防冻液标准

合集下载

防冻液新国标[001]

防冻液新国标[001]

防冻液新国标
防冻液是汽车必不可少的一种液体,其主要作用是防止冷却系统
冻结和发动机过热。

为了确保汽车的安全和可靠性,我国近日发布了
新的防冻液国家标准,以下是详细介绍。

1.防冻液的种类
根据国家标准,防冻液分为有机酸防冻液和乙二醇防冻液两种。

有机酸防冻液使用环保性能更好的有机酸为主要添加剂,可适用于各
种铝合金发动机,也可与乙二醇防冻液混合使用;乙二醇防冻液则是
以乙二醇为主要添加剂,适用于各种铜质、铝质发动机。

2.防冻液的pH值和冰点
新标准规定,防冻液的pH值在7至10之间,冰点要达到-40℃以上。

这是保证防冻液优良性能的基础指标,对提高汽车的耐用性和防
护性能有很大帮助。

3.使用时需注意的事项
使用防冻液时,需要注意以下几点:
(1)严格按照汽车使用说明书要求选择适合的防冻液种类和型号。

(2)需要谨防假冒伪劣产品,使用正规生产厂家生产、合格认证
的防冻液。

(3)防冻液需在发动机冷却循环系统内适当比例加入;过少无法起到防冻保护作用,过多可能影响发动机的散热效果。

(4)需要定期更换、清洗冷却系统,避免防冻液老化和产生腐蚀作用。

新国标的出台对汽车行业以及广大车主而言都是具有重大意义的一项举措。

只有正确地选择、使用、维护防冻液,才能保证汽车的安全、可靠性和性能正常运行,同时为环保事业做出贡献。

汽车防冻液 国标

汽车防冻液 国标

汽车防冻液国标
根据中国国家标准(GB) GB 29744-2013《引擎冷却系统用防冻液》规定,汽车防冻液的国标为GB 29744-2013。

该标准规定了汽车防冻液的技术要求、试验方法、检验规则等内容,以确保汽车防冻液的质量和安全性。

根据该国标,汽车防冻液应具备以下主要技术要求:
1. 冷却剂应能够在广泛温度范围内提供良好的冷却和防冻性能;
2. 防锈、防腐蚀性能应符合相关要求;
3. 抗泡性应符合相关要求;
4. 应满足汽车制造商的规定。

同时,标准还明确了对汽车防冻液的物理、化学和机械性能的试验方法,并对其包装、标签、质量控制等方面进行了规定。

总之,GB 29744-2013是中国汽车防冻液的国家标准,所有生产和销售的汽车防冻液应符合该标准的技术要求和规定。

汽车防冻液更换标准

汽车防冻液更换标准

汽车防冻液更换标准汽车防冻液,这玩意儿可重要得很呐!那汽车防冻液啥时候该换呢?这可有讲究啦!汽车防冻液就像是汽车的保护神。

你想想看,汽车在各种天气下跑,夏天热得像火炉,冬天冷得像冰窖。

要是没有防冻液,那汽车不得出大问题呀!防冻液能在寒冷的冬天防止发动机冻坏,就像给发动机穿上了一件厚厚的棉袄。

在炎热的夏天呢,又能防止发动机过热,就像给发动机吹着凉爽的空调。

一般来说,汽车防冻液的更换时间得看使用情况。

要是你经常开车,跑的路程多,那防冻液可能就得早点换。

这就好比一个人整天在外面干活,衣服脏得快,就得勤换衣服。

要是你不怎么开车,那防冻液就能用得久一点。

但也不能太久哦,不然防冻液失效了,可就麻烦啦!怎么知道防冻液该不该换呢?可以看看颜色呀!如果防冻液的颜色变得很浑浊,或者跟原来的颜色不一样了,那很可能就得换了。

这就像你看一个人的脸色,如果脸色不好,那可能就是身体出问题了。

还有啊,可以用专门的仪器检测一下防冻液的性能。

要是性能不行了,那就赶紧换吧!可别心疼那点钱,要是因为防冻液的问题把发动机弄坏了,那可就得不偿失啦!换防冻液的时候也得注意哦!要找专业的人来换,就像看病要找医生一样。

他们知道怎么把旧的防冻液放干净,怎么加新的防冻液。

要是自己瞎弄,弄不好就会出问题。

而且,要选质量好的防冻液,这就跟买衣服要买好质量的一样,穿着舒服,还耐穿。

质量不好的防冻液,可能用不了多久就失效了,那不是白花钱嘛!还有哦,不同的汽车可能需要不同的防冻液。

就像不同的人喜欢不同的口味一样,汽车也有自己的“口味”。

所以,在换防冻液的时候,要根据自己的汽车型号来选择合适的防冻液。

可别随便买一种就加上,那可不行。

汽车防冻液的更换标准虽然没有一个绝对的时间,但我们可以通过观察颜色、检测性能等方法来判断。

只要我们用心呵护我们的汽车,及时更换防冻液,就能让汽车跑得更稳、更远。

这就像我们照顾自己的身体一样,只有身体好了,才能去做更多的事情。

所以啊,大家一定要重视汽车防冻液的更换,可别马虎大意哦!汽车防冻液的更换得根据实际情况来,不能掉以轻心。

国六标准防冻液

国六标准防冻液

国六标准防冻液全文共四篇示例,供读者参考第一篇示例:国六标准防冻液是指符合国家六阶段尾气排放标准的汽车所使用的防冻液。

它要求防冻液不仅能够有效防止发动机冷却水在低温冷却条件下结冰,还要具备很好的抗腐蚀性能,从而延长发动机和冷却系统的使用寿命。

国六标准防冻液还要求其对环境友好,不会对大气环境造成污染。

国六标准防冻液在制作方面要求较为严格,首先是要求其主要成分是甘醇类成分。

甘醇类成分是由环保并且对人体无害的材料制成,与传统的乙二醇相比,其在环境保护和安全性方面更有优势。

其次是要求防冻液具备良好的抗氧化性能和化学稳定性,能够在高温或长时间使用的情况下保持稳定性,从而减少对发动机的腐蚀。

国六标准防冻液还要求其对发动机冷却系统的密封件和橡胶件具有一定的保护作用,能够延长这些部件的使用寿命。

这对于车辆的维护和保养十分重要,因为好的防冻液不仅能够保护发动机,还能够保护冷却系统的其他部件,增加车辆的可靠性和安全性。

除了以上的基本要求,国六标准防冻液还要求其具备一定的热稳定性,能够在高温条件下保持稳定性,不会因为高温导致液体的挥发蒸发。

防冻液还要求其具有良好的防腐性能,能够有效地防止发动机冷却系统内的金属、合金等材料受到侵蚀。

在使用国六标准防冻液时,车主也需要注意一些使用和更换的细节。

首先是定期检查和更换防冻液,一般建议每隔一到两年更换一次防冻液,以确保其性能的正常。

其次是要根据汽车的使用环境选择适合的防冻液,不同型号的汽车对于防冻液的要求可能有所不同,因此要选择适合自己车辆的防冻液。

车主在使用防冻液时还需要注意防冻液的浓度,一般来说,防冻液的浓度要根据当地的气候条件和使用环境来调整,过低的浓度会影响防冻效果,过高的浓度则容易造成发动机的过热。

