工具镀膜基础知识

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空涂层技术的发展

真空涂层技术起步时间不长,国际上在上世纪六十年代才出现将CVD(化学气相沉积)技术应用于硬质合金刀具上。由于

该技术需在高温下进行(工艺温度高于1000ºC),涂层种类单一,局限性很大,因此,其发展初期未免差强人意。

到了上世纪七十年代末,开始出现PVD(物理气相沉积) 技术,为真空涂层开创了一个充满灿烂前景的新天地,之后在短短的二、三十年间PVD 涂层技术得到迅猛发展,究其原因,是

因为其在真空密封的腔体内成膜,几乎无任何环境污染问题,

有利于环保;因为其能得到光亮、华贵的表面,在颜色上,成熟的有七彩色、银色、透明色、金黄色、黑色、以及由金黄色到黑色之

间的任何一种颜色,可谓五彩缤纷,能够满足装饰性的各种需要;又由于PVD 技术,可以轻松得到其他方法难以获得的高硬

度、高耐磨性的陶瓷涂层、复合涂层,应用在工装、模具上面,可以使寿命成倍提高,较好地实现了低成本、高收益的效果;此外,PVD 涂层技术具有低温、高能两个特点,几乎可以在任何基材上成膜,因此,应用范围十分广阔,其发展神速也就不足为奇。

真空涂层技术发展到了今天还出现了PCVD(物理化学气相沉积)、MT-CVD(中温化学气相沉积)等新技术,各种涂层设备、各种涂层工艺层出不穷,如今在这一领域中,已呈现出百花齐放,百家争鸣的喜人景象。

与此同时,我们还应该清醒地看到,真空涂层技术的发展

又是严重不平衡的。由于刀具、模具的工作环境极其恶劣,对薄膜附着力的要求,远高于装饰涂层。因而,尽管装饰涂层的厂家已遍布各地,但能够生产工模涂层的厂家并不多。再加上刀具、

模具涂层售后服务的欠缺,到目前为止,国内大多数涂层设备

厂家都不能提供完整的刀具涂层工艺技术(包括前处理工艺、涂层工艺、涂后处理工艺、检测技术、涂层刀具和模具的应用技术等),而且,它还要求工艺技术人员,除了精通涂层的专业知识以外,还应具有扎实的金属材料与热处理知识、工模涂层前表面预处理知识、刀具、模具涂层的合理选择以及上机使用的技术

要求等,如果任一环节出现问题,都会给使用者产生使用效果不理想这样的结论。所有这些,都严重制约了该技术在刀具、模具上的应用。

另一方面,由于该技术是一门介乎材料学、物理学、电子、化学等学科的新兴边缘学科,而国内将其应用于刀具、模具生产领域内的为数不多的几个骨干厂家,大多走的也是一条从国外引进先进设备和工艺技术的路子,尚需一个消化、吸收的过程,因此,国内目前在该领域内的技术力量与其发展很不相称,急需奋起直追。

3. PVD 涂层的基本概念及其特点

PVD 是英文“Physical Vapor Deposition”的缩写形式,意思

是物理气相沉积。我们现在一般地把真空蒸镀、溅射镀膜、离子镀等都称为物理气相沉积。

较为成熟的PVD 方法主要有多弧镀与磁控溅射镀两种方式。多弧镀设备结构简单,容易操作。它的离子蒸发源靠电焊机电源

供电即可工作,其引弧的过程也与电焊类似,具体地说,在一定工艺气压下,引弧针与蒸发离子源短暂接触,断开,使气体放电。由于多弧镀的成因主要是借助于不断移动的弧斑,在蒸发源表面上连续形成熔池,使金属蒸发后,沉积在基体上而得到薄膜层的,与磁控溅射相比,它不但有靶材利用率高,更具有

金属离子离化率高,薄膜与基体之间结合力强的优点。此外,多

弧镀涂层颜色较为稳定,尤其是在做TiN 涂层时,每一批次均

容易得到相同稳定的金黄色,令磁控溅射法望尘莫及。多弧镀的不足之处是,在用传统的DC 电源做低温涂层条件下,当涂层厚度达到0.3μm 时,沉积率与反射率接近,成膜变得非常困难。而且,薄膜表面开始变朦。多弧镀另一个不足之处是,由于金属是熔后蒸发,因此沉积颗粒较大,致密度低,耐磨性比磁控溅射法成膜差。

可见,多弧镀膜与磁控溅射法镀膜各有优劣,为了尽可能

地发挥它们各自的优越性,实现互补,将多弧技术与磁控技术合而为一的涂层机应运而生。在工艺上出现了多弧镀打底,然后利用磁控溅射法增厚涂层,最后再利用多弧镀达到

最终稳定的表面涂层颜色的新方法。

大约在八十年代中后期,出现了热阴极电子枪蒸发离子镀、热阴极弧磁控等离子镀膜机,应用效果很好,使TiN 涂层刀具很快得到普及性应用。其中热阴极电子枪蒸发离子镀,利用铜坩

埚加热融化被镀金属材料,利用钽灯丝给工件加热、除气,利用电子枪增强离化率,不但可以得到厚度3~5μm的TiN 涂层,而且其结合力、耐磨性均有不俗表现,甚至用打磨的方法都难以除去。但是这些设备都只适合于TiN涂层,或纯金属薄膜。对于多

元涂层或复合涂层,则力不从心,难以适应高硬度材料高速切

削以及模具应用多样性的要求。

目前,一些发达国家(如德国CemeCon、英国ART-TEER )在传统的磁控溅射原理基础上,用非平衡磁场代替原先的平衡磁场、50KHz 的中频电源代替原来的直流电源、脉冲电源取代以往的直流偏压,采用辅助阳极技术等,使磁控溅射技术逐步成熟,已大批量应用在工模涂层上,现在已稳定生产的涂层主要有TiAlN、AlTiN、TiB2、DLC、CrN,我国广东、江苏、贵州、株洲等地也已陆续引进此种设备,大有星火燎原之势。

4. 现代涂层设备(均匀加热技术、温度测量技术、非平衡磁控溅

射技术、辅助阳极技术、中频电源、脉冲技术) 现代涂层设备主要由真空室、真空获得部分、真空测量部分、电

源供给部分、工艺气体输入系统、机械传动部分、加热及测温部

件、离子蒸发或溅射源、水冷系统等部分组成。

4.1 真空室

涂层设备主要有连续涂层生产线及单室涂层机两种形式,由于工模涂层对加热及机械传动部分有较高要求,而且工模形状、尺寸千差万别,连续涂层生产线通常难以满足要求,须采用

单室涂层机。

4.2 真空获得部分

在真空技术中,真空获得部分是重要组成部分。由于工模件涂层高附着力的要求,其涂层工艺开始前背景真空度最好高于6mPa,涂层工艺结束后真空度甚至可达0.06mPa 以上,因此合

理选择真空获得设备,实现高真空度至关重要。

就目前来说,还没有一种泵能从大气压一直工作到接近超高真空。因此,真空的获得不是一种真空设备和方法所能达到的,必须将几种泵联合使用,如机械泵、分子泵系统等。4.3 真空测量部分

真空系统的真空测量部分,就是要对真空室内的压强进行测量。像真空泵一样,没有一种真空计能测量整个真空范围,人们于是按不同的原理和要求制成了许多种类的真空计。4.4 电源供给部分

相关文档
最新文档