台式电风扇摇头机构设计

合集下载

2机械原理课程设计台式电风扇摇头装置

2机械原理课程设计台式电风扇摇头装置

台式电风扇摇头装置设计一.设计要求设计台式电风扇的摇头装置要求能左右旋转并可调整俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

台式电风扇的摇头机构,使电风扇作摇头动作(在肯定的仰角下随摇杆摇摆)。

风扇的直径为300mm,电扇电动机转速n=1450r∕min,电扇摇头周期t=10s.电扇摇摆角度中、仰俯角度Φ与急回系数K的设计要求及任务安排见表。

方案号电扇摇摆转动电扇仰俯转动仰角夕/(°)摆角ψ/(°)急回系数K2.设计任务:⑴按给定的主要参数,拟定机械传动系统总体方案;⑵画出机构运动方案简图;⑶安排蜗轮蜗杆、齿轮传动比,确定他们的基本参数,设计计算几何尺寸;(4)确定电扇摇摆转动的平面连杆机构的运动学尺寸,它应满意摆角中及急回系数K条件下使最小传动角/最大。

并对平面连杆机构进行运动分析,绘制运动线图,验算曲柄存在的条件;⑸编写设计计算说明书;二.功能分解明显为完成风扇左右俯仰的吹风过程须要实现下列运动功能要求:在扇叶旋转的同时扇头能左右摇摆肯定的角度,因此,须要设计相应的左右摇摆机构(本方案设计为双摇杆机构)。

为完成风扇可摇头,可不摇头的吹风过程。

因此必需设计相应的离合器机构(本方案设计为滑销离合器机构)。

扇头的俯仰角调整,这样可以增大风扇的吹风范围。

因此,须要设计扇头俯仰角调整机构(本方案设计为外置条件按钮)。

三.机构选用驱动方式采纳电动机驱动。

为完成风扇左右俯仰的吹风过程,据上述功能分解,可以分别选用以下机构。

机构选型表:b图1:锥齿轮减速机构图2,蜗杆减速机构由于蜗杆蜗轮啮合齿轮间的相对滑动速度较大,摩擦磨损大,传动效率较低,易出现发热现象,常须要用较贵的减磨耐磨材料来制造蜗轮,制造精度要求高,刀具费用昂贵,成本高。

锥齿轮可以用来传递两相交的运动,相比蜗杆蜗轮成本较低。

所以在此我们选用锥齿轮减速。

2,离合器选用方案一方案二由以上两个机构简图可以看出:方案二采纳的比方案一少用了一个齿轮,它主要采纳的滑销和锥齿轮卡和从而实现是否摇头的运动.不管是从结构简便还是从经济的角度来说方案二都比方案一好.也更简洁实现.所以我们选择方案一.3,摇头机构选用方案一方案二要实现扇头的左右摇摆运动有许多种运动方式可以选择,例如我们可以选用凸轮机构,多杆机构,滑块机构齿轮机构等.但四杆机构更简洁制造,制造精度要求也不是很高,并且四杆机构能实现摆幅也更广更简洁实现,最重要的是它的制造成本比较低.所以首选四杆机构.从以上两个简图中我们不难看出方案一比方案二多了一个齿轮盘,所以方案二更好.四,机构组合据上述功能机构的分析我们选用以下机构来实现电风扇的减速、摇头、俯仰运动。

课程设计《台式电风扇摇头装置》

课程设计《台式电风扇摇头装置》

一、题目:台式电风扇摇头装置二、设计题目及任务2.1设计题目设计台式电风扇的摇头机构,使电风扇做摇头动作(在一定的仰角下随摇杆摆动)。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s。

电扇摆动角度ψ,仰俯角度φ与急回系数K的设计要求及任务分配表见表2.11.表2.11 台式电风扇摆头机构设计数据此次选择的是方案C:摆角为ψ=90°,急回系数K=1.02,仰角φ=15°。

2.2设计任务(1)按给定主要参数,拟定机械传动系统总体方案。

(2)画出机构运动方案简图。

(3)分配涡轮蜗杆、齿轮传动比。

确定它们的基本参数,设计计算几何尺寸。

(4)确定电扇摇摆转动的平面连杆机构的运动学尺寸,它满足摆角ψ及急回系数K条件下使最小传动比角γmin最大。

并对平面连杆机构进行运动分析,绘制运动线图,验算曲柄存在条件。

(5)编写设计计算说明书。

(6)学生可进一步完成台式电风扇摇头机构的计算机动态演示或模型试验验证。

2.3设计提示(1)常见的摇头机构有杠杆式、滑板式和揿拔式等。

可以将风扇的摇头动作分解为风扇的左右摆动和风扇的上下俯仰运动。

风扇摇摆转动可以采用平面连杆机构实现。

以双摇杆机构的连杆为主动件(即风扇转子通过涡轮蜗杆带动连杆传动),则其中一个连架杆的摆动即实现风扇的左右摆动(风扇安装在连架杆上)。

机架可选取80~90mm。

风扇的上下仰俯运动可采用连杆机构、凸轮机构等实现。

(2)还可以采用空间连杆机构直接实现风扇的左右摆动和上下仰俯的复合运动。

三、功能分解现市售电风扇的机头一般只是做单一的左右摆头动作,可结合手动调节机头俯仰角度来改变受风区域,但正常工作时机头的俯仰角往往是固定的,只依靠机头自身左右摆动来送风,因此受风区域、面积有限。

本台式电风扇是立体送风电风扇,该电风扇有两种实现方式。

即风扇左右摆动和风扇上下俯仰运动。

3.1风扇的左右摇摆运动风扇在开启后,需要调整受风区域时,则自然希望风扇能摇头,增加、改变受风的区域。

械原理课程设计台式电风扇摇头装置的设计-V1

械原理课程设计台式电风扇摇头装置的设计-V1

械原理课程设计台式电风扇摇头装置的设计-V1设计一个可以使得台式电风扇能够进行左右转动的摇头装置,需要运用到械原理。

械原理课程设计能够提供一个很好的解决方案。

以下是关于械原理课程设计台式电风扇摇头装置的设计的文章。

1. 需求分析首先,我们需要进行需求分析,确定适当的参数和限制。

在设计中,我们需要考虑以下几个方面:- 电风扇的电机参数- 摇头器的大小和形状- 摇头装置的运作速率- 摇头角度,也就是每次转动的角度2. 设计方案接下来,我们可以开始设计电风扇摇头装置。