车主在添加防冻液时需根据实际情况做出调整。

国六标准防冻液是一种符合国家环保标准和汽车发展需求的防冻液,其在制作和使用方面都有一定的要求和标准。

车主在选择和使用防冻液时需要注意这些方面,以确保汽车的正常运行和使用寿命。

防冻液检测标准

防冻液检测标准

防冻液检测标准
防冻液是汽车中不可或缺的液体之一,它可以防止汽车在寒冷的冬季
中冻结。

然而,防冻液的质量也是至关重要的,因为低质量的防冻液
可能会对汽车的发动机和其他部件造成损害。

因此,防冻液的检测标
准非常重要。

防冻液的检测标准主要包括以下几个方面:
1. 冰点:防冻液的主要作用是防止汽车在寒冷的冬季中冻结。

因此,
防冻液的冰点是一个非常重要的检测指标。

一般来说,防冻液的冰点
应该低于汽车所在地区的最低气温。

例如,在北方地区,防冻液的冰
点应该低于-30℃。

2. 抗腐蚀性:防冻液中含有一些化学物质,这些化学物质可以防止汽
车发动机和其他部件受到腐蚀。

因此,防冻液的抗腐蚀性也是一个非
常重要的检测指标。

一般来说,防冻液应该能够在长时间使用后仍然
保持其抗腐蚀性能。

3. pH值:防冻液的pH值也是一个重要的检测指标。

一般来说,防冻液的pH值应该在7.0到10.5之间。

如果防冻液的pH值过低或过高,都可能会对汽车的发动机和其他部件造成损害。

4. 密度:防冻液的密度也是一个重要的检测指标。

一般来说,防冻液
的密度应该在1.1到1.2之间。

如果防冻液的密度过低或过高,都可能会对汽车的发动机和其他部件造成损害。

总之,防冻液的检测标准非常重要,它可以保证汽车在寒冷的冬季中
正常运行,同时也可以保护汽车的发动机和其他部件不受损害。

因此,我们在使用防冻液时一定要选择质量好的产品,并定期检测防冻液的
质量,以确保汽车的安全和可靠性。

防冻液基础知识

防冻液基础知识

防冻液的规格标准国外防冻液的标准有AST M D3306、SAE J1304、MIl-A-46153B和J IS K2234,中国于1992年发布了SH 0521乙二醇型发动机冷却液及其浓缩液的标准。

ASTM D3306制订于1974年,至1994年经过6次修订,发表了ASTM D3306—94。

修订的原因是使指标更科学、更实用。

主要内容是取消了无意义的浓缩液的PH指标;提高了浓缩液的沸点要求,由148.9℃提高到163℃,这对浓缩液的总含水量及组成提出了更高的要求;增加了铸铝合金表面传热腐蚀和铝泵气蚀腐蚀特性评定等要求。

日本防冻液标准自1965年以来经过3次修订,于1987年提出了JIS K2234—87,修改的主要内容是试验方法改进,具体指标只有将储备碱度从原来的10.0以上改为报告。

这是因为储备碱度只作为防冻液中防腐添加剂碱性物质用量的指标,并不能表示腐蚀抑制能力的标准。

中国参照ASTM D3306标准制订了防冻液的国家标准GB 0521—92。

该标准所属产品分为浓缩液和冷却液两类,按质量分为一级品和合格品两个等级,冷却液按冰点分为-25号、-30号、-35号、-40号、-45号和-50号六个牌号。

防冻液的主要试验方法1.比重(AST M D1122,SH/T 0068)主要用来估算防冻液中乙二醇和各种盐的含量。

比重又与热传递有关。

将比重与折光率结合可以测定防冻液的防冻能力。

2.冰点(ASTM D1177、SH/T 0090)用来评价防冻液的最低使用温度,也可估算其中乙二醇的含量。

将75—100mL样品置于试管中,以一定速度冷却,测定防冻液的温度,绘出时间一温度曲线,曲线达到水平时的拐点即为冰点。

3.沸点(ASTM D1120,SH/T 0089)用来评价防冻液的高温“使用极限。

将602nL样品置于带回流冷凝器的100mL短颈烧瓶中,加热使其回流,两分钟后测定液相温度即为沸点。

4.pH值(ASTM D1287,SH/T 0069)目前仅测定稀释液的pH值。

防冻液新国标变化要点

防冻液新国标变化要点
防冻液新国标变化要点
2014年5月1日起实施新国标 分轻负荷与重负荷两种类型
防冻液的基础知识 作用、组成、分类
防冻液组成: 去离子水:降低钙镁离子浓度(与铁会生成水垢) 降低氯离子或硫酸根离子(如累积会形成腐蚀) 二元醇:乙二醇、丙二醇、其它醇 添加剂:缓冲剂、缓蚀剂、防垢剂、消泡剂、着色剂等(只占5%)
文首字母;II代表稀释液。
轻/重负荷发动机技术区别
轻负荷(轿车或客车)
重负荷(载重车或工程机械)

长期在远低于额定功率情况下运行 载荷因子低(30%左右)

长期在接近额定功率情况下运行 载荷因子高(70%左右)

发动机中铝部件较多(如散热器,水 泵)

发动机中铸铁部件较多
轻/重负荷发动机冷却液性能不合格的危害
2
主要添加剂
缓冲剂 金属腐蚀过程与冷却液的PH值有关 铁钝化PH>8、铜钝化PH值7.0-12.5 乙二醇在使用分解产生酸性物质 发动机运转过程中,酸性气可能传入冷却系统 作用在于使冷却液维持PH值7.5-11的范围 缓蚀剂 作用是减少冷却系统金属在压力、热负荷和腐蚀介质存在下的腐蚀
选择性强,与腐蚀介质的性质、温度、流动状态、材料的种类和性质、
背景2 --- 新发动机冷却液国家标准介绍
针对中国国内冷却液行业发展迅速,以及目前标准的权威和地位不够、适 用范围狭窄、产品分类和技术内容不全面等现状,根据国家标准化管理委 员会要求,制订强制性《发动机冷却液》国家标准; 标准制订从2007年7月开始,由9家单位共同完成,2010年12月通过专 家组评估正式送审国家标准化管理委员会,2013年2月在国标委网站公示, 2013年9月18日发布,2014年5月1日实施。 新《发动机冷却液》国家标准下发后,将取代行业标准和协会标准;

