结构消能减震技术
浅谈消能减震技术
浅谈消能减震技术消能减震技术是一种利用材料的变形和摩擦来减少或消除冲击能量的技术。
它在工程领域发挥着重要作用,能够有效地保护设备和结构免受外部冲击的影响。
本文将就消能减震技术的基本原理、应用领域和发展趋势进行浅谈。
消能减震技术的基本原理是利用材料的弹性和耗能特性来减少外部冲击能量的传递。
常见的消能减震材料包括聚合物、金属和复合材料等。
这些材料具有一定的弹性,当受到外部冲击力时能够发生形变,并通过内部结构的摩擦和阻尼来消耗能量。
这样一来,外部冲击力的传递就会得到有效地减缓,从而保护设备和结构不受损。
消能减震技术在众多领域都得到了广泛的应用,包括建筑工程、航空航天、交通运输等。
在建筑工程中,消能减震技术可以通过设置减震支座或减震结构来减少地震或风力对建筑物的影响,从而提高建筑物的抗震性能。
在航空航天领域,消能减震技术可以用于飞机主起落架和座舱的设计,有效地保护飞机和乘客免受起降冲击的影响。
在交通运输领域,消能减震技术可以用于车辆的减震系统和轨道交通设施的设计,提高车辆和轨道设施的抗震性能,保障交通运输的安全和稳定。
随着科学技术的不断发展,消能减震技术也在不断创新和进步。
一方面,随着材料科学和工程技术的进步,新型的消能减震材料不断涌现,具有更高的弹性和耗能性能,可以更有效地减少外部冲击能量的传递。
随着计算机仿真技术和数字化设计技术的发展,消能减震技术的设计和优化也变得更加精确和高效。
通过数字化设计和仿真分析,可以更准确地预测材料的弹性和耗能特性,从而优化消能减震系统的设计方案,提高抗震性能和使用寿命。
消能减震技术是一种非常重要的工程技术,能够有效地保护设备和结构不受外部冲击的影响。
随着科学技术的不断发展,消能减震技术也在不断创新和进步,将会在更多的领域得到应用,并发挥更为重要的作用。
相信随着技术的进步和发展,消能减震技术将会为人们的生活带来更多的安全和便利。
建筑结构消能减震的控制方法
建筑结构消能减震的控制方法汇报人:日期:•引言•建筑结构消能减震的基本原理•建筑结构消能减震的控制方法•建筑结构消能减震的优化设计目•工程实例分析•研究展望与未来发展趋势录引言01CATALOGUE地震是一种常见的自然灾害,对人类社会和自然环境造成极大的破坏。
传统的建筑结构抗震设计主要是依靠结构本身的强度来抵抗地震,但这种方法的效果有限,并且难以应对强烈地震。
因此,研究建筑结构的消能减震控制方法,提高建筑结构在地震作用下的安全性,对于保障人类生命财产安全具有重要意义。
研究背景和意义研究现状和发展趋势国内外学者已经开展了大量的研究工作,提出了多种消能减震技术,如阻尼器、隔震支座、调谐质量阻尼器等。
未来,随着材料科学和计算机技术的发展,消能减震技术将更加智能化、高效化,为建筑结构的抗震设计提供更加可靠的技术支持。
建筑结构消能减震的基本原理02CATALOGUE通过在建筑结构中设置消能构件或系统,以减少地震对结构的影响,提高结构的抗震性能。
消能减震技术被动消能减震主动消能减震利用阻尼材料或装置(如橡胶隔震支座、铅阻尼器等)吸收地震能量,以减小结构振动反应。
利用传感器、控制器和作动器组成的系统,实时监测地震动并控制结构反应,以减小结构振动反应。
030201消能减震的概念和分类能量守恒01在地震过程中,建筑结构会受到来自地面的地震能量作用。
消能减震技术通过设置消能构件或系统,吸收或消耗地震能量,降低结构振动反应。
动能定理02建筑结构在地震作用下的动能与地震动输入能量和结构阻尼消耗能量之差成正比。
消能减震技术通过增大结构阻尼,提高结构消耗能量的能力,从而减小结构振动反应。
势能定理03建筑结构在地震作用下的位移与结构势能变化量成正比。
消能减震技术通过改变结构刚度,降低结构势能变化量,从而减小结构振动反应。
优化设计通过对建筑结构进行优化设计,降低结构在地震作用下的响应,提高结构的整体性能。
精细化评估通过对建筑结构的地震响应进行精细化评估,揭示消能减震技术的减震效果和适用范围,为实际工程应用提供指导。
第六章工程结构消能减震设计简介
PPT文档演模板
第六章工程结构消能减震设计简介
6.2.2 基础隔震装置
隔震装置由隔震器、阻尼器和复位装置组成 隔震器的作用:支承上部结构全部质量,延长结构自振
周期,同时具有经历较大变形的能力 阻尼器的作用:消耗地震能量,抑制结构可能发生的过
大位移 复位装置的作用:提高隔震系统早期刚度使结构在微震
或风载作用下,能够具有和普通结构相同的安全性
这样,总之香港汇丰银行大楼通过炫耀技术的悬
挂结构,代替了鸡腿建筑,实现了柯布的早期理
PPT文档演模板
想。
第六章工程结构消能减震设计简介
•6.2.3 悬挂隔震实例
• 和田先生则以自己敏锐的抗震思维,通过将 隔震和悬挂合二为一,为底部开敞的悬挂结构赋予 了更充分的结构抗震的合理性,建筑理想的实现多 么依赖于结构工程技术的进步。 • • 在清水建设的支持下,在清水建设技术研究 所的门口按照和田先生的想法建造起来一座四层的 钢筋混凝土悬挂隔震示范建筑,如下页的小图所示。
• 10年后重建,并增加了抗震强度。
PPT文档演模板
第六章工程结构消能减震设计简介
6.2.3 悬挂隔震实例
l “鸡腿建筑” 最初的希望将地面空间还给城市,还给市民的 理想也随之被扭曲。即使建筑师自己不去否定鸡腿建筑,它 们也注定要被结构师否定,尤其是在地震危险性较高的地区。 香港人自以为占了块风水宝地,永远不会地震,确实那也真 的没被怎么震过,于是肆无忌惮的在山坡和港湾建造了大量 的鸡腿建筑,而且还相当骨感,真让人替他们担心。建筑的 形式不是由单单由建筑师决定的,也不是单单由结构师决定 的,还有追求经济利益的业主。底部沿街楼层对开敞的大空 间有挥之不去的商业热情,建筑师和结构师的工作就是尽量 满足这种商业需求。
