求得()f x 的极小值,可判定C 正确;结合二次函数的性质,结合0∆>,列出不等式,可判定D 正确.【详解】对于A 中,当0a c ==时,函数()3f x x bx =+,则满足()()3f x x bx f x -=--=-,所以()f x 为奇函数,所以充分性成立;若()f x 为奇函数,则()322f x x ax bx c -=---+=()322f x x ax bx c -=-+--,则24ax -20c =恒成立,所以0a c ==,所以必要性成立,所以A 正确;对于B 中,当0a b ==时,()3f x x c =+,可得()230f x x '=≥,所以()f x 为增函数;由()234f x x ax b =-+',当()f x 为增函数时,216120a b ∆=-≤,所以“0a b ==”是“()f x 为增函数”的充分不必要条件,所以B 错误;对于C 中,由()234f x x ax b =-+',若不等式()0f x <的解集为{|1x x <且1}x ¹-,则()f x 在R 上先增后减再增,则()1f '-=()()0,110f f =-=,解得21a b c ===-,故()()()232111f x x x x x x =+--=+-,可得()()()2321311f x x x x x '=+-=-+,令()0f x '=,解得=1x -或13x =,当(),1x ∈-∞-内,()0f x '>,()f x 单调递增;当11,3x ⎛⎫∈- ⎪⎝⎭内,()0f x '<,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭内,()0f x '>,()f x 单调递增,所以()f x 的极小值为2111321133327f ⎛⎫⎛⎫⎛⎫=+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 正确.对于D 中,由()234f x x ax b =-+',因为12,x x 是方程()0f x '=的两个不同的根,所以216120a b ∆=->,即2430a b ->,且1x +2124,33a bx x x ==,由12111x x +=,可得1x +212x x x =,所以433a b =,即4b a =,联立方程组,可得230a a ->,解得0a <或3a >,所以D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分.)12.点M 在椭圆221259x y +=上,F 是椭圆的一个焦点,N 为MF 的中点,3ON =,则MF =_________.【答案】4【解析】【分析】根据椭圆的对称性,利用三角形中位线定理求得||MF ',再由椭圆定义求解||MF 即可.【详解】如图,根据椭圆的对称性,不妨设F 为左焦点,F '为右焦点,由椭圆221259x y +=,得5a =,210a =,N Q 是MF 的中点,O 是FF '的中点,ON ∴为FMF ' 的中位线,||2||6MF ON ∴'==,∴由椭圆的定义得||2||1064MF a MF =-'=-=.故答案为:4.13.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()=E X ______.【答案】65【解析】【分析】根据题意得出X 的所有可能取值为0,1,2,3,然后分析出涂3面油漆,2面油漆,1面油漆,0面油漆的各有多少个小正方体,从而计算X 取每个值时的概率,从而求X 的均值.【详解】X 的所有可能取值为0,1,2,3,大正方体8个顶点处的8个小正方体涂有3面油漆;每一条棱上除了两个顶点处的小正方体外剩余的都涂有两面油漆,所以涂有两面油漆的有31236⨯=个;每个表面去掉四条棱上的16个小正方体,还剩9个小正方体,这9个都是一面涂漆,所以一共有9654⨯=个小正方体涂有一面油漆;剩余的()1258365427-++=个内部的小正方体6个面都没有涂油漆,所以()270125P X ==,()541125P X ==,()362125P X ==,()83125P X ==,()()()()()00112233E X P X P X P X P X =⨯=+⨯=+⨯=+⨯=2754368150601231251251251251255=⨯+⨯+⨯+⨯==.故答案为:65.14.若函数()()52cos sin 2f x a x x x =-+在R 上单调递增,则a 的取值范围是_________.【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】【分析】求导,根据()0f x '≥在R 上恒成立,即可结合二次函数的性质求解.【详解】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+,()f x 在R 上单调递增,()0f x '∴≥在R 上恒成立,令cos x t =,[]1,1t ∈-,则()f x '可写为()2942g t at t =-+,[]1,1t ∈-,根据题意()g t 在[]1,1-上的最小值非负,∴()()10,10,g g ⎧-≥⎪⎨≥⎪⎩解得1122a -≤≤.故答案为:11,22⎡⎤-⎢⎥⎣⎦四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知向量(),sin m b a C =-- ,(),sin sin n c b A B =++,满足//m n u r r .(1)求A ;(2)若角A 的平分线交边BC 于点D ,AD 长为2,求△ABC 的面积的最小值.