dexcool防冻液标准

dexcool防冻液标准

dexcool防冻液标准
DexCool防冻液是一种适用于汽车发动机的防冻液,具有防冻、冷却、防腐和清洁等功能。

关于DexCool防冻液的标准,可以参考以下几个方面:
1. 冰点:DexCool防冻液的冰点应该在-35℃以下,以确保在寒冷气候下能够正常工作。

2. 沸点:DexCool防冻液的沸点应该在106℃以上,以确保在高温下能够正常工作。

3. 酸碱度:DexCool防冻液的酸碱度应该在7.5-10.5之间,以确保不会对发动机造成腐蚀。

4. 金属含量:DexCool防冻液中金属离子的含量应该较低,以确保不会对发动机造成腐蚀。

5. 乙二醇含量:DexCool防冻液中乙二醇的含量应该符合标准,以确保其防冻性能和粘度。

具体来说,DexCool防冻液应该符合美国SAE J1334标准,该标准规定了汽车防冻液的分类、性能要求和试验方法等。

此外,不同汽车制造商可能对DexCool防冻液的标准有不同的要求,因此在实际使用中需要注意车辆制造商的建议。

总之,为了确保汽车发动机的正常运行和延长使用寿命,应该选择符合标准的优质DexCool防冻液,并定期更换。

GB29743-2013车辆发动机冷却液标准

GB29743-2013车辆发动机冷却液标准

水的质量要求
符合GB/T 6682规定的三级水要求 由蒸馏或者离子交换、反渗透等方法制取 根据ASTM D6210,水质量要求汇总为: – 总硬度小于20 – 无固溶物 – 电导率小于0.5(25℃), mS/m – 氯化物小于25ppm – 硫酸盐小于50ppm – PH值5.5-8.5 – 钠离子小于50ppm – 可氧化物浓度小于0.4mg/L
乙二醇的质量要求
乙二醇纯度> 二乙二醇,三乙二醇,四乙二醇,丙二醇,二丙二 醇,三丙二醇和1,3-丙二醇等 乙二醇的质量检验标准参见《GB/T 4649-2008 工业乙二醇》 外观:无沉淀及悬浮物、清亮透明液体 无刺激性气味 馏程范围满足合格品要求
轻负荷与重负荷发动机
轻负荷发动机 长期在比额定功率低得多的条件下运转 NB_SH_T 0521-2010特别定义为:轿车,轻型卡车,有篷货车,体 育运动汽车,农用拖拉机,草坪维护机械等 重负荷发动机 长期在接近额定功率条件下运转,大多采用湿式缸套 NB_SH_T 0521-2010特别定义为:
1. 道路卡车和公交车
2. 农用、土石运输、建筑、矿用非高速机械 3. 高输出功率的固定发动机 4. 牵引机车和航行船舶
重负荷发动机冷却液
化学组分要求之一 项 目 亚硝酸盐(以NO2-计)含量,mg/Kg 化学组分要求之二 项 目 亚硝酸盐(以NO2-计)和钼酸盐( 以MoO4-计) 总量,ppm 不小于 其中单组分,ppm 不小于 技 术 要 求 试验方法 HJ/T 84 NB/SH/T 0828 技 术 要 求 1200 试验方法 HJ/T 84
780 300
1.各种冰点的发动机冷却液中,化学组分要求满足上面一种即可 2.浓缩液应稀释成冰点-15℃的溶液进行试验

防冻液基础知识

防冻液基础知识

防冻液的规格标准国外防冻液的标准有AST M D3306、SAE J1304、MIl-A-46153B和J IS K2234,中国于1992年发布了SH 0521乙二醇型发动机冷却液及其浓缩液的标准。

ASTM D3306制订于1974年,至1994年经过6次修订,发表了ASTM D3306—94。

修订的原因是使指标更科学、更实用。

主要内容是取消了无意义的浓缩液的PH指标;提高了浓缩液的沸点要求,由148.9℃提高到163℃,这对浓缩液的总含水量及组成提出了更高的要求;增加了铸铝合金表面传热腐蚀和铝泵气蚀腐蚀特性评定等要求。

日本防冻液标准自1965年以来经过3次修订,于1987年提出了JIS K2234—87,修改的主要内容是试验方法改进,具体指标只有将储备碱度从原来的10.0以上改为报告。

这是因为储备碱度只作为防冻液中防腐添加剂碱性物质用量的指标,并不能表示腐蚀抑制能力的标准。

中国参照ASTM D3306标准制订了防冻液的国家标准GB 0521—92。

该标准所属产品分为浓缩液和冷却液两类,按质量分为一级品和合格品两个等级,冷却液按冰点分为-25号、-30号、-35号、-40号、-45号和-50号六个牌号。

防冻液的主要试验方法1.比重(AST M D1122,SH/T 0068)主要用来估算防冻液中乙二醇和各种盐的含量。

比重又与热传递有关。

将比重与折光率结合可以测定防冻液的防冻能力。

2.冰点(ASTM D1177、SH/T 0090)用来评价防冻液的最低使用温度,也可估算其中乙二醇的含量。

将75—100mL样品置于试管中,以一定速度冷却,测定防冻液的温度,绘出时间一温度曲线,曲线达到水平时的拐点即为冰点。

3.沸点(ASTM D1120,SH/T 0089)用来评价防冻液的高温“使用极限。

将602nL样品置于带回流冷凝器的100mL短颈烧瓶中,加热使其回流,两分钟后测定液相温度即为沸点。

4.pH值(ASTM D1287,SH/T 0069)目前仅测定稀释液的pH值。

解读GB297432013车辆发动机冷却液标准

解读GB297432013车辆发动机冷却液标准

≥155 -
≥170 ≥150 ≥190
≤3 ≤2 ≤3 ≤ 1.5
0 ≤ 1.5 -
ASTM D3306 1.110-1.145, 15.5℃
≤-37
≥163
≤5
≤5
其他理化指标的限值
冰点,以产品的标注值为限值 PH值,50%稀释液PH值7.5-11.0 水分,指浓缩液水分含量不大于5.0% 氯含量,ASTM D3306和SH 0520要求小于25ppm
机动车发动机冷却液的定义: 以防冻剂、缓蚀剂等原料复配而成 用于机动车发动机冷却系统 具有冷却、防腐、防冻等作用
根据额定功率与运转条件分为: 轻负荷:长期在比额定功率低得多的条件下运转 重负荷:长期在接近额定功率条件下运转,大多采用湿式缸套
根据防冻剂类型分为: 乙二醇型 丙二醇型 其他类型
质量变 化,mg/ 试片
紫铜 黄铜 钢 铸铁 焊锡 铸铝
限值
±20 ±20 ±20 ±20 ±60 ±60
22
泡沫性能
项 目 技 术 要 求 试验方法
泡沫倾 向,二 元醇体 积浓度 33%
泡沫体积, mL 不大于 150
泡沫消失时 间不大于5s
SH/T 0066
23
汽车公司的泡沫性能要求
汽车公司 Daimler-Benz Volkswagen TL774 GM Europe BMW MAN Ford Europe
,新国标要求小于60ppm 储备碱度采用报告制,表征不同批次产品中缓冲剂的
含量的连贯性,用于产品过程质量控制,而不表征 产品添加剂的缓冲能力 要求对汽车有机涂料没有影响
16
OEM 冷却液储备碱度和PH值要求
汽车公司规范名称 DBL 7700.00 TL-VW774 BMW N600 69.0 Opel B040 068 SSM-97B9101-A Fiat 55523/1 Volvo 98505 Peugeot FH06 MAN M9.210-01 D3306