消能减震设计讲解
不考虑扭转影响时,消能减震结构在其水平 地震作用下的总应变能,可按下式估算:
Ws=1 / 2FiUi
Fi——质点i的水平地震作用标准值; Ui——质点i对应于水平地震作用标准值的位 移。
速度相关型消能器在水平地震作用下所消耗 的能量Wc,可按下式估算:
消能减震结构中的消能部件应沿 结构的两个主轴方向分别设置,消能 部件宜设置在层间变形较大的位置, 其数量和分布应通过综合分析合理确 定,并有利于提高整个结构的消能减 震能力,形成均匀合理的受力体系。
消能减震结构计算要点
(1)消能减震结构一般应采用非线性静力分 析法或非线性时程分析法计算。当主体结构 基本处于弹性工作阶段时,可采用线性分析 方法作近似估算,并根据结构的变形特征和 高度等,采用底部剪力法、振型分解反应谱 法和时程分析法。其地震影响系数可根据消 能减震结构的总阻尼比按《规范》的规定计 算。
粘滞阻尼器
一般Kd=0,Cd= C0 ,阻尼力仅与速度有关, 可表示为:
Fd Cd
C0为粘滞阻尼器的阻尼系数,可由阻尼器的 产品型号或由试验确定。
粘弹性阻尼器
刚度Kd和阻尼系数Cd一般由下式确定:
AG( ) Kd
( )AG( )
Cd
η(ω)和 G(ω)分别是粘弹性材料的损失因子
和剪切模量,一般与频率和速度有关,由粘弹 性材料特性实验曲线确定,A和δ 分别是粘弹 性材料层的受剪面积和厚度,ω是结构振动的 频率,对于多自由度结构, ω可取结构弹性
振动的基本固有频率。
(2)滞变型消能器的恢复力模型
软钢类消能器具有类似的 滞回性能,仅其特征参数不同。 通常可采用图(a)所示的折线 形模型来描述。摩擦消能器和 铅消能器的滞回曲线近似为 “矩形”,基本不受荷载大小、 频率、循环次数等影响,故可 采用图(b)所示的刚塑性恢 复力模型。
建筑结构消能减震概述(2020.3.2)
周期。
周期比问题
设计实例-建筑图-支撑布置位置
(
(
设计实例-计算分析
(
(
设计实例-支撑设计
(
(
设计实例-支撑设计图、计算书
设计图:1.设计说明 2.平面布置图 3.立面布置图 4.节点示意图
绘制基础(1.设计院详细结构图纸(较准确)、2初步图纸或模型
(不准确))
计算书:支撑验算、节点验算
(
(
往复加载,每个变形
幅 值 循 环 加 载 3 次 。 -1/100
小吨位屈曲约束支撑:屈服承载力低于200吨、长度小于4m
屈曲约束支撑性能试验
目录
• 消能减震的类型概述 • 屈曲约束支撑 • 剪切阻尼器(屈曲约束支撑型阻尼器) • 屈曲约束耗能墙 • 粘滞阻尼器 • 隔震 • 结束语
剪切阻尼器设计图
普通钢板剪力墙
防屈曲耗能钢板墙
防屈曲耗能钢板墙
➢不会发生面外屈曲的钢板剪力墙,由承受水平荷载的钢 芯板和防止芯板发生面外屈曲的部件组合而成。 ➢主要依靠芯板的面内整体弯剪变形来平衡水平剪力。作 为核心抗侧力构件,芯板以钢板制成, ➢通过剪力键与面外约束部件相连,防止芯板面外屈曲, 使钢板墙的受剪屈曲临界荷载大于其抗剪屈服承载力。 ➢只会发生剪切屈服而不是剪切屈曲,改善耗能能力。 ➢面外约束板件还可以作为钢板墙的防火保护。
支撑的发展
• 普通中心支撑
支撑受压屈曲,结构刚度迅速下降、承载力低,耗能 性能差
• 偏心支撑
偏心支撑通过偏心梁端耗能,耗能性能较好,但震后 修复困难,且支撑刚度不能完全发挥
• 屈曲约束支撑
支撑不会屈曲,且保护梁柱构件不破坏,支撑刚度和 强度完全发挥
普通支撑的破坏
浅述建筑结构减震与消能减震设计
浅述建筑结构减震与消能减震设计建筑结构减震与消能减震设计是目前建筑工程设计领域中重要的技术方向,对于提高建筑结构的抗震能力和保护人员生命财产安全具有至关重要的作用。
本文将从基本概念、设计思路、主要方法和应用案例等方面进行阐述。
一、基本概念建筑结构减震是指通过一系列的减震措施,降低地震对建筑结构的影响,进而保护建筑结构的完整性和稳定性。
而消能减震是指在地震发生时,通过消除地震能量的传递和吸收,使建筑结构免受破坏。
二、设计思路建筑结构减震与消能减震设计的核心思路是通过改变建筑结构的刚度和能量耗散机制,将地震能量转化为非结构能量,减小地震对建筑结构的作用力。
常见的设计思路包括增加耗能装置、减小刚度、提高阻尼等。
三、主要方法1.增加耗能装置:通过在建筑结构中增加耗能装置,如高阻尼橡胶支座、摩擦阻尼器等,将地震能量转化为热能和摩擦能,从而减小建筑结构的震动响应。
2.减小刚度:通过采用灵活的结构系统,如钢结构、框架结构等,减小建筑结构的刚度,从而降低地震作用力。
3.提高阻尼:通过在建筑结构中增加阻尼装置,如粘滞阻尼器、液体阻尼器等,提高结构的阻尼比,减小地震能量的传递效应。
四、应用案例1.台北101大楼:台北101大楼是世界上首座采用金属球阻尼器的大楼,通过在楼顶设置800吨的金属球阻尼器,将地震能量转化为球体的动能和热能,有效减小了地震对大楼的影响。
2.八达岭长城高速公路桥:该桥采用了摩擦阻尼器作为剪力连接件,通过摩擦力将地震能量转化为热能和摩擦力,使桥梁在地震作用下能够有一定的位移和变形,保证桥梁结构的完好性。
3.日本东京迪士尼乐园:该乐园采用了高阻尼橡胶支座作为支撑装置,通过橡胶材料的阻尼特性,将地震能量转化为热能和弹性变形,保护了乐园内的建筑结构和设施。
综上所述,建筑结构减震与消能减震设计是提高建筑结构抗震性能的重要手段,通过增加耗能装置、减小刚度、提高阻尼等方法,能够有效降低地震对建筑结构的破坏作用。
