启发式搜索策略

合集下载

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

第五章状态空间搜索策略搜索是人工智能的一个基本问题,是推理不可分割的一部分。

搜索是求解问题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。

搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。

搜索可分为盲目搜索和启发式搜索两种。

1.1 盲目搜索策略1.状态空间图的搜索策略为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。

一般情况下,不同的知识表示对应着不同的求解方法。

状态空间表示法是一种用“状态”和“算符”表示问题的方法。

状态空间可由一个三元组表示(S,F,Sg)。

利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。

如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。

算法5.1 状态空间图的一般搜索算法①建立一个只含有初始节点S0的搜索图G,把S放入OPEN表中。

②建立CLOSED表,且置为空表。

③判断OPEN表是否为空表,若为空,则问题无解,退出。

④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。

⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。

问题的解的这条路径得到。

即可从图G中沿着指针从n到S⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。

⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略
一、启发式策略
启发式策略是指在解决复杂问题时,根据人的经验和技巧来寻求最优解的方法。

它是人工智能领域中的一种和规划技术,可以解决形式化的各种问题。

启发式策略广泛应用于机器学习、图形图计算、机器人控制和计算机图形学等多种领域。

启发式策略包括:A*算法、B*树算法、启发式和动态规划等。

A*算法是一种非常有效的启发式方法,它采用了一个启发函数来估计待访问节点的最优价值,从而可以根据最小价值节点而进行,的效果比较好。

B*树算法是一种静态的启发式方法,该算法在每一步都可以通过比较不同节点价值来确定最优路径,从而更有效地出最优路径。

启发式和动态规划都是一种在状态空间中采取其中一种方法或策略以获得最优解的技术,两者最大的不同点在于,启发式依赖于当前状态,动态规划则更倾向于最终目标。

二、应用
启发式策略广泛应用于人工智能领域,它可以用来解决各种形式化问题,如游戏、自然语言处理问题等。

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略

蚁群算法
总结词
模拟蚂蚁觅食过程的群体智能优化算法
详细描述
蚁群算法是一种模拟蚂蚁觅食过程的群体智能优化算法,通过模拟蚂蚁的信息素传递过程,逐渐建立起最优路 径。其优点在于能够在复杂环境中寻找到最优解,适用于解决组合优化问题,如旅行商问题、图的着色问题等 。
粒子群优化算法
总结词
模拟鸟群、鱼群行为的全局优化算法
人工智能的未来趋势
未来人工智能的发展将更加注重跨学科融合,包括计算机科 学、心理学和哲学等多个领域,同时人工智能的应用也将更 加广泛和深入,涉及的领域也将更加广泛和多样化。
03
启发式搜索策略简介
启发式搜索的定义与特点
定义
启发式搜索是一种基于人类认知和解决问题的启发式方 法的搜索策略,它通过利用一些特定的提示或启发式信 息来指导搜索方向,从而减少搜索的盲目性和无序性, 提高搜索效率。
展望未来-启发式搜索策略在人工智 能中的发展前景
基于启发式搜索的混合优化算法
总结词
结合了启发式搜索策略和混合算法的优化方 法,能够处理复杂的多变量优化问题,提高 搜索效率。
详细描述
混合优化算法是一种结合了不同优化技术的 算法,旨在解决单一方法无法有效处理的复 杂问题。启发式搜索策略为混合算法提供了 重要的启示,通过混合启发式搜索策略和传 统优化算法,可以更好地处理多变量优化问
题,提高搜索效率。
基于启发式搜索的多目标优化算法
总结词
利用启发式搜索策略处理多目标优化问题 ,能够同时满足多个优化目标,提高整体 优化效果。
VSBiblioteka 详细描述多目标优化问题是一种需要同时满足多个 优化目标的复杂问题。传统的优化算法往 往难以同时满足所有目标,而启发式搜索 策略可以提供一种有效的解决方案。通过 结合启发式搜索策略和多目标优化算法, 可以更好地解决这类问题,提高整体优化 效果。