冷却液 标准

冷却液 标准

冷却液标准
冷却液(也称为防冻液)是用于汽车、工业设备等系统中的冷却系统,以防止发动机过热和防止冷却系统腐蚀的液体。

不同国家和地区可能有不同的冷却液标准和规范。

以下是一些常见的冷却液标准:
1. JIS K 2234: 这是日本工业标准(JIS)的一部分,涵盖了乙二醇基冷却液和无乙二醇基冷却液的要求和试验方法。

2. ASTM D 3306: 由美国材料和试验协会(ASTM)制定的标准,适用于发动机冷却系统使用的乙二醇基冷却液的规范要求。

3. ASTM D 4985: 这是美国ASTM制定的另一项标准,适用于乙二醇基和无乙二醇基冷却液。

4. BS 6580: 这是英国标准机构(BSI)发布的标准,涉及了乙二醇基和无乙二醇基冷却液的性能要求和试验方法。

5. GB/T 29743: 这是中国国家标准(GB)的一部分,规定了乙二醇基冷却液和无乙二醇基冷却液的要求和试验方法。

这些标准涵盖了冷却液的化学成分、抗腐蚀性能、抗沸腾性能、防冻性能、PH值、泡点等方面的要求。

特定车辆或设备的制造商通常会指定特定的冷却液标准和建议使用的冷却液类型。

因此,在选择和使用冷却液时,应参考相关的标准和制造商的建议,以确保选用适合特定系统和环境条件的冷却液。

请注意,这只是一些常见的冷却液标准,具体的标准要求可能因国家、地区、行业和用途而有所不同。

建议您在选择和使用冷却液时,参考当地的法规和标准,并咨询相关专业人士的建议。

汽车防冻液 国标

汽车防冻液 国标

汽车防冻液国标
(最新版)
目录
1.汽车防冻液的定义与作用
2.国标对汽车防冻液的要求
3.汽车防冻液的正确使用方法
4.国标对汽车防冻液更换的建议
5.结论:汽车防冻液的全年使用和正确更换的重要性
正文
汽车防冻液,全称防冻冷却液,是一种具有防冻功能的冷却液。

它的主要作用是在寒冷季节防止冷却液结冰,避免散热器胀裂和发动机气缸体冻坏。

然而,许多人误解了防冻液的作用,认为它仅在冬季使用。

实际上,防冻液应该全年使用,因为除了防冻功能外,它还具有冷却发动机、保护散热器和气缸体的作用。

我国对汽车防冻液有严格的国家标准。

国标规定,防冻液的冰点应低于 -30℃,沸点应高于 110℃。

此外,防冻液还应具有良好的热稳定性、抗腐蚀性和抗泡沫性。

因此,在选择汽车防冻液时,应确保其符合国标要求,以保证发动机的正常工作和使用寿命。

正确使用汽车防冻液的方法是,在冷车状态下检查防冻液位,如果液位低于“LOW”刻度,应及时添加。

添加时,应选择与车辆相匹配的防冻液,避免不同品牌和型号的防冻液混合使用。

此外,防冻液应每行驶一年更换一次,以确保其性能稳定。

特殊车辆,如出租车、货车等,由于使用频率较高,建议每半年更换一次防冻液。

国标对汽车防冻液的更换也有具体建议。

首先,建议在更换防冻液时,选择符合国标要求的产品。

其次,更换防冻液时应将旧液彻底排放干净,
避免新旧液混合使用。

最后,更换防冻液后,应检查散热器和气缸体是否有泄漏现象,如有泄漏应及时修复。

总之,汽车防冻液的全年使用和正确更换对于保护发动机、避免故障具有重要意义。

防冻液、玻璃水标准

防冻液、玻璃水标准

SH/T 0521—1999 汽车及轻负荷发动机用乙二醇型冷却液前言本标准等效采用美国材料与试验协会标准ASTM D3306-1994《轿车及轻型卡车用的乙二醇型发动机冷却液》,对SH/T 0521-1992 《乙二醇型发动机冷却液及其浓缩液》标准进行修订。

本标准与ASTM D3306-1994的主要差异如下:1、ASTM D3306中只有浓缩液标准,结合国情,本标准增加了冷却液的标准;2、去掉了ASTM D3306中附录X1发动机冷却系统的保养及附录X2未使用过冷却液的报告。

根据ASTM D3306-1994,对SH/T 0521-1992主要进行如下修订:1.对标准名称进行了修订。

2.本标准取消了合格品。

3.增加了“氯含量”及“铸铝合金传热腐蚀”两项指标。

本标准由中国石油化工集团公司提出。

本标准由中国石油化工集团公司石油化工科学研究院归口。

本标准起草单位:中国石化销售华北公司。

本标准主要起草人:张新昌、董芳、张凤泉、李殿斌。

SH/T 0521—1999中华人民共和国石油化工行业标准汽车及轻负荷发动机用乙二醇型冷却液Standard specification for ethylene glycol base engine coolant for automobile and light duty service1 范围1.1本标准规定了汽车及轻负荷发动机用乙二醇型冷却液及其浓缩液的技术要求。