为了实现这个目标,械原理技术将被运用。

以下是设计方案:- 在风扇头部的中央加入一个凸起的基座,用于安装摇头器。

- 将一个凸形隆起的柱子放在基座上,使其旋转可以进行摇头的运作。

- 摇头器可以采用传统的齿轮和链条系统,其中一个齿轮和闸片用来限制摇头器的转速。

- 计算针对实现理想的摇头角度,在摇头器一圈中设置摆动装置。

摆动装置会把摇头器的运动传送到机械臂上。

机械臂可以单独设定到不同的摇头亚角度,以获得所需的摇头角度。

3. 实施在实施过程中,我们需要把设计所需的部件进行加工和制造,其中包括制造适合于齿轮和闸片的齿轮轴,以及一个摆动装置和一个机械臂。

一旦所有的部件被制造完成,并且装配在一起,即可进行实际测试。

测试可分为两个方面:第一方面是测试摇头器是否正常运作;第二方面是测试电风扇和摇头机械臂的协调运作。

4. 结论通过这次的实践,我们成功地设计出一个完整的台式电风扇摇头装置,实现了理想的摇头角度和速率。

这是一个很好的械原理课程设计例子,学生可以通过这个例子了解并掌握技能,并在未来的职业生涯中实践运用。

《机械原理课程设计》台式电风扇摇头机构

《机械原理课程设计》台式电风扇摇头机构

《机械原理课程设计》台式电风扇摇头机构绪论:风扇,指热天借以生风取凉的用具。

电风扇,是用电驱动产生气流的装置,内配置的扇子通电后来进行转动化成自然风来达到乘凉的效果。

图1(家用风扇简图)发明时间机械风扇起源房顶上,1829年,一个叫詹姆斯·拜伦的美国人从钟表的结构中受到启发,发明了一种可以固定在天花板上,用发条驱动的机械风扇。

这种风扇转动扇叶带来的徐徐凉风使人感到欣喜,但得爬上梯子去上发条,很麻烦。

1872年,一个叫约瑟夫的法国人又研制出一种靠发条涡轮启动,用齿轮链条装置传动的机械风扇,这个风扇比拜伦发明的机械风扇精致多了,使用也方便一些。

1880年,美国人舒乐首次将叶片直接装在电动机上,再接上电源,叶片飞速转动,阵阵凉风扑面而来,这就是世界上第一台电风扇。

电风扇的主要部件是:交流电动机。

其工作原理是:通电线圈在磁场中受力而转动。

能量的转化形式是:电能主要转化为机械能,同时由于线圈有电阻,所以不可避免的有一部分电能要转化为热能。

在人们的日常生活中,一台风扇为了满足多人多角度的使用,具备了在启动后左右反复摇头的功能,因此能增加令人感到凉爽的面积,这不失为一种方法。

在电风扇内部使风扇部分摇头有很多种方法。

工作原理:1.通过电机提供原动力2.通过轮系,连杆,凸轮等机构进行传动设计要求:最终机构要在单一驱动力驱动的前提下使这两种独立运动,即电风扇的转动与电风扇的摆动两组运动按预设传动比同时进行。

传动装置可由一组轮系组成。

风扇转动结构原理:双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。

(如图2)机构中两摇杆可以分别为主动件。

当连杆与摇杆共线时,为机构的两个极限位置。

双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

图2(双摇杆机构简图)风扇转动结构设计:(图3)图3本次设计的预定参数:电机转速为600转每分钟自由度:F=3n-(2PL+Ph)F=9-8=1传动比:蜗杆采用单头蜗杆n1/n2=K/Z其中,n1-蜗杆的转速 n2-涡轮的转速 K-蜗杆头数 Z-涡轮的齿数电机转速600r/min 涡轮齿数100传动比(i=Z/K)=100总结:该机构不宜用于实现大角度转动的电扇采用的原因是,大角度转动之后,容影引起蜗轮、蜗杆接触过紧或脱离的发生,影响正常使用。

台式电风扇摇头机构设计

台式电风扇摇头机构设计

台式电风扇摇头机构设计(总36页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--课程设计台式电风扇摇头装置机构姓名:_____________学号:_____________专业:_____________指导教师:_____________台式电风扇摇头装置机构设计摘要电风扇摇头装置设计是从电风扇设计开始的,也是电风扇设计中最重要的部分,对于电风扇的研究,国内外已有不少的研究成果,但在创新这一块做的还不够, 还有待进一步完善。

本文首先对摇头电风扇的历史和发展现状以及其类型和特点进行了介绍,然后介绍了设计准则, 提出方案拟定, 并选择最优方案,主要是现有的电风扇摇头装置中平面摇杆机构,包括平面摇杆机构的结构、工作原理、设计原理、设计原则;其次根据已知原动机的转速, 分配传动比,选择合适的机构, 如蜗轮蜗杆机构以及齿轮机构, 根据传动比确定它们的基本参数,设计计算几何尺寸,再次采用图解法, 根据已知条件(极位夹角, 摇杆速度等)设计平面四杆机构, 然后在实验室组建仿真机构模型, 观察所设计的尺寸是否满足所需的运动轨迹,再就制作台式电风扇摇头平面机构的计算机动态演示, 通过图解法研究各杆件的运动, 进行运动分析, 最后总结并讲述了电风扇的未来展望。

关键词:平面摇杆机构,传动比, 蜗轮蜗杆, 齿轮传动, 运动分析 ,动态演示目录第一章引言..................................................................... 错误!未定义书签。

电风扇工作原理 ..................................................... 错误!未定义书签。

第二章电风扇摇头机构的设计................................. 错误!未定义书签。

电风扇摇头机构设计概述 ................................... 错误!未定义书签。

机械原理课程设计台式电风扇摇头装置的设计(1)

机械原理课程设计台式电风扇摇头装置的设计(1)

机械原理课程设计台式电风扇摇头装置的设计(1)设计题目:机械原理课程设计台式电风扇摇头装置的设计一、设计需求随着人们对生活品质要求的提高,电风扇已成为人们夏季生活中不可缺少的物品。

然而,传统的台式电风扇只能在一个固定角度内吹风,无法实现摇头功能,导致风扇的使用范围受限。

因此,本次设计需要设计一种适用于台式电风扇的摇头装置,使电风扇能够摇头,拓展其使用范围。

同时,需要确保摇头装置的可靠性、稳定性和安全性,以避免装置故障或损坏带来危险。

二、方案设计1. 前置条件在本次设计中,假设已有一台传统的台式电风扇,其外形和结构参照如下图:2. 摇头装置的设计方案本次设计中,我们采用一种球形转向机构来实现电风扇的摇头功能。