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略

在自然语言处理中的应用
文本分类
在自然语言处理中,文本分类是一个重要的任务。启发式搜索策略可以帮助 算法对文本进行分词,提取特征,并选择最能代表文本类别的特征,从而提 高文本分类的准确性。
信息检索
在信息检索中,用户输入查询关键词后,系统需要从大量的文档中检索出与 查询相关的信息。启发式搜索策略可以帮助系统根据关键词语义信息,快速 定位到相关文档,并返回最相关的结果,提高用户体验。
在机器学习中的应用
特征选择
机器学习算法通常需要对输入数据进行特征选择,以降低维 度并提高算法性能。启发式搜索策略可以帮助算法选择更有 效的特征,从而提高分类和回归的准确性。
模型优化
机器学习算法中的模型优化是关键,启发式搜索策略可以通 过试错的方式来寻找最优的超参数配置,提高模型的性能和 泛化能力。
利用多智能体的协同作用,提高搜索效率。多个智能体可以分工合作,共同解决问题。
启发式搜索策略的未来发展趋势
01
可解释性
研究如何提高启发式搜索策略的可解释性,以便开发人员能够更好地
理解搜索算法的内部工作原理。
02
多任务学习
将多个任务集成到一个统一的框架中,使搜索策略能够适应不同任务
的要求。
03
强化学习
研究展望
1
未来将继续深入研究该启发式搜索策略的性能 和适用范围,希望能够进一步拓展其应用领域 。
2
将探索将该启发式搜索策略与其他人工智能技 术相结合,以进一步提高其性能和鲁棒性。
3
将致力于推广该启发式搜索策略在实际应用领 域的应用,希望能够为解决实际问题提供更多 帮实际问题中的应用案例
分析
在路径规划中的应用案例
总结词
高效、实用

启发式搜索(共49张PPT)

启发式搜索(共49张PPT)
f(x)=g(x)+h(x)
其中:g(x)——从初始节点S0到节点x的实际代价; h(x)——从x到目标节点Sg的最优路径的评估代价,它体现了问
题的启发式信息,其形式要根据问题的特性确定,h(x)称为启发式 函数。
2022/10/14
6
评估函数
启发式方法把问题状态的描述转换 成了对问题解决程度的描述。
这一程度用评估函数的值来表示。
2022/10/14
7
评估函数
S
搜索图G
2022/10/14
n ng
初始状态节点S
f(n):s-n-ng的估计最小路径代价
g(n):s-n的实际路径代价 h(n): n-ng的估计最小路径代价
节点n
目标状态节点ng
8
启发式搜索A算法
A算法的设计与一般图搜索相同,划分为二个阶段:
IF f(ni)>f(n,ni) THEN 令f(ni)=f(n,ni)
修改指针指向新父结点n
排序OPEN表(f(n)值从小到大排序)
2022/10/14
10
2022/10/14
4功指1搜 未做.若.退针建扩C索nL出从立为展图O,n一S一节到GE个此,目的把点S只这解标已S表放条包是扩节中路到含追展点;径一节起踪,建而个点始图则立得叫表节G有一到中O,点解P个的沿其ES成N叫;的初着的
始为空表;
5.扩展节点n,同时生成不是n的 祖 M2出的.先若;这的OP些那EN成些表员子是作节空为点表n,的的则集后失合继败节M,退点把 添入搜索图G中;对于M中每个 子3把 表.节选中它点f择(,从nnO,称nOi,P计iP)E此EN=算N表节g表:(n上点移,n为的出i) +节并第h放点一(n进in)个;C节LO点SE,

6第六讲 第三章(盲目、启发搜索)

6第六讲  第三章(盲目、启发搜索)

二、有序搜索
用估价函数 f 来排列OPEN表上的节点。
应用某个算法选择OPEN表上具有最小f 值的节点作为
二、宽度优先搜索
例3.2 八数码问题 操作规定: 允许空格四周上、下、左、右的数码 块移入空格中,不许斜方向移动,不许返回先辈 结点。
1 2 3 8 5 7 4 6
1
4
1 3 8 2 5 7 4 6
2
1 2 3 8 4 5 7 6
3
1 2 3 8 5 7 4 6
5
1 2 3 8 5 7 4 6
深度优先搜索的特点
OPEN表为堆栈,操作是后进先出(LIFO) 深度优先又称纵向搜索。 一般不容易保证找到最优解(如下图所示) 防止搜索过程沿着无益的路径扩展下去,往往 给出一个节点扩展的最大深度——深度界限。
2、有界深度优先搜索
引入搜索深度限制值d,使深度优先搜索具有完备性 。 (1)深度界限的选择很重要 d若太小,则达不到解的深度,得不到解;若太大,既 浪费了计算机的存储空间与时间,降低了搜索效率。由于 解的路径长度事先难以预料,要恰当地给出d的值是比较 困难的。 (2)即使能求出解,它也不一定是最优解。 例3.3:设定搜索深度限制d=5的八数码问题。
4. 搜索过程框图
S0放入OPEN表 是 OPEN表空? 否 将OPEN表中第一个节点(n) 移至CLOSE表 否 n是目标节点? 扩展节点n,把n的后继节点放入 OPEN表末端,提供指向 节点n的指针 修改指针方针,重排OPEN表
失败