本标准所属产品适用于汽车及轻负荷发动机冷却系统,不适用于重负荷发动机冷却系统。

1.2本标准没有提出与其应用时有关的全部安全问题。

在使用前,本标准的使用者有责任制定相应的安全和保健措施,并明确其受限制的适用范围。

2 引用标准(略)3 技术内容3.1 产品分类本标准所属产品分为浓缩液和冷却液。

乙二醇型发动机冷却液由乙二醇、适合的防腐蚀添加剂、消泡剂及适量的水组成。

这些适量的水是为溶解添加剂及保证产品在-18℃时能从包装容器中倒出。

ASTM+D+2758-1994发动机防冻液检测标准

ASTM+D+2758-1994发动机防冻液检测标准

Designation:D2758–94(Reapproved2003)Standard Test Method forEngine Coolants by Engine Dynamometer1This standard is issued under thefixed designation D2758;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method covers a full-scale clean engine test designed to evaluate corrosion protection and inhibitor stability of engine coolants under simulated heavy-duty driving condi-tions.1.2The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.Specific hazards statements are given in Section6.2.Referenced Documents2.1ASTM Standards:D1121Test Method for Reserve Alkalinity of Engine Coolants and Antirusts2D1287Test Method for pH of Engine Coolants and Anti-rusts2D1384Test Method for Corrosion Test for Engine Coolants in Glassware2G1Practice for Preparing,Cleaning,and Evaluating Cor-rosion Test Specimens32.2Federal Standard:4CFR Title29OSHA Regulations3.Summary of Test Method3.1This test method involves the operation of a standard passenger car engine on a dynamometer stand under constant speed,load,and coolant temperature conditions for a total of 700h.The performance of the coolant is judged by examina-tion of(1)coolant samples,(2)metal corrosion specimens,and (3)cooling system components.4.Significance and Use4.1This test method provides a laboratory technique ca-pable of reproducing the complex environmental stresses a coolant encounters under actual engine operating conditions. The test method provides improved discrimination over glass-ware and simulated service tests and improved correlation with field service.Although the test method is particularly valuable for developing coolants for increased service requirements,it remains thatfield testing is necessary to evaluate coolant performance completely.5.Apparatus5.1Test Engine—The test engine shall be a volume production passenger car engine of cast iron or aluminum construction.Engine speed and brake horsepower should be calculated and adjusted to be equivalent to a96.5km/h(60 mph)level road load.Aluminum accessories,such as coolant pump and timing chain cover,are optional.The engine shall be equipped with a matching radiator and pressure cap.A coolant overflow reservoir and closed-system pressure cap are op-tional,except when specified by the manufacturer.Assemble the test components to provide a complete cooling system.The relative positioning of the radiator and engine should duplicate, as closely as practicable,the mounting in the automobile with the fan omitted.All radiator hose lengths should be held to a minimum.The radiator shall be cooled by forced air.5.2Instrumentation and Control(See Fig.1)—Run the engine on a test stand coupled to an engine dynamometer with appropriate accessories for control of the designated operating conditions.Measure engine coolant temperature out of the engine at a point immediately adjacent to the coolant outlet. Measure manifold vacuum,oil pressure,and exhaust pressure at appropriate points and monitor them throughout the test in order to ensure proper engine performance.Install a pressure gage in the outlet tank of a crossflow radiator or the top tank ofa downflow radiator to read the gage pressure.5.3Corrosion Measurements:5.3.1Evaluate corrosion protection using metal specimens. The specimen arrangement shall be basically that used in Test Method D1384.The specimen bundle is shown in Fig.2. Preparation,cleaning,and weighing of the metal specimens are described in Test Method D1384and Practice G1.Each specimen bundle shall be held in a canvas-reinforced phenolic1This test method is under the jurisdiction of ASTM Committee D15on EngineCoolants and is the direct responsibility of Subcommittee D15.10on Dynamometerand Road Tests.Current edition approved Dec.15,1994.Published February1995.Originallypublished as D2758–st previous edition D2758–86(1991)e1.2Annual Book of ASTM Standards,V ol15.05.3Annual Book of ASTM Standards,V ol03.02.4Available from the Occupational Safety and Health Administration,200Constitution Ave.,N.W.,Washington,DC20008.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.tube (see Fig.3)which,in turn,is contained in a e two types of specimen capsules:full-flow and bypass.Install the full-flow capsule in the upper radiator hose,and connect the bypass capsule across the heater taps of the engine.Details of the capsules are shown in Fig.4and Fig.5.The full-flow capsule shall contain three sets of specimens;weigh and replace one set with a fresh set at 100-h increments,and weigh two sets at the conclusion of the test.The bypass capsule shall contain three sets of specimens;clean,weigh,and replace the first set at 100-h increments.Clean and weigh the second set at 400h.Replace,clean,and weigh this set at the end of the test.Clean and weigh the third set at the end of the test.5.3.2Position the full-flow capsule in the upper radiator hose at a point below the radiator coolant level.5.3.3The bypass capsule should be located in close prox-imity to the engine in order to avoid excessive coolant temperature drop.5.3.4Equip the bypass capsule with a temperature-measuring device to assure that normal flow is being main-tained.(A temperature drop from normal operating temperature indicates an obstruction in the bypass circuit.)A mounting bracket attached to the radiator stand is recommended.Mount the capsule below the radiator coolant level in a vertical position.Connect the bottom fitting of the capsule with a rubber hose to the standard heater supply nipple,and connect the top fitting to the return nipple on the coolant pump.5.4Fuel and Crankcase Oil —Because of the extended duration of this test,it is suggested that high-quality fuels and motor oils be selected to control combustion problems and achieve maximum valve life.6.Precautions6.1Safety Precautions :6.1.1Coolant —All coolant concentrates and their solutions should be considered harmful or fatal if swallowed.6.1.2Specimen Cleaning —When cleaning aluminum speci-mens with chromic acid/orthophosphoric acid solution,use fume hood.6.1.3Personal Protection —Appropriate personal protection equipment (safety glasses,gloves,etc.)should be worn at all times when working with hot,pressurized engine systems.In general,engine speed should be lowered to 1000rpm at no load,and the temperature and pressure on the cooling system should be lowered to a level below the boiling point of the coolant before approaching the engine.To avoid possible burns,care should be exercised in venting and opening the radiator pressure cap.6.1.4Safety Guards —Sturdy safety guards must be used for the fan belt,pulleys,couplings,and drive shaft (see OSHA Regulations,CFR Title29).FIG.1Air CoolingSetup6.1.5Maintenance of Physical Equipment —In the operation and planning of the dynamometer test facility,adequate fore-thought must be given to the fuel system,exhaust system,fire hazards,and general housekeeping in order to maintain ahighN OTE 1—A Alternate specimen bundles are shown in Test Method D1384.Metric Equivalentsin.0.0601⁄161⁄83⁄161⁄417⁄647⁄161⁄212mm1.521.593.184.766.356.7511.1112.72551FIG.2Corrosion SpecimenBundleMetric Equivalentsin.3⁄161⁄47⁄16115⁄1621⁄1621⁄2mm4.766.3511.1149.2152.3963.5N OTE 1—To achieve snug fit of the specimen bundle in the tube,add insulating washers as necessary under the brass nut on the specimen bundle.FIG.3Specimen BundleSleevelevel of safety standards.For example,checks for leaks in the fuel,oil,and exhaust systems must be made on a continuing basis,and consideration must be given to the routing of a hot exhaust system in an area of combustible materials.7.Preparation of Apparatus 7.1Engine Reconditioning :7.1.1Check the engine and recondition,if necessary,prior to each test run.For each new engine,prior to a series of tests,and those