2012高考重庆理科数学试题及答案(高清版)

合集下载

理数高考试题答案及解析-重庆

理数高考试题答案及解析-重庆

2012年普通高等学校招生全国统一考试(重庆卷)数学(理科)一.填空题:本大题共10小题,每小题5分,共计50分。

在每小题给出的四个备选选项中,只有一个是符合题目要求的( )1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = A.7 B.15 C.20 D.25 【解析】选B15242451,5551522a a a aa a S ++==⇒=⨯=⨯= 2.不等式0121≤+-x x 的解集为 【解析】选A(21)(1)01101210212x x x x x x +-≤⎧-≤⇔⇔-<≤⎨+≠+⎩A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,3.对任意的实数k ,直线y=kx+1与圆222=+y x 的位置关系一定是A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 【解析】选C 直线1y kx =+过圆内内一定点(0,1)4.8的展开式中常数项为A.1635 B.835 C.435 D.105 【解析】选B取得次数为1:1(4:4),展开式中常数项为448135()28C ⨯=5、设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为 (A )-3 (B )-1 (C )1 (D )3 【解析】选Atan tan tan tan 3,tan tan 2,tan()31tan tan αβαβαβαβαβ++==+==--6、设,x y ∈R ,向量()()()4,2,,1,1,-===y x ,且//,⊥_______=(A (B (C ) (D )10 【解析】选B2402,//(3,1)242x x a c b c a b y y -==⎧⎧⊥⇔⇔⇒+=-=⎨⎨=-=-⎩⎩7、已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件(C )必要而不充分的条件 (D )充要条件 【解析】选D由()f x 是定义在R 上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数,又2为周期, 所以【3,4】上的减函数8、设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是 (A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f 【解析】选D1x >时,()012,()02f x x f x x ''<⇔<<>⇔> 1x <时,()021,()02f x x f x x ''<⇔-<<>⇔<-得:()022,()02f x x f x x ''<⇔-<<>⇔<-或2x > 函数()f x 有极大值(2)f -和极小值(2)f9、设四面体的六条棱的长分别为1,1,1,1和a ,且长为a 的棱异面,则a 的取值范围是(A ) (B ) (C ) (D )(1 【解析】选Aa 的端点,B C;则AB AC a BC ==⇒=<10、设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π【解析】选D 由对称性:221,,(1)(1)1y x y x y x ≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等 得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积既2122R ππ⨯=二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上11、若()()12i i ++=a+bi ,其中,,a b R i ∈为虚数单位,则a b += ; 【解析】____4a b +=(1)(2)131,34i i i a bi a b a b ++=+=+⇔==⇒+=12、n = 。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

理数高考试题答案及解析-重庆.pdf

理数高考试题答案及解析-重庆.pdf

(A) 5
(B) 10
(C) 2 5
(D)10
【解析】选 B
r a

rr c,b /
r /c
2x − 4 = 0
2y
=
−4
x=2 y = −2
r a
r +b
=
(3, −1)
=
10
7、已知 f (x) 是定义在 R 上的偶函数,且以 2 为周期,则“ f (x) 为[0,1]上的增函数”是
“ f (x) 为[3,4]上的减函数”的
10
、设
平面


A
=
(x,
y)
(
y

x)(
y

1) x
0 ,
B
=
(x, y) (x −1)2 + ( y −1)2 1
,则
A I B 所表示的平面图形的面积为
(A) 3 4
(B) 3 5
(C) 4 7
(D) 2
【解析】选 D 由对称性:
y x, y 1 , (x −1)2 + ( y −1)2 1围成的面积与 y x, y 1 , (x −1)2 + ( y −1)2 1

【解析】 a + b = ____ 4
(1+ i)(2 + i) = 1+ 3i = a + bi a = 1,b = 3 a + b = 4
12、 lim
1
=

n→ n2 + 5n − n
【解析】 lim
1
= _____ 2
n→ n2 + 5n − n
5

2012年高考真题——理科数学(全国卷)含答案

2012年高考真题——理科数学(全国卷)含答案

x2 y2 (A) 1
16 12
x2 y2 (B) 1
12 8
x2 y2
x2 y2
(C) 1 (D) 1
84
12 4
(4)已知正四棱柱 ABCD A1B1C1D1 中 , AB 2 , CC1 2 2 , E 为 CC1 的中点,则直
线 AC1 与平面 BED 的距离为
(A) 2
(B) 3
(C) 2
(D)1
1
(5)已知等差数列 {an } 的前
n
项和为
Sn

a5

5

S5
15 ,则数列{ } 的前100 an an 1
项和

100
(A)
101
99
(B)
101
99
(C)
100
101
(D)
100




(6)ABC 中,AB 边的高为 CD ,若 CB a ,CA b ,a b 0 ,| a | 1,| b | 2 ,则 AD
(Ⅱ)设 f (x) 1 sin x ,求 a 的取值范围。
(21)(本小题满分 12 分)(注意:在.试.卷.上.作.答.无.效.)
已知抛物线 C : y (x 1)2 与圆 M : (x 1)2 ( y 1)2 r2 (r 0) 有一个公共点 A ,且 2
在点 A 处两曲线的切线为同一直线 l . (Ⅰ)求 r ; (Ⅱ)设 m 、 n 是异于 l 且与 C 及 M 都相切的两条直线,m 、 n 的交点为 D ,求 D 到 l 的距
离。
(22)(本小题满分 12 分)(注意:在.试.卷.上.作.答.无.效.)

