铁的极化曲线实验数据处理详细步骤
铁的极化和钝化实验详细步骤及数据处理
实验13 铁的极化和钝化曲线的测定一、极化曲线1. 详细的实验步骤(1) 将电解液倒入三电极电解池指定的刻度,将工作电极(铁电极)、辅助电极(铂电极)以及参比电极(饱和甘汞电极)置于三电极电解池相应的玻璃管中并与电化学工作站相连(三个电极一一对应)。
(2) 打开电化学工作站开关,双击电脑桌面的文件夹” set660c”,双击应用程序“chi660c”进入电化学工作站专用软件。
(3) 单击工具栏中“T”按钮,选择” Tafel Plot”,点击”ok”进入极化曲线参数设置对话框,手动输入参数如下图所示:点击“ok”,再单击工具栏中“►”按钮即开始测定极化曲线。
测试完毕后要存盘,“File”-“Save as”,选择要存盘的地址并输入文件名如“04110711-2-Na”即可,文件格式为系统定义的格式(BIN文件),为了能用于撰写实验报告要先转化为txt格式并导入到origin7.5中作图。
在文件打开的情况下运行“File”-“Convert to text”,并使用相同的文件名存在相同的目录下即可。
(4) 先测定铁电极在中性水溶液中的极化曲线,数据存盘后用直尺测量铁电极没入电解液的高度(其宽度为1cm),从而求得其面积(用于计算自腐蚀电流密度)。
将铁电极用金相砂纸打磨备用。
将溶液换为1mol/LH2SO4溶液,重复上述步骤得到铁电极在1mol/LH2SO4溶液中的极化曲线,文件名可命名为“04110711-2-H”。
2.数据处理及报告撰写2.1 在origin 7.5中将铁电极在两个不同电解液中的极化曲线放在同一坐标内具体操作如下:先运行origin 7.5,执行如下命令:“File”-“Import”-“Simple Single ACSII”,在弹出的对话框中定位到已经换化好的文本文件(如04110711-2-Na),在显示器上你将看到:然后运行“File”-“Save Project as (或在汉化版中选择“保存工程为”)”,选择相应的目录,将文件名命名为“04110711-2-Na”备用,按上述方法建立另外一个文件“04110711-2-H”,备用。
铁的极化和钝化实验详细步骤及数据处理
实验13 铁的极化和钝化曲线的测定一、极化曲线1. 详细的实验步骤(1) 将电解液倒入三电极电解池指定的刻度,将工作电极(铁电极)、辅助电极(铂电极)以及参比电极(饱和甘汞电极)置于三电极电解池相应的玻璃管中并与电化学工作站相连(三个电极一一对应)。
(2) 打开电化学工作站开关,双击电脑桌面的文件夹” set660c”,双击应用程序“chi660c”进入电化学工作站专用软件。
(3) 单击工具栏中“T”按钮,选择” Tafel Plot”,点击”ok”进入极化曲线参数设置对话框,手动输入参数如下图所示:点击“ok”,再单击工具栏中“►”按钮即开始测定极化曲线。
测试完毕后要存盘,“File”-“Save as”,选择要存盘的地址并输入文件名如“04110711-2-Na”即可,文件格式为系统定义的格式(BIN文件),为了能用于撰写实验报告要先转化为txt格式并导入到origin7.5中作图。
在文件打开的情况下运行“File”-“Convert to text”,并使用相同的文件名存在相同的目录下即可。
(4) 先测定铁电极在中性水溶液中的极化曲线,数据存盘后用直尺测量铁电极没入电解液的高度(其宽度为1cm),从而求得其面积(用于计算自腐蚀电流密度)。
将铁电极用金相砂纸打磨备用。
将溶液换为1mol/LH2SO4溶液,重复上述步骤得到铁电极在1mol/LH2SO4溶液中的极化曲线,文件名可命名为“04110711-2-H”。
2.数据处理及报告撰写2.1 在origin 7.5中将铁电极在两个不同电解液中的极化曲线放在同一坐标内具体操作如下:先运行origin 7.5,执行如下命令:“File”-“Import”-“Simple Single ACSII”,在弹出的对话框中定位到已经换化好的文本文件(如04110711-2-Na),在显示器上你将看到:然后运行“File”-“Save Project as (或在汉化版中选择“保存工程为”)”,选择相应的目录,将文件名命名为“04110711-2-Na”备用,按上述方法建立另外一个文件“04110711-2-H”,备用。
tafel曲线 实验指导书
Tafel曲线测定金属的腐蚀速度一、目的1.掌握tafel测定金属腐蚀速度的原理和方法。
2.测定不锈钢在0.25mol/L的硫酸溶液中腐蚀电密i c 、阳极塔菲尔斜率b a和阴极塔菲尔斜率b c。