【答案】(1)23A π=(2)【解析】【分析】(1)由//m n u r r 得出等式,再由正、余弦定理即可解出;(2)把ABC 的面积用等积法表示可得,b c 关系,再利用基本不等式得出bc 的最小值,即得面积最小值.【小问1详解】因为//m n u r r ,所以()()()()sin sin sin b a A B c b C -+=+-,由正弦定理得()()()()b a a b c b c -+=+-,所以222b c a bc +-=-,所以2221cos 222b c a bc A bc ab +--===-,因为()0,A π∈,故23A π=.【小问2详解】∵AD 平分∠BAC ,∴123BAD CAD BAC π∠=∠=∠=,∵ABD ACD ABC S S S +=△△△,∴1sin 2AB AD BAD ⋅⋅∠11sin sin 22AC AD CAD c A +⋅⋅∠=⋅⋅,即22sin 2sin sin 333c b bc πππ+=,∴22c b bc+=由基本不等式可得:22bc b c =+≥,∴16bc ≥,当且仅当4b c ==时取“=”,∴1sin 2ABC S bc A ==≥ 即ABC V的面积的最小值为.16.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=o ,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A 到平面1A PO 的距离;(2)求二面角1A PB O --的余弦值大小.【答案】(1)32;(2)277.【解析】【分析】(1)根据等体积法,由11A AOP A A OP V V --=即可求出点A 到平面1A PO 的距离;(2)先证明PB AP ⊥,1PB AA ⊥,由线面垂直的判定定理可得PB ⊥面1AA P ,进而可得1A PA ∠即为所求二面角的平面角,在1Rt A PA 中,计算11cos AP A PA A P∠=即可求解.【详解】(1)因为113AA OO ==,122AO AB ==,所以1AO ===在AOP中,由余弦定理可得:AP ===所以1A P ==,2OP =,在1AOP中,由余弦定理可得222111121cos 27A P OP A O A PO A P OP +-∠===⋅,所1sin7A PO∠==,所以11227A OPS=⨯=,设点A到平面1A PO的距离为d,由11A AOP A A OPV V--=,得111133AOP AO PS AA S d⋅⋅=⋅⋅,即1111233223d⨯⨯⨯⨯=,解得:32d=,所以点A到平面1A PO的距离为32;(2)二面角1A PB O--即二面角1A PB A--,因为AB是圆O的直径,点P在圆柱1OO的底面圆O上,所以PB AP⊥,因为1AA⊥面ABP,PB⊂面ABP,可得1PB AA⊥,因为1AP AA A⋂=,所以PB⊥面1AA P,因为1A P⊂面1AA P,AP⊂面1AA P,所以PB⊥AP,PB⊥1A P,所以1A PA∠即为二面角1A PB O--的平面角,在1Rt A PA中,1A P=,AP=所以11cos7APA PAA P∠===,所以二面角1A PB O--的余弦值为7.17.双曲线()2222:10,0x yC a ba b-=>>的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且ABD△是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为1k、2k,若122k k=-,求点A到直线MN的距离d的取值范围.【答案】(1)2213y x -=(2)(⎤⎦【解析】【分析】(1)根据等腰直角三角形的性质,转化为,,a b c 的方程,即可求解;(2)首先设直线MN 的方程为x my n =+,与双曲线方程联立,利用韦达定理表示122k k =-,并根据2m 的取值范围,求点到直线的距离的取值范围.【小问1详解】依题意,90BAD ∠=,焦半径2c =,由AF BF =,得2b ac a+=,得22222a a a +=-,解得:1a =(其中20a =-<舍去),所以222413b c a =-=-=,故双曲线C 的方程为2213y x -=;【小问2详解】显然直线MN 不可能与轴平行,故可设直线MN 的方程为x my n =+,联立2233x my n x y =+⎧⎨-=⎩,消去x 整理得()()222316310m y mny n -++-=,在条件2310Δ0m ⎧-≠⎨>⎩下,设()11,M x y ,()22,N x y ,则122631mn y y m +=--,()21223131n y y m -=-,由122k k =-,得()()12122110y y x x +++=,即()()12122110y y my n my n +++++=,整理得()()()()2212122121210m y y m n y y n ++++++=,代入韦达定理得,()()()()()22222312112121310n m m n n n m -+-+++-=,化简可消去所有的含m 的项,解得:5n =或1n =-(舍去),则直线MN 的方程为50x my --=,得d =又,M N 都在双曲线的右支上,故有2310m -<,2103m ≤<,此时1≤<,(d ⎤=⎦,所以点A 到直线MN 的距离d的取值范围为(⎤⎦.18.已知函数()()e xf x x a =-,a ∈R .(1)当1a =时,求()f x 的极值;(2)若函数()()ln g x f x a x =-有2个不同的零点1x ,2x .(i )求a 的取值范围;(ii )证明:12112e x x a x x +->.