(完整版)2012年重庆市高考数学试卷(理科)答案与解析

(完整版)2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的1.(5分)(2012•重庆)在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7B.15 C.20 D.25考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质,可得a2+a4=a1+a5=6,再利用等差数列的求和公式,即可得到结论.解答:解:∵等差数列{a n}中,a2=1,a4=5,∴a2+a4=a1+a5=6,∴S5=(a1+a5)=故选B.点评:本题考查等差数列的性质,考查等差数列的求和公式,熟练运用性质是关键.2.(5分)(2012•重庆)不等式≤0的解集为()A.B.C.D.考点:其他不等式的解法.专题:计算题.分析:由不等式可得,由此解得不等式的解集.解答:解:由不等式可得,解得﹣<x≤1,故不等式的解集为,故选A.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.3.(5分)(2012•重庆)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.(5分)(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1D.3考点:两角和与差的正切函数;根与系数的关系.专题:计算题.分析:由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.解答:解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选A点评:此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:函数的性质及应用;简易逻辑.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:∵f(x)是定义在R上的偶函数,∴若f(x)为[0,1]上的增函数,则f(x)为[﹣1,0]上是减函数,又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[﹣1,0]相差两个周期,∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D.点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)考点:函数在某点取得极值的条件;函数的图象.专题:计算题.分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.解答:解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选D.点评:本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)考点:异面直线的判定;棱锥的结构特征.专题:计算题;压轴题.分析:先在三角形BCD中求出a的范围,再在三角形AED中求出a的范围,二者相结合即可得到答案.解答:解:设四面体的底面是BCD,BC=a,BD=CD=1,顶点为A,AD=在三角形BCD中,因为两边之和大于第三边可得:0<a<2 (1)取BC中点E,∵E是中点,直角三角形ACE全等于直角DCE,所以在三角形AED中,AE=ED=∵两边之和大于第三边∴<2得0<a<(负值0值舍)(2)由(1)(2)得0<a<.故选:A.点评:本题主要考察三角形三边关系以及异面直线的位置.解决本题的关键在于利用三角形两边之和大于第三边这一结论.10.(5分)(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.考点:二元一次不等式(组)与平面区域;交集及其运算.专题:计算题;压轴题.分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可解答:解:∵⇔或其表示的平面区域如图,(x﹣1)2+(y﹣1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,由于圆和y=均关于y=x对称,故阴影部分面积为圆的面积的一半,即故选:D.点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由条件可得a+bi=1+3i,根据两个复数相等的充要条件求出a和b的值,即可求得a+b 的值.解答:解:∵(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,∴a+bi=1+3i,∴a=1,b=3,∴a+b=1+3=4,故答案为4.点评:本题主要考查两个复数代数形式的乘除法,两个复数相等的充要条件,属于基础题.12.(5分)(2012•重庆)=.考点:极限及其运算.专题:计算题.分析:把要求的式子化为,即,再利用极限及其运算法则求得所求式子的值.解答:解:由于====,故答案为:.点评:本题主要考查极限及其运算法则的应用,把要求的式子化为,是解题的关键,属于基础题.13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.考点:余弦定理;正弦定理.专题:计算题.分析:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c 的值.解答:解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:点评:此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.解答:解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:点评:解决此类问题的关键是熟练掌握抛物线的定义,以及掌握直线与抛物线位置关系,并且结合准确的运算也是解决此类问题的一个重要方面15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).考点:等可能事件的概率.专题:概率与统计.分析:三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为,若两个空中只插入1节艺术课,则排法种数为•(•)•=216,三门文化课中相邻排列,则排法种数为=144,而所有的排法共有=720种,由此求得所求事件的概率.解答:解:把语文、数学、外语三门文化课排列,有种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为=72,②若两个空中只插入1节艺术课,则排法种数为•(•)•=216,③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为为一个整体,然后和三门艺术课进行排列,则排法种数为=144,而所有的排法共有=720种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=,故答案为.点评:本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(Ⅱ)由(Ⅰ)知,(x>0),=,确定函数的单调性,即可求得函数f(x)的极值.解答:解:(Ⅰ)求导函数可得∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.∴f′(1)=0,∴,∴a=﹣1;(Ⅱ)由(Ⅰ)知,(x>0)=令f′(x)=0,可得x=1或x=(舍去)∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增∴x=1时,函数f(x)取得极小值为3.点评:本题考查导数知识的运用,考查导数的几何意义,函数的单调性与极值,正确求导是关键.17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P(),利用互斥事件的概率公式即可求解;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3,求出相应的概率,即可得到ξ的分布列与期望.解答:解:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=×+=;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3P(ξ=1)=P(A1)+P()=P(ξ=2)=P()+P()== P((ξ=3)=P()==ξ的分布列为ξ 1 2 3P期望Eξ=1×+2×+3×=.点评:本题考查互斥事件概率的求解,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,理解变量取值的含义,属于中档题.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域;正弦函数的单调性.专题:计算题;转化思想.分析:(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域;(II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值.解答:解:f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π)=4(cosωx+sinωx)sinωx+cos2ωx=2cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx=sin2ωx+1,∵﹣1≤sin2ωx≤1,所以函数y=f(x)的值域是[](II)因y=sinx在每个区间[],k∈z上为增函数,令,又ω>0,所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数又有题设f(x)在区间上为增函数所以⊆[,],对某个k∈z成立,于是有.解得ω≤,故ω的最大值是.点评:本题考查三角恒等变换的运用及三角函数值域的求法,解题的关键是对所给的函数式进行化简,熟练掌握复合三角函数单调性的求法,本题考查了转化的思想,计算能力,属于中等难度的题19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题;点、线、面间的距离计算.专题:综合题;转化思想.分析:(I)由题意,由于可证得CD⊥平面A1ABB1.故点C到平面的距离即为CD的长度,易求;(II)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y 轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.解答:解:(I)由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.故CD⊥平面A1ABB1.所以点C到平面A1ABB1的距离为CD==(II)解法一:如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB 互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,从而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),从而=(4,0,h),=(2,,﹣h)由AB1⊥A1C,可得8﹣h2=0,h=2,故=(﹣2,0,2),=(0,0,2),=(0,,0)设平面A1CD的法向量为=(x1,y1,z1),则有⊥,⊥∴•=0且•=0,即,取z1=1,则=(,0,1)设平面C1CD的法向量为=(x2,y2,z2),则⊥,⊥,即且=0,取x 2=1,得=(1,0,0),所以cos<,>===,所以二面角A1﹣CD﹣C1的平面角的余弦值点评:本题考查二面角的求法及点到面距离的求法,点到面的求法一般是作垂线,垂线段的长度即所求,二面角的余弦值的求法有两种,一种是几何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二种方法是现在比较常用的方法向量法,其特征是思维量小,计算量大,作题时对这两种方法要根据题设灵活选用20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程.解答:解:(Ⅰ)设椭圆的方程为,F2(c,0)∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16=0①设P(x1,y1),Q(x2,y2),∴,∵,∴=∵PB2⊥QB2,∴∴,∴m=±2所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形的面积计算,综合性强.21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.考点:数列与不等式的综合;等比数列的前n项和;等比关系的确定;数列与函数的综合.专题:综合题;压轴题.分析:(Ⅰ)根据S n+1=a2S n+a1,再写一式,两式相减,即可证得{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立,设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为(n≥3),即证(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论.解答:证明:(Ⅰ)∵S n+1=a2S n+a1,①∴S n+2=a2S n+1+a1,②②﹣①可得:a n+2=a2a n+1∵a2≠0,∴∵S n+1=a2S n+a1,∴S2=a2S1+a1,∴a2=a2a1∵a2≠0,∴a1=1∴{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立设n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1,,所以要证的不等式可化为(n≥3)即证(n≥2)a2=1时,等号成立当﹣1<a2<1时,与同为负;当a2>1时,与同为正;∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1.点评:本题考查等比数列的证明,考查不等式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.。