3.对活化极化控制的电化学腐蚀体系在强极化区的塔菲尔关系加深理解。
4. 学习绘制极化曲线。
二、实验原理金属在电解质溶液中腐蚀时,金属上同时进行着两个或多个电化学反应。
例如铁在酸性介质中腐蚀时,Fe上同时发生反应:Fe →Fe2+ +2e2H+ +2e →H2在无外加电流通过时,电极上无净电荷积累,即氧化反应速度i a等于还原反应速度i c ,并且等于自腐蚀电流I corr ,与此对应的电位是自腐蚀电位E corrr。
如果有外加电流通过时,例如在阳极极化时,电极电位向正向移动,其结果加速了氧化反应速度i a而拟制了还原反应速度i c ,此时,金属上通过的阳极性电流应是:I a= i a-|i c| = i a+ i c同理,阴极极化时,金属上通过的阴极性电流I c也有类似关系。
I c= -|i c| + i a= i c+ i a从电化学反应速度理论可知,当局部阴、阳极反应均受活化极化控制时,过电位(极化电位)η与电密的关系为:i a=i corr epx(2.3η/b a)i c = -i cor r exp(-2.3η/b c)所以I a =i corr[exp(2.3η/b a)- exp(-2.3η/b c)]I c= -i corr[exp(-2.3η/b c)- exp(2.3η/b a)当金属的极化处于强极化区时,阳极性电流中的i c和阴极性电流中的i c都可忽略,于是得到:I a =i corr exp(2.3η/b a)I c=-i corr exp(-2.3η/b c)或写成:η=-b a lg i coor+b a lg i aη= -b c lg i corr+b c lg i c可以看出,在强极化区内若将η对lg i作图,则可以得到直线关系[见《热力设备腐蚀与腐蚀》p257Fig.14—12(a)]。
极化曲线测试实验
极化曲线的测试与分析一.实验目的:掌握测定金属极化曲线的方法;二.实验装置及实验材料1.电化学测量系统(PS-268A型)1台2.计算机1台3.三电极系统(研究电极:试样;参比电极:甘汞;辅助电极;铂)1套4. 低碳钢电化学试样1个5.碳钢挂片试样4个6.过饱和KCl、蒸馏水、丙酮、脱脂棉、砂纸等若干7.量尺、分析天平、量杯、烧杯、毛刷等。
三.实验原理1、电化学腐蚀原理金属腐蚀按腐蚀机理可分为化学腐蚀,电化学腐蚀两类。
电化学腐蚀是指金属表面与电解质溶液发生电化学反应而引起的破坏。
其特点是反应过程中金属构成电极,整个系统有阳极失去电子和阴极获得电子及电子流动的产生。
电化学腐蚀服从电化学动力学的基本规律。
当金属浸入电解质溶液时,由于水分子极性的静电作用,或由于金属电子的吸附作用。
在两相界面的两侧将形成由电子层与正离子层组成的双电层。
由于双电层的存在而产生的电位差称为金属―溶液体系的电极电位。
不同的金属在不同的溶液体系中有不同的电极电位。
至今还没有可靠的方法可以测定金属电极电位的绝对值,但可以求其相对值。
通常是指定某一电位稳定的电极为基准电极也叫参比电极或参考电极,人为规定其电位值;再把它与被研究电极组成原电池;测定出原电池的电动势,则被研究电极的电极电位就被测出。
通常采用的参比电极是标准氢电极,但在实际工作中常常采用更方便、更结实的参比电极,如甘汞电极,银-氯化银电极等。
实际上,金属大多是含有杂质的或者以合金的形态存在。
因此,金属浸入电解质溶液后,其界面不是存在单一电极而是存在着几个电极,测得的电位也是其混合值,金属与电解质溶液接触一定时间后,达到的稳定电位值称为该金属在该电解质溶液中的腐蚀电位或自然腐蚀电位,又叫开路电位或混合电位。
腐蚀电位决定于金属材料的成分,金相组织结构,表面状态以及电解质溶液的成分,浓度,温度和PH值等。
腐蚀电位的大小与金属腐蚀速度之间没有简单的对应关系,但其可以大致指出金属的耐腐蚀性。
铁的极化曲线物化实验报告
铁的极化曲线实验结果的记录与处理:1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V4、Fe在含1%的乌洛托品的1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
极化曲线实验报告
腐蚀金属电极稳态极化曲线测量和数据处理一、实验目的:1、掌握恒电位测定极化曲线的原理和方法2、巩固金属极化理论,确定金属实施阳极保护的可能性。
初步了解阳极保护参数及其确定方法。
3、了解恒电位仪器及相关电化学仪器的使用。
4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。