engines being reconditioned for further testing,install new cylinder head gaskets;the engine manufacturer’s recommendations should be followed regarding the use of gasket sealing compounds.When no specific recommendation is made by the engine manufacturer,the cylinder head gaskets and other coolant sealing gaskets should be coated with an adhesive sealant.This will ensure against coolant and exhaust gas leakage at some advanced point in the test,possibly voiding the test and its results.A new radiator should be installed before each test.The cooling system should be checked for the following common defects:(1)cylinder head gasket leakage resulting in exhaust gas contamination of the coolant,(2)air induction into the coolant due to a worn coolant pump seal,and (3)defective lower radiator hose connection.Methods of checking for these defects appear in Annex A1.7.1.2Clean the engine cooling system with a chelator-type commerical cleaner (see Annex A2).Replace all hoses after the cleaning procedure,but before each test.7.2Installation of Test Specimens and Coolant :7.2.1Prior to the installation of the coolant,install a new aluminum coolant outlet (if the engine is so equipped),along with a thermostat fixed in the full open position (see Note).Flat washers should be used under the coolant outlet-attaching bolt heads to minimize damage to the mounting flanges.Install the specimen-containing capsules at this time.N OTE 1—Thermostats of different manufacturers have different design minimum travel positions.“Full open”would mean the maximum travel.To block a thermostat open,the power element should be drilled and tapped for an adjusting screw,soldered into position and cut off.Never solder the piston to the piston guide as this may cause damage or annealing of other thermostat components.To determine maximum travel,measure valve position equivalent to 11°C (20°F)above stamped opening temperature;for example,89°C 111°C 5100°C ~192°F 120°F 5212°F !.7.2.2Based upon careful measurement of the volume of the system,add a measured amount of concentrated coolant directly to the cooling system to provide a 40volume %coolant solution when filled to overflow with watercontainingMetric Equivalentsin.11⁄2221⁄4mm3850.857FIG.4Upper Radiator Hose Full Flow SpecimenCapsuleMetric Equivalentsin 3⁄821⁄4mm9.557FIG.5By-Pass SpecimenCapsule100ppm each of chloride,sulfate,and bicarbonate ions (see Annex A3).If desired,single-phase-inhibited coolant may be premixed with corrosive water in a clean container and added to the cooling system as a solution.Under no conditions premix external to the cooling system at the initiation of the test two-phase coolants containing polar oils.Before starting the test and after installing test coolant,conduct a 103-kPa (15-psi)pressure leakage test to check for external coolant leakage at hoses,gaskets,and coolant pump.7.2.3With the engine running at 1000rpm no load and 93°C (200°F)coolant outlet temperature,drain sufficient coolant to bring the radiator level from overflow to 19mm (3⁄4in.)below the pressure cap seat for down-flow radiators,and 38mm (11⁄2in.)below the pressure cap seat for cross-flow radiators.(When radiator is equipped with an overflow reservoir and closed-system pressure cap,coolant level should be at the pressure cap seat.)Replace radiator cap.Save the drained coolant,and add it to 2-L (2-qt)sample of premixed 40%test coolant and corrosive water solution to use as makeup throughout the test.8.Procedure8.1Maintain the following test conditions throughout the test method,except for the inspections detailed in subsequent sections:Coolant40volume %concentration of test coolant in 100-100-100corrosive water Coolant outlet temperature 9362°C (20063°F)or optional Exhaust pressure 0to 25.4mm (0to 1in.)Hg Test duration 700hThermostat Fixed to remain full openRadiator cap Standard specification for the engine cool-ing systemCoolant level19mm (3⁄4in.)below pressure cap seat for down-flow radiators38mm (11⁄2in.)below pressure cap seat for cross-flow radiatorsAt pressure cap seat when radiator is equip-ped with an overflow reservoir and clos-ed-system pressure capSpeed and brake hPEquivalent to 96.5km/h (60mph)level road load8.2Perform periodic inspections throughout the test,as given in Table 1.9.Interpretation and Significance of Results9.1The test method is intended to provide a more compre-hensive evaluation of coolant performance than is obtainable with glassware and stimulated service tests.Correlation with field service is generally good for engines of similar design and material,but depends to a significant degree on the investiga-tor’s ability to interpret test results in relation to field service experience.Field service will inherently impose variations in severity.9.2The individual specimen weight loss values have limited significance in terms of absolute corrosion protection with respect to field service.Instead,they must be compared to baseline values established with coolants of known field service performance.The comparative weight loss values encountered with those specimens that remain undisturbed for the duration of the test indicate overall corrosion protection by the test coolant.These specimens should be the most valuable to predict field service performance.The specimens,which are replaced at predetermined intervals,and present a clean active surface,may be used to predict extended coolant performance as related to inhibitor depletion and formula degradation rate.A change in weight loss pattern may indicate coolant deterio-ration even though the solution characteristics and undisturbed specimen weight losses indicate a satisfactory condition.9.3Reserve alkalinity depletion also may be used to evalu-ate coolant service life and performance,provided proper precautions in interpretation are observed.After an initial reduction due to inhibitor reaction on cooling system surfaces,the reserve alkalinity will normally decrease gradually with test hours.Variation from this general pattern is cause for investi-gation.9.4The clean engine dynamometer test provides coolant evaluation under the duration,heat rejection,and other envi-ronmental conditions which exist in service.Results are particularly significant when related to a background of expe-rience accumulated in a particular engine design.A compre-hensive determination of general serviceability should include engine dynamometer tests in several types of engines and in prerusted as well as clean-cooling systems.For final proof,aTABLE 1Periodic InspectionsOccurrenceOperational Sequence1h,100h,and every 100h thereafter Reduce the engine speed to 1000rpm no load and 93°C (200°F)coolant temperature.Withdraw 60-mL (2-oz)coolant sample.Samples should be analyzed in accordance with Test Methods D 1287and D 1121.Each 24-h operatingReduce the engine speed to 1000rpm no load and 93°C (200°F)coolant temperature.Remove the pressure cap.Check the coolant level and,if required,adjust to the prescribed level with the reserve premixed makeup solution.The 2L (2qt)of reserve makeup solution should be enough for the entire test.However,if more additions are needed,they must be recorded and reported.Each 100-h operating periodStop the engine and withdraw the 60-mL (2-oz)coolant sample.Remove the 100-h incremental specimen bundle for weighing.Replace with a new bundle.Withdraw sufficient coolant from the system to permit addition of all available reserve makeup solution.Retain the withdrawn coolant reserve makeup and rotate at the next 100-h checkpoint.Change the crankcase oil.Adjust the coolant level,replace the pressure cap,and return engine to test operation.400h of operation In addition to 100-h incremental specimens,remove and weigh the 400-h bypass specimens.Replace with a new bundle (400to 700h).700h of operationTerminate the test.Withdraw 500-mL (1-pt)coolant sample and remove all of the test components.Clean and weigh thespecimens.new coolant formulation should be performance tested in field vehicles