2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的(2.(5分)(2012•重庆)不等式≤0的解集为()....由不等式可得,解得﹣的解集为224.(5分)(2012•重庆)的展开式中常数项为()B的展开式通项公式中,令的展开式通项公式为=0=5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为==6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()B,以及|=,==)且⊥,∥,则有,故|=7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的,,,AE=ED=.10.(5分)(2012•重庆)设平面点集B∵或y=故阴影部分面积为圆的面积的一半,即二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.12.(5分)(2012•重庆)=.把要求的式子化为,即,再利用极限及其运算法===,故答案为:.把要求的式子化为13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.cosA=,cosB==,sinB===sinAcosB+cosAsinB=×+×==得:==故答案为:14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.,+x|BF|=,所以)x+|AF|==故答案为:15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).节艺术课,则排法种数为()=216三门文化课中相邻排列,则排法种数为=720解:把语文、数学、外语三门文化课排列,有••=144而所有的排法共有=三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.由(Ⅰ)知,(,确定函数的单调性,即可求得函,∴由(Ⅰ)知,(17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.=(((=(((×+;()(=(=×+2×+3×=.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.)在区间﹣cos sin[][所以,解不等式得=[)在区间上为增函数⊆[.解得,故的最大值是19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.CD===2D==2,,从而,,h=2=,=2,的法向量为,则有⊥,⊥••,即,取=,的法向量为,则⊥,⊥,即=0=<,>=,20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.,为直角,从而|B||OA|=(Ⅰ)设椭圆的方程为,∴S=∴椭圆标准方程为;=,∴21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.时,等号成立,设(,∴等号成立,,所以要证的不等式可化为(时,时,与(即,等号成立的充要条件是。

2012年高考真题——数学理(重庆卷)word版含答案

2012年高考真题——数学理(重庆卷)word版含答案

2012年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(文史类)共4页。

满分150分。

考试时间120分钟注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2、答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3、答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4、所有题目必须在答题卡上作答,在试题卷上答题无效。

5、考试结束后,将试题卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个备选选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,21a =,45a =,则{}n a 的前5项和5S = (A )7 (B )15 (C )20 (D )25 (2)不等式0121≤+-x x 的解集为 (A )1(,1]2-(B )1[,1]2- (C )1(,)[1,)2-∞-+∞ (D )1(,][1,)2-∞-+∞ (3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是 (A )相离 (B )相切(C )相交但直线不过圆心 (D )相交且直线过圆心(4)8的展开式中常数项为(A )1635 (B )835 (C )435 (D )105 (5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值为 (A )3- (B )1- (C )1 (D )3(6)设,x y R ∈,向量(,1)a x =,(1,)b y =,(2,4)c =-,且a c ⊥,//b c ,则||a b +=(A (B (C ) (D )10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )充要条件 (8)设函数()f x 在R 上可导,其导函数为'()f x ,且函数(1)'()y x f x =-的图象如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1a ,且长为a 则a 的取值范围是(A ) (B ) (C ) (D )(10)设平面点集1{(,)|()()0}A x y y x y x=--≥,22{(,)|(1)(1)1}B x y x y =-+-≤,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上 (11)若(1)(2)i i a bi ++=+,其中,,a b R i ∈为虚数单位,则a b += (12)n = 。

2012高考试题—数学理(重庆卷)word版含答案

2012高考试题—数学理(重庆卷)word版含答案

2012年普通高等学校招生全国统一考试(重庆卷)数学一.填空题:本大题共10小题,每小题5分,共计50分。

在每小题给出的四个备选选项中,只有一个是符合题目要求的1.在等差数列}{n a 中,52=a 则}{n a 的前5项和5S =A.7B.15C.20D.252.不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 3.对任意的实数k ,直线y=kx+1与圆 的位置关系一定是A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 4.321⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为 A.1635 B.835 C.435 D.105(5)设tan ,tan αβ是议程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3(6)设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且,a c b c ⊥,则a b +=(A (B (C ) (D )10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件(C )必要而不充分的条件 (D )充要条件(8)设函数()f x 在R 上可导,其导函数为,()f x ,且函数,(1)()y x f x =-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f(C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1和a ,且长为a的棱异面,则a 的取值范围是(A) (B) (C) (D)(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上(11)若1+i 2+i ()()=a+bi ,其中,,a b R i ∈为虚数单位,则a b += ;(12)0= 。

2012高考理科数学(全国卷)及答案(高清版)