球形转向机构能够实现方向的变化,使得电风扇能够左右晃动,从而实现摇头功能。

具体地,摇头装置的设计分为以下几个步骤:(1)选材为保证装置的质量和稳定性,我们选用了优质的铜材和不锈钢材料。

铜材和不锈钢材料具有良好的强度和韧性,能够承受较大的力和振动,同时不易生锈,也能减少散热导致的问题。

(2)设计球形转向机构球形转向机构的结构如下图所示:球形转向机构由两个球形承载件、两个承压块、一个转向架、两个支架和一个齿轮组成。

其中两个球形承载件被安装在承压块中,转向架上安装有齿轮,支架固定在电风扇的支架上。

在球形转向机构的设计中,需要控制好齿轮的齿数和直径,以保证转向机构的转动角度和速度,从而保证电风扇的摇头幅度和摇动频率。

同时,还需要控制好球形转向机构中的各个零部件的尺寸和公差,以保证装置的稳定性和可靠性。

(3)装配球形转向机构球形转向机构的装配相对简单,只需将各个零件依次按照设计方案组装即可。

在装配过程中需要注意的是,应该仔细检查各个零部件的公差是否合适,避免在装配过程中出现误差。

并且,需要确保球形承载件与电风扇支架之间的连接紧固可靠,以免在使用中出现松动或磨损的情况。

3. 测试在球形转向机构装配好后,需要进行测试以检查装置的性能和稳定性。

台式电风扇摇头装置机械原理课程设计

台式电风扇摇头装置机械原理课程设计

台式电风扇摇头装置机械原理课程设计摇头装置是一种常见于台式电风扇中的机械结构,它能够使风扇的扇叶左右自动摆动,使得风扇的风力分布更加均匀,覆盖范围更广。

在本篇文章中,将详细介绍台式电风扇摇头装置的机械原理,并进行课程设计。

一、摇头装置的机械原理1.基本结构2.工作原理当电机启动时,电机的转动力会通过减速器传递给摇头齿轮。

摇头齿轮是一个特殊设计的齿轮,其齿形和齿数使得摇头杆得以左右摆动。

摇头杆通过与摇头齿轮的啮合来获得动力,并将动力传递给摇头扇叶。

摇头杆的摆动是通过摇头齿轮的齿形和齿数来实现的。

摇头齿轮的齿形一般是非圆弧形的,齿数也是不对称的。

这样设计的目的是使得摇头杆在摇头齿轮的作用下左右摆动,从而使摇头扇叶左右摆动。

二、课程设计在进行台式电风扇摇头装置的课程设计时,可以按照以下步骤进行:1.确定设计需求首先,需要明确设计的目标和需求,包括摇头扇叶的摆动角度、频率等参数。

2.设计摇头杆根据设计需求,设计摇头杆的形状和尺寸。

摇头杆一般是一个长条形的零件,需要考虑其强度和刚度,以及与摇头齿轮的连接方式。

3.设计摇头齿轮根据摇头杆的设计来确定摇头齿轮的齿形和齿数。

摇头齿轮一般是一个非圆弧形的齿轮,需要考虑其与摇头杆的啮合方式和传动效率。

4.设计减速器减速器是将电机的转动力传递给摇头齿轮的装置,需要根据电机的转速和扭矩来选择合适的减速比。

减速器一般由齿轮、轴承等组成,需要考虑其传动效率和噪音等因素。

5.设计电机支架电机支架是将电机固定在风扇的底座上的装置,需要考虑其稳定性和结构强度。

6.进行装配和调试将设计好的各个零件进行装配,并进行调试和测试。

调试过程中需要注意各个零件的配合情况和传动效率,以及摇头扇叶的摆动角度和频率是否符合设计要求。

三、总结台式电风扇的摇头装置是一种常见的机械结构,通过电机、减速器、摇头齿轮、摇头杆和摇头扇叶等组成,能够使风扇的扇叶左右自动摆动。

在进行课程设计时,需要明确设计需求,设计摇头杆和摇头齿轮的形状和尺寸,设计减速器和电机支架,然后进行装配和调试。

台式电风扇摇头装置机械原理课程设计

台式电风扇摇头装置机械原理课程设计

台式电风扇摇头装置机械原理课程设计
设计目标:设计一个台式电风扇摇头装置,使其能够自动左右摇头,提供舒适的风向变化。

设计要点:
电机选择:选择一个适当的电机作为摇头装置的驱动源。

该电机应具有足够的扭矩和转速,以便实现平稳的摇头运动。

传动机构设计:设计一个传动机构将电机的旋转运动转换为摇头运动。

传动机构应具有合适的减速比,以实现适当的摇头速度和范围。

摇头角度调节:设计一个可调节的摇头角度装置,使用户能够根据需要选择不同的摇头范围。

限位保护:设计一个限位装置,以避免摇头装置过度摇动或超过其设计范围。

限位装置应具有可靠的触发机制,确保装置安全可靠地停止在预定位置。

结构稳定性:设计一个稳定的结构,以确保摇头装置在运动过程中保持平衡和稳定。

设计步骤:
确定电机规格:根据需要的摇头速度和力矩,选择一个适当的电机。

设计传动机构:基于电机的转速和所需摇头角度,设计一个传动机构,将旋转运动转换为左右摇头运动。

设计摇头角度调节装置:设计一个装置,使用户能够轻松调节摇头角度。

设计限位保护装置:设计一个限位装置,以确保摇头装置在达到预定范围时停止运动。

设计结构稳定性:确保摇头装置的结构稳定性,考虑到电机和传动机构的安装位置和固定方式。

机械原理课程设计台式电风扇摇头装置的设计

机械原理课程设计台式电风扇摇头装置的设计

机械原理课程设计台式电风扇摇头装置的设计设计任务书XXX(系、部)机械大类专业机械0904班级课程名称:机械原理课程设计设计题目:台式电风扇摇头装置的设计完成期限:自2011年6月24日至2011年7月1日共1周设计的任务与主要技术参数本设计的任务是设计一个台式电风扇摇头装置,该电风扇的直径为Φ300,电风扇电动机转速为n=1450r∕min,电风扇摇头周期为T=10s,电风扇摆动角度Ψ=80°,行程速度变化系数K=1.01.设计任务:1.根据给定的主要参数,拟定机械传动系统总体方案,并画出传动系统图。