under actual driving conditions.10.Report10.1Report the following information:10.1.1Test Equipment and Operating Conditions :10.1.1.1Engine make and model,10.1.1.2Radiator make and model,10.1.1.3Average engine speed,rpm,10.1.1.4Average engine load,bhp,10.1.1.5Average coolant outlet temperature,°C (°F),10.1.1.6Test duration,h,and10.1.1.7Accumulated engine hours at the start of the test.10.1.2Coolant Information :10.1.2.1Test coolant identification,10.1.2.2V olume of coolant in the system at the start of the test,10.1.2.3Coolant additions during test (corrected for samples),10.1.2.4pH and reserve alkalinity of coolant samples every 100h,10.1.2.5Appearance of coolant samples every 100h,and 10.1.2.6Glycol content of coolant samples every 100h.10.1.3Corrosion Data :10.1.3.1Corrosion specimen weight losses,milligrams per specimen,for each 100h,for 400h,from 400to 700h,and for 700h,10.1.3.2Condition of the radiator at the conclusion of the test,inspected by sectioning representative areas of the tubes,top tank,and bottom tank,and10.1.3.3Condition of engine coolant jacket interior at the conclusion of the test,as viewed through the coolant outlet opening or other accessible opening.11.Precision and Bias11.1Repeatability is generally good,particularly when corrosion rates are low,although large deviations may occur occasionally with the poorer performing coolants.Standard deviations are generally greater when higher weight losses areexperienced.Variations result from differences in specimen composition,grain structure and surface finish,and the random nature of corrosion phenomena.Operating variables affecting the data include the amount of air inducted during the test,residual contaminants in the cooling system at the start of the test,and the amount of fresh coolant added during the test.It is not unusual for the highest weight loss of a given metal to exceed the lowest by a magnitude of four or more.11.2Reproducibility among different laboratories is gener-ally poorer than repeatability and tends to become worse as corrosion increases,especially when specimen weight losses exceed 50mg per specimen.11.3Table 2shows the repeatability established by one laboratory with three tests on the same formula,Coolant B.Table 3shows the reproducibility established by three labora-tories running one test each on the same formula,Coolant C.12.Keywords12.1dynamometer;engine coolants;engine dynamometerTABLE 2Repeatability in Three ASTM Engine Dynamometer Tests:One Laboratory with Coolant BInspection Periods andSamplesCorrosion Weight Losses,mg per SpecimenUpper Radiator HoseBypass CapsuleTest 1Test 2Test 3Test 1Test 2Test 30to 100h:Cast aluminum 921200Cast iron 4113+1+2Steel 21070+1Brass 1543912Solder 790791Copper 10618110to 400h:Cast aluminum 1443Cast iron 50+3Steel 110Brass 10511Solder 821Copper1353(Average of Two Bundles)0to 700h:Cast aluminum 11531763Cast iron 4+2+25+10Steel 100300Brass 1323523Solder 5+12812Copper10221123ANNEXES(Mandatory Information)A1.DETECTION OF EXHAUST GAS LEAKAGE AND AIR INDUCTIONA1.1Exhaust Gas Leakage TestA1.1.1Cylinder head joint failure resulting in exhaust gas contamination of the coolant may be detected by one of the following procedures:A1.1.1.1A carbon monoxide detector may be used for checking gases deaerating from the coolant water running the engine at 35hp and 2800rpm for 15min and returning to idle.With the radiator cap off,gas samples can be taken near the surface of the coolant in the top tank.A positive result should be treated with discretion because false indications of carbon monoxide can be obtained from other possible vapor compo-nents such as hydrogen and ethylene glycol.For this reason,the following “quick-check”should be performed for confir-mation or as an alternative.A1.1.1.2Start the “quick-check”with the engine cold.Remove the fan belt from the water pump drive pulley to prevent pump operation.Drain the system until the coolant is just below the thermostat housing level.Remove the housing and thermostat;then add water until it overflows at the thermostat opening.Start the engine and quickly load to 22.5bhp,1800rpm.The appearance of bubbles or sudden rise ofliquid at the block outlet to the radiator indicates exhaust gas leakage.The test must be run quickly before boiling starts because steam bubbles give misleading results.A1.2Air Induction TestA1.2.1An air induction test should not be performed until it is certain that exhaust gas leakage is not occurring.Suction of air into the system at a defective lower radiator hose connec-tion or because of a worn coolant pump thrust seal may be detected as follows:A1.2.1.1Adjust the liquid level in the radiator,allowing room for expansion,to avoid any overflow during test.Replace the normally used pressure cap with a plain,airtight cap.Attach a length of rubber tube to the lower end of the overflow pipe.Radiator cap,overflow pipe,and rubber tube connections must be airtight.Run engine at speed and under load to stabilize the coolant temperature at 93°C (200°F).Without changing oper-ating conditions,put the end of the rubber tube into a bottle of water,avoiding kinks or loops that might block the flow of air.A continuous stream of bubbles in the water bottle indicates that air is being drawn into the cooling system.TABLE 3Reproducibility in ASTM Engine Dynamometer Tests:Three Different Laboratories with Coolant CInspection Periods andSamplesCorrosion Weight Losses,mg per SpecimenUpper Radiator HoseBypass CapsuleLab CLab J Lab U Lab C Lab J A Lab U 0to 100h:Cast aluminum (850)B114923076136Cast iron 10+2100Steel 112110Brass 815591311Solder 54115736210762Copper 716471510to 400h:Cast aluminum 3511930Cast iron (100)B21Steel 122Brass 9219Solder 5591131Copper92713(Average of Two Bundles Except Lab C)0to 700h:Cast aluminum 731611064612366Cast iron +211012Steel 113122Brass 422732014Solder 609612944100137Copper329533211ALaboratory J ran a test engine used in previous test procedures which included cleaning with oxalic acid.Other engine test work has shown that previous acid cleaning can increase specimen weight losses.BWeight loss value considered anomalous and wasdiscarded.A2.ENGINE COOLING SYSTEM CLEANING PROCEDUREA2.1Drain the cooling system.Remove the thermostat. A2.2Fill cooling system with tap water.Add manufactur-er’s recommended concentration of chelator type commercial cleaner.Run1h at speed and under load to stabilize coolant temperature at93°C(200°F).Drain.A2.3Reverseflush with hot water60to71°C(140to 160°F)for5min.Drain.A2.4Fill cooling system with tap water.Run15min at speed and under load to stabilize coolant temperature at93°C (200°F).Drain.A2.5Reverseflush with hot water60to71°C(140to 160°F)for5min.Drain.A2.6Repeat steps A2.4and A2.5,and take a4-oz(100-mL) bottle sample before draining.If there is sediment present,or if foaming is evident,repeat steps A2.4and A2.5again,or repeat as many times as necessary to obtain a clear,non-foaming sample.A2.7Replace all hoses carrying coolant.A2.8Install test coolant immediately.N OTE A2.1—Any new,used,or reconditioned engine exhibiting exces-sive rusting which cannot be cleaned by this procedure should be replaced.A3.PREPARATION OF CORROSIVE WATERA3.1The specified corrosive water can be prepared by dissolving the following amounts of anhydrous sodium salts in a quantity of distilled or deionized water:sodium sulfate148gsodium chloride165gsodium bicarbonate138gThe resulting solution should be made up to a volume of1 L with distilled or deionized water at20°C.A3.1.1If relatively large amounts of corrosive water are needed for testing,a concentrate may be prepared by dissolv-ing ten times the above amounts of the three chemicals,in distilled or deionized water,and adjusting the total volume to 1L by further additions of distilled or deionized water.When needed,the corrosive water concentrate is diluted to the ratio of one part by volume of concentrate to nine parts of distilled or deionized water.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().。

