概率论与数理统计知识点总结(详细)
概率论与数理统计知识点总结!-知识归纳整理
《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。
求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。
(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结
概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
概率论与数理统计各章重点知识整理
概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。
样本空间是随机试验所有可能结果的集合。
2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。
事件之间可以进行并、交、补等运算。
3.概率的定义和性质:概率是描述随机事件发生可能性的数值。
概率具有非负性、规范性和可列可加性等性质。
4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。
事件独立表示两个事件之间的发生没有相互关系。
5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。
贝叶斯公式是一种用于更新事件概率的方法。
6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。
分布函数是随机变量取值在一点及其左侧的概率。
7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。
8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。
方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。
二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。
抽样分布是统计量的概率分布,用于推断总体参数。
2.估计和点估计:估计是利用样本数据对总体参数进行推断。
点估计是利用样本数据得到总体参数的一个具体数值。
3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。
评估方法包括最大似然估计、矩估计等。
4.区间估计:区间估计是对总体参数进行估计的区间范围。
置信区间是对总体参数真值的一个区间估计。
5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。
检验方法包括参数检验和非参数检验。
6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。
7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结免费超详细版
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。
以下是对概率论与数理统计主要知识点的详细总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
我们通常用大写字母A、B、C 等来表示。
随机事件的关系包括包含、相等、互斥(互不相容)和对立等。
2、概率的定义概率是用来度量随机事件发生可能性大小的数值。
概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。
概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。
3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。
二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。
2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。
三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。
2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。
概率论与数理统计总复习知识点归纳
例1 设甲、乙、丙三 人的命中率分别为0.3,
P(Ai)—— 先验概率
0.2,0.1。现三人独立地 向目标各射击一次,结果
A1
A2 ........ An
有两次命中目标,试求丙
P(B/Ai)
P(Ai /B ) 后验概率
没有命中目标的概率。
B P(B )
解 记A、B、C分别为甲、乙、丙命中目标,D 为
P(ABC ) P(D )
0.30.20.90.587 0.092
法二 用Bayes公式:
0.1
0.9
P (C) = 0.1, P(C)0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D/C)0.3*0.2.
C 0.3*0.8+0.7*0.2
C
0.3*0.2
于是有
D
P (C /D )
第二、三章 随机变量及其分布
1.常用分布 B(n,p),P( ),U[a,b],E( ),N(, 2 );
二维均匀、二维正态
2.联合分布和边缘分布
pi• pij,fX(x)f(x,y)dy
j
3.概率的计算 (一维或二维C.R.V.:一重或二重积分)
4.随机变量函数的分布 作图、定限再计算、验证
5 随机变量的独立性
•正态分布的线性组合性质(含正态分布可加性)
若Xi ~ N( i,i 2), i=1,2,...n, 相互独立,则对任
何实数a1, a2, …, an, 有
n
n
n
a X 1 b~ N (a? 1 b,,a 2? 12 ),
aiXi ~N(
a?i i ,,
?a i2
① 分布函数法(C.R.V.):
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系: 1.A ⊂B ,A 发生必导致B 发生. 2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),k n kk n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a a b x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b ll c X c P -=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(exp[21)(22σμσπ--=x x f ;t t x F xd ]2)(exp[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2exp[21)(2π.即μ=0,ζ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F . 正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3ζ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3ζ,μ+3ζ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |ζ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*.连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,ζ12,ζ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =||条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ). 正态卷积:若X 和Y 相互独立且X ~N (μ1,ζ12),记Y ~N (μ2,ζ22),则对Z=X+Y 有Z ~N (μ1+μ2,ζ12+ζ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x x zx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则: ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为ζ(X ),ζ(X )= . 通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1. 正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21exp{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n nx x x μμμ ==μX . 