2.画出机构运动方案简图和运动循环图。

3.分配蜗轮蜗杆、齿轮传动比,确定其基本参数和几何尺寸。

4.根据给定的摆角Ψ及行程速度变化系数K,确定平面连杆机构的运动学尺寸,验算曲柄存在条件和最小传动角的结构方案,并进行分析计算。

5.提出调解摆角的结构方案,并进行分析计算。

6.编写设计计算说明书。

7.学生可进一步完成台式电风扇摇头机构的计算机动态演示验证。

要求有设计说明书一份,相关图纸一至两张。

(有条件的要求用三维动画表述)。

内容及任务进度安排起止日期6.24-6.266.27-6.296.30-7.1工作内容构思该机械运动方案运动分析及作图整理说明书与答辩参考资料1]XXX.机械原理[M].北京:高等教育出版社,2008:15-200.2]XXX.机械原理课程设计[M].北京:高等教育出版社,2011.1.3]XXX.机械原理教学辅导与题解答北京:科学出版社,2010.6.指导教师:XXX2011年6月23日空间较大。

工作原理和工艺动作分解电风扇的工作原理是周期性地改变送风区域,以增大送风区域。

为了实现电风扇的摆头动作,需要设计摆动机构和齿轮系机构。

摆动机构需要实现左右摆动的基本运动,包括运动轴线变换、传动比降低和周期性摆动。

齿轮系机构需要转换传动轴线和改变转速,实现运动轴线变换的基本动作。

同时,需要满足传动性能要求,如在急回系数K=1.01、摆动角度φ=80°的要求下,尽量保持运动的平稳转换和减小机构间的摩擦。

台式电风扇摇头装置机构设计-机械设计制造及其自动化专业毕业设计-毕业论文

台式电风扇摇头装置机构设计-机械设计制造及其自动化专业毕业设计-毕业论文

论文题目台式电风扇摇头装置目录目录 (1)第1章台式电风扇摇头装置的功能与设计要求 (3)1.1 设计题目 (3)1.2 工作原理及工艺过程 (3)1.3 设计要求 (3)1.4 功能分解 (4)第2章机构的选用与设计 (5)2.1 机构的选用 (5)2.2左右摇头机构 (5)2.2.1 左右摇动方案一(放弃) (5)2.2.2 左右摇头方案二(采用) (6)2.2 上下仰俯机构 (6)第3章传动比的设计 (8)第4章机构尺寸设计 (10)4.1 蜗轮蜗杆尺寸设计 (10)4.1.1 蜗杆尺寸参数 (10)4.1.2 蜗轮尺寸参数 (11)4.2 直齿圆柱齿轮尺寸参数 (11)4.2.1 直齿圆柱齿轮3尺寸参数 (11)4.2.2 直齿圆柱齿轮4尺寸参数 (12)4.2 双摇杆机构尺寸参数 (13)第5章小结 (14)第6章参考文献 (15)第1章台式电风扇摇头装置的功能与设计要求1.1 设计题目设计台式电风扇的摇头机构,使电风扇作摇头动作。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s,电扇摆动角度ψ=100°、俯仰角度φ=22°与急回系数K=1.03。

风扇可以在一定周期下进行摆头运动,使送风面积增大。

1.2 工作原理及工艺过程1.3 设计要求⑴.电风扇摇头机构至少包括连杆机构、蜗轮蜗杆机构和齿轮传动机构三种机构。

⑵.画出机器的运动方案简图与运动循环图。

拟订运动循环图时,执行构件的动作起止位置可根据具体情况重叠安排,但必须满足工艺上各个动作的配合,在时间和空间上不能出现干涉。

⑶.设计连杆机构,自行确定运动规律,选择连杆机构类型,校核最大压力角。

⑷.设计计算齿轮机构,确定传动比,选择适当的摸数。

⑸.编写设计计算说明书。

1.4 功能分解电风扇的工作原理是将电风扇的送风区域进行周期性变换,达到增大送风区域的目的。

显然,为了完成电风扇的摆头动作,需实现下列运动功能要求:电动机齿轮传动蜗轮蜗杆曲柄摇杆左右摇头机构图1.1 运动功能图⑴.风扇需要按运动规律做左右摆动,因此需要设计相应的摆动机构。

台式风扇摇头课程设计

台式风扇摇头课程设计

台式风扇摇头课程设计一、课程目标知识目标:1. 学生能够理解台式风扇的基本结构组成及其工作原理;2. 学生能够掌握摇头功能的相关电路原理和机械运动原理;3. 学生能够了解安全使用台式风扇的常识。

技能目标:1. 学生能够运用所学知识,分析台式风扇摇头功能的实现过程;2. 学生能够通过小组合作,设计并制作简单的台式风扇摇头模型;3. 学生能够运用科学探究方法,对台式风扇摇头功能进行故障排查和改进。

情感态度价值观目标:1. 学生能够对生活中的科学现象产生兴趣,培养探究精神和创新意识;2. 学生能够认识到科技与生活的紧密联系,增强学以致用的意识;3. 学生能够在合作中培养团队精神,尊重他人意见,提高沟通能力;4. 学生能够关注家用电器安全,养成安全用电的好习惯。

分析课程性质、学生特点和教学要求,本课程将目标分解为具体的学习成果,以便后续的教学设计和评估。

通过本课程的学习,期望学生能够达到上述知识、技能和情感态度价值观目标,为今后的学习和生活打下坚实基础。

二、教学内容本课程依据课程目标,结合教材内容,选择以下知识点进行教学:1. 台式风扇基本结构:包括电机、叶片、摇头机构、控制电路等组成部分;2. 工作原理:讲解电机如何将电能转化为机械能,以及摇头机构的运动原理;3. 摇头功能电路原理:分析摇头功能的电路设计,包括控制开关、定时器等;4. 安全用电常识:介绍使用台式风扇时的安全注意事项,预防触电等事故;5. 科学探究方法:培养学生运用观察、假设、实验等方法进行故障排查和改进;6. 小组合作与实践:组织学生分组设计、制作台式风扇摇头模型,提高实践能力。

教学大纲安排如下:1. 导入新课,介绍台式风扇基本结构(1课时);2. 讲解工作原理和摇头功能电路原理(2课时);3. 进行安全用电教育,案例分析(1课时);4. 引导学生运用科学探究方法,进行实践操作(2课时);5. 组织小组合作,设计并制作台式风扇摇头模型(2课时);6. 总结评价,展示成果,交流经验(1课时)。