实验原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b)2H+ + 2e H2 (c)反应(b)、(c)称为共轭反应。
正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图12-1 Fe的极化曲线图12-1是Fe在H+中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(2)直线的斜率为bFe。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即:(3)当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。
铁的极化曲线实验数据处理详细步骤
铁的极化曲线的测定、循环伏安法数据处理详细的数据处理步骤
一、数据导出
上海晨华CHI系列软件做铁极化曲线数据处理的一般步骤:
“File”-“Convert to text”,选择文件(**.bin)
选择相应文件点击“打开”,回到数据存放目录找到,文件名.txt。
二、数据导出或直接作图
先运行origin7.0,执行如下命令:“File”-“Import”-“Simple Single ACSII”,选择上一步导出的txt文件,将数据导入origin7.0,
数据导入后如下图:
第一、二列有用,如果会用origin7.0可以进行如下操作,将第二列数据取绝对值,并取lo log g 对数,用一、四列数据作图。
将一、四列选中点击“”,作图如下图:
Excel法:
因Excel无数据导入功能(或未发现),故先将文件导入origin7.0后,将其复制到Excel中进行处理。
将第二列绝对值,放入第三列,对第三列取以10为底的对数,放于第四列,一四列作图。
如下:
以上即是铁极化曲线的数据处理过程!能力有限敬请参考!。
物理化学-试验十六:铁的极化曲线的测定
实验十六 铁的极化曲线的测定一、实验目的1.掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在HSO 、HCl 溶液中的阴42极极化、阳极极化曲线,求得Fe 的自腐蚀电位,自腐蚀电流和钝化电势、钝化电流等参数;-Cl 离子,缓蚀剂等因素对铁电极极化的影响;2.了解 3.讨论极化曲线在金属腐蚀与防护中的应用。
二、实验原理 .铁的极化曲线:1金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。
例如2++2e (1) Fe →Fe+(2)2H+2e →H 2溶液构成了腐蚀原电池,HSO 。
Fe 电极和H 电极及Fe 将不断被溶解,同时产生H 4222其腐蚀反应为:2++(3)+H → FeFe+2H 2Fe 在酸性溶液中腐蚀的原因。
这就是 。
= I 当电极不与外电路接通时,其净电流为零。
即I = -I ≠ 0H Fecorr更负的电势,反1中ra 为阴极极化曲线。
当对电极进行阴极极化,即加比Ecorr 图+2+析出为主,这种效应2H 应Fe →Fe+2e 被抑制,反应+2e →H 加速,电化学过程以H 22(Tafel)半对数关系,即:塔菲尔称为“阴极保护”。
更正的电势,Ecorr 为阳极极化曲线。
当对电极进行阳极极化时,即加比ab 中1图+2+溶解为主。
符合+2e 加速,电化学过程以Fe 则反应2H+2e →H 被抑制,反应Fe →Fe 2公式:.铁的钝化曲线:2cdFe的正常溶解,生成Fe,称为活化区。
abc段是2+离子与溶液中的2+段称为活化钝化过渡区。
离de段的电流称为维钝电流,此段电极处于比较稳定的钝化区, Fe+pH表面的层内部,使子形成FeSO沉淀层,阻滞了阳极反应,由于H不易达到FeSOFe44的溶解,开始在FeFe表面生成,形成了致密的氧化膜,极大地阻滞了O、增大,FeOFe4332 ef因而出现钝化现象。
段称为过钝化区。
参比电极和研究电极组成原r表示参比电极。
表示研究电极、3中WC表示辅助电极、图使研究电极处于极化状辅助电极与研究电极组成电解池,电池,可确定研究电极的电位。
极化曲线的测定
实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。
2、了解极化曲线的意义和应用。
3、掌握恒电势仪的使用方法。
二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。