【答案】(1)极小值为0,无极大值(2)(i )()e,+∞;(ii )证明见解析【解析】【分析】(1)将1a =代入函数解析式,求导,判断其单调性,进而得出极值;(2)(i )化简函数()g x 的解析式,令e x t x =,问题可转化为()ln h t t a t =-在(0,)t ∈+∞有2个零点1t ,2t ,再利用导数研究函数()h t 的性质即可得出答案;(ii )等价于证明21e a t t >,再利用极值点偏移法即可得证.【小问1详解】1a =时,()()e 1xf x x =-,()()1e 1x f x x =+'- ,令()()()(),2e xm x f x m x x ''=∴=+,(),2x ∞∴∈--,()0m x '<;()2,x ∞∈-+,()0m x '>,()f x ∴'在(),2∞--单调递减,()2,∞-+单调递增,x →-∞ 时,10x +<,e 0x >,则′<0,()21210ef '--=-<,()00f '=,x →+∞时,()f x ∞'→+,(),0x ∞∴∈-时,′<0;∈0,+∞,′>0,∴在(),0∞-单调递减,在0,+∞单调递增,∴的极小值为()00f =,无极大值.【小问2详解】(i )()()()()ln e ln e ln e x x x g x f x a x x a x x x a x =-=-+=-,∈0,+∞,令e x t x =,()0,t ∞∈+,()1e 0x t x =+'> ,e x t x ∴=在0,+∞单调递增,令()ln h t t a t =-,即()h t 在()0,t ∞∈+有2个零点1t ,2t ,且111e x t x =,222e xt x =,()1a t a h t t t-='-= ,0a ∴≤时,()0h t '>,()h t 在()0,t ∞∈+单调递增,不存在2个零点,0a ∴>,()0,t a ∈ 时,()0h t '<;(),t a ∞∈+时,()0h t '>,()h t ∴在()0,a 单调递减,在(),a ∞+单调递增,0t → 时,()h t ∞→+;t →+∞时,()h t ∞→+,()()()min 1ln 0h t h a a a ∴==-<,()e,a ∞∴∈+.(ii )设12t t <,()110h => ,()e e 0h a =-<,∴由(i )知,121e t a t <<<<,即证:12e t t a >,即证:21e a t t >,2t a > ,1e a a t >,()h t 在(),a ∞+单调递增,∴即证:()21e 0a h t h t ⎛⎫=> ⎪⎝⎭,11ln t a t = ,()1111111e e e e e e ln ln ln ln 1ln a a a h a a a t t t t t t t ⎛⎫⎛⎫⎡⎤∴=-=-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令()()111e ln ln 1p t t t =+-,()11,e t ∈,即证:()10p t <,()1112211111eln e 1ln ln t t p t t t t t t -=='-+,令()111eln q t t t =-,()11,e t ∈,()1111e e 10t q t t t -=-='< ,()1q t ∴在()1,e 单调递减,()()1e 0q t q >=,()10p t ∴'>,()1p t ∴在()1,e 单调递增,()()1e 0p t p ∴<=,【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知集合{}()1,2,3,,,3A n n n =∈≥ N ,W A ⊆,若W 中元素的个数为()2m m ≥,且存在u ,()v W u v ∈≠,使得()2k u v k +=∈N ,则称W 是A 的()P m 子集.(1)若4n =,写出A 的所有()3P 子集;(2)若W 为A 的()P m 子集,且对任意的s ,()t W s t ∈≠,存在k ∈N ,使得2k s t +=,求m 的值;(3)若20n =,且A 的任意一个元素个数为m 的子集都是A 的()P m 子集,求m 的最小值.【答案】(1){}{}1,2,3,1,3,4;(2)2;(3)13.【解析】【分析】(1)根据()P m 子集的定义,即可容易求得;(2)取{}1,3W =,求得2m =,再利用反证法假设3m ≥,推得10a <与11a ≥矛盾即可;(3)令{}020,19,18,17,11,10,9,3,16,8,4,2W =,讨论12m ≤时不满足题意,再验证13m ≥时的情况满足题意,即可求得m 的最小值.【小问1详解】当4n =时,{}1,2,3,4A =,A 的所有()3P 子集为{}{}1,2,3,1,3,4.【小问2详解】当3n ≥时,取{}1,3W =,因为2132+=,所以W 是A 的()2P 子集,此时2m =;若3m ≥,设123,,a a a W ∈且1231a a a ≤<<,根据题意,3121213232,2,2kk k a a a a a a +=+=+=,其中123,,N k k k ∈;因为121323a a a a a a +<+<+,所以312222k k k <<,所以123k k k <<;又因为123,,N k k k ∈,所以321k k ≥+;因为()3121232222k k k a a a ++=++,所以()31212312222k k k a a a ++=++,所以()()3331212111222222222k k k k k k k a =++-=+-;因为3122221222222k k k k k k ++<+=≤,所以3122220k k k +-<,所以10a <,与11a ≥矛盾.