2012高考理科数学(全国卷)及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1.复数13i 1i-+=+( )A .2+iB .2-iC .1+2iD .1-2i2.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =( )A .0或 B .0或3 C .1D .1或33.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A .2211612x y += B .221128x y += C .22184xy+= D .221124xy+=4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,1CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 BCD .15.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{11n n a a +}的前100项和为( )A .100101 B .99101 C .99100 D .1011006.△ABC 中,AB 边的高为CD .若C B =a ,C A =b ,a ·b =0,|a |=1,|b |=2,则AD=( )A .1133-a bB .2233-a bC .3355-a b D .4455-a b7.已知α为第二象限角,sin α+cos α3,则cos2α=( )A.3-B.9-C9D38.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A .14B .35C .34D .459.已知x =ln π,y =log 52,12=e z -,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=()A.-2或2 B.-9或3 C.-1或1 D.-3或111.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=37.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16 B.14 C.12 D.10第Ⅱ卷第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x,y满足约束条件10,30,330,x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.14.)当函数y=sin xx(0≤x<2π)取得最大值时,x=__________.15.若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__________.16.三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cos B=1,a=2c,求C.18.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.21.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m ,n 是异于l 且与C 及M 都相切的两条直线,m ,n 的交点为D ,求D 到l 的距离.22.函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.1. C213i (13i)(1i)1+i+3i 3i24i 12i 1i(1i)(1i)22-+-+---+====+++-.2. B ∵A ={1,3},B ={1,m },A ∪B =A , ∴m =3或m =∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符,故选B 项. 3. C ∵焦距为4,即2c =4,∴c =2. 又∵准线x =-4,∴24ac-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184xy+=,故选C 项. 4. D 连结AC 交BD 于点O ,连结OE ,∵AB =2,∴AC =.又1CC =AC =CC 1.作CH ⊥AC 1于点H ,交OE 于点M . 由OE 为△ACC 1的中位线知, CM ⊥OE ,M 为C H 的中点.由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD .∴CM ⊥面BDE .∴HM 为直线AC 1到平面BDE 的距离.又△AC C 1为等腰直角三角形,∴CH =2.∴HM =1. 5. A 15155()5(5)1522a a a S ++===,∴a 1=1.∴515115151a a d --===--.∴a n =1+(n -1)×1=n .∴111(1)n n a a n n +=+.设11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为T n ,则100111 1223100101T=+++⨯⨯⨯…=11111 1223100101 -+-++-…=1100 1101101 -=.6.D∵a·b=0,∴a⊥b. 又∵|a|=1,|b|=2,∴||AB=∴12||5C D⨯==.∴||5AD==.∴4444()5555AD AB AB===-=-a b a b.7.A∵sinα+cosα=3,且α为第二象限角,∴α∈(2kπ+π2,2kπ+3π4)(k∈Z).∴2α∈(4kπ+π,4kπ+3π2)(k∈Z).由(sinα+cosα)2=1+sin2α=13,∴2sin23α-=.∴cos23α==-.9.D∵x=ln π>1,y=log52>51log2=,121e2z-==>=,且12e-<e0=1,∴y<z<x.10.A y′=3x-3=3(x+1)(x-1).当y′>0时,x<-1或x>1;当y′<0时,-1<x<1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1).∴x=-1时,取得极大值;x=1时,取得极小值.要使函数图象与x轴恰有两个公共点,只需:f(-1)=0或f(1)=0,即(-1)3-3×(-1)+c=0或13-3×1+c=0,∴c=-2或c=2.11. A如图,由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.12. B 结合已知中的点E ,F 的位置,由反射与对称的关系,可将点P 的运动路线展开成直线,如图.当点P 碰到E 时,m 为偶数,且333477m n =+-,即4m =3n .故m 的最小值为6,n =8,线段PE 与网格线交点的个数为(除E 点外)6+8=14个. (PE 的方程为39428y x =-,即4y =3x -97,x ,y 不能同时为整数,所以PE 不过网格交点)13.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 14.答案:5π6解析:y =sin xcos x=1π2(sin )2sin()223x x x -=-.当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =.15.答案:56解析:∵26C C n n =,∴n =8.T r +1=8C rx 8-r (1x)r =8C rx 8-2r ,令8-2r =-2,解得r =5.∴系数为58C 56=.16.答案:6解析:取BC 的中点O ,连结AO ,A 1O ,BA 1,CA 1,易证BC ⊥AO ,BC ⊥A 1O ,从而BC ⊥AA 1,又BB 1∥AA 1,BB 1⊥BC .延长CB 至D ,使BD =BC ,连结B 1D ,则B 1D ∥BC 1,设BC =1,则1B D =,1AB AD ===.6=17.解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C ,由已知得sin A sin C =12.①由a =2c 及正弦定理得sin A =2sin C .② 由①②得21sin 4C =,于是1sin 2C -=(舍去)或1sin 2C =.又a =2c ,所以π6C =.18.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又PA ⊥底面ABCD , 所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =PA =2,PE =2EC ,故PC =3EC =,FC =从而P C F C =A C E C=因为P C A C F CE C=,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,P D ==. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 设PD 与平面PBC 所成的角为α,则1sin 2d P Dα==.所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (0,0),D ,b,0),其中b >0,则P (0,0,2),E (3,0,23),B b,0).于是PC =(,0,-2),BE =(3,b ,23),D E =(3,-b ,23),从而0PC BE ⋅= ,0PC DE ⋅=,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB=b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB =0,即2z =0-by =0,令x =b ,则m =(b 0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b=-,n =(1,b-).因为面PAB ⊥面PBC ,故m·n =0,即20b b-=,故b =,于是n =(1,-1,DP=(2),1cos ,2||||D P D P D P ⋅== n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352. (2)(理)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3. P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A )=P (A 0)P (A )=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.096=0.408.Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096=1.400.20.解:(1)f ′(x )=a -sin x .①当a ≥1时,f ′(x )≥0,且仅当a =1,π2x =时,f ′(x )=0,所以f (x )在[0,π]是增函数;②当a ≤0时,f ′(x )≤0,且仅当a =0,x =0或x =π时,f ′(x )=0,所以f (x )在[0,π]是减函数;③当0<a <1时,由f ′(x )=0,解得x 1=arcsin a ,x 2=π-arcsin a . 当x ∈[0,x 1)时,sin x <a ,f ′(x )>0,f (x )是增函数; 当x ∈(x 1,x 2)时,sin x >a ,f ′(x )<0,f (x )是减函数; 当x ∈(x 2,π]时,sin x <a ,f ′(x )>0,f (x )是增函数. (2)由f (x )≤1+sin x ,得f (π)≤1,a π-1≤1, 所以2πa ≤.令g (x )=sin x -2πx (0≤x ≤π2),则g ′(x )=cos x -2π.当x ∈(0,arccos 2π)时,g ′(x )>0, 当x ∈(arccos 2π,π2)时,g ′(x )<0.又g (0)=g (π2)=0,所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2).当a ≤2π时,有f (x )≤2πx +cos x .①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1,所以f (x )≤1+sin x ; ②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x .综上,a 的取值范围是(-∞,2π].21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1,即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |2=,即2r =.(2)设(t ,(t +1))为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M2,2=,化简得t (t -4t -6)=0,解得t 0=0,12t =+,22t =-抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==.将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离5d ==.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为(2)55(4)24f y x --=--, 令y =0,解得2114x =,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为11()55(4)4k k f x y x x ++--=--,令y =0,解得121342k k k x x x ++++=+,由归纳假设知121134554432223k k k k x x x x +++++==-<-=+++;x k +2-x k +1=111(3)(1)02k k k x x x +++-+>+,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得1342n n n x x x ++=+.设b n =x n -3,则1151n nb b +=+,111115()44n nb b ++=+,数列{114nb +}是首项为34-,公比为5的等比数列.因此1113544n nb -+=-⋅,即14351n n b -=-⋅+, 所以数列{x n }的通项公式为143351n n x --⋅+=.。