当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。
这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。
在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。
超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。
除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。
阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。
图3-8-1为钢在硫酸溶液中的阳极极化曲线。
图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。
B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。
电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。
极化曲线测定实验报告
极化曲线测定实验报告极化曲线测定实验报告引言:极化曲线测定实验是电化学领域中常用的实验方法之一。
通过测量电极在不同电位下的电流变化,可以得到极化曲线,从而分析电极的电化学性质和反应动力学过程。
本实验旨在通过测定铁电极的极化曲线,探究其电化学性质,并对实验结果进行分析和讨论。
实验装置和方法:本实验采用三电极系统,包括工作电极、参比电极和辅助电极。
首先,将铁片作为工作电极,银/银氯化银电极作为参比电极,铂丝作为辅助电极。
然后,将这三个电极分别插入电解液中,并使用电位扫描仪测量电位和电流的变化。
实验过程中,通过改变电位的斜率和扫描速率,可以得到不同条件下的极化曲线。
实验结果与讨论:在实验中,我们通过改变电位的斜率和扫描速率,得到了铁电极在不同条件下的极化曲线。
根据实验结果,我们可以观察到以下现象和规律:1. 极化曲线的形状:在正向扫描时,铁电极的极化曲线呈现出两个明显的区域:活化区和稳定区。
活化区是指电位较低的区域,此时电流较大,反应速率较快。
稳定区是指电位较高的区域,此时电流较小,反应速率较慢。
在反向扫描时,极化曲线的形状与正向扫描时相似,但是活化区和稳定区的位置会发生变化。
2. 极化曲线的斜率:极化曲线的斜率反映了电极的电化学活性和反应速率。
斜率越大,表示电极的活性越高,反应速率越快。
在实验中,我们可以通过改变电位的斜率来调节电极的活性,从而探究电极的电化学性质。
3. 极化曲线的扫描速率:扫描速率是指电位变化的速度。
在实验中,我们可以通过改变扫描速率来研究电极的反应动力学过程。
当扫描速率较慢时,电极的反应过程更加充分,可以观察到更多的电化学现象。
而当扫描速率较快时,电极的反应过程相对较快,可能会导致一些电化学现象无法观察到。
结论:通过极化曲线测定实验,我们可以得到电极的电化学性质和反应动力学过程。
实验结果显示,铁电极在不同电位下的电流变化呈现出明显的活化区和稳定区,斜率和扫描速率对电极的反应速率和动力学过程有重要影响。
金属极化曲线的测定实验报告
金属极化曲线的测定实验报告实验名称:金属极化曲线的测定实验目的:通过测定金属极化曲线,了解金属的电化学特性,并探讨金属的腐蚀行为。
实验原理:金属在溶液中的电极反应可以通过极化曲线来了解。
极化曲线是通过在不同电位下测量电流得到的。
极化曲线可分为阳极极化曲线和阴极极化曲线。
阳极极化曲线反应了金属发生氧化反应时的电化学特性,阴极极化曲线反应了金属发生还原反应时的电化学特性。
实验仪器:电极测试仪、电位计、电流计、溶液槽、参比电极、工作电极等。
实验步骤:1. 准备工作:清洗和磨光工作电极,并固定在电极测试仪上。
准备好参比电极和电解槽。
2. 将工作电极和参比电极依次插入电解槽中,保证电极完全浸入溶液中。
3. 打开电极测试仪和电位计,进行零点校准,并调节电位计的电位为初始电位。
4. 开始测量:逐渐改变电位,记录对应的电流值。
首先记录阳极极化曲线,然后通过反向电流去极化,并记录阴极极化曲线。
5. 根据测量数据绘制极化曲线。
实验结果:根据测量得到的数据,绘制得到阳极极化曲线和阴极极化曲线。
根据曲线形状和电流值的变化,分析金属在溶液中的电化学特性和腐蚀行为。
实验讨论和结论:根据测得的极化曲线,可以分析金属的电化学特性和腐蚀行为。
比如当曲线向高电位延伸时,说明金属发生氧化反应,存在腐蚀现象;当曲线向低电位延伸时,说明金属发生还原反应,有防腐效果。