综上所述,2m =.【小问3详解】设{}{}{}{}{}1234520,12,19,13,18,14,17,15,11,5,A A A A A ====={}{}{}{}{}{}{}678123410,6,9,7,1,3,2,4,8,16A A AB B B B =======,设W 的元素个数为m ,若W 不是A 的()P m 子集,则W 最多能包含1238,,,,A A A A 中的一个元素以及1234,,,B B B B 中的元素;令{}020,19,18,17,11,10,9,3,16,8,4,2W =,易验证0W 不是A 的()12P 子集,当12m ≤时,0W 的任意一个元素个数为m 的子集都不是A 的()P m 子集,所以,若A 的任意一个元素个数为m 的子集都是A 的()P m 子集,则13m ≥;当13m ≥时,存在{}1,2,3,4,5,6,7,8i ∈,使得W 中必有两个元素属于i A ,同时i A 中两个元素之和为2的某个正整数指数幂,P m子集;所以W是A的()所以,m的最小值为13.P m子集的定义,【点睛】关键点点睛:本题考查集合新定义问题,处理问题的关键是充分把握题中对()同时要熟练的使用证明方法,属综合困难题.。
2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)
2023-2024学年黑龙江省高三上册第一次月考考试数学试题.....函数()2ln(f x x =--的单调递减区间为().(,1)-∞-B (1,1)-D7.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .58.已知定义在R 上的函数()f x ,其导函数()f x '满足:对任意x ∈R 都有()()f x f x '<,则下列各式恒成立的是()A .()()()()20181e 0,2018e 0f f f f <⋅<⋅B .()()()()20181e 0,2018e 0f f f f >⋅>⋅C .()()()()20181e 0,2018e 0f f f f >⋅<⋅D .()()()()20181<e 0,2018e 0f f f f ⋅>⋅二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是()A .()f x 在()4,3--上是减函数B .()f x 在()1,2-上是减函数C .3x =-时,()f x 有极小值D .2x =时,()f x 有极小值10.对于定义在R 上的函数()f x ,下述结论正确的是()A .若()()11f x f x =+-,则()f x 的图象关于直线1x =对称B .若()f x 是奇函数,则()1f x -的图象关于点()1,0A 对称C .函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称D .若函数()1f x -的图象关于直线1x =对称,则()f x 为偶函数16.已知定义在R 上的函数f ()()2log a f x x =+,则(2022f 四、解答题:本题共6小题,共由图象可知:函数12xy=与y∴函数()213 2xf x x=+-的零点个数为故答案为.214.2【分析】根据对数函数的性质求出函数过定点坐标,再代入直线方程,即可得到。
海南省文昌中学2024-2025学年高三上学期第一次月考数学试题
海南省文昌中学2024-2025学年高三上学期第一次月考数学试题一、单选题1.已知{*|3}A x x =∈≤N ,{}2|40B x x x =-≤,则A B =I ( )A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.若复数3i2ia ++是纯虚数,则实数a =( ) A .32-B .32C .23-D .233.“幂函数()()21mf x m m x =+-在()0,∞+上为增函数”是“函数()222x xg x m -=-⋅为奇函数”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.已知()1tan 3π2α-=,则()()πsin sin π2πcos cos π2αααα⎛⎫+-+ ⎪⎝⎭⎛⎫-+- ⎪⎝⎭等于( )A .1B .-12C .13D .-135.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.如图,1F ,2F 为椭圆E :()222210,0x ya b a b+=>>的左、右焦点,中心为原点,椭圆E,直线4x =上一点P 满足12F PF V 是等腰三角形,且12120F F P ∠=︒,则E 的离心率为( )ABC .15D .256.将甲、乙等8名同学分配到3个体育场馆进行冬奥会的志愿服务,每个场馆不能少于2人,则不同的安排方法有( ) A .2720B .3160C .3000D .29407.已知等边ABC VP 为ABC V 所在平面内的动点,且||1PA =u u u r ,则PB PC ⋅u u u r u u u r的取值范围是( ) A .39,22⎡⎤-⎢⎥⎣⎦B .111,22⎡⎤-⎢⎥⎣⎦C .[1,4]D .[1,7]8.已知函数()()e xf x x a =+⋅,若对任意121x x >>都有()()12210x f x x f x -<,则实数a 的取值范围是( ) A .[)4,-+∞B .[)3,∞-+C .[)2,-+∞D .[)1,-+∞二、多选题9.下列不等式一定成立的有( ) A .12x x+≥ B .12(1)4x x -≤ C.22311x x +≥+ D2≥ 10.