2012年普通高等学校招生全国统一考试 理数(重庆卷)解析版

2012年普通高等学校招生全国统一考试 理数(重庆卷)解析版

试卷总评2012年高考重庆卷数学文理科的特点是"稳中有降、梯度合理、试题亲切、背景公平"。

稳中有降:1、整份试题继承了去年试题的框架结构,全面考查了《考试大纲》各部分的内容,函数、三角函数、不等式、数列、圆锥曲线等仍是稳定的主干考点;2、客观题(选择、填空)的压轴题都较往年降低了难度,连接解答题的难度也略低于往年,试题面向全体考生,体现了向新课改主干知识平稳过渡。

梯度合理:整份试题层次分明,问题设置科学、合理,对数学基础、数学水平、数学能力不同的学生有着较好的区分度,部分试题设计巧妙,能考察学生综合分析以及继续学习的潜能,不仅有利于优秀学生的发挥,也有利于数学中等生取得满意的成绩。

试题亲切:全卷试题表述清晰、富有数学美感,考生审题无文字障碍;淡化特殊技巧,回归常态,运算量适中;试题紧扣教材,对高中主干知识考察的明晰且突出,经典数学问题的重构与改编所考察的数学思想与方法体现出了命题者的匠心独用。

背景公平:全卷无偏、难、怪、繁的试题,体现数学应用意识的一些题目选材自然、具有生活体验,如学生轮流投篮胜负的探讨、学校课表安排等题目,这些题目对城乡学生的审题、分析以至于解题过程均体现出公平的认知背景,同时也较好地体现了新课改中数学文化的渗透。

值得一提的是,命题者注重文理科差异,命题具有针对性。

(21道试题中有9道是同源题目,其他均采用了不同的试题,考察体现了文理科学生的数学学习能力差异)总之,整份试题应该说是一份对如何考查双基内容作出了完美的诠释的试题,不仅是一份有利于高校选拔人才的试卷,更对高中数学课堂教学改革起到了风向标的引领作用。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S = (A )7 (B )15 (C )20 (D )25 【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答. (2)不等式1021x x -≤+的解集为 (A )1,12⎛⎤-⎥⎝⎦(B ) 1,12⎡⎤-⎢⎥⎣⎦ (C ) [)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭ (D )[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是 (A )相离 (B )相切 (C )相交但直线不过圆心 (D )相交且直线过圆心(4)8的展开式中常数项为(A )3516 (B )358 (C )354(D )105 【答案】B【解析】:8821881()2r rr r r r r T C C --+== 令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项 (5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A )-3 (B )-1 (C )1 (D )3 【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值. (6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===-,且,//a c b c ⊥,则||a b +=(A (B (C ) (D )10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0] 减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,和a ,且长为a 的棱异面,则a的取值范围是(A ) (B )(C ) (D ) 【答案】:A【解析】:BE ==BF BE <,2AB BF =<, 【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题. (10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=11255n n +====【考点定位】本题考查极限的求法和应用,n -都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c = 【答案】:c =145【解析】:由35cos ,cos ,513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145 【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值. (14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答). 【答案】:35【解析】:语文、数学、外语三门文化课间隔1节艺术课排列有3334A A 种排法,语文、数学、外语三门文化课相邻有4343A A 种排法,语文、数学、外语三门文化课两门相邻有2211332223C A C C A 种排法,故所有的排法种数有33342A A +2211332223C A C C A ,在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为3322113343222366235A A C A C C A p A +== 【考点定位】本题在计数时根据具体情况选用了插空法,做题时要注意体会这些方法的原理及其实际意义.三、解答题:本大题共6小题,共75分。

全国高考理科数学试题及答案重庆卷

全国高考理科数学试题及答案重庆卷

2012年普通高等学校招生全国统一考试(重庆卷)数学一.填空题:本大题共10小题,每小题5分,共计50分。

在每小题给出的四个备选选项中,只有一个是符合题目要求的1.在等差数列}{n a 中,52=a 则}{n a 的前5项和5S =A.7B.15C.20D.252.不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 3.对任意的实数k ,直线y=kx+1与圆 的位置关系一定是A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 2.321⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为 A.1635 B.835 C.435 D.105(5)设tan ,tan αβ是议程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3(6)设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且,a c b c ⊥,则a b +=(A (B (C ) (D )10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件(C )必要而不充分的条件 (D )充要条件(8)设函数()f x 在R 上可导,其导函数为,()f x ,且函数,(1)()y x f x =-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f(C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1和a ,且长为a的棱异面,则a 的取值范围是(A) (B) (C) (D)(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上(11)若1+i 2+i ()()=a+bi ,其中,,a b R i ∈为虚数单位,则a b += ;(12)0= 。

2012年高考数学理科试题(含答案)

2012年高考数学理科试题(含答案)

2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,AB A =,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - (7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1 (11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012高考(新课标)理科数学试题及答案(高清版)

2012高考(新课标)理科数学试题及答案(高清版)