实验注意事项:1. 实验中要谨慎操作电位计和电流计,避免出现误差。
2. 注意溶液的配制和浓度的选择,保证实验的可靠性。
3. 实验结束后要将仪器清洗干净,保养好。
实验总结:通过金属极化曲线的测定,我们可以了解金属的电化学特性以及其在溶液中的腐蚀行为。
这对于研究金属材料的耐蚀性以及腐蚀机理有着重要的意义。
通过实验,我们可以得到有关金属的极化曲线,结合实验结果进行分析,有助于我们深入了解金属在不同环境下的电化学特性和腐蚀行为。
铁的极化曲线物化实验报告
铁的极化曲线物化实验报告铁的极化曲线实验结果的记录与处理:1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A,钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318?1.602V2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A,钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318?1.602V3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A,钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318?1.602V4、Fe在含1%的乌洛托品的1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。
极化曲线实验报告
腐蚀金属电极稳态极化曲线测量和数据处理一、实验目的:1、掌握恒电位测定极化曲线的原理和方法2、巩固金属极化理论,确定金属实施阳极保护的可能性。
初步了解阳极保护参数及其确定方法。
3、了解恒电位仪器及相关电化学仪器的使用。
4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。
实验原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b)2H+ + 2e H2 (c)反应(b)、(c)称为共轭反应。
正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图12-1 Fe的极化曲线图12-1是Fe在H+中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(2)直线的斜率为bFe。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即:(3)当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。
极化曲线测试实验
极化曲线的测试与分析一.实验目的:掌握测定金属极化曲线的方法;二.实验装置及实验材料1.电化学测量系统(PS-268A型)1台2.计算机1台3.三电极系统(研究电极:试样;参比电极:甘汞;辅助电极;铂)1套4. 低碳钢电化学试样1个5.碳钢挂片试样4个6.过饱和KCl、蒸馏水、丙酮、脱脂棉、砂纸等若干7.量尺、分析天平、量杯、烧杯、毛刷等。
三.实验原理1、电化学腐蚀原理金属腐蚀按腐蚀机理可分为化学腐蚀,电化学腐蚀两类。
电化学腐蚀是指金属表面与电解质溶液发生电化学反应而引起的破坏。
其特点是反应过程中金属构成电极,整个系统有阳极失去电子和阴极获得电子及电子流动的产生。
电化学腐蚀服从电化学动力学的基本规律。
当金属浸入电解质溶液时,由于水分子极性的静电作用,或由于金属电子的吸附作用。
在两相界面的两侧将形成由电子层与正离子层组成的双电层。
由于双电层的存在而产生的电位差称为金属―溶液体系的电极电位。
不同的金属在不同的溶液体系中有不同的电极电位。
至今还没有可靠的方法可以测定金属电极电位的绝对值,但可以求其相对值。
通常是指定某一电位稳定的电极为基准电极也叫参比电极或参考电极,人为规定其电位值;再把它与被研究电极组成原电池;测定出原电池的电动势,则被研究电极的电极电位就被测出。
通常采用的参比电极是标准氢电极,但在实际工作中常常采用更方便、更结实的参比电极,如甘汞电极,银-氯化银电极等。
实际上,金属大多是含有杂质的或者以合金的形态存在。
因此,金属浸入电解质溶液后,其界面不是存在单一电极而是存在着几个电极,测得的电位也是其混合值,金属与电解质溶液接触一定时间后,达到的稳定电位值称为该金属在该电解质溶液中的腐蚀电位或自然腐蚀电位,又叫开路电位或混合电位。