性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.)(x D第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=ζ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=ζk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.~ 近似的min Q1 M Q3 max当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布:记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点. 由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,则有),(~2n N X σμ,其中X 是样本均值. 定理二:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,ζ12)和N (μ2,ζ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当ζ12=ζ22=ζ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ.设总体X 均值μ及方差ζ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d =θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ). 结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m e t t F -=>}{,则)(}){()(1i m i m n m m n t P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21n X X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,ζ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μζ2已知 )1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μζ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= ζ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2ζ12,ζ22已知 )1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2ζ12=ζ22=ζ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ()12112--+±-n n S tY X w α2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμ2)1()1(2122 22112-+-+-=nnS nSnSwζ12/ζ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X~N(μ,ζ2),两个总体X~N(μ1,ζ12),Y~N(μ2,ζ22).第八章假设实验定义:H0:原假设或零假设,为理想结果假设;H1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H0实际为真时,却拒绝H0.第Ⅱ类错误:H0实际为假时,却接受H0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P{当H0为真拒绝H0}≤α,α称为显著水平.拒绝域:取值拒绝H0.临界点:拒绝域边界.双边假设检验:H0:θ=θ0,H1:θ≠θ0.右边检验:H0:θ≤θ0,H1:θ>θ0.左边检验:H0:θ≥θ0,H1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H0备择假设H1检验统计量拒绝域1 ζ2已知μ≤μ0μ>μ0nXZσμ-=z≥zαμ≥μ0μ<μ0z≤-zαμ=μ0μ≠μ0|z|≥zα/22 ζ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 ζ1,ζ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 ζ12=ζ22=ζ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知ζ2≤ζ02ζ2>ζ02222)1(σχSn-=χ2≥χα2(n-1)ζ2≥ζ02ζ2<ζ02χ2≤χ21-α(n-1)ζ2=ζ02ζ2≠ζ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知ζ12≤ζ22ζ12>ζ222221SSF=F≥Fα(n1-1,n2-1) ζ12≥ζ22ζ12<ζ22F≤F1-α(n1-1,n2-1)ζ12=ζ22ζ12≠ζ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
(完整版)概率论与数理统计知识点总结
第1章随机事件及其概率在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发生或A 不发生;n次试验是重复进行的,即 A 发生的概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发 生与否是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
用P 表示每次试验A 发生的概率,则A 发生的概率为1 p q ,用Pn (k ) 表示n 重伯努利试验中A 出现k (0 k n)次的概率,P n (k) C :P k q nkk 0,1,2, ,n5第二章随机变量及其分布(1)设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率, 即事件(X=X k )的概率为P(X=x k )=p k , k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。
有时也用分 布列的形式给出: X | x 1,x 2, , x k ,P(X x k ) p 1, p 2,, p k ,。
显然分布律应满足下列条件:p k 1(1 )宀 0 , k1,2,, ( 2 ) k1(14)伯努利 概型散 随变 的 布(2 ) 设F (x )是随机变量X 的分布函数,若存在非负函数f(x ),对任意实数X ,有XF(x) f (x)dx则称X 为连续型随机变量。
f (X )称为X 的概率密度函数或密度函数, 简称概率密度。
密度函数具有下面4个性质:分布仁 f(x) 03、P(X i X X 2) F(X 2)F(X J f (x)dxX i4、P(x=a)=O,a为常数,连续型随机变量取个别值的概率为 0连 型 机 量 续 随变 的 密度2、f(x)dx 1。
第三章二维随机变量及其分布如果二维随机向量 (X , Y )的所有可能取值为至多可 列个有序对(x,y ),则称 为离散型随机量。
设=(X ,Y )的所有可能取值为(人『)(门1,2,),且事 件{= (X i ,y j )}的概率为 p ij,,称P {(X,Y ) (X i ,y j )} P j (i,j 1,2,)为=(X ,Y )的分布律或称为 X 和Y 的联合分布律。
概率论与数理统计知识点总结
连
续
型
密度函数
分
布
分布函数
期望
( EX ) 方差( DX )
均 匀 分
f
(x)
b
1
a
,
a xb
0, x a
0, 其他
F
(
x)
x b
a a
,
a xb
EX a b 2
(b a)2 DX
12
布
1, x b
记作 X ~U[a,b]
n
n
n
P Ai 1 P(Ai ) 1 (1 P(Ai ))
i1
i1
i1
(4)伯努利概型
伯努利定理:在一次试验中,事件 A 发生的概率为 p(0 p 1) ,则在 n 重伯努利试验中,事
件 A 恰好发生 k 次的概率为: b(k; n, p) Ckn pkqnk ,其中 q 1 p . 在伯努利试验序列中,设每次试验中事件 A 发生的概率为 p ,“事件 A 在第 k 次试验中才首
数 n 有关),如果 n 时, npn ( 0 为常数),则对任意给定的 k ,有
lim
n
b(k; n,
pn
)
k k!
e
.
当二项分布 b(n, p) 的参数 n 很大,而 p 很小时,可以将它用参数为 np 的泊松分布来近
似,即有
b(k; n, p) (np)k enp . k!