已知前n 项和为n S 的正项等比数列{}n a 中,148a a =,322a a =+,2log 1nn n a b S =+,则( ) A .65448a a -=- B .7127S =C .21n n S a =-D .数列{}n b 中的最大项为2b11.四棱锥P ABCD -的底面为正方形,PA 与底面垂直,2PA =,1=AB ,动点M 在线段PC 上,则( )A .不存在点M ,使得AC BM ⊥B .MB MD +C .四棱锥P ABCD -的外接球表面积为6π D .点M 到直线AB的距离的最小值为三、填空题12.已知平面向量a r ,b r 满足||1a =r ,(1,2)b =r ,(2)a a b ⊥-r r r ,则向量a r,b r 夹角的余弦值为.13.设函数()y f x =的定义域为R ,且()1f x +为偶函数,()1f x -为奇函数,当[]1,1x ∈-时,()21f x x =-,则()20231k f k ==∑.14.已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()22120f x m f x m +--=⎡⎤⎣⎦有5个不同的实数解,则实数m 的取值范围是.四、解答题15.已知a 、b ,c 分别是ΔABC 内角A ,B ,C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ΔABCc .16.如图,四棱锥P ABCD -的底面为直角梯形,PA ⊥底面ABCD ,AD BC ∥,60ADC ∠=︒,22AP AD BC ===,E 为棱CP 上一点.(1)证明:平面ABE ⊥平面ADP ;(2)若AE BE =,求平面ABE 与平面CDP 所成二面角的平面角的正弦值.17.已知椭圆方程为()222210+=>>x y a b a b,过点(),0A a -,()0,B b 的直线倾斜角为π6,原(1)求椭圆的方程;(2)对于()1,0D -,是否存在实数k ,使得直线2y kx =+分别交椭圆于点P ,Q ,且DP D Q =,若存在,求出k 的值;若不存在,请说明理由. 18.已知函数()()ln 1f x x =+. (1)求曲线y =f x 在3x =处的切线方程. (2)讨论函数()()()F x ax f x a =-∈R 的单调性; (3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线y =g x 关于直线x m =对称.19.若有穷数列12,n a a a L (n 是正整数),满足1n a a =,21n a a -=,…,1n a a =即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”.(1)已知数列 b n 是项数为8的对称数列,且1b ,2b ,3b ,4b 成等差数列,11b =,410b =,试写出 b n 的每一项.(2)已知{}n c 是项数为2k (其中1k ≥,且Z k ∈)的对称数列,且122,,,k k k c c c ++L 构成首项为15,公差为2-的等差数列,数列{}n c 的前2k 项和为2k S ,则当k 为何值时,2k S 取到最大值?最大值为多少?(3)对于给定的正整数1i >,试写出所有项数为21i -的对称数列,使得211,2,22i -K 成为数列中的连续项;当2000i >时,并分别求出所有对称数列的前2024项和2024S .。
2024-2025学年渭南市蒲城县高三数学上学期10月第一次月考卷及答案解析
蒲城中学2024—2025学年上学期高三第一次月考数学注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本试卷命题范围:集合与逻辑、不等式、函数.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 已知集合{}13,5A =,,{}1,2,3B =,则A B = ( )A. {}3 B. {}1,2,5 C. {}1,2,3,5 D. {}1,2,3,4,5【答案】C【解析】【分析】根据并集的知识求得正确答案.【详解】依题意,A B = {}1,2,3,5.故选:C2. 已知命题2024:R,20230x p x x ∀∈+>,则p 的否定是( )A. 2024R,20230x x x ∀∈+≤ B. 2024R,20230x x x ∃∈+<C. 2024R,20230x x x ∃∈+≤ D. 2024R,20230x x x ∃∈+≠【答案】C【解析】【分析】根据全称命题的否定即可得到结果.【详解】先变量词,再否结论,而“202420230x x +>”的否定是“202420230x x +≤”,故p 的否定是:2024R,20230x x x ∃∈+≤.故选:C.3. 不等式304x x+≥-的解集为( )A. []3,4- B. [)3,4-C. ()(),33,∞∞--⋃+ D. (](),34,-∞-+∞ 【答案】B【解析】【分析】转化为一元二次不等式,求出解集.【详解】304x x +≥-等价于()()34040x x x ⎧+-≥⎨-≠⎩,解得[)3,4x ∈-.故选:B4. 函数211x y x -=+-的定义域是( )A. [)4,-+∞ B. ()4,-+∞C. [)()4,00,-+∞ D. [)()4,11,-+∞ 【答案】D【解析】【分析】根据给定条件,利用函数有意义列出不等式组求解即得.【详解】函数211x y x -=-有意义,则4010x x +≥⎧⎨-≠⎩,解得4x ≥-且1x ≠,所以所求定义域为[)()4,11,-+∞ .