腐蚀电位决定于金属材料的成分,金相组织结构,表面状态以及电解质溶液的成分,浓度,温度和PH值等。
腐蚀电位的大小与金属腐蚀速度之间没有简单的对应关系,但其可以大致指出金属的耐腐蚀性。
5铁的极化和钝化曲线的测定
5铁的极化和钝化曲线的测定实验4 铁的极化和钝化曲线的测定⼀、实验⽬的1.理解和掌握极化曲线测定的原理和实验⽅法。
2.学会⽤恒电位仪测定极化曲线的⽅法。
⼆、实验原理在研究可逆电池的电池反应和电动势的时候,电极处于平衡状态,与之相对应的电势是平衡电势φ平,随着电极上电流密度的增加,电极的不可逆程度愈来愈⼤,其电势值对平衡电势值的偏离也愈来愈⼤,在有电流通过电极时,电极电势偏离于平衡值的现象称为电极的极化。
根据实验测出的数据来描述电流密度与电极电势之间的关系曲线称为极化曲线。
通过极化曲线的测绘,可使我们对电极极化过程以及⾦属的腐蚀与保护等加深认识和理解。
在⾦属做阳极的电解池中通过电流时,通常发⽣阳极的电化学溶解过程,如下式所⽰:M=M n++ne阳极极化不⼤时,阳极溶解速度随电位变正⽽逐渐增⼤,这是⾦属正常的阳极溶解。
但在某些化学介质中,当阳极电位正移到某⼀数值时,阳极溶解速度随电位变正⽽⼤幅度降低,这种现象称为阳极的钝化。
处于钝化状态的⾦属的溶解速度是很⼩的,这是因为在⾦属表⾯⽣成了⼀层电阻⾼、耐腐蚀的钝化膜,这在⾦属防护以及作为电镀的不溶性阳极时,正是⼈们所需要的。
利⽤阳极的钝化,使⾦属表⾯⽣成了⼀种耐腐蚀的钝化膜来防⽌⾦属腐蚀的⽅法,叫做阳极的保护。
⾦属的钝化现象是常见的,⼈们已对它进⾏了⼤量的研究⼯作。
影响⾦属钝化过程及钝化性质的因素,可归纳为以下⼏点:1. 溶液的组成溶液中存在的氢离⼦、卤素离⼦以及某些具有氧化性的阴离⼦,对⾦属的钝化现象起着颇为显著的影响。
在中性溶液中,⾦属⼀般⽐较容易钝化,⽽在酸性或者某些碱性的溶液中,钝化则困难的多,这与阳极反应产物的溶解度有关。
卤素离⼦,特别是氯离⼦的存在,则明显的阻⽌了⾦属的钝化过程,已经钝化了的⾦属也容易被它破坏(活化),⽽使⾦属的阳极溶解速度重新增⼤。
溶液中存在某些具有氧化性的阴离⼦(如CrO42-)则可以促进⾦属的钝化。
2. ⾦属的化学组成和结构各种纯⾦属的钝化能⼒不尽相同,以铁、镍、铬三种⾦属为例,铬最容易钝化,镍次之,铁较差。
实验10铁的极化钝化曲线的测定dyl
图1 Fe 的极化曲线物理化学实验备课材料实验10 铁的极化和钝化曲线的测定一、实验介绍任何实际的电极过程,总是要有电流通过,使其真实的电极电位偏离可逆电极电势(热力学电位),这种现象称为极化。
极化现象在电化学工业随处可见,且有利也有弊。
因此,加强对电极过程极化作用情况的测量和认识意义重大。
二、实验目的1. 测定铁在不同pH 溶液中的极化曲线。
2. 求算自腐蚀电位、自腐蚀电流、钝化电位范围、钝化 电流等电化学参数。
3. 学会使用CHI660A 电化学分析仪,掌握线性扫描伏安法和TAFEL 方法测定极化曲线。
三、实验原理铁在H 2SO 4溶液中,将不断被溶解,同时产生H 2,即:Fe + 2H + = Fe 2+ + H 2 (1)Fe /H 2SO 4体系是-个二重电极,即在Fe /H +界面上同时进行两个电极反应: Fe Fe 2+ + 2e (2)2H ++ 2e H 2 (3)反应(2)、(3)称为共轭反应。
正是由于反应(3)存在,反应(2)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I 总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H +还原出H 2的阴极电流I(H),它们在数值上相等但符号相反,即:(4)IFe 的大小反映Fe 在H +中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe /H +体系的自腐蚀电势εcor 。
图1是Fe 在H +中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(3)被抑制,反应(2)加快。
此时,电化学过程以Fe 的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H +体系的阳极极化曲线rba 。
由于反应(3)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(5) 直线的斜率为b Fe 。
当对电极进行阴极极化,即加更负的电势时,反应(2)被抑制,电化学过程以反应(3)为主要倾向。