2012年普通高等学校招生全国统一考试数学理工农医类(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.下面是关于复数21iz=-+的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为-1,其中的真命题为()A.p2,p3B.p1,p2C.p2,p4D.p3,p44.设F1,F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.12B.23C.34D.455.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7 B.5 C.-5 D.-76.如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A.A+B为a1,a2,…,a N的和B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B两点,||A B =C 的实轴长为( )A .B .C .4D .89.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .1524⎡⎤⎢⎥⎣⎦,B .1324⎡⎤⎢⎥⎣⎦, C .(0,12] D .(0,2] 10.已知函数1()ln (1)f x x x=+-,则y =f (x )的图像大致为( )11.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A .6B .6C 3D 212.设点P 在曲线1e 2xy =上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( )A .1-ln2B .(1-ln2)C .1+ln2D (1+ln2)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b 夹角为45°,且|a |=1,|2a -b ||b |=__________. 14.设x ,y 满足约束条件1300,x y x y x y ≥⎧⎪≤⎪⎨≥⎪⎪≥⎩--,+,,,则z =x -2y 的取值范围为__________.15.(某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.16.列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos Csin C -b -c =0.(1)求A ; (2)若a =2,△ABCb ,c .18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.20.设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.(1)求f (x )的解析式及单调区间; (2)若f (x )≥12x 2+ax +b ,求(a +1)b 的最大值.22.选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ;(2)△BCD ∽△GBD .23.选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 24.选修4—5:不等式选讲 已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.1.D 由x ∈A ,y ∈A 得x -y ∈A ,则(x ,y )可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B 中所含元素的个数为10个.2. A 将4名学生均分为2个小组共有224222C C 3A=种分法,将2个小组的同学分给两名教师带有22A 2=种分法, 最后将2个小组的人员分配到甲、乙两地有22A 2=种分法,故不同的安排方案共有3×2×2=12种.3.C 2(1i)1i (1i)(1i)z --==---+--,故||z =p 1错误;z 2=(-1-i)2=(1+i)2=2i ,p 2正确;z 的共轭复数为-1+i ,p 3错误;p 4正确.4.C 设直线32a x =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,232a F M c =-,故22312cos6022a c F M P F c-︒===,解得34c a =,故离心率34e =.5.D ∵{a n }为等比数列, ∴a 5a 6=a 4a 7=-8,联立474728a a a a +=⎧⎨=-⎩,可解得4742a a =⎧⎨=-⎩或472,4,a a =-⎧⎨=⎩当4742a a =⎧⎨=-⎩时,312q =-,故a 1+a 10=43a q +a 7q 3=-7; 当4724a a =-⎧⎨=⎩时,q 3=-2,同理,有a 1+a 10=-7. 6.C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数.7.B 由三视图可推知,几何体的直观图如下图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为11(63)3932⨯⨯⨯⨯=.8. C 设双曲线的方程为22221x y aa-=,抛物线的准线为x =-4,且||A B =可得A (-4,,B (-4,-,将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.9. A 结合y =sin ωx 的图像可知y =sin ωx 在π3π22ωω⎡⎤⎢⎥⎣⎦,上单调递减,而y =sin(ωx +π4)=sin[ω(x +π4ω)],故由y =sin ωx 的图像向左平移π4ω个单位之后可得y =sin(ωx +π4)的图像,故y =sin(ωx +π4)在π5π44ωω⎡⎤⎢⎥⎣⎦,上单调递减,故应有(π2,π)π5π44ωω⎡⎤⎢⎥⎣⎦,,解得1524ω≤≤.10. B 当x =1时,10ln21y =<-,排除A 项;当x =0时,y 不存在,排除D 项;[]211()ln (1)ln (1)xx f'x 'x x x x ⎡⎤+==⎢⎥+-+-⎣⎦,因定义中要求x >-1,故当-1<x <0时,f ′(x )<0,故y =f (x )在(-1,0)上单调递减,故选B 项.11. A ∵SC 是球O 的直径, ∴∠CAS =∠CBS =90°.∵BA =BC =AB =1,SO =2,∴AS =BS 取AB 的中点D ,显然AB ⊥CD ,AB ⊥CS , ∴AB ⊥平面CDS .在△CDS 中,2C D =,2D S =,SC =2,利用余弦定理可得222cos2C D SD SCC D S C D SD+-∠==-⋅故sinC D S ∠=,∴12222C D S S ∆=⨯=,∴V =V B -CDS +V A -CDS =13·S △CDS ·BD +13S △CDS ·AD =13S △CDS ·BA =11326⨯=.12.B 由题意知函数1e 2xy =与y =ln(2x )互为反函数,其图像关于直线y =x 对称,两曲线上点之间的最小距离就是y =x 与1e 2xy =最小距离的2倍,设1e 2xy =上点(x 0,y 0)处的切线与y =x 平行,有01e12x =,x 0=ln2,y 0=1,∴y =x 与1e 2xy =的最小距离是2(1-ln2),∴|PQ |的最小值为2(1-ln2)×2=-ln2).13.答案:解析:∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos45°2|b |,|2a -b |2=4-4×2|b |+|b |2=10,∴=b14.答案:[-3,3]解析:作出不等式组的可行域,如图阴影部分,作直线l 0:x -2y =0,在可行域内平移知过点A 时,z =x -2y 取得最大值,过点B 时,z =x -2y 取最小值.由10,30,x y x y -+=⎧⎨+-=⎩得B 点坐标为(1,2), 由0,30,y x y =⎧⎨+-=⎩得A 点坐标为(3,0).∴z max =3-2×0=3,z min =1-2×2=-3. ∴z ∈[-3,3]. 15.答案:38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为()A B AB AB C ++. ∴该部件的使用寿命超过1 000小时的概率为11111113()22222228p ⨯+⨯+⨯⨯==.16.答案:1 830解析:∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.17.解:(1)由a cos C a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0. 因为B =π-A -C ,A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=.又0<A <π,故π3A =.(2)△ABC 的面积1sin 2S bc A ==,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80. 所以y 关于n 的函数解析式为1080<16()8016n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76.X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17,那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小. 另外,虽然EX <EY ,但两者相差不大. 故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17,那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.19.解:(1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1.又112A C A A =,可得DC 12+DC 2=CC 12,所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . BC 平面BCD ,故DC 1⊥BC . (2)由(1)知BC ⊥DC 1,且BC ⊥CC 1, 则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,C A 的方向为x 轴的正方向,C A为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2). 则1(0,01)A D = ,-,(11,1)B D =,-,1(1,0,1)DC = -. 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则10,0,B D A D ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y z z ⎧⎨⎩-+=,=, 可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,10,0.B D DC ⎧⋅=⎪⎨⋅=⎪⎩ m m 可取m =(1,2,1).cos ,2⋅==n m n m n m故二面角A 1-BD -C 1的大小为30°20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F的半径||F A =.由抛物线定义可知A 到l的距离=||d FA =.因为△ABD的面积为,所以1||2B D d ⋅=,即122p ⋅=解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |,所以∠ABD =30°,m3或3-.当m3时,由已知可设n :y3x +b ,代入x 2=2py ,得x 23-2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-.因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.解:(1)由已知得f ′(x )=f ′(1)e x -1-f (0)+x .所以f′(1)=f′(1)-f(0)+1,即f(0)=1. 又f(0)=f′(1)e-1,所以f′(1)=e.从而f(x)=e x-x+12x2.由于f′(x)=e x-1+x,故当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.从而,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由已知条件得e x-(a+1)x≥b.①(ⅰ)若a+1<0,则对任意常数b,当x<0,且11bxa-<+时,可得e x-(a+1)x<b,因此①式不成立.(ⅱ)若a+1=0,则(a+1)b=0.(ⅲ)若a+1>0,设g(x)=e x-(a+1)x,则g′(x)=e x-(a+1).当x∈(-∞,ln(a+1))时,g′(x)<0;当x∈(ln(a+1),+∞)时,g′(x)>0.从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.故g(x)有最小值g(ln(a+1))=a+1-(a+1)ln(a+1).所以f(x)≥12x2+ax+b等价于b≤a+1-(a+1)ln(a+1).②因此(a+1)b≤(a+1)2-(a+1)2ln(a+1).设h(a)=(a+1)2-(a+1)2ln(a+1),则h′(a)=(a+1)(1-2ln(a+1)).所以h(a)在(-1,12e1-)上单调递增,在(12e1-,+∞)上单调递减,故h(a)在12=e1a-处取得最大值.从而e()2h a≤,即(a+1)b≤e2.当12=e1a-,12e2b=时,②式成立,故f(x)≥12x2+ax+b.综合得,(a+1)b的最大值为e 2 .22.证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1,B(1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].24.解:(1)当a=-3时,25,2, ()1,23,25, 3.x xf x xx x-+≤⎧⎪=<<⎨⎪-≥⎩当x≤2时,由f(x)≥3,得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3,得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1}∪{x|x≥4}.(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|4-x-(2-x)≥|x+a|-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0. 故满足条件的a的取值范围为[-3,0].。