故选:D5. 函数()21ex x f x +=的大致图象为( )A. B.C. D.【答案】A【解析】【分析】利用导数研究函数的单调性,即可确定.【详解】()()()2222212e (1)e 21210e e e e x xx x x x x x x x x x x f x --+-+--+'===-=-≤恒成立,所以函数()21ex x f x +=在定义域R 上单调递减,且对任意R x ∈,都有210,e 0x x +>>,所以对任意R x ∈,都有()0f x >,所以结合选项可知A 满足,故选:A.6. 已知120232023202212024,log 2022,log 2023a b c ===,则,,a b c 的大小关系是( )A. a b c>> B. b a c >>C. c a b>> D. a c b>>【答案】A【解析】【分析】根据指数函数、对数函数的单调性确定范围即可比较大小.【详解】依题意102023202420241a =>=,2023202320230log 1log 2022log 20231<<<=,202220221log log 102023c =<=,所以a b c >>.故选:A7. 函数()f x =[]1,1-上单调递减,则a 的取值范围为( )A. 1a ≤- B. 1a <- C. 31a -≤≤- D. 31a -<<-【答案】C【解析】【分析】令()272t x ax x =+-,由题意可得()t x 需满足在区间[]1,1-上单调递减,且()min 0t x ≥,由此列出不等式,求得答案.【详解】令()272t x ax x =+-,则()f t =由题意可得()272t x ax x =+-需满足在区间[]1,1-上单调递减,且()min 0t x ≥,而()272t x ax x =+-图象开口向下,对称轴为t a =,故1a ≤-且()1620t a =+≥,即31a -≤≤-,故选:C8. 设0a >,0b >,则下列不等式中不恒成立的是( ).A. 12a a +≥ B. 222(1)a b a b +≥+-C. ≥D. 3322a b ab +≥【答案】D【解析】【详解】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误.详解:332222()()a b ab a b a ab b +-=-+-,a b <<有3322a b ab <+,故D项错误,其余恒成立:1122,a a a a+≥=⇒+≥2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+≥---+=⇒-当a b <0>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在其定义域上既是奇函数又是增函数的是( )A. 1y x = B. e e x xy -=-的C. 3y x = D. 2log y x=【答案】BC【解析】【分析】根据解析式直接判断奇偶性与单调性即可求解.【详解】选项A :1y x =为奇函数不是增函数,选项B :e e x x y -=-,为奇函数和增函数,选项C :3y x =为奇函数和增函数,选项D :2log y x =不是奇函数.故选:BC.10. 下列四个命题中正确的是( )A. 若,a b c d >>,则a d b c->- B. 若22a m a n >,则m n >C. 若110a b <<,则2b ab > D. 若a b >,则11a b a>-【答案】ABC【解析】【分析】根据不等式的性质判断ABC ,举反例排除D ,从而得解.【详解】A.由条件可知,a b >,d c ->-,所以a d b c ->-,故A 正确;B.因为22a m a n >,所以20a >,所以m n >,故B 正确;C.因为110a b<<,所以0b a <<,所以2b ab >,故C 正确;D.因为a b >,取1,0a b ==,则111a b a ==-,故D 错误.故选:ABC11. 下列说法正确的是( )A. “万事俱备,只欠东风”,则“东风”是“赤壁之战东吴打败曹操”的必要不充分条件B. 若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件C. 方程20ax x a ++=有唯一解的充要条件是12a =±D. []x 表示不超过x 的最大整数,x 表示不小于x 的最小整数,则“[]ab =”是“a b ≥”的充要条件【答案】AB【解析】【分析】根据充分条件和必要条件的定义依次判断各选项即可.【详解】对于A ,“东风”是“赤壁之战东吴打败曹操”的必要条件,但不是充分条件,故A 正确;对于B ,若p 是q 的必要不充分条件,则q p ⇒,p q ¿;若p 是r 充要条件,则p r ⇒,r p ⇒;则有q r ⇒,r q ¿,即q 是r 的充分不必要条件,故B 正确;对于C ,当0a =时,方程20ax x a ++=可化为0x =,也满足唯一解的条件,故C 错误;对于D ,依题意,得[]a a ≥,b b ≥,所以“[]a b =”⇒“a b ≥”,即充分性成立;反之不成立,如3.1 1.5≥,[3.1]3=,1.52=,不能推出“[3.1] 1.5=”,即必要性不成立,故D 错误.故选:AB .三、填空题:本大题共3小题,每小题5分,共15分.12. 已知函数()()16log ,2,21,2x x f x f x x ≤⎧=⎨->⎩则(4)f =______.【答案】1【解析】【分析】根据自变量确定代入哪段,结合对数性质计算即可.【详解】因为()()()42342f f f ==,()1612log 24f ==,所以()()4421f f ==.