乙二醇型防冻液 标准

乙二醇型防冻液 标准

乙二醇型防冻液的标准包括以下方面:
冰点:乙二醇型防冻液的冰点一般应低于-40℃,以保证在严寒地区使用不会结冰。

沸点:乙二醇型防冻液的沸点一般应高于107℃,以保证在高温条件下使用不会沸腾。

金属腐蚀性:乙二醇型防冻液应对金属具有良好的防腐性能,以保证长期使用不会对发动机等金属部件造成损害。

橡胶相容性:乙二醇型防冻液应与各种橡胶材料相容,不会引起橡胶老化或变形。

环保性:乙二醇型防冻液应符合环保标准,不含有害物质,不会对环境和人体健康造成危害。

稳定性:乙二醇型防冻液应具有良好的化学稳定性,长期使用不易变质。

请注意,乙二醇型防冻液的实际使用效果可能会受到环境温度、水质、使用条件等多种因素的影响,因此在使用时应根据实际情况进行调整。

防冻液 标准

防冻液 标准

防冻液标准
防冻液是一种车辆发动机冷却系统中的重要物质,可防止水在低
温环境中结冰,同时还有保护发动机不受腐蚀的作用。

根据行业标准,防冻液应满足以下要求:
1. 冰点降至-40℃以下,以确保在极寒天气下仍能正常使用。

2. 具有良好的热稳定性和抗氧化性能,能够抵抗高温下的降解
和氧化,延长使用寿命。

3. 具有良好的防腐蚀性能,能够保护发动机和冷却系统不受金
属腐蚀和水垢的侵害。

4. 不含有对环境和人体有害的重金属和有毒物质,符合环保要求。

在使用防冻液时,请根据车辆生产厂家的要求添加适量的防冻液,不得过量或过少,以确保冷却系统正常运行。

更换防冻液时,要彻底
排出旧液,并采用同等性能的新液进行添加。

对于防冻液的质量和性
能指标,应选择正规品牌的产品,并咨询专业人士的意见。

防冻液标准

防冻液标准

泡沫体积,ml 不 大于
150
泡沫消失时间,s 不大于
5
SH/T 0066
1)供需双方协商确定的数值
2)为保证项目,不同批次的原材料必须测试
3)为保证项目,但产品定型时必须测试。 4)对-25号冷却液,可向该产品加入一定量的碳酸氢钠、氯化钠和无水硫酸钠进行试验
-45
-50
目测 嗅觉 SH/T 0068
SH/T 0090
108 108.5 SH/T 0089
SH/T 0084
3
3.3 SH/T T 0086 SH/T 0091 SH/T 0621
SH/T 0085
SH/T 0088 4)
SH/T 0087 SH/T 0620
无异味 1059~ 1064~
1076 1085
-25
-30
-35
1068~ 1088
-40

106 106.5 107 107.5

无影响
2
2.3 2.5
2.8
7.5~11 —

报告1)
报告1)
±10 ±10 ±10 ±10 ±50 ±50
±20 ±20 ±20 ±20 ±60 ±60
8
1
1073~ 1075~ 1095 1097
项目
浓缩液
质量指标 冷却液
试验方法
颜色
气味
密度(20℃), kg/m³
冰点,℃ 不高于
50%(V/V)蒸馏水 不高于 沸点,℃ 不低于
50%(V/V)蒸馏水 不低于
对汽车有机涂料的 影响
灰分1),% (m/m) 不大于
1107~ 1142 — -37 163 107.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1053~ 1072 -25
1068~ 1088 -40
1073~ 1095 -45
1075~ 1097 -50
SH/T 0068
SH/T 0090
SH/T 0089
SH/T 0084 SH/T 0067 SH/T 0069 SH/T 0086 SH/T 0091 SH/T 0621
7.5~11 — — 报告1) 报告1)
150 SH/T 0066 5
4)对-25号冷却液,可向该产品加入一定量的碳酸氢钠、氯化钠和无水硫酸钠进行试验

±10 ±10 ±10 ±10 ±50 ±50
SH/T 0085
±20 ±20 ±20 ±20 ±60 ±60 8
SH/T 0088 4)
SH/T 0087
1
SH/T 0620
泡沫体积,ml 不 大于 泡沫消失时间,s 不大于 1)供需双方协商确定的数值 2)为保证项目,不同批次的原材料必须测试 3)为保证项目,但产品定型时必须测试。
项目
浓缩液
质量指标 冷却液 有醒目的颜色 无异味 1059~ 1064~ 1076 1085 -30 -35 — 106 106.5 107 — 无影响 2 2.3 2.5 2.8 3 3.3 107.5 108 108.5
试验方法 目测 嗅觉
颜色 气味 密度(20℃), 1107~ kg/m³ 1142 冰点,℃ — 不高于 50%(V/V)蒸馏水 -37 不高于 沸点,℃ 163 不低于 50%(V/V)蒸馏水 107.8 不低于 对汽车有机涂料的 影响 灰分1),% 5 (m/m) 不大于 pH值 — 50%(V/V)蒸馏水 7.5~11 水分,%(m/m)不 5 大于 储备碱度,ml 氯含量,mg/kg 25 不大于 玻璃器皿腐蚀2) 试片变化值,mg/ 片 紫铜 黄铜 钢 铸铁 焊锡 铸铝 模拟使用腐蚀3) 试片变化值,mg/ 片 紫铜 黄铜 钢 铸铁 焊锡 铸铝 铝泵气穴腐蚀 3),级 不小 于 铸铝合金传热腐蚀 2)mg/cm³ 不大于 泡沫倾向
相关文档
最新文档