成功
一、图搜索策略(Graph Search) 5.图搜索方法分析:
3.2 启发式搜索
盲目搜索的不足:效率低,耗费空间与时间。 启发式搜索:利用问题本身特性信息(启发信息) 指导搜索过程。是有序搜索。 一、启发式搜索策略 启发式信息主要用途:

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略

人工智能已经广泛应用于医疗、金融 、交通、军事等领域,为人类带来了 巨大的便利和效益。
人工智能发展历程
自20世纪50年代以来,人工智能已经 经历了漫长的发展历程,从最初的专 家系统到现在的人工神经网络、深度 学习等技术。
启发式搜索策略定义
启发式搜索策略定义
启发式搜索策略是一种基于启发式知 识的搜索策略,通过利用问题的启发 式信息来指导搜索方向,从而加速搜 索过程。
启发式搜索策略特点
启发式搜索策略具有高效性、灵活性 、自适应性等特点,能够根据问题的 不同特点选择合适的搜索策略,提高 搜索效率。
本文目的与结构
本文目的
本文旨在探讨人工智能中的启发式搜索策略及其应用,分析其优缺点,并提出改进方法。
本文结构
本文将分为引言、正文和结论三个部分。引言部分介绍人工智能和启发式搜索策略的基本概念;正文 部分详细介绍启发式搜索策略的原理、方法及应用;结论部分总结全文,并提出未来研究方向。
03
启发式搜索策略在人工智能中 的应用
机器学习中的启发式搜索策略
基于规则的搜索
利用已知规则进行搜索,减少搜 索空间,提高搜索效率。
基于模型的搜索
利用机器学习模型预测搜索方向 ,指导搜索过程,加速收敛速度 。
自然语言处理中的启发式搜索策略
基于语言模型的搜索
利用语言模型预测下一个词或句子的 可能性,指导搜索过程,提高文本生 成和理解的准确性。
知识推理
利用表达出来的知识进行推理,以指导搜索过程 。
3
知识更新
随着搜索的进行,不断更新知识库,以适应新的 情况。
基于搜索树的启发式搜索
搜索树构建
根据问题的特点,构建合适的搜索树。
启发式信息添加