故答案为:113. 若“x ∃∈R ,使得2210x mx -+<”是假命题,则实数m 的取值范围是______.【答案】⎡⎣-【解析】【分析】根据特称命题的定义和一元二次不等式的恒成立问题求解.【详解】因为“x ∃∈R ,使得2210x mx -+<”是假命题,所以“x ∀∈R ,使得2210x mx -+≥”是真命题,所以280m ∆=-≤,解得m ⎡∈-⎣,故答案为: ⎡⎣-.14. 已知函数e ()1x mx f x x =+-是偶函数,则m =__________.【答案】2【解析】【分析】求出f(x)定义域,根据f(x)是偶函数,可取定义域内任意x ,根据f(-x)=f(x)即可求得m 的值.【详解】由e 10x -≠得e ()1x mx f x x =+-的定义域为{}|0x x ≠,则∵e ()1x mx f x x =+-是偶函数,故f(-1)=f(1),即111e 1e 1m m ---+=+--,解得m=2.此时()1(e )e 1e 21x x x x x f x x +=+=--,而()()e (1e 1)x x xf x f x ---+-==-,故()f x 确为偶函数,故m=2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合{}52A x x =-<.{}121B x x m =<<+.(1)若A B =∅ ,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.【答案】(1)1m ≤;(2)[)3,+∞.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论即可;(2)由题得A 是B 的真子集,根据集合间的基本关系求解即可.【小问1详解】{}{}{}5225237A x x x x x x =-<=-<-<=<<,当B =∅时,121m ≥+,解得0m ≤当B ≠∅时,由A B =∅ 得:0213m m >⎧⎨+≤⎩,解得01m <≤;综上,1m ≤;【小问2详解】由题得,A 是B 的真子集,所以31721m ≥⎧⎨≤+⎩,且等号不同时成立,解得3m ≥,所以实数m 的取值范围为[)3,+∞.16. 已知函数()21x b f x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.【小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.17. 已知函数()2109f x x x =-+.(1)求不等式()0f x >的解集;(2)若0x >,不等式()f x ax ≥恒成立,求a 的取值范围.【答案】(1){1x x <或}9x >;(2)(],4-∞-【解析】【分析】(1)直接解不等式21090x x -+>即可;(2)转化问题转化为()9100x a x x +-≥>恒成立,然后利用基本不等式求出910x x +-的最小值即可.【小问1详解】不等式()0f x >,即为21090x x -+>,则有()()190x x -->,解得1x <或9x >,所以不等式()0f x >的解集为{1x x <或}9x >.【小问2详解】不等式()()0f x ax x ≥>,即为2109x x ax -+≥,所以()9100x a x x +-≥>,只需910x x+-的最小值大于或等于a 即可,因为910104x x +-≥-=-,当且仅当9x x =即3x =时取等号.所以910x x+-的最小值为4-,所以4a ≤-,故a 的取值范围是(],4-∞-18. 若定义在R 上的奇函数()f x 满足()()2=f x f x -,当[]0,1x ∈时,()22f x x x =-.(1)求()2024f 值;(2)当[]3,4x ∈时,求函数()f x 的解析式.【答案】(1)0 (2)()268x x f x =-+-的【解析】【分析】(1)根据函数的奇偶性、周期性等知识求得正确答案.(2)根据函数解析式的求法求得正确答案.小问1详解】定义在R 上的奇函数()f x 满足()()2=f x f x -,()()f x f x ∴-=-,()()()2+==f x f x f x --,()()4f x f x ∴+=,即函数()f x 是以4为周期的周期函数()()()2024450600f f f ∴=⨯==.【小问2详解】当[]0,1x ∈时,()22f x x x =-,∴当[]1,0x ∈-时,[]0,1x -∈,()()()22()22f x f x x x x x ⎡⎤=--=----=--⎣⎦,又当[]3,4x ∈时,[]41,0x -∈-,()()()224(4)2468f x f x x x x x ∴=-=----=-+-.19. 已知()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=.(1)求()f x ,()g x ;(2)若方程2()[()]29mf x g x m =++有解,求实数m 的取值范围.【答案】(1)()()22,22x x x xf xg x --=+=- (2)10m ≥【解析】【分析】(1)根据函数的奇偶性列方程组来求得()(),f x g x .(2)利用分离常数法、构造函数法,结合基本不等式求得正确答案【小问1详解】依题意,()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=,所以11()()2()()2x x f x g x f x g x -+⎧-=⎨---=⎩,则11()()2()()2xx f x g x f x g x -+⎧-=⎨+=⎩,解得()()22,22x x x x f x g x --=+=-.