2012高考全国卷理科数学(附答案)

2012高考全国卷理科数学(附答案)

2012高考全国卷理科数学(附答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试..题卷上作答无效.......。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)本试卷满分150分.考试时间120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7 B.15 C.20 D.25A.若q则p B.若p则qC.若q则p D.若p则q2.不等式121xx-≤+的解集为()A.(12-,1] B.[12-,1]C.(-∞,12-)∪[1,+∞) D.(-∞,12-]∪[1,+∞)3.对任意的实数k,直线y=kx+1与圆x2+y2=2 的位置关系一定是() A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心4.8的展开式中常数项为()A.3516B.358C.354D.1055.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A.-3 B.-1 C.1 D.36.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=()A B C.D.107.已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件8.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)9.设四面体的六条棱的长分别为1,1,1,1a,且长为a则a的取值范围是()A.(0B.(0C.(1D.(110.设平面点集A={(x,y)|(y-x)(y-1x)≥0},B={(x,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为()A.3π4B.3π5C.4π7D.π2二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.若(1+i)(2+i)=a+b i,其中a,b∈R,i为虚数单位,则a+b=__________.12.n=__________.13.设△ABC的内角A,B,C的对边分别为a,b,c,且3cos5A=,5cos13B=,b=3,则c=__________.14.过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=2512,|AF|<|BF|,则|AF|=__________.15.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为__________(用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.设f(x)=a ln x+1322xx++1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.17.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.18.设f(x)=4cos(ωx-π6)sinωx-cos(2ωx+π),其中ω>0.(1)求函数y=f(x)的值域;(2)若f(x)在区间[3π2-,π2]上为增函数,求ω的最大值.19.如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1)求点C 到平面A 1ABB 1的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -C 1的平面角的余弦值.20.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 21.设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0, (1)求证:{a n }是首项为1的等比数列; (2)若a 2>-1,求证:S n ≤2n(a 1+a n ),并给出等号成立的充要条件.1. B 152455()5()5(15)15222a a a a S +++====. 2. A 不等式可化为(1)(21)0,210,x x x -+≤⎧⎨+≠⎩解不等式组得12-<x ≤1,故选A 项.3. C 直线y =kx +1过定点(0,1),而02+12<2,所以点(0,1)在圆x 2+y 2=2内部,直线y =kx +1与圆x 2+y 2=2相交且直线不经过圆心,故选C 项.4.)B 二项式8的通项为8282188C 2C rr rr rr r T x----+⋅=,令8202r -=得r =4,所以二项展开式的常数项为T 5=2-448C =358,故选B 项. 5. A 因为tan α,tan β是方程x 2-3x +2=0的两根,所以tan α+tan β=3,tan α·tan β=2,而tan +tan 3tan(+)31tan tan 12αβαβαβ===-⋅-,故选A 项.6. B 由a ⊥c ,得a ·c =2x -4=0,解得x =2.由b ∥c 得124y =-,解得y =-2,所以a =(2,1),b =(1,-2),a +b =(3,-1),|a +b |B 项.7. D 若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上为减函数,根据f (x )的周期为2可推出f (x )为[3,4]上的减函数;若f (x )为[3,4]上的减函数,则f (x )在[-1,0]上也为减函数,所以f (x )在[0,1]上为增函数,故选D 项.8. D 由题图可得函数y =(1-x )f ′(x )的零点为-2,1,2,则当x <1时,1-x >0,此时在(-∞,-2)上f (x )>0,f ′(x )>0,在(-2,1)上f (x )<0,f ′(x )<0;当x >1时,1-x <0,此时在(1,2)上f (x )>0,f ′(x )<0,在(2,+∞)上f (x )<0,f ′(x )>0.所以f (x )在(-∞,-2)为增函数,在(-2,2)为减函数,在(2,+∞)为增函数,因此f (x )有极大值f (-2),极小值f (2),故选D 项.9.A 四面体如图1所示,设AB =AC =BD =CD =1,AD =BC =a ,则a >0.当A ,B ,C ,D 四点共面时,BC 如图2所示).而此时A ,B ,C ,D 四点不能构成四面体,所以BC <,故选A 项.图1 图210.D不等式(y-x)(y-1x)≥0可化为0,1y xyx-≥⎧⎪⎨-≥⎪⎩或0,10.y xyx-≤⎧⎪⎨-≤⎪⎩集合B表示圆(x-1)2+(y-1)2=1上以及圆内部的点所构成的集合,A∩B所表示的平面区域如图阴影部所示.由线1yx=,圆(x-1)2+(y-1)2=1均关于直线y=x对称,所以阴影部分占圆面积的一半,故选D项.11.答案:4解析:(1+i)(2+i)=1+3i=a+b i,所以a=1,b=3,a+b=4.12.答案:2 5解析:n n→∞==112lim55n→∞+==.13.答案:145解析:由已知条件可得4sin5A=,12sin13B=,而sin C=sin(A+B)=sin A cos B+cos A sin B =5665,根据正弦定理sin sinb cB C=得145c=.14.答案:56解析:F点坐标为(12,0),设A,B两点的横坐标为x1,x2.因|AF|<|BF|,故直线AB不垂直于x 轴.设直线AB 为y =k (x -12),联立直线与抛物线的方程得k 2x 2-(k 2+2)x +24k =0 ①,则21222k x x k++=,又|AB |=x 1+x 2+1=2512,可解得k 2=24,代入①式得12x 2-13x +3=0,即(3x -1)(4x -3)=0.而|AF |<|BF |,所以113x =,由抛物线的定义得115||26AF x =+=.15.答案:35解析:基本事件总数为66A 720=,事件“相邻两节文化课之间最多间隔1节艺术课”所包含的基本事件可分为三类,第一类:三节艺术课各不相邻有3334A A 144=;第二类:有两节艺术课相邻有3221133223A C A C C 216=;第三类:三节艺术课相邻有133233C A A 72=.由古典概型概率公式得概率为1442167237205++=.16.解:(1)因f (x )=a ln x +1322x x ++1,故213()22a f'x x x =-+. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而13022a -+=,解得a =-1. (2)由(1)知f (x )=-ln x +1322x x ++1(x >0), 2222113321(31)(1)()2222x x x x f'x x x x x --+-=--+==.令f ′(x )=0,解得x 1=1,213x =-(因213x =-不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.17.