结合穷举法与启发式算法:确定搜索方向的策略与方法

结合穷举法与启发式算法:确定搜索方向的策略与方法

结合穷举法与启发式算法:确定搜索方向的策略与方

在穷举法与启发式算法结合时,确定搜索方向是非常重要的。

启发式算法通常基于一些经验或启发式的规则,用于引导搜索过程。

以下是一些常用的确定搜索方向的策略:
1.利用已知最优解:如果已知某问题的最优解,那么可以将其作为搜索的起
点或搜索过程中的一个重要节点。

这样可以大大缩小搜索范围,提高搜索效率。

2.使用启发式函数:启发式函数是一种评估解的质量的函数,可以根据问题
的性质和经验来设计。

在搜索过程中,可以按照启发式函数的值对解进行排序或选择,优先搜索质量较高的解。

3.优先搜索未探索的区域:在搜索过程中,可以优先探索尚未探索过的区域,
或者优先探索解空间中估值较低的区域。

这样可以增加搜索的多样性,提高找到最优解的概率。

4.基于规则的剪枝:根据问题的性质和规则,可以在搜索过程中提前排除一
些不可能的解,减少搜索的范围和深度。

这样可以提高搜索效率,加速求解过程。

5.使用记忆化搜索:记忆化搜索是一种将已经计算过的解存储起来,避免重
复计算的策略。

在搜索过程中,可以不断更新存储的解,并在搜索过程中优先选择已经计算过的解,从而提高搜索效率。

综上所述,确定搜索方向时可以考虑利用已知最优解、使用启发式函数、优先搜索未探索的区域、基于规则的剪枝和使用记忆化搜索等方法。

这些策略可以根据问题的性质和实际情况进行选择和调整,以提高穷举法与启发式算法结合时的性能和效率。

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略

启发式搜索策略的常见算法
Dijkstra算法
Dijkstra算法也是一种常见的启发式搜索算法,它主要用于解决带权图的最短路径问题。该算法通过不断扩展当前节点,并使用启发式函数来更新每个节点的距离。
Bellman-Ford算法
Bellman-Ford算法是一种解决动态规划问题的启发式搜索算法,它通过迭代更新每个节点的距离来找到最短路径。与Dijkstra算法不同的是,Bellman-Ford算法可以处理带有负权边的图。
02
它将问题分解为若干个状态,并从初始状态开始搜索,通过不断迭代,寻找目标状态。
03
在每个迭代过程中,启发式搜索策略会评估当前状态到目标状态的代价,并选择最小代价的状态进行扩展,直到找到目标状态或确定无法找到目标状态。
A*算法
A*算法是一种广泛使用的启发式搜索算法,它通过使用启发式函数来评估每个状态的代价,并选择最小代价的状态进行扩展。
xx年xx月xx日
浅谈人工智能中的启发式搜索策略
引言启发式搜索策略的基本概念与原理启发式搜索策略在人工智能中的应用启发式搜索策略的优缺点分析未来展望与研究方向结论
contents
目录
引言
01
人工智能(Artificial Intelligence,简称 AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
鼓励探索该算法在实际应用场景中的应用价值和可能性
THANKS
谢谢您的观看
定义
AI 技术正在改变人类的生活方式和社会结构,应用在各个领域如医疗、金融、交通、制造等,帮助人们解决复杂的问题和提高效率。
重要性
人工智能的定义与重要性
VS
启发式搜索策略是一种基于问题特定的信息搜索策略,它利用问题特定的知识来指导搜索方向,从而减少搜索范围,提高搜索效率。

第五章 启发式搜索课件

第五章 启发式搜索课件
2, 1, 0
[S3,S2,S1,S0]
。。 。。 。。。 。。。
5.3.3 深度优先搜索策略
深度优先搜索:首先扩展最新产生的节点,深度相等的节 点可以任意排列的搜索方法。(用堆栈的数据结构)
特点:搜索沿着状态空间的某单一路径沿着起始点向下进
行下去,仅当搜索到达一个没有后裔的状态时,才选择另 S0 一条替代路径。 1 10
5.3
盲目的图搜索策略
5.4 启发式图搜索策略 5.5 与/或图搜索策略
5.3 盲目的图搜索策略
5.3.1 回溯策略
5.3.2 宽度优先搜索策略
5.3.3 深度优先搜索策略
5.3.1 回溯策略
带回溯策略的搜索:(走不通就回头) 从初始状态出发,不停地、试探性地寻找路径, 直到它到达目的或“不可解结点”,即“死胡同” 为止。 若它遇到不可解结点就回溯到路径中最近的父结 点上,查看该结点是否还有其他的子结点未被扩展 。 若有,则沿这些子结点继续搜索;如果找到目标,
(3) NSS(no solvable states)表:不可解状态集,列出 了找不到解题路径的状态。如果在搜索中扩展出的 状态是它的元素,则可立即将之排除,不必沿该状 态继续搜索。
1 A B 2 5.3.1 回溯策略
8 C 11 D
E 3 回溯搜索示意图的回溯轨迹: 10 H 6 F 9 G 初值:PS=[A]; NPS=[A]; NSS=[ ]; CS=A。 J 5 7 K
5.1.2 搜索策略
3.人工智能的主要搜索策略: 求最佳解的搜索策略: 大英博物馆法(British museum); 宽度优先法(Breadth-first search); 分支界定法(Branch and Bound); 最佳图搜索法(A*); 动态规划法(Dynamic Programing);