消能减震技术在工程中的应用
消能减震技术在工程中的应用1class消能减震概念结构消能减震技术主要指的是在结构的某些部位,如层间空隙、节点连接部分或者连接缝等一些位置安装消能减震装置,或者是将结构的支撑、连接件或非承重剪力墙等一些次要构件设置为能够消能的构件。
在地震来临时,这些装置或者构件可以通过摩擦、塑性变形、粘滞液体流动等一些变化,为结构提供较大的阻尼,消耗地震动输入的能量,消减主体结构的地震动反应,从而起到保护主体结构安全的作用。
与传统增大截面抵抗地震作用不同,消能减震技术主要是通过消能减震构件吸收、消耗地震能量降低主体结构地震响应,是建筑物抗震的另一个有力手段。
消能减震技术中,安装消能器增加结构阻尼的被动消能减震方法,由于其传受力明确、安装维护方便、制作成本低、适用范围广等特点,受到业内人士的青睐。
消能减震原理结构消能减震的实质是在结构中设置消能器,地震时输入结构的能量率先为消能器吸收,大量消耗输入结构的地震能量,有效衰减结构的地震反应。
消能器在地震中起到结构附加阻尼和附加刚度的作用。
相比常规设计提高结构的抗震性能只能通过增加结构构件尺寸或者钢筋的方法,更加经济合理高效,这也是消能减震结构具有经济性优势的主要原因。
结构在地震中任意时刻的能量方程为:传统结构:Ein= Ev+Ec+Ek+Eh;消能减震结构:E'in= E'v+E'c+E'k+E'h+Ed;式中Ein、E'in——地震过程中输入传统抗震结构、消能减震结构体系的能量;Ev、E'v——传统抗震结构、消能减震结构体系的动能;Ec、E'c——传统抗震结构、消能减震结构体系的粘滞阻尼耗能;Ek、E'k——传统抗震结构、消能减震结构体系的弹性应变能;Eh、E'h——传统抗震结构、消能减震结构体系的滞回耗能;Ed——消能器耗散或吸收的能量。
在上述能量方程中,由于Ev和E'v、Ek和E'k仅发生能量转化,并不耗散能量,而Ec和E'c仅占总能量的很小部分(约5%左右),可以忽略不计。
建筑结构消能减震设计与案例
建筑结构消能减震设计与案例建筑结构消能减震是指在建筑结构设计中采用一系列的措施和技术,以减轻地震对建筑物的破坏和影响。
下面列举了10个建筑结构消能减震的设计案例:1. 摩天大楼的消能减震设计:摩天大楼在地震中所受到的地震力较大,因此需要采用消能减震技术来减轻地震力对大楼的影响。
例如,可以在大楼的底部设置消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对大楼的破坏。
2. 桥梁的消能减震设计:桥梁是地震中易受损的结构之一,因此需要采取相应的消能减震措施。
例如,可以在桥梁的支座处设置消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对桥梁的影响。
3. 地下建筑的消能减震设计:地下建筑在地震中容易受到地震力的影响,因此需要采用消能减震技术来减轻地震力对地下建筑的影响。
例如,可以在地下建筑的结构中设置消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对地下建筑的破坏。
4. 钢结构建筑的消能减震设计:钢结构建筑具有较好的抗震性能,但在地震中仍然可能受到较大的地震力。
因此,钢结构建筑需要采用消能减震技术来进一步提高其抗震性能。
例如,可以在钢结构建筑的柱子和梁上安装消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对钢结构建筑的破坏。
5. 混凝土结构建筑的消能减震设计:混凝土结构建筑具有较好的抗震性能,但在地震中仍然可能受到一定的地震力。
因此,混凝土结构建筑需要采用消能减震技术来进一步提高其抗震性能。
例如,可以在混凝土结构建筑的柱子和梁上设置消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对混凝土结构建筑的破坏。
6. 地震防护结构的消能减震设计:地震防护结构是一种专门用于抵御地震力的结构,它采用了多种消能减震技术来提高其抗震性能。
例如,可以在地震防护结构的支撑系统中设置消能减震器,通过减震器的弹性变形来吸收地震能量,从而减轻地震对地震防护结构的影响。
7. 防震设备的消能减震设计:防震设备是一种用于减轻地震力对建筑物影响的设备,它通过自身弹性变形来吸收地震能量,从而减轻地震对建筑物的破坏。
结构隔震消能减震设计
结构隔震消能减震设计结构隔震和消能减震设计是地震工程领域中的重要技术,其目的是通过特殊的结构和材料设计,减少地震对建筑物及其内部设备的破坏。
一、结构隔震设计结构隔震是一种将结构物与土壤或地基隔开的设计方法,通过降低结构物受地震力的传递,减少地震对结构物的影响。
结构隔震设计一般包括以下几个方面:1.隔震系统选择:结构隔震系统通常包括隔震支座、隔震层和支撑系统。
常见的隔震支座有橡胶隔震支座、钢球隔震支座等。
不同类型的隔震支座具有不同的性能和适用范围,需要根据实际情况选择。
2.隔震层布置:隔震层一般位于地面以上,可以用于减震和减少地震波对建筑物的传递。
隔震层的布置要考虑结构的刚度、强度、稳定性等因素,以及地震的频率和能量。
3.支撑系统设计:支撑系统是隔震层与结构之间的连接,要具有良好的刚度和耐力,以保证隔震系统正常工作。
4.结构模型分析:隔震设计需要进行结构模型分析,考虑地震力、地震波特性、结构响应等因素,通过计算分析得出隔震设计的参数和指标。
隔震设计的优点在于能大幅度减少地震对结构物的破坏,提高结构物的抗震性能和安全性。