【.【小问2详解】若方程2()[()]29mf x g x m =++有解,即()()2222229x x x xm m --+-=++有解,即()()222222722225x x x x x x m ---⎡⎤-=++=++⎣⎦+,对于方程()()2222522x x x x m --⎡⎤-=++⎣⎦+①,当0x =时,方程左边为0,右边为9,所以0x =不是①的解.当0x ≠时,令22x x t -=+,由于222x x -+>=,所以2t >,20t ->,则方程①可化()()()2222429525,22t t t t m t m t t -+-++-=+==--9244102t t =-++≥+=-,当且仅当92,52t t t -==-时等号成立,所以10m ≥.【点睛】方法点睛:对于奇函数,有()()f x f x -=-,对于偶函数,有()()f x f x -=.当题目所给条件中包括奇函数或偶函数时,首先应想到运用上述两个式子来对问题进行求解.求方程有解的问题,可以考虑利用分离参数法来进行求解.为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2016高二下·南城期中) 已知集合A={x|x2﹣3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()
A . (0,3)
B . (0,1)∪(1,3)
C . (0,1)
D . (﹣∞,1)∪(3,+∞)
2. (2分) (2018高一上·桂林期中) 已知,则()
A .
B .
C .
D .
3. (2分)(2017·南昌模拟) 若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()
A .
B . ﹣1
C . 1
D .
4. (2分) (2019高一下·上饶月考) 对函数的表述错误的是
A . 最小正周期为
B . 函数向左平移个单位可得到
C . 在区间上递增
D . 点是的一个对称中心
5. (2分) (2018高一上·宝坻月考) 已知函数在上单调递增,则()
A .
B .
C .
D .
6. (2分)若函数f(x)在x=x0处有定义,则“f(x)在x=x0处取得极值”是“f'(x0)=0”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
7. (2分) (2019高一下·淮安期末) 三条线段的长分别为5,6,8,则用这三条线段()
A . 能组成直角三角形
B . 能组成锐角三角形
C . 能组成钝角三角形
D . 不能组成三角形
8. (2分)已知,则f(1)+f(2)+…+f(2011)+f(2012)=()
A . 0
B .
C . 1
D . 2
9. (2分)(2018·河北模拟) 设,满足约束条件,则的取值范围为()
A .
B .
C .
D .
10. (2分) (2018高三上·永春期中) 设函数是奇函数的导函数,,当时,
则使得成立的的取值范围是
A .
B .
C .
D .
二、填空题 (共7题;共7分)
11. (1分) (2019高二上·龙潭期中) 已知椭圆的左、右焦点分别为,点在椭圆上,
当时,的面积为________.
12. (1分) (2018高一上·浙江期中) 已知是上的减函数,那么a的取值范围是________.
13. (1分) (2019高一下·中山月考) 函数的单调递增区间为________
14. (1分) (2019高一上·集宁月考) 已知函数,若关于的函数
有两个零点,则实数的取值范围是________.
15. (1分)(2019·厦门模拟) 已知函数,则关于的不等式的解集为________.
16. (1分) (2018高三上·镇海期中) 已知,且,则的最小值________,此时的值为________.
17. (1分) (2018高三上·定远期中) 如图,已知△ABC的外接圆的圆心为O ,两条边上的高的交点为H ,且,则实数m=________.
三、解答题 (共5题;共50分)
18. (10分) (2019高一下·郑州期末) 已知函数的部分图象如图
所示:
(I)求的解析式及对称中心坐标;
(Ⅱ)将的图象向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数在上的单调区间及最值.
19. (10分) (2019高一下·江门月考) 设向量,,为锐角.
(1)若,求的值.
(2)若,求的值;
(3)若,求的值.
20. (10分) (2017高一下·珠海期末) 已知,,是同一平面内的三个向量,其中 =(﹣,1).
(1)若| |=2 且∥ ,求的坐标;
(2)若| |= ,( +3 )⊥(﹣),求向量,的夹角的余弦值.
21. (10分) (2016高一上·饶阳期中) 已知函数.
(1)判断函数f(x)的奇偶性,并证明;
(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.
22. (10分) (2015高三上·荣昌期中) 设函数f(x)=ex(ax2﹣x﹣1)(a∈R).(1)若函数f(x)在R上单调递减,求a的取值范围
(2)当a>0时,求f(|sinx|)的最小值.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共7题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共5题;共50分)
18-1、
19-1、
19-2、
19-3、20-1、20-2、21-1、21-2、
22-1、22-2、。