台式电风扇摇头装置机械原理课程设

台式电风扇摇头装置机械原理课程设

台式电风扇摇头装置机械原理课程设
台式电风扇一般都带有摇头装置,这个装置的主要作用就是帮助风扇实现左右摆动,以扩大送风范围。

那么,这个摇头装置的机械原理是什么呢?下面我们来详细探讨一下。

首先,我们需要知道,摇头装置的核心部件就是一组齿轮。

这组齿轮由两个不同型号的齿轮组成,分别是主齿轮和从齿轮。

主齿轮是风扇机身内部的一个齿轮,而从齿轮则与主齿轮相连,并且与外部的操作杆相连。

当我们手动转动操作杆时,从齿轮也会跟着转动。

由于从齿轮与主齿轮相连,所以当从齿轮旋转时,会带动主齿轮进行旋转。

而主齿轮上有一组齿轮,这组齿轮与风扇叶片相连。

因此,当主齿轮旋转时,就会带动风扇叶片进行旋转,从而产生送风效果。

同时,咱们还需要知道从齿轮内部还设置有一个卡片。

当我们手动旋转操作杆时,这个卡片也会跟着转动。

卡片的主要作用就是限制从齿轮的旋转角度,从而保证风扇叶片的旋转角度不会超出安全范围。

所以,摇头装置的机械原理主要是利用齿轮的传动作用,将操作杆的旋转转化为风扇叶片的旋转,从而实现左右摇头效果。

同时,为了确保安全性,还需要在从齿轮内部设置卡片,限制旋转角度。

综上,台式电风扇摇头装置的机械原理十分简单,可以通过手动操作杆,利用齿轮的传动作用,实现风扇叶片的左右摆动。

在实际使用中,我们还需要注意操作的安全性,以免误伤自己或他人。

台式电风扇摇头装置的设计机械原理

台式电风扇摇头装置的设计机械原理

台式电风扇摇头装置的设计机械原理电机驱动系统是指通过电机来实现风扇叶片的旋转和摇头运动。

电风扇通常采用交流电机作为驱动力源,其机械原理是利用交流电产生的电磁感应,使电机产生转动。

电机内部的定子通过电流激励形成一个旋转磁场,而转子则受到磁场力的作用而转动。

通过控制交流电的频率和相位,可以控制电机输出的转速和方向。

摇头机械传动系统是实现风扇头部摇摆运动的关键部件。

它一般由电机驱动、齿轮传动和连杆机构组成。

具体来说,电机通过齿轮传动将转动力传递给连杆机构;连杆机构则通过连接风扇头部的摇头装置,将旋转运动转换为摇摆运动。

摇头机械传动系统的前面提到的齿轮传动,通常是通过斜齿轮传动来实现。

斜齿轮传动由两个相互啮合的斜齿轮组成,其中一个齿轮固定在电机轴上,另一个齿轮固定在连杆机构上。

当电机转动时,齿轮之间的啮合使连杆机构受力从而产生摇摆运动。

连杆机构一般由几个连杆和杆销组成。

其中,固定杆连接齿轮和连杆机构,使齿轮能够转动连动连杆;连杆则连接固定杆和摇头装置,使齿轮的旋转运动转换为摆动运动。

连杆机构的设计需要保证其结构紧凑、运动平稳等特点。

此外,摇头机械传动系统还需要设置导向装置来确保连杆机构的摆动轨迹。

导向装置一般采用导向拉杆和导向槽的组合,通过拉杆和槽的相互配合,使连杆机构的摆动轨迹稳定且具有一定的幅度。

综上所述,台式电风扇摇头装置的设计机械原理主要包括电机驱动系统和摇头机械传动系统。

电机驱动系统利用交流电产生的电磁感应实现风扇叶片的旋转和摇头运动;摇头机械传动系统通过齿轮传动和连杆机构将电机的旋转运动转换为摆动运动,实现风扇头部的摇摆功能。

同时,连杆机构的设计需要保证其结构紧凑、运动平稳,而导向装置的设置可以确保连杆机构的摆动轨迹稳定。

课程设计《台式电风扇摇头装置》

课程设计《台式电风扇摇头装置》

课程设计《台式电风扇摇头装置》课程设计报告题目:台式电风扇摇头装置一、设计任务和要求设计一个台式电风扇摇头装置,要求满足以下条件:1.装置能够实现左右90度摇头,上下30度摇头。

2.装置能够在不同角度实现均匀的风扇送风。

3.装置结构简单,操作方便,成本低。

二、设计思路和方案1.摇头装置设计采用蜗轮蜗杆传动机构实现电风扇的摇头功能。

蜗轮蜗杆机构可以将电风扇的风向进行左右90度摇头,通过调整蜗杆的角度,实现电风扇向左或向右的摇头。

同时,采用齿轮齿条机构实现电风扇的上下30度摇头,通过调整齿条的长度,实现电风扇向上或向下的摇头。

2.送风装置设计采用多翼式送风装置,通过调节装置上多个小翼的角度和数量,实现送风的均匀性。

每个小翼上设有多个风孔,通过改变风孔的数量和大小来调节送风的角度和量。

同时,在送风装置的下部设置导风板,使风向更加集中,提高送风的均匀性和效率。

3.控制电路设计采用微处理器控制电路,通过编程实现对电风扇的摇头和送风角度的精确控制。

同时,设置电源模块和保护电路,保证电风扇的安全性和稳定性。

三、设计实现和结果1.具体实施方案(1)蜗轮蜗杆传动机构的设计与制造根据电风扇摇头的要求,设计蜗轮蜗杆传动机构,并进行加工制造。

其中,蜗轮蜗杆机构中的蜗轮为可调节式结构,可以方便地调整电风扇向左或向右的摇头角度。

同时,为了降低噪音和提高稳定性,在蜗轮蜗杆机构中设置减震器和润滑装置。

(2)齿轮齿条传动机构的设计与制造根据电风扇上下摇头的要求,设计齿轮齿条传动机构,并进行加工制造。

其中,齿轮齿条机构中的齿条为可调节式结构,可以方便地调整电风扇向上或向下的摇头角度。

同时,为了提高稳定性,在齿轮齿条机构中设置稳定器。

(3)多翼式送风装置的设计与制造根据电风扇送风的要求,设计多翼式送风装置,并进行加工制造。

其中,每个小翼上设有多个风孔,通过改变风孔的数量和大小来调节送风的角度和量。

同时,在送风装置的下部设置导风板,使风向更加集中,提高送风的均匀性和效率。

台式风扇摇头机构课程设计

台式风扇摇头机构课程设计

台式风扇摇头机构课程设计一、课程目标知识目标:1. 学生能理解台式风扇摇头机构的结构组成及其工作原理;2. 学生能够描述并掌握台式风扇摇头机构的安装与拆卸流程;3. 学生能够解释台式风扇摇头机构涉及的物理知识,如简单机械原理、力的作用等。

技能目标:1. 学生能够运用工具对台式风扇摇头机构进行拆装和组装;2. 学生能够运用观察、分析、解决问题的方法,对台式风扇摇头机构进行故障诊断与维修;3. 学生能够设计并制作简单的台式风扇摇头机构模型。