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3). (1)记“甲获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()111211223()()P C P A P A B A P A B A B A =++=()111211223()()()()()()()()P A P A P B P A P A P B P A P B P A ++ =22121121111113()()3323323392727+⨯⨯+⨯⨯=++=. (2)ξ的所有可能值为1,2,3. 由独立性知P (ξ=1)=P (A 1)+P (1A B 1)=12123323+⨯=, ()2211211222112122()()()()323329P P A B A P A B A B ξ==+=⨯⨯+⨯=,()2211222113()()()329P P A B A B ξ===⨯=.综上知,ξ有分布列从而,Eξ=1×23+2×29+3×9=9(次).18.解:(1)f (x )=ωx +12sin ωx )sinωx +cos2ωx=ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωxωx +1.因-1≤sin2ωx ≤1,所以函数y =f(x )的值域为[11.(2)因y =sin x 在每个闭区间[2k π-π2,2k π+π2](k ∈Z )上为增函数,故f (x )ωx +1(ω>0)在每个闭区间[ππ4k ωω-,ππ4k ωω+](k ∈Z )上为增函数. 依题意知[3π2-,π2][ππ4k ωω-,ππ4k ωω+]对某个k ∈Z 成立,此时必有k =0,于是3ππ,24ππ.24ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩解得16ω≤,故ω的最大值为16.19.解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1.故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD= (2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB互余,因此∠A 1AB 1=∠A1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此1111AA A B AD AA =,即AA 12=AD ·A 1B 1=8,得1AA =.从而1A D ==.所以,在Rt △A 1DD 1中,111111cos 3DD AA A DD A D A D ∠===.解法二:如图,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,易知DB,DC,DD1两两垂直.以D为原点,射线DB,DC,DD1分别为x轴、y轴、z轴的正半轴建立空间直角坐标系D-xyz.设直三棱柱的高为h,则A(-2,0,0),A1(-2,0,h),B1(2,0,h),C(00),C1(0,h),从而1AB=(4,0,h),1AC=(2h).由1AB⊥1AC,有8-h2=0,h=故1DA=(-2,0,,1CC=(0,0,,DC=(00).设平面A1CD的法向量为m=(x1,y1,z1),则m⊥DC,m⊥1DA,即111=0,2=0.x-+⎪⎩取z1=1,得m=0,1).设平面C1CD的法向量为n=(x2,y2,z2),则n⊥DC,n⊥1CC,即22=0,=0.⎪⎩取x2=1,得n=(1,0,0),所以cos〈m,n〉=||||3⋅⋅m nm n.所以二面角A1-CD-C1的平面角的余弦值为320.解:(1)如图,设所求椭圆的标准方程为2222=1x ya b+(a>b>0),右焦点为F2(c,0).因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2为直角,因此|OA|=|OB2|,得2cb=,结合c2=a2-b2得4b2=a2-b2,故a2=5b2,c2=4b2,所以离心率cea==在Rt△AB1B2中,OA⊥B1B2,故12AB BS∆=12·|B1B2|·|OA|=|OB2|·|OA|=2c·b=b2.由题设条件124AB BS∆=得b2=4,从而a2=5b2=20,因此所求椭圆的标准方程为22=1204x y+.(2)由(1)知B1(-2,0),B2(2,0).由题意知直线l的倾斜角不为0,故可设直线l的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0,设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此12245my y m +=+,122165y y m ⋅=-+,又2B P =(x 1-2,y 1),2B Q=(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)·(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=22222216(1)161664+16=555m m m m m m +----+++.由PB 2⊥QB 2,得2B P ·2B Q=0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0. 21. (1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1, 因a 2≠0,故a 1=1,得221a a a =, 又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ),即a n +2=a 2a n +1, 由a 2≠0,知a n +1≠0,因此221=n n a a a ++, 综上,12=n na a a +对所有n ∈N *成立.从而{a n }是首项为1,公比为a 2的等比数列. 证法二:用数学归纳法证明12n n a a -=,n ∈N *.当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1, 所以结论成立.假设n =k 时,结论成立,即12=k k a a -,那么a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k -S k -1)=a 2a k =2k a .这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,12=n n a a -.因此{a n }是首项为1,公比为a 2的等比数列.(2)证法一:当n =1或2时,显然S n =2n(a 1+a n ),等号成立. 设n ≥3,a 2>-1且a 2≠0.由(1)知a 1=1,12=n n a a -,所以要证的不等式化为1+a 2+22a +…+12n a -≤2n(1+12n a -)(n ≥3),即证:1+a 2+22a +…+2n a ≤12n +(1+2n a )(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,21r a -与21n r a +-(r =1,2,…,n -1)同为负; 当a 2>1时,21r a -与21n r a +-(r =1,2,…,n -1)同为正.因此当a 2>-1且a 2≠1时,总有(21r a -)(21n r a +-)>0,即2r a +2n r a -<1+2n a (r =1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+22a +…+12n a -)<(n -1)(1+2n a ), 由此得1+a 2+22a +…+221(1+)2nn n a a +<.综上,当a 2>-1且a 2≠0时,有S n ≤2n(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n =2n (a 1+a n ),等号成立.当a 2=1时,S n =n =2n (a 1+a n ),等号也成立.当a 2≠1时,由(1)知2211nn a S a -=-,12n n a a -=.下证:12221(1+)12n n a na a --<-(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为(n -2)2n a +na 2-12n na -<n -2(n ≥3).令f (a 2)=(n -2)2n a +na 2-12n na -.当-1<a 2<0时,221>0n a --,故f (a 2)=(n -2)2n a +na 2(1-22n a -)<(n -2)|a 2|n <n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n [(n -2)12n a --(n -1)22n a -+1]=n g(a 2). 其中g(a 2)=(n -2)12n a --(n -1)22n a -+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)32n a -<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令21b a =,则0<b <1,由已证的结论知122211()1(1+())121n n a n a a --<-, 两边同乘以12n a -得所要证的不等式. 综上,当a 2>-1且a 2≠0时,有S n ≤2n(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.。

相关文档
最新文档