启发式搜索

启发式搜索
搜索状态空间的算法。
例:一字棋游戏
选择“最好优先”算法 每种状态都标记了启发值 简化了搜索过程
启发式搜索和估价函数
在智能活动中使用最多的不是具有完备性的算法,而 是不一定完备的启发式方法。 对问题空间进行搜索时,提高搜索效率需要有和解有 关的大量控制性知识作为搜索的辅助性策略。 控制信息反映在估价函数中。 估价函数的任务就是估计待搜索结点的重要程度。
状态空间
爬山法的变形
随机爬山法 首选爬山法 随机重新开始爬山法
5.2.2 最好优先搜索法
❖ 定义:
Best-first Search (Ordered Search) 在AI图解搜索中,结点扩展的顺序是根据待扩展结点
的评价函数值 f(x)来决定,即将评价函数值最佳的结 点最先扩展,搜索方法是靠 f 值指导搜索顺序的。
启发式搜索
❖ “启发” (heuristic) 是关于发现和发明规则及方法的 研究。在状态空间搜索中,启发式被定义成一系列规 则,它从状态空间中选择最有希望到达问题解的路径。
❖ 有信息的搜索策略——是一种在问题本身的定义之外 还利用问题的特定知识的策略。
启发性信息
❖ 启发性信息的种类 有效地帮助确定扩展节点的信息; 有效的帮助决定哪些后继节点应被生成的信息; 能决定在扩展一个节点时哪些节点应从搜索树上删除的信息。
❖ 如果h(n)=0,g(n)=d(n) 时,就是广度优先搜索法。一般讲在 f(n) 中,g(n)的比重越大,越倾向于广度优先搜索;h(n)的比 重越大,越倾向于深度优先搜索。
❖ 有了f(n),就可以对各个待扩展结点的价值进行估计,从 OPEN表中选择出最有希望的结点扩展。
5.2.2 最好优先搜索法
f (n) g(n) h(n)

盲目搜索与启发式搜索的主要方法和策略

盲目搜索与启发式搜索的主要方法和策略

启发式搜索A和A*搜索算法首先什么是启发式搜索?启发式搜索就是利用当前问题有关的信息作为启发式信息,这些信息是能够提升查找效率、减少搜索时间和减少查询次数的。

为了利用这些信息,我们定义了一个估价函数h(x),h(x)是对当前状态x的一个估计,它表示x状态到目标点的距离。

那么由它表示的意义我们可以知道,当h(x)等于0时,说明到达了目标点。

一、A和A*搜搜算法介绍A搜索算法就是使用了估价函数的搜索算法,估价函数的一般形式是f(x)=g(x)+h(x)。

其任务就是估计待搜索有希望程度,赢一次给它们排定次序。

其中g(x)代表从初始结点到x结点的实际代价,h(x)是从当前结点到目标结点的代价,这个代价是估计出来的。

A*搜索算法是估价函数满足一定条件的算法,其限制条件是f(x)=g(x)+h(x),代价函数g(x)大于0,h(x)的值不大于x到目标结点的实际代价h*(x)。

二、A和A*搜索算法运用搜索算法如下:①将初始节点S0放入Open表中。

②如Open表为空,则搜索失败,退出。

③把Open表的第一个节点取出,放入到Closed表中,并把该节点记为节点n。

④如果节点n是目标节点,则搜索成功,求得一个解,退出。

⑤扩展节点n,生成一组子节点,对既不在Open表中也不在Closed表中的子节点,计算出相应的估价函数值。

⑥把节点n的子节点放到Open表中。

⑦对Open表中的各节点按估价函数值从小到大排列;。

⑧转到②。

启发式通常用于资讯充份的搜寻算法,例如最好优先贪婪算法与A*。

最好优先贪婪算法会为启发式函数选择最低代价的节点;A*则会为g(n) + h(n)选择最低代价的节点,此g(n)是从起始节点到目前节点的路径的确实代价。

如果h(n)是可接受的(admissible)意即h(n)未曾付出超过达到目标的代价,则A*一定会找出最佳解。

最能感受到启发式算法好处的经典问题是n-puzzle。

此问题在计算错误的拼图图形,与计算任两块拼图的曼哈顿距离的总和以及它距离目的有多远时,使用了本算法。

启发式搜索

启发式搜索

开始
把S放入OPEN表, 计算估价函数 f (s)
OPEN表为空表?

失败
否 把OPEN表中的第一个节点n放入CLOSED表
n为目标节点吗?

成功
否 扩展n,计算所有子节点的估价函数值, 并提供它们返回节点n的指针。 把子节点送入OPEN表,并对其中的所有 节点按估价函数值由小到大重排。
最佳优先搜索算法框图
登山法算法步骤:
① ② ③ ④ ⑤ 设定初始节点n; 如果n是目标,则成功退出; 扩展n,得到其子节点集合; 从该集合中选取f(n)为最小的节点n’; 将n’设为n,返回第②步。
最佳优先搜索算法
• 是“登山法”的推广,但它是对OPEN表中 所有节点的f(n)进行比较,按从小到大的顺 序重排OPEN表。 • 其算法效率类似于纵向搜索算法,但使用 了与问题特性相关的估价函数来确定下一 步待扩展的节点,因此是一种启发式搜索 方法。
1
F(6)
2
4 E(4)
G(5)
H(3)
3
5 6
A(2)
C(3)
B(0)
注:每个节点小括号内的数值表示该节点 到目标的空间距离,即该点的估价函数 值。搜索得到的路径如黄线所示。