情感态度价值观目标:1. 培养学生对生活中常见机械设备的好奇心和探究欲;2. 增强学生的团队合作意识和动手实践能力;3. 培养学生关注环保、节能的意识,了解并关注家用电器对环境的影响。

课程性质:本课程为实用技术类课程,以台式风扇摇头机构为载体,结合物理知识,培养学生的动手能力、观察分析能力和创新意识。

学生特点:考虑到学生所在年级的特点,已具备一定的物理知识和动手操作能力,但需要进一步引导和激发他们的学习兴趣。

教学要求:教师应注重理论与实践相结合,引导学生主动参与,鼓励学生提问、讨论,提高学生的实践操作能力和解决问题的能力。

通过课程目标的实现,为学生的后续学习和生活打下坚实基础。

二、教学内容1. 台式风扇摇头机构的结构组成:包括电机、摇头机构、扇叶等部分,以及各部分的相互关系和作用;相关教材章节:第三章“台式风扇的构造与原理”。

2. 台式风扇摇头机构的工作原理:讲解摇头机构如何实现风扇摇头功能,涉及简单机械原理和电路控制;相关教材章节:第三章“台式风扇的构造与原理”及第四章“台式风扇的控制电路”。

3. 台式风扇摇头机构的拆装与组装:教授学生如何正确使用工具进行拆装和组装,强调操作注意事项;相关教材章节:第五章“台式风扇的安装与维修”。

4. 故障诊断与维修:分析台式风扇摇头机构可能出现的故障及其原因,教授诊断方法和维修技巧;相关教材章节:第五章“台式风扇的安装与维修”。

机械原理课程设计(台式风扇的摇头机构)

机械原理课程设计(台式风扇的摇头机构)

目录1. 台式风扇摇头装置的功能与设计要求1.1. 工作原理及工艺过程1.2. 功能分析1.3. 原始数据及设计要求1.3.1 原始数据1.3.2 设计要求1.4 设计任务2.执行机构的设计3.减速机构的设计4.方案的确定4.1 原动机的选择4.2 传动方案确定4.3 有关参数及相关计算4.3.1 相关计算4.3.2 传动构建的尺寸确定5.尺寸与运动综合5.1 执行机构的尺寸设计5.2 验算曲柄存在条件即最小传动角5.2.1 曲柄存在的条件5.2.2 最小传动角的验算6.系统总图1.台式风扇摇头装置的功能与设计要求1.1工作原理及工艺过程1.2 功能分解电风扇的工作原理是将风扇的送风区域进行周期性的变换达到送分区域的目的。

显然,为了完成电风扇的摇头工作,需要实现下列运动功能:(1)风扇需要按照运动规律做左右摆动,因此需要设计相应的摆动机构;(2)风扇需要转换传动轴线和改变转速,因此需要设计相应的齿轮系机构。

此外,还要满足传动性能要求:改变风扇的送风区域时,在急回系数K=1.025,摆动角 ψ=95°的要求下,尽量保持运动的平稳转稳和减小机构间的摩擦。

1.3原始数据及设计要求1.3.1原始数据风扇直径为Φ300mm ,电扇电动机转速n=1450r/min ,电扇摇头周期T=10s 。

电扇的摆动角ψ=95°,急回系数K=1.025。

1.3.2 设计要求设计台式电风扇的摇头装置要求能按给定的急回系数和摆动角左右摆动,以实现一个动作下叶片和摆头的动作同时完成。

1.4 设计任务1.按给定主要参数,拟定机械传动系统的总体方案。

2.画机构运动简图。

3.分配蜗轮蜗杆,齿轮传动比,确定他们的基本参数,设计计算几何尺寸。

4.解析法确定平面连杆机构的运动学尺寸。

5.提出调节摆角的结构方案,并计算分析。

6.学生科=可进一步完成台式风扇摇头机构的计算机动态演示验证。

2.执行机构的设计相当于一个四杆连杆机构,ABCD ,机架CD ,连杆架AB 为原动件,机构ABCD 变成双摇杆机构,AD 的相对于机架的摆动即是摇头动作。

台式电风扇摇头装置方案

台式电风扇摇头装置方案
双摇杆机构的设计
方案号
电扇摇摆转动
电扇仰俯转动
仰角 /(°)
摆角ψ/(°)
急回系数K
F
105
1.05
25
极位夹角为180°*(K-1)/(K+1)=4.4°,先取摇杆LAB=70,确定AB的位置,然后让摇杆AB顺时针旋转105°,即AB2,再确定机架AD的位置,且LAD=80,备注: AD只能在摇杆AB, AB2的同(由于k>1)。
由于极位夹角很小,可视为0°,当杆AB处在左极限时, BC,AB共线,当AB处在右极限时,即图中AB2的位置,此时B2C2,AB2重叠,
经计算得:LBC=48,LCD=75。
确定四根杆长之后,画出其一般位置如图所示,此时可根据理论力学知识求出杆AB, BC,CD的速度,已知VAB=WABLAB=(200/1800*π)*70=24.4mm/s在小三角形中,可求出WBC=0.264Rad/s。
3).实现上下吹风所选机构
选择滑销离合器以及按钮机构,按钮机构用于控制角度,属于外在条件设置,此处不详细介绍。
滑销离合器
滑销离合器利用装在半离合器凸缘端面上的销与另一半离合器凸缘端面上的小孔组成可滑动的配合以实现接合与脱开动作。即滑销的上下滑动使得蜗轮与蜗杆接合和脱开,从而实现能上能下地吹风。
五.机构的大体设计
计算与说明
结果
台式电风扇摇头装置方案
一.设计要求
设计台式电风扇的摇头机构,使电风扇作摇头动作(即风扇的摇摆转动和仰俯转动的复合运动)。
风扇的直径为Ф=300mm,电扇电动机转速n=1450r/min,电扇摇头周期T=10s。电扇摆动角度Φ、仰俯角度ψ与急回系数k的设计要求及任务分配见下表:
方案号
电扇摇摆转动

机械原理课程设计台式电风扇摇头装置设计

机械原理课程设计台式电风扇摇头装置设计

机械原理课程设计台式电风扇摇头装置设计设计台式电风扇的摇头装置要求能左右旋转并可调节俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10。

课程题目:台式电风扇摇头装置专业:班级:学号:姓名:指导老师:设计台式电风扇的摇头装置要求能左右旋转并可调节俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10。