然而,隔震设计也存在一些挑战,如隔震支座的设计和施工比较复杂,造价较高等问题。
消能减震设计是通过在结构中引入特殊的减震装置,通过消耗、分散地震能量,减小地震对建筑物的影响。
消能减震设计一般包括以下几个方面:1.减震器选择:减震器是消能减震设计的核心装置,根据荷载类型和地震响应要求,可以选择液压减震器、摩擦式减震器、摇摆巨型减震器等减震器。
不同类型的减震器各有优劣,需要根据具体工程的特点和要求选择合适的减震器。
2.减震器布置:减震器的布置是消能减震设计中的关键环节,需要考虑结构的刚度、强度、减振效果等因素,合理地布置减震器,以达到最佳减震效果。
3.减震装置与结构连接:减震装置与结构的连接需要具有适当的刚度和耐力,以保证减震器的正常工作。
连接部位的设计和施工要符合相关的规范和标准,确保结构的安全性。
浅谈消能减震技术
浅谈消能减震技术消能减震技术是在建筑、桥梁、机器设备、汽车和船舶等领域应用广泛的一种技术。
它的主要作用是通过减少结构物受到的震动破坏、降低噪音和防止人员和设备受到伤害。
本文就从原理、分类、应用和发展趋势等方面,对消能减震技术进行了简单的介绍和分析。
一、原理消能减震技术的原理是将结构物的动能转换为各种形式的能量,将其消耗掉。
根据结构物的不同特点,可以采取多种策略进行消能,包括压缩弹簧、粘滞阻尼、摩擦阻尼、液体阻尼、机械阻尼等。
其中,压缩弹簧消能是将结构物的动能转换为弹簧内能和弹性势能,通过弹性形变和弹丸的自由振动来消耗能量。
而粘滞阻尼则是通过黏滞材料的粘滞摩擦来消耗能量,摩擦阻尼则是将结构物静止摩擦力和动态摩擦力相结合,通过与随机震动进行干涉来消耗能量。
液体阻尼则是通过搅动粘稠液体来增加阻力,并将机械能转换为热能和流体能量。
机械阻尼则是通过机械结构的摩擦作用来消耗能量。
二、分类消能减震技术可以根据结构物的不同特点进行分类,包括水平消能、垂直消能、地震消能、风震消能和振动控制等。
水平消能指的是在结构物受到水平力时,通过采用摩擦阻尼、压缩弹簧等技术来消耗能量。
垂直消能则是在结构物受到垂直力时,通过采用弹簧减震、液体减震等技术来消耗能量。
地震消能是指在地震发生时,通过将能量转移或消耗掉来从根本上减少结构受损程度。
风震消能则是指在楼房受到自然风力或人工风机的作用时,通过消耗风荷载能量来减小结构物的摆振力。
振动控制则是指通过采用主动控制或半主动控制等技术来减少结构物的振动。
三、应用消能减震技术在建筑、桥梁、机器设备、汽车和船舶等领域应用广泛。
例如,高层建筑可以采用摩擦阻尼器、拉杆弹簧、液体阻尼器等技术来减少地震时的损失和振动。
桥梁可以采用拉杆弹簧、阻尼器、球形隔震器等技术来减少风振和车辆荷载带来的影响。
机器设备可以采用弹簧减震、液体减震等技术来减少震动和噪音。
汽车可以采用适当的减震器、动力系统和悬架系统来减少行驶时产生的震动。
结构消能减震技术
结构消能减震技术随着城市化进程的加快和城市人口的不断增加,对于建筑物的安全性要求也越来越高。
地震是世界各地常见的自然灾害之一,造成了巨大的人员伤亡和财产损失。
因此,地震减灾成为了建筑领域的重要研究方向之一、结构消能减震技术作为一种有效的地震减灾措施,受到了广泛的关注和研究。
1.液体阻尼器:液体阻尼器是一种常用的减震装置,它利用液体的黏性来消耗地震能量。
液体阻尼器通常由一个密封的容器和内部的流体组成,地震发生时,流体在容器中产生摩擦和阻力,从而减轻地震对建筑物的冲击力。
液体阻尼器具有体积小、使用方便、适应性强等优点。
2.弹性材料:弹性材料是一种能够在地震发生时吸收和释放能量的材料。
它通常用于建筑结构的隔震层或缓冲层,能够减轻地震对建筑物的冲击力和振动。
常见的弹性材料包括橡胶、聚合物等,它们具有良好的弹性特性和高耐久性。
3.摩擦减震器:摩擦减震器是一种利用材料之间的摩擦力对地震力进行减震的装置。
它通常由两个平行的金属板之间夹有摩擦材料组成,地震发生时,摩擦材料中的摩擦力能够减轻建筑物的振动和变形。
4.惰性质量块:惰性质量块是一种重点落在建筑结构顶部的质量块,它的质量较大,能够增加建筑物的弹性周期,从而减小地震对建筑物的影响力。
惰性质量块通常由钢材或混凝土制成,它的设计需要考虑地震荷载和结构响应等因素。
1.提高建筑物的抗震性能:结构消能减震技术能够有效地减轻地震对建筑物的作用力和振动,从而提高建筑物的抗震性能。
这对于地震频繁的地区来说尤为重要,能够减少人员伤亡和财产损失。
2.减少地震后的修复成本:由于结构消能减震技术能够减轻地震对建筑物的破坏程度,降低修复成本和时间。
这对于城市的恢复建设和经济发展具有重要意义。
3.增加建筑物的使用寿命:结构消能减震技术能够有效地控制建筑物的变形和振动,延长建筑物的使用寿命。
这对于提高建筑物的可持续性和资源利用效率具有重要意义。
结构消能减震技术虽然能够有效地减轻地震对建筑物的影响,但也存在一些挑战和问题。
建筑工程消能减震技术标准
建筑工程消能减震技术标准建筑工程消能减震技术标准是指在建筑工程设计、施工和验收中,对消能减震技术的要求和规范。
消能减震技术是一种通过减小或吸收地震或其他外力对建筑物的影响,减少建筑物损伤和人员伤亡的技术措施。
下面将从设计、施工和验收三个方面,详细介绍建筑工程消能减震技术标准。
一、设计方面的技术标准:1.结构设计应满足地震响应控制要求,考虑到地震荷载的性质和强度,选择合适的消能减震技术。
2.消能减震设备的选型和布置应满足建筑物结构的需要,并符合消能减震技术的相关规范和标准。
3.结构设计应根据建筑物的特点和用途,合理设置消能减震装置,确保其可靠性和稳定性。