举例:
八数码魔方(8-puzzle problem)
2 1 7 8 6 3 4 5 1 8 7 2 6 3 4 5
(初始状态)
g(n)的计算方法:
• g(n)就是在搜索树中从S到n这段路径的 代价,这一代价可以由从n到S寻找指针 时,把所遇到的各段弧线的代价加起来 给出 ( 这条路径就是到目前为止用搜索 算法找到的从S到n的最小代价路径)。
h(n)的计算方法:
• h(n) 依赖于有关问题的领域的启发信息。 这种信息可能与八数码魔方问题中的函 数 W(n) 所用的那种信息相似。把 h(n) 叫 做启发函数。

列举问题解决策略中的启发式策略

列举问题解决策略中的启发式策略

列举问题解决策略中的启发式策略
1. 模拟退火算法:从初始状态出发,按照一定的规律和机制不断的改变初始状态来改善目标函数的值。

2. 模拟逐渐升温算法:以一定的步长值慢慢加温,增加搜索步数,加快收敛速度,并避免陷入局部极小点。

3. 局部搜索算法:选用一个启发式规则探索当前最优解附近的点,根据不同启发式规则有不同类型,如下溯算法,模拟退火算法,择优算法等。

4. 爬山法:通过比较每一步解的目标值,选择最佳的进入下一步的解,当发现当前解不能提高最终目标值时停止搜索,从而获取最优解。

第三章 搜索(2)—启发式搜索

第三章 搜索(2)—启发式搜索

启发式搜索
3.0 简介

启发式搜索基本思想:

定义一个评价函数f,对当前的搜索状态进行评估, 找出一个最有希望的节点来扩展。
第三章 - 10
启发式搜索
3.0 简介

评价函数

f(n) = g(n) + h(n)

f(n):评价函数 h(n):启发函数

符号的意义

f*(n)=g*(n)+h*(n)
启发式搜索
3.1.0 局部择优搜索
Arad Sibiu
Arad (366)
Fagaras (176)
Oradea (380)
Rimnicu Vilcea (193) Arad
Sibiu
Fagaras
Sibiu (253)
Bucharest (0)
第三章 - 19
启发式搜索
3.1.0 局部择优搜索

第三章 - 20
启发式搜索
内容

3.0 简介 3.1 启发式搜索算法
3.1.0 局部择优搜索 3.1.1 全局择优搜索(A算法) * 3.1.2 A 算法


3.2 应用举例 3.3 基于搜索的优化问题
第三章 - 21
启发式搜索
3.1.1 A算法

A算法也称为最佳优先搜索 (best-first search)

o
2 3
目标节点: q
q
第三章 - 27
启发式搜索
(1) (2) (3) (4)
(5)
(6) (7) (8) (9) (10) (11)
(12)
(13)
(14)
第三章 - 28