2022年6月23日目录一.设计要求 (2)二.设计任务 (2)三.功能分解 (3)四.选用机构………………………………………………………34-1.减速机构选用………………………………………………44-2.离合器选用…………………………………………………54-3.摇头机构选用………………………………………………6五.机构的设计………………………………………………………75-1.铰链四杆机构的设计.............................................75-2.四杆位置和尺寸的确定..........................................85-3.传动比的分配......................................................9六.总结...............................................13七.参考文献 (15)设计台式电风扇的摇头装置要求能左右旋转并可调节俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10。

台式电风扇摇头装置方案一.设计要求设计台式电风扇的摇头装置要求能左右旋转并可调节俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计台式电风扇摇头装置机构姓名:_____________学号:_____________专业:_____________指导教师:_____________台式电风扇摇头装置机构设计摘要电风扇摇头装置设计是从电风扇设计开始的,也是电风扇设计中最重要的部分,对于电风扇的研究,国内外已有不少的研究成果,但在创新这一块做的还不够, 还有待进一步完善。

本文首先对摇头电风扇的历史和发展现状以及其类型和特点进行了介绍,然后介绍了设计准则, 提出方案拟定, 并选择最优方案,主要是现有的电风扇摇头装置中平面摇杆机构,包括平面摇杆机构的结构、工作原理、设计原理、设计原则;其次根据已知原动机的转速, 分配传动比,选择合适的机构, 如蜗轮蜗杆机构以及齿轮机构, 根据传动比确定它们的基本参数,设计计算几何尺寸,再次采用图解法, 根据已知条件(极位夹角, 摇杆速度等)设计平面四杆机构, 然后在实验室组建仿真机构模型, 观察所设计的尺寸是否满足所需的运动轨迹,再就制作台式电风扇摇头平面机构的计算机动态演示, 通过图解法研究各杆件的运动, 进行运动分析, 最后总结并讲述了电风扇的未来展望。

关键词:平面摇杆机构,传动比, 蜗轮蜗杆, 齿轮传动, 运动分析 ,动态演示目录第一章引言 (5)1.2.2 电风扇工作原理 (6)第二章电风扇摇头机构的设计 (7)2.1 电风扇摇头机构设计概述 (7)2.2 电风扇摇头装置设计原则[1 (8)2.3 电风扇摇头装置方案拟定[2] (8)2.3.1 方案Ⅰ (平面连杆摇头机构) (8)2.3.2 方案Ⅱ (另一种平面连杆摇头机构) (9)2.3.3 对比分析选择方案 (10)第三章机构的设计 (10)3.1 铰链四杆机构的设计[5 (10)3.1.1 铰链四杆机构的组成和基本形式 (10)3.1.2平面双摇杆机构的分类和极限位置分析 (11)3.1.3 四杆位置和尺寸的确定 (12)3.2 原动机的选择和传动比的分配[6] (14)3.2.1 原动机的选择 (14)3.2.2 传动比的分配 (16)3.3 蜗轮蜗杆机构的结构特点[6 (16)3.3.1蜗轮蜗杆机构的结构特点 (16)3.3.2 蜗轮蜗杆机构的几何尺寸计算 (17)3.3.3 涡轮蜗杆建模 (18)3.4 齿轮机构的设计 (19)3.4.1 齿轮机构的结构特点和选用原则 (19)3.4.2 齿轮机构的几何尺寸计算 (20)3.4.3 齿轮机构的建模 (21)第四章平面连杆机构的运动分析 (22)4.1 概述 (22)4.2 平面连杆机构的运动分析[8] (22)第五章电风扇整体模型的建立 (28)5.1 电风扇零件的模型建立 (28)第六章参考文献 (36)第一章引言1.1 电风扇发展现状和前景展望近年来,相较人们对空调的普遍关注,电风扇市场就有点门庭冷落。

但空调高耗电量且封闭空间的弊端,使得通风效果相对较好、功耗相对较低的电风扇仍然存在很大的市场。

所以有必要研究电风扇的发展。

电风扇又称电扇,用于散热,夏天用它来清凉为好,还可用来驱散室内热气。

1882年,美国纽约的克罗卡日卡齐斯发动机厂的主任技师休伊斯卡茨霍伊拉,最早发明了商品化的电风扇。

1908年,美国的埃克发动机及电气公司,研制成功世界上最早的齿轮驱动左右摇头的电风扇, 这种电风扇防止了不必要的三百六十度转头送风,而成为以后销售的主流。

如今,电风扇已一改人们印象中的传统形象,在外观和功能上都更追求个性化,塔式气流扇尊贵典雅,卡通台扇娇巧可爱,而电脑控制、自然风、睡眠风、负离子功能等这些本属于空调器的功能,也被众多的电风扇厂家拿来做文章,并在此基础上增加了照明、驱蚊等更多的实用功能。

据统计,市场成熟度颇高的电风扇行业在国内仍然存在着相当大的市场容量,但由于这个行业技术比较陈旧,外观固定单一,市场上常见的落地扇、转页扇、台扇、壁扇、楼顶扇、吊扇这几个传统类型电风扇的外观和功能的同质化现象十分严重,严重影响和制约了这个市场的发展和提升。

但近年来一些主流企业开始有所觉察,他们通过积极创新,突破老式的传统设计,纷纷开发出了一系列更富创新力,更具差异化个性的新产品,以求继续做大蛋糕和进行产品升级。

1.2电风扇的结构与工作原理1.2.1 电风扇的结构如图1.1所示, 台扇由扇叶、网罩、扇头、调速机构、底座等部分组成, 扇头是台扇中最复杂、最重要的部件,由电动机、前后端盖及摇头机构等构成, 而吊扇主要由扇头、上下罩、吊杆、吊攀以及独立安装的调速器组成。

转页扇由于导风轮的作用,使其送出的风风力柔和,舒适宜人。

图 1.1 台扇的基本结构1.2.2 电风扇工作原理电风扇工作时(假设房间与外界没有热传递)室内的温度不仅没有降低,反而会升高。

让我们一块来分析一下温度升高的原因:电风扇工作时,由于有电流通过电风扇的线圈,导线是有电阻的,所以会不可避免的产生热量向外放热,故温度会升高。

但人们为什么会感觉到凉爽呢?因为人体的体表有大量的汗液,当电风扇工作起来以后,室内的空气会流动起来,所以就能够促进汗液的急速蒸发,结合“蒸发需要吸收大量的热量”,故人们会感觉到凉爽。