4.设计中应考虑到消能减震装置的维护保养和更换等方面的问题,为日后的使用和维修提供便利。
二、施工方面的技术标准:1.施工单位应按照设计要求和相关规范,进行专业化的消能减震设备安装和施工工作。
2.施工过程中应严格控制消能减震装置的安装质量,确保其性能和功能的正常发挥。
3.施工单位应定期进行设备和结构的检测,确保消能减震装置的可靠性和稳定性。
4.施工单位应为消能减震装置的使用和维护提供技术指导和培训,提高用户的操作和维护水平。
三、验收方面的技术标准:1.验收机构应对消能减震技术进行软硬件测试和试验,检验其安全性和可靠性。
2.验收机构应对消能减震装置的安装和施工进行检查和评估,确保其符合设计要求和施工要求。
3.验收机构应对消能减震装置的使用和维护进行培训和指导,确保用户能够正确操作和维护设备。
4.验收机构应对消能减震装置的性能和功能进行评估和认证,确保其符合相关技术标准和规范。
总结:建筑工程消能减震技术标准是建筑领域中一项重要的技术标准,其主要目的是确保建筑物在地震或其他外力作用下能够安全可靠地运行。
设计、施工和验收三个方面的技术标准都是相辅相成的,只有在设计、施工和验收过程中严格执行消能减震技术标准,才能保证建筑物的安全性和可靠性。
简述消能减震技术特点及其适用范围
简述消能减震技术特点及其适用范围消能减震技术是一种通过减少震动能量传递和降低震动传递效应的技术。
它通过改变结构系统的固有频率和阻尼特性,从而降低震动对结构和设备的影响,提高其抗震能力和安全性。
消能减震技术的特点主要有以下几个方面:1. 高效能消能:消能减震技术能够将地震或其他外界震动能量转化为其他形式的能量,从而减少震动对结构的影响。
通过吸收、转移和耗散震动能量,减少结构的应力和变形,从而降低震动对结构的破坏程度。
2. 灵活可控:消能减震技术具有较高的可调性和可控性。
可以通过调整结构系统的参数,如阻尼系数、刚度等,来实现对结构的减震效果进行调节。
根据不同的需求和实际情况,可以设计不同类型的减震装置,以满足不同结构的减震要求。
3. 经济节能:消能减震技术能够有效降低结构的抗震设计要求,减少结构的材料和施工成本。
同时,减少结构的震动响应,降低了结构的能量耗散,提高了结构的动态性能,从而减少了结构的能量消耗,实现了能源的节约和环境的保护。
4. 适用范围广:消能减震技术适用于各种类型的结构,包括建筑、桥梁、塔楼、石油钻井平台等。
它可以应用于新建结构的设计和建设,也可以通过改造和加固的方式应用于现有结构。
无论是小型建筑物还是大型工程,都可以利用消能减震技术来提高其抗震能力和安全性。
消能减震技术的适用范围主要包括以下几个方面:1. 高层建筑:在高层建筑中,消能减震技术可以有效降低地震对建筑物的影响,提高其抗震性能。
通过在建筑物的底部或中部设置减震装置,可以减少地震引起的位移和加速度,保护建筑物的完整性和稳定性。
2. 桥梁工程:桥梁是地震灾害中易受损的结构之一。
消能减震技术可以有效控制桥梁的动态响应,降低地震对桥梁的影响。
通过在桥梁的支座或桥墩上设置减震装置,可以有效减少桥梁的震动幅度和变形。
3. 石油钻井平台:石油钻井平台通常位于海上或海底,容易受到地震和海浪的影响。
消能减震技术可以在石油钻井平台上设置减震装置,降低地震和海浪对平台的影响,提高平台的稳定性和安全性。
消能减震技术的原理
消能减震技术的原理
消能减震技术是利用弹性形变的材料(例如弹簧、橡胶等)或粘滞阻尼材料,将震动的能量转化成由弹性材料或粘滞阻尼材料吸收和消散,从而减小震动的幅度和持续时间,减少对建筑物、桥梁等结构的破坏和对人们的危害。
具体原理包括:
1. 弹性减震原理:将结构与地基之间安装弹性元件,如橡胶桥梁支座、弹簧隔震支座、弹簧试验振台等,当地震或其他外力作用于结构时,弹性材料会发生形变,消耗部分能量,减少结构震动的幅度和能量。
2. 粘滞阻尼原理:将粘滞材料如硅油等涂覆在结构的受力部位,当结构发生震动时,粘滞材料会受到剪切力,产生粘滞阻力,减缓结构的震动,吸收和消散震动能量。
3. 质量阻尼原理:增加结构的质量可以提高结构的阻尼,减缓结构的震动。
例如在地铁站或公路隧道中,安装较重的振动屏障可以起到阻尼效果,减少隧道内的噪音和震动。
以上三种原理可单独或组合使用,大大提高了结构的抗震性能,保证了人们的生命和财产安全。
(高层结构设计)第十章 建筑结构消能减震技术与振动控制技术
吸能器
结构振动控制技术使用范围
消能减震建筑结构的基本要求
一般要求:消能器布置、选择、抗震性能化 设计
场地、地基和基础:对抗震有利地段、地 基应稳定、可靠。
消能器选择:应具备良好的变形能力和消 耗地震能量的能力、耐久性和环境适应性、 强度、刚度及稳定性及滞回性能要求。
结构分析:多遇地震作用下的内力和变形 分析可采用线性静力方法或线性动力方法。 对主体结构进入弹塑性阶段的情况,应根
消能器 energy dissipation device,设置在消 能减震结构中用于消耗输入结构能量的装
消能器 energy dissipation device
位移型消能器 displacement-dependent energy dissipation device,消能器的耗能能力 与消能器两端的相对位移有关,包括金属 消能器、摩擦消能器和防屈曲支撑型消能 器。
(高层结构设计)第十章 建筑结构消能减震技术与振动控制技术
减震\振控制方法
建筑结构消能减震技术
在工程结构中布置消能减震器以耗散地震 输入结构的能量,是减轻工程结构在地震 中的反应,减轻建筑地震破坏的一种新技 术和新方法。