问题解决的策略

问题解决的策略

问题解决的策略问题解决策略包括算法和启发式策略。

首先来看一下概念:(一)算法式策略算法策略就是把所有能解决问题的方法都一一尝试,最终找到解决问题的策略。

(二)启发式策略启发式策略是利用已有的知识和经验,只在问题空间做少量搜索就能解决问题的策略。

它还包括1.手段-目的分析将问题目标状态分成若干个子目标,通过实现一系列子目标,最终达到总目标。

例如:河内塔问题、问题行为图。

2.逆向搜索从问题的目标状态开始搜索,直到找到到初始状态的路径或方法。

例如:几何问题的反证法。

3.爬山法采用一定的方法逐渐缩小初始状态与目标状态之间的距离,以达到解决问题的目的。

这种方法的缺点是容易把较好的方案当成最优方案。

例如:确定新药的药剂量问题。

4.选择性搜索选择性搜索是根据已知的信息和一些相关的规则来选择问题解决的切入点,从切入点获取更多的信息,以便进一步搜索,直到问题解决。

选择性搜索是一种非常有效的解题策略,因为它是一种从已知条件中更接近问题答案的方法,从而消除了大量的盲目尝试。

例如:根据所给条件解决问题。

5.类比-迁移策略类比迁移策略是指运用个体以往解决问题的经验来解决新问题的策略。

这是解决不熟悉问题的策略。

类比迁移策略中有两种事务:基本相似性和目标相似性。

这种方法的缺点是可能会受到固定情境的影响,导致反复尝试解决问题。

例如:把解决“将军问题”的方法用到解决“肿瘤问题上”。

注意:同学们应该注意区分爬山法和手段—目的分析,后者可以暂时远离、扩大目标与初始状态之间的差异,而爬山法则不行。

关于启发式记忆口诀:“守墓逆向爬山选搜雷倩”。

启发式搜索策略讲稿

启发式搜索策略讲稿

启发式搜索策略讲稿1.引入启发式搜索策略的定义。

通过前面的学习,我们了解可以采用前面的一些搜索策略来解决梵塔问题,当它的阶数较小(如小于6)时,在计算机上求解并不难,但当阶数再增加时,其时空要求将会急剧的增加。

对于那些大状态空间问题,这些搜索策略就不能胜任了。

又如博弈问题,就可能的棋局数讲,国际象棋是10^120,假设每步可以选择一种棋局,用极限并行速度计算,国际象棋的算法也得1亿亿年才可以算完。

因此,为了寻找更有效的搜索方法,人们提出了启发式搜索策略。

定义:为减小搜索范围而需要利用某些已知的、有关具体问题领域的特性信息。

此种信息叫做启发信息。

利用启发信息的搜索方法叫做启发式搜索方法。

其基本思想是:在搜索路径的控制信息中增加关于被解问题的某些特征,用以指导搜索朝着最有希望到达目标节点的方向前进。

2.启发式搜索策略的主要特点。

由于充分考虑到问题求解所应用到的各种启发信息及知识,包括利用常识性推理和专家经验等信息与知识,启发式搜索能够动态地确定操作排序,优先调用较合适的操作规则,扩展、比较并选择最有希望的节点,使搜索尽可能以最快的速度,最短的距离、最小的代价,朝着最有利于达到目标节点的方向推进。

3.估价函数和启发函数。

估价函数:搜索特性的一种数学表示,是指从问题树根节点到达目标节点所要耗费全部代价的一种估计值。

f(n)=g(n)+h(n)启发函数:在表达式f(n)=g(n)+h(n)中,g(n)部分是已确立的搜索路径基础上已耗费的代价,其轨迹和效率是无法再更改的;唯有h(n)才是可以积极争取按照希望方向来改变的部分,是可以更新的内容。

h(n)4.局部择优搜索和全部择优搜索。

局部择优搜索:它是一种启发式搜索方法,是对深度优先搜索方法的一种改进。

全局择优搜索:按这种方法搜索时,每次总是从OPEN表中的全体节点中选择一个估价值最小的节点。

5.讲解例题:用全局择优搜索解决8数码问题。

f(x)=d(x)+h(x)其中,d(x)表示节点x的深度h(x)表示节点x的格局与目标节点格局不相同的牌数6.回顾内容,课程小结。

启发式策略

启发式策略
的模糊性,可能会使它没有一个确定的解。 2 虽然一个问题可能有确定解,但是其状态空
间 特别大,搜索中生成扩展的状态数会随着 搜索 的深度呈指数级增长。
2
5.4.1 启发式策略
例5.6 一字棋。在九宫棋盘上,从空棋盘开始,双方轮 流在棋盘上摆各自的棋子 或 (每次一枚),谁 先 取得三子一线(一行、一列或一条对角线)的结果就取 胜。
▪和 能够在棋盘中摆成的各种不同的棋局就是问题空间
中的不同状态。
▪ 可9个能位的置走上法摆:放{9空,87 , 1}有。 39 种棋局。
3
5.4.1 启发式策略
赢的几率③
赢的几率②
启发式策略的运用
赢的几率④
4

5.4.1 启发式策略










启图5发.13式启 发搜式索搜下索 下缩缩减减 的的 状状态态空 空间

5

5.4.1 启发式策略
“启发”(heuristic):关于发现和发明操作算子 及 搜索方法的研究。 在状态空间搜索中,启发式被定义成一系列操作 算 子,并能从状态空间中选择最有希望到达问题 解的 路径。 启发式策略:利用与问题有关的启发信息进行搜索。
1
5.4.1 启发式策略
运用启发式策略的两种基本情况: 1 一个问题由于在问题陈述和数据获取方面固有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档