极化曲线测量金属的腐蚀速度
极化曲线测量金属的腐蚀速度极化曲线测量金属的腐蚀速度一、目的和要求1. 掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。
2. 讨论极化曲线在金属腐蚀与防护中的应用。
二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
以金属锌在盐酸体系中为例:阳极反应: Zn-2e=Zn 2+阴极反应: H ++2e=H 2阳极反应的电流密度以 i a 表示,阴极反应的速度以 i k 表示,当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。
根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
极化曲线在金属腐蚀研究中有重要的意义。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。
在活化极化控制下,金属腐蚀速度的一般方程式为:其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
若以十为底的对数,则表示为b a 、b k 。
这就是腐蚀金属电极的极化曲线方程式,令 ?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。
极化曲线数据处理方法
极化曲线测定数据处理方法鼠标击Excel图标、“打开”,从“查找范围”里将c盘的electro中的date打开,击“文件类型(T)”中“所有文件”,即可出现实验数据文件图标。
打开数据文件,出现“文本导入向导-3步骤之1”,击“分隔符号(D)”、“下一步”、“空格(S)”、“下一步”、“完成”,出现数据表。
将三列数据都上下对齐,然后删除第三列。
第一列即A列,数据是负的电势-E/V(需变换数据的正负号);第二列即B列,数据是电流I /mA。
击C1格,在编辑栏里写入“=-A1”,回车。
再击C1格,用鼠标点住C1格围框下角的黑点(鼠标指针变为实心十字)向下拖拽至最后一格,得到C列数据即电势E/V。
击D1格,在编辑栏里写入“=B1/××”(“××”是电极面积数值),回车。
再击D1格,点住D1格围框下角的黑点拖拽至最后一格,得到D列数据即电流密度i/(mA·cm-2)。
击四列的列号,然后击“减少小数位数”图标,将数据保留小数点后三位。
击C、D两列的列号,击图表向导图标,出现图表向导-4步骤之1”,击“XY散点图”、“光滑曲线”、“下一步”、“下一步”,出现“图表向导-4步骤之3”,填写图表标题、XY轴的物理量名称、单位。
击“下一步”、“完成”,出现绘图。
(为了图的清晰,可用鼠标右键击图中的网格线、左键击“清除”,去掉网格线;击图中的“系列1”,去掉“系列1”;击绘图区围框,去掉围框;双击绘图区,击区域的“无”,去掉底色等。
)若极化曲线过长,应适当删去一段。
对于钝化曲线,用鼠标指在转折点处取得数据,然后将数据表中的该数据做上标记(如做围框)。
击数据表第一行行号,击“插入”、“行”,在插入行里填写各列的物理量名称和单位。
(可将A列数据隐去)最后保存文件,将文件名中的“DA T”去掉,以Excel工作簿格式保存至软盘或U盘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁的极化曲线的测定、循环伏安法数据处理详细的数据处理步骤
一、数据导出
上海晨华CHI系列软件做铁极化曲线数据处理的一般步骤:
“File”-“Convert to text”,选择文件(**.bin)
选择相应文件点击“打开”,回到数据存放目录找到,文件名.txt。
二、数据导出或直接作图
先运行origin7.0,执行如下命令:“File”-“Import”-“Simple Single ACSII”,选择上一步导出的txt文件,将数据导入origin7.0,
数据导入后如下图:
第一、二列有用,如果会用origin7.0可以进行如下操作,将第二列数据取绝对值,并取lo log g 对数,用一、四列数据作图。
将一、四列选中点击“”,作图如下图:
Excel法:
因Excel无数据导入功能(或未发现),故先将文件导入origin7.0后,将其复制到Excel中进行处理。
将第二列绝对值,放入第三列,对第三列取以10为底的对数,放于第四列,一四列作图。
如下:
以上即是铁极化曲线的数据处理过程!能力有限敬请参考!。