风扇在转动时,扇叶后面空气的流速要慢于扇叶前面空气的流速,这样后面空气的压力就比前面的大,这个压力差,就推动空气向前,形成风了。

第二章电风扇摇头机构的设计2.1 电风扇摇头机构设计概述摇头机构由减速机构、连杆机构、控制机构与过载保护装置组成,形式有两种:离合式与拨式。

随着时代的发展, 电风扇的摇头机构也不仅仅限于这些, 例如就有一种电风扇摇头机构,包括电动机、齿箱总成、摇头连杆,电动机及齿箱总成安装在Y型支架上,Y型支架固定在连接头上,其中摇头连杆一端与Y型支架连接,另一端通过传动机构与齿箱总成连接。

所述的传动机构是受齿箱总成控制的做旋转运动的上下曲柄盖,曲柄盖与连杆配合推动电风扇做复合摇头运动。

由于采用机械式传动取代了同步电机,使性能更稳定、质量更可靠,且结构简单、成本低。

还有一种可调摇头角度的电风扇摇头机构, 包括连于连杆一端的摇臂轮,以及活动连于拨轮垫孔内的中心轴, 实现了电风扇摇头摆动角度的方便调整且结构紧凑,适用于室内放置电风扇不同的位置要求,提高了电风扇的使用效率。

所以电风扇摇头装置多种多样, 而且是在不断创新的。

2.2 电风扇摇头装置设计原则[1]1) 各构件应最简化, 使电风扇尾部装在小的壳体中;2) 各构件之间安排合理的位置,以免相互干扰;3) 摇头应平稳;4) 发动机也应跟随摇头装置摇摆;5) 应使整体结构美观;6) 自动摆头、送风角度可调;7) 噪音低、可定时。

2.3 电风扇摇头装置方案拟定[2]考虑到执行机构的速度较低和电动机的经济性,选用同步转速为750r/min 的电动机。

台式电风扇摇头装置的主要机构是铰链四杆机构的运动。

可以有多种多样的设计方案,图2.1—2.4给出了四种可用于摇头装置运动的执行机构方案。

2.3.1 方案Ⅰ(平面连杆摇头机构)图 2.3 平面四杆摇头机构图2.3所示为电风扇摇头机构原理,电动机外壳作为其中的一根摇杆AB,蜗轮作为连杆BC,构成双摇杆机构ABCD。

蜗杆随扇叶同轴转动,带动BC作为主动件绕C点摆动,使摇杆AB带电动机及扇叶一起摆动,实现一台电动机同时驱动扇叶和摇头机构。

该方案主要特点:(1)是一种平面连杆机构,机构简单,加工方便,能承受较大载荷;(2)有涡轮蜗杆机构,传动比大,结构紧凑,传动性平稳,无噪声,反形成具有自锁性,但传动效率低,磨损较严重,蜗杆轴向力大;(3)工作行程中,能使摇头装置控制符合要求。

2.3.2 方案Ⅱ(另一种平面连杆摇头机构)图 2.4 平面四杆摇头机构如图2.4所示上面一种摇头机构方案和传动比的大小,方案Ⅱ应用在传动比大的运动机构中。

由已知条件和运动要求进行四连杆机构的尺寸综合,计算电动机功率、连杆机构设计等,绘出机械系统运动方案的电风扇的摇头机构中,电机装在摇杆1上,铰链B处装有一个蜗轮。

电机转动时,电机轴上的蜗杆带动蜗轮, 蜗轮与小齿轮空套在同一根轴上,再由小齿轮带动大齿轮, 而大齿轮固定在连杆上, 从而迫使连杆2绕B点作整周转动,使连架杆1和3作往复摆动,达到风扇摇头的目的。

它具有方案Ⅰ的特点。

2.3.3 对比分析选择方案对以上四种方案进行比较, 综合其优缺点, 本次设计选用方案Ⅱ,原因如下:1)采用平面连杆机构, 使结构简单;2) 有蜗轮蜗杆机构,传动比大,结构紧凑,传动性平稳,无噪声,反形成具有自锁性,但传动效率低,磨损较严重,蜗杆轴向力大;3) 齿轮的应用使整个传动系统的传动比减小;4)整个机构简单,加工方便,节省成本。

第三章机构的设计3.1 铰链四杆机构的设计[5]3.1.1 铰链四杆机构的组成和基本形式如图3.1所示,铰链四杆机构是由转动副将各构件的头尾联接起的封闭四杆系统,并使其中一个构件固定而组成。

被固定件4称为机架,与机架直接铰接的两个构件1和3称为连架杆,不直接与机架铰接的构件2称为连杆。

连架杆如果能作整圈运动就称为曲柄,否则就称为摇杆。

其类型可分为:图 3.1 铰链四杆机构1) 曲柄摇杆机构: 在铰链四杆机构中,若两个连架杆中的一个为曲柄,另一个为摇杆, 则称之为曲柄摇杆机构。

2) 双曲柄机构: 在铰链四杆机构中, 若两个连架杆均为曲柄, 则称为双曲柄机构. 当两曲柄的长度相等且平行 (即其他两杆的长度也相等) 时, 称为平行双曲柄机构. 若双曲柄机构的对边杆长都相等, 但不平行, 则称为反向双曲柄机构。

3) 双摇杆机构: 在铰链四杆机构中, 若两个连架杆均为摇杆, 则称之为双摇杆机构,其中在电风扇摇头装置中用到了双摇杆机构。

3.1.2平面双摇杆机构的分类和极限位置分析按组成它的各杆长度关系可分成两类,第一类是符合曲柄存在条件, 即符合格拉肖夫准则的四杆运动链, 而以其最短杆对边的杆为机架组成的双摇杆机构。

第二类是不符合曲柄存在条件, 即最短杆与最长杆长度之和大于其余两杆长度之和的四杆运动链, 以其任意一杆为机架构成的双摇杆机构。

双摇杆机构是铰链四杆机构中常见的形式之一, 在机械中有特殊曲柄存在的条件,机构若成为双摇杆机构, 可通过两种途径来实现:(1) 各杆长度满肖夫判别式, 即最短杆与最长杆长度之和小于或等于其它两杆长度之和。

且以最短杆的对边为机架, 即可得到双摇杆机构。

根据低副运动的可逆性原则, 由于此时最短杆是双整转副件, 所以, 连杆与两摇杆之间的转动副仍为整转副。

因此摇杆的两极限位置分别位于连杆(最短杆) 与另一摇杆的两次共线位置, 即一次为连杆与摇杆重叠共线, 如图3.2 所示AB′C′D, 另一次为连杆与摇杆的拉直共线即图中所示ABCD。

摇杆的两极限位置与曲柄摇杆机构中摇杆的极限位置的确定方法相同, 很容易找到。

相关文档
最新文档