消能减震结构 energy dissipation structure, 在建筑结构中设置消能减震器而形成的结 构体系。消能减震结构包括主体结构、消 能部件和基础。
速度相关型阻尼器及连接
由粘弹性材料和 约束层组成的速 度相关型阻尼器。
速度相关型阻尼器及连接
速度相关型阻尼器
平板式粘弹 性阻尼器由 粘弹性材料 和约束板组 成,约束板 和粘弹性材 料层均为平 板状。
圆筒式粘弹 性阻尼器由
速度相关型阻尼器
速度相关型阻尼器
消能减震原理与技术探析
消能减震原理与技术探析消能减震原理与技术是一种被广泛应用于建筑、桥梁和其他结构中的被动控制技术,其目的是在地震等自然灾害来临时,通过减小结构的地震反应,保护结构的安全,减少灾害造成的损失。
一、消能减震原理消能减震的原理在于通过在结构中设置消能装置,如阻尼器、调谐质量阻尼器等,来吸收和消耗地震能量,从而减小结构的地震反应。
这些消能装置在平时可以处于静止状态,当地震发生时,它们会根据地震的强度和频率进行调节,以最大程度地吸收和消耗地震能量。
二、消能减震技术消能减震技术主要分为两大类:被动控制技术和主动控制技术。
被动控制技术是最常用的控制技术,其优点是构造简单、造价低、可靠性高,适用于大多数土木工程结构。
以下是被动控制技术的几种主要方法:1.基础隔震技术:通过在建筑物的基础或底部设置隔震层,如橡胶隔震支座、砂垫层等,来隔离地震能量向上部结构的传递。
2.消能减震技术:通过在结构中设置消能装置,如阻尼器、调谐质量阻尼器等,来吸收和消耗地震能量。
3.耗能减震技术:通过在结构中设置耗能装置,如铅阻尼器、粘弹性阻尼器等,来消耗地震能量。
4.吸能减震技术:通过在结构中设置吸能装置,如吸能锚栓、吸能支撑等,来吸收地震能量。
主动控制技术是一种更为先进的控制技术,其优点是可以实时监测和控制系统的工作状态,适用于对安全性和稳定性要求较高的建筑物。
以下是主动控制技术的几种主要方法:1.主动质量阻尼技术:通过在建筑物中设置传感器和作动器,实时监测建筑物的振动情况,并根据监测结果调节作动器的动作,以减小建筑物的振动反应。
2.主动支撑技术:通过在建筑物中设置传感器和作动器,实时监测建筑物的变形情况,并根据监测结果调节作动器的动作,以防止建筑物的过度变形。
3.主动震动控制技术:通过在建筑物中设置传感器、作动器和控制系统,实时监测建筑物的振动情况,并根据监测结果自动调节控制系统的输出,以最小化建筑物的振动反应。
三、消能减震技术的优点消能减震技术的优点主要体现在以下几个方面:1.能够显著提高结构的安全性:消能减震技术可以显著降低结构在地震等自然灾害下的反应,从而避免结构出现破坏和倒塌的现象。
浅谈消能减震技术
浅谈消能减震技术消能减震技术是一种通过调节材料的结构和性能来减轻能量传输和减震的技术。
它已经被广泛应用在建筑、桥梁、汽车、航天等领域,是一种非常有效的减震技术。
本文将从减震原理、应用领域和发展趋势等方面,深入浅出地探讨消能减震技术。
一、减震原理消能减震技术的核心在于将外界的能量转化为其他形式或减轻其传递过程,从而减小震动波动的幅度,保护结构系统安全。
它主要包括以下几种原理:1. 摩擦减震原理:通过利用摩擦力的消耗作用,在结构中设置摩擦减震器,当结构发生震动时,摩擦将部分能量转换为热,从而减缓震动的幅度。
2. 液体阻尼原理:将结构中的振动能量通过液体介质传递,液体阻尼器中的摩擦和粘滞作用将振动能量转化为热能,达到减震的效果。
3. 弹性本征减震原理:通过设计材料的结构和性能,使其在受到外力作用时可以吸收一定的能量,减小振动波动的幅度。
二、应用领域消能减震技术已经在许多领域得到了广泛的应用,主要包括建筑、桥梁、汽车和航天等行业。
1. 建筑领域:在地震频繁的区域,消能减震技术可以有效地减小建筑结构在地震中的震动幅度,保护建筑物和居民的安全。
2. 桥梁领域:大型桥梁在受风或地震等自然灾害影响时易发生振动,消能减震技术可以有效地减小桥梁的振动幅度,保证桥梁的安全运行。
3. 汽车领域:在汽车的悬挂系统中使用消能减震技术,可以有效地减小行驶中车辆的颠簸感,提高乘坐舒适度。
4. 航天领域:航天器在飞行过程中会受到各种外部力的影响,消能减震技术可以有效地保护航天器的安全和稳定。
三、发展趋势消能减震技术是一种非常有效的减震技术,随着科学技术的发展,它将会在未来得到更广泛的应用,并有以下几个发展趋势。
1. 多元化发展:消能减震技术将会在材料、结构设计、工艺制造等方面得到更多的创新,实现多元化的发展,以更好地适应不同环境和应用领域的需求。
2. 智能化发展:随着物联网和人工智能的发展,消能减震技术将会更加智能化,能够实时感知结构的状态并做出相应的调节,提高减震效果和安全性。
建筑结构的隔震与消能减震分析
将建筑物与基础之间设置滑动层, 利用摩擦力来消耗地震能量,以达 到减震效果。
隔震结构的性能评估
隔震装置的性能要求
隔震装置应具有足够的承载能力、刚 度和延性,以确保在地震作用下能够 有效地隔离地震能量。
整体结构的性能评估
对隔震结构进行整体分析,评估其在 地震作用下的响应,确保其具有足够 的稳定性和安全性。
抗震性能评估:通过对消能减震结构进行地震模拟分析,评估其在地震 作用下的响应和性能,如变形、加速度、应力等指标,以验证其抗震性
能是否满足设计要求。
结构安全性评估:通过对消能减震结构进行静力荷载试验或动力响应分 析,评估其在地震作用下的结构安全性,如稳定性、裂缝发展等指标, 以确保结构在地震作用下的安全性。
研究背景:地震灾害频发,传统抗震 设计存在局限性,需要发展新的减震 技术。
建筑结构的隔震和消能减震技术是减 轻地震灾害的有效手段之一。
研究意义:提高建筑结构的抗震性能 ,减少地震造成的生命和财产损失, 保护人类安全和可持续发展。
研究目的和方法
研究目的
研究建筑结构的隔震与消能减震 技术,提高建筑结构的抗震性能 ,减少地震响应。
联合设计的应用实例
应用实例1
某高层建筑在设计中采用了消能减震技术和隔震支座联合设计。通过优化结构和选择合适的材料,成功提高了结 构的抗震性能,并在实际地震中表现出色。
应用实例2
某桥梁在地震高发区采用了橡胶隔震支座和铅阻尼器进行联合设计。这些措施有效地降低了地震对桥梁结构的影 响,确保了交通的畅通性。
隔震支座:隔震支座是一种能够将地震地面运动与建 筑结构隔离的装置,其原理是通过支座的变形来减小 地震能量传递到建筑结构。常见的隔震支座包括橡胶 隔震支座、铅芯隔震支座等。
消能减震技术
一、消能减震技术(一)技术内容消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。
在风或小震作用时,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。
消能部件一般由消能器、连接支撑和其他连接构件等组成。
消能部件中的消能器(又称阻尼器)分为速度相关型如粘滞流体阻尼器、粘弹性阻尼器、粘滞阻尼墙、粘弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等和其它类型,如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。
采用消能减震技术的结构体系与传统抗震结构体系相比,具有更高安全性、经济性和技术合理性。
(二)技术指标建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术和经济可行性的对比分析后确定。
采用消能减震技术结构体系的设计、施工、验收和维护应按现行国家标准《建筑抗震设计规范》GB 50011 和《建筑消能建筑技术规程》JGJ 297 进行,设计安装做法可参考国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合现行行业标准《建筑消能阻尼器》JG/T 209的规定。
(三)适用范围消能减震技术主要应用于多高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善,文物建筑及有纪念意义的建(构)筑物的保护等。
(四)工程案例江苏省宿迁市建设大厦、北京威盛大厦等新建工程,以及北京火车站、北京展览馆、西安长乐苑招商局广场4 号楼等加固改造工程。
二、建筑隔震技术(一)技术内容基础隔震系统是通过在基础和上部结构之间,设置一个专门的隔震支座和耗能元件(如铅阻尼器、油阻尼器、钢棒阻尼器、粘弹性阻尼器和滑板支座等),形成刚度很低的柔性底层,称为隔震层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构消能减震技术1、结构消能减震的基本概念
地震发生时地面震动引起结构物的震
动反应,地面地震能量向结构物输入。
结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。
消能减震技术是将结构的某些构件设
计成消能构件,或在结构的某些部位装设消能装置。
在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速
度等),保护主体结构及构件在强地震或大风中免遭破
坏或倒塌,达到减震抗震的目的消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。
消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼
器等,和其它类型如调频质量阻尼器
TMD)、调频液体阻尼器(TLD)等。
采用消能减震技术的结构体系与传统抗震结构体系相比,
具有大震安全性、经济性和技术合理性。
技术指标:建筑结构消能减震设计方案,
应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济
可行性的对比分析后确定。
采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。
适用范围:消能减震技术主要应用于高
层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。
传统抗震结构体系,容许结构及承重构
件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中的损坏过程,就是地震能量的“消能”过程。
结构及构件的严重破坏或倒塌,就是地震能量转换或消耗的最终完成。
结构消能减震体系,就是把结构物的某
些非承重构件 ( 如支撑、剪力 设计成消能杆件,或在结构的某部
位 ( 层间 空间、节点、联结缝等 ) 装设消能装置。
在 风或小地震时, 这些消能构件或消能装置具 有足够的初绐刚度,处于弹性状态,结构物 仍具有足够的侧向刚度以满足使用要求。
当 出现中、强地震时,随着结构侧向变形的增
大.消能构件或消能装置率先进人非弹性状 态,产生较大阻尼,大量消耗输人结构的地 震能量, 使主体结构避免出现明显的非弹性 状态, 并且迅速衰减结构的地震反应 ( 位移、 速度、加速度等 ) ,从而保护主体结构及构 件在强地震中免遭破坏, 确保主体结构在强 地震中的安全。
消能减震结构体系与传统抗震结构体
系相对比,具有下述优越性:
①安全性: 传统抗震结构体系实质上是把结 构本身及主要承重构件 ( 柱、梁、节点等 ) 作 为“消能”构件。
按照传统抗震设计方法. 容 许结构本身及构件在地震中出现不同程度 的损坏。
由于地震烈度的随机变化性和结构 实际抗震能力设计计算的误差, 结构在地震 中的损坏程度难以控制; 特别是出现超烈度 强地震墙、连接件等 ) M/
时,结构难以确保安全。
消能减震结构体系由于特别设置非承
重的消能构件(消能支撑、消能剪力墙等)或消能装置,它们具有极大的消能能力,在强地震中能率先消耗结构的地震能量,迅速衰减结构的地震反应,并保护主体结构和构件免遭损坏,确保结构在强地震中的安全。
据我国对消能臧震结构的振动台试验
(冼巧玲、周福霖、俞公骅,者
1995)及国外
完成的振动台试验(Pull ,
1988;Kelly ,1990;soong,1992)可知,消能减震结构与
传统抗震结构相对比,其地震反应减少
40%G- 60%
另外,消能构件(或装置)属“非结构构件”,即非承重构件,其功能仅是在结构变形过程中发挥消能作用,而不承担结构的承载作用,即它对结构的承载能力和安全性不构成任何影响或威胁。
所以,消
能减震结构体系是一种非常安全可靠的结构减震体系。
性:传统抗震结构采用“硬抗”地震
的途径,通过加强结构、加大构件断面、加多配筋等途径中提高抗震性能,因而,抗震结构的造价大大提高。
消能减震结构是通过“柔性消能”的途
径以减少结构地震反应,因而,可以减少剪力墙的设置,减小构造断面,减少配筋,而其耐震安全度反而提高。
据国内外工程应用总结资料。
采用消能减震结构体系比采用传
统抗震结构体系,可节约结构造价5%〜10% 若用于旧有建筑结构的耐震性能改造加固,消能减震加固方法比传统抗震加固方法,节省建造价10%〜60%。
②技术合理性:传统抗震结构体系是通过加
强结构,提高侧向刚度以满足抗震要求的:但结构越加
强.刚度越大,地震作用(荷载)也越大.只能再加
强结构。
如此恶性借环,其结果,除了安全性、经济性
问题外,对于采用高强、轻质材料(强度高、断面
小、刚度小)的高层建筑、超高层建筑、夫跨度结
构及桥梁等的技术发展,造成严
消能减震结构则是通过设置消
重的制约
能构件
或装置,使结构在出现变形时大量迅速消耗地震能量,
保护主体结构在强地震中的安全。
结构越高、跨度越
大,消能减震效果越显著。
因而,消能减震技术必将
成为采用高强轻质材料的高柔结构(超高层建筑、大
跨度结构及桥梁等)的合理新途径。
由于消能减震结构体系有上述优越性,已被广
泛、成功地应用于“柔性”工程结构物的减震(或抗风)。
一般来说,层数越多、
高度越高、跨度越大、变形越大,消能减震
效果越明显。
所以多被应用于下述结构:
①高层建筑,超高层建筑;②高柔结构,高
耸塔架;③大跨度桥梁;
④柔性管道、管线(生命线工程):⑤旧有高柔建筑或结构物的抗震(或抗风)性能的改善提高。
结构消能减震体系由主体结构和消能
构件(或装置)组成,可按消能构件的不同
“构件型式”和消能装置的不同“消能型式
H消能支挥
1 _________
2、消能构件的不同构造形式
结构消能减震体系中的消能构件(或装置),按照其构造形式可以做成:
①消能支撑:消能支撑可“代替一般的结构
支撑,在抗震(或抗风)中发挥支撑的水平刚
度和消能减震作用。
消能支撑可以做成方框支撑、圆框支撑、交叉杆支撑、斜杆支撑、
K形支撑、双K形支撑等。
②消能剪力墙:消能剪力墙可代替一般结构
水平刚度和消能减震作用。
消能剪力墙可做
周边缝剪力墙、整体剪力墙、分离式剪力墙等。
Ct)横#芬力培fc)最軽购力《\ - (A
«SH± 材*4
〔町处体《力《a rr
LTf5居砖
tf
T
]
C J
(1 J
■|H t
r (0孙离式剪丈
墙
的剪力墙,在抗震(或抗风)中发挥剪力墙的
{>)黜能节克 (b) 95消能节A
③ 消能节点:在结构的梁柱节点或粱节点 处装设消能装置。
当结构产生侧向位移,在 节点处产牛角度变化、转动式错动时.消能 装置即发挥消能减震作用。
④ 消能联结:在结构的缝隙处或结构构件之 间的联结处设置消能装置。
当结构在缝隙或 联结处产生相对变形时, 消能装置即发挥消 能减震作用。
⑤ 消能支撑或悬吊构件:对于某些线结构 (如管道、线路等),设置各种支撑或悬吊消 能装置。
当线结构发生震动时,支承或悬吊 件即发挥消能减震作用。
Mm.
3、消能装置的不同消能形式
_____ ,|
二一・皿
” 1
!
消能构件中装设有消能装置; 消能装置 的功能是, 当构件 ( 或节点 ) 发生相对位移或 转动时,产生较大的阻尼.从而发挥消能减 震作用。
为了达到最佳消能效果,要求消能 装置提供最大的阻尼, 即当构件 (或节点 ) 在 力(或弯矩 )作用下发生位移 ( 或转动 ) 时,所 做的功最大。
为了使消能装置具有较大 的消能能力.可以采用多种消能形式, 有下述几种:
2-6-16) ;
②钢件 ( 梁、板、棒 ) 非弹性消能装置 2-6-17) ;
③材料塑性变形消能:如挤压铅阻尼器 2-6-18) ;
④材料粘弹性消能装置 ( 图 2-6-19) ; ⑤液体阻尼消能:如液体阻尼泵;
①摩擦消能: 如摩擦消能支撑, 摩擦节点
(图
(图
(图
⑥混合式:几种消能形式混台应用;
2-6-16摩擦消能装置图2-6-17消能阻尼装置
图2-6-18 铅挤压阻尼器图2-6-19 粘弹性材料阻尼装置
结构消能减震的实质是:在结构内设置
消能构件(或消能装置),它们能为结构提供
较大的阻尼,在地震时大量消耗输入结构的震动能量,有效衰减结构的地震反应。