4.常用的连续型分布
k
N2 N
nk
.这一近似关系的严格
数学表述是:当 N
时, N1
, N2
,且
N1 N
p,
N2 N
1
p ,则对任意给
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件..................................... 2..§4 等可能概型(古典概型)................................... 3..§5.条件概率.............................................................. 4.. .§6.独立性.............................................................. 4.. .第二章随机变量及其分布 (5)§1随机变量.............................................................. 5.. .§2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7)§1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)§1.数学期望............................................................ 1..0 .§2 方差............................................................ 1..1 .§3协方差及相关系数 (11)第五章大数定律与中心极限定理 (12)§1.大数定律.............................................. 1.2§2中心极限定理 (13)第一章概率论的基本概念§ 2 .样本空间、随机事件1•事件间的关系 A B 则称事件B包含事件A,指事件A发生必然导致事件B发生A」B ={x|x E A或x € B}称为事件A与事件B的和事件,指当且仅当A , B中至少有一个发生时,事件 A 一 B发生Ac B ={x|x乏A且X乏B}称为事件A与事件B的积事件,指当A , B同时发生时,事件A^B发生A —B ={x|x E A且x更B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生B =,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的A _•B =S且 B =•,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件2.运算规则交换律A -• B = B -• A AB = B - A结合律(A B) C = A (B C) (A - B)C = A(B - C)分配律A _( B - C) (A 一B) - (A 一C)A - (B C) =(A - B)(A - C)徳摩根律A B = A - B A - B = A 一B§ 3.频率与概率定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A.. n称为事件A发生的频率概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P(A)满足下列条件:(1)非负性:对于每一个事件 A Q <P(A)叮(2)规范性:对于必然事件S P(S) =1n n(3)可列可加性:设A,A2,…,A n是两两互不相容的事件,有P( A k)=» P(A k) ( n可k占kV以取::)2.概率的一些重要性质:(i)P( ) =0n n(ii)若A,A2,…,A n是两两互不相容的事件,则有P( A k)八P(A k) ( n可以取::)(iii )设A, B 是两个事件若A B,贝U P(B - A)二P(B) - P( A) , P(B) _ P(A)(iv)对于任意事件A, P(A)乞1(v)p(A)=1-P(A) (逆事件的概率)(vi)对于任意事件A, B 有P(A_. B)二P(A) P(B)-P(AB)§ 4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即A二6]}{勺}…{飢}, 里i“ i 2,…,i k 是1,2, n 中某k 个不同的数,则有 kk A 包含的基本事件数P(A) = 了纟卩貯卫二匚二s 中基本事件的总数§ 5 .条件概率(1) 定义:设A,B 是两个事件,且P(A) . 0,称P(B | A)二P(AB)为事件A 发生的条P(A)件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
非负性:对于某一事件 B ,有P(B | A) _ 0 2。
规范性:对于必然事件 S ,P(S|A) =1 3可列可加性:设B 「B 2,…是两两互不相容的事件,则有QOQQP(U B i A )=瓦 P(B i A )i 吕i =1设P(A) ■ 0,则有P(AB) =P(B)P(A| B)称为乘法公式n(4) 全概率公式:P(A)=v P(B i )P(A| B i )1' P(B i )P(A|B i )i A§ 6 .独立性定义 设A , B 是两事件,如果满足等式 P(AB)二P(A)P(B),则称事件A,B 相互独立 定理一 设A , B 是两事件,且P(A) 0 ,若A , B 相互独立,则 P(B | A) = P B定理二 若事件A 和B 相互独立,则下列各对事件也相互独立:A 与B ,A 与B ,A 与B(3) 乘法定理贝叶斯公式:P(B k | A)二P(BQP(A|B k )n第二章 随机变量及其分布§ 1随机变量定义设随机试验的样本空间为S ={e}. X =X(e)是定义在样本空间 S 上的实值单值函数,称X =X(e)为随机变量§ 2离散性随机变量及其分布律1.离散随机变量:有些随机变量,它全部可能取到的值是有限个或可列无限多个,这种随 机变量称为离散型随机变量□0P(X =X k )二 P k 满足如下两个条件(1) P k - 0 , (2) v P k =1k=12.三种重要的离散型随机变量u(1)分布P(A) -p (0 ::: p <1),此时P(A 1- p .将E 独立重复的进行独立实验为n 重伯努利实验。
f、oO!pq ' , k =0,1,2,…n 满足条件(1) P k 兰0, (2)送P k =1注意到总丿km设随机变量 X只能取 0 与1 两个值,它的分布律是P(X 二 k) =p k (1-p )1-k , k 分布。
(2)伯努利实验、二项分布= 0,1 (0 2:1),则称X 服从以 P 为参数的-分布或两点设实验E 只有两个可能结果:A与A ,则称E 为伯努利实验.设 n 次,则称这一串重复的P(X =k)=k q n-k是二项式(p - q)n的展开式中出现p k的那一项,我们称随机变量X服从参数为n , p 的二项分布。
(3 )泊松分布设随机变量X 所有可能取的值为0,1,2…,而取各个值的概率为P(X =k),k= 0,1,2…,其中,0是常数,则称k!§ 3随机变量的分布函数定义 设X 是一个随机变量,x 是任意实数,函数 F(x) = P{X < x}, - :: ::: x :::::称为X 的分布函数分布函数F(x)二P(X 乞x),具有以下性质(1) F(x)是一个不减函数 (2 )0< F(x)岂 1,且 F(-::) =0,F(::) =1 (3) F(x 0) = F(x),即F(x)是右连续的§ 4连续性随机变量及其概率密度连续随机变量:如果对于随机变量X 的分布函数F (x ),存在非负可积函数f (x),使x对于任意函数 x 有F(x)二f (t ) dt,则称x 为连续性随机变量,其中函数 f(x)称为X的概率密度函数,简称概率密度1概率密度f (x)具有以下性质,满足(1) f(x)_0,(2)__ f(x)dx = 1;X 2(3) P(x^i X < x 2^ J f (x)dx ; (4)若 f (x)在点 x 处连续,则有 F ,(x)二 f (x) x 12,三种重要的连续型随机变量 (1)均匀分布均匀分布•记为X ~ U (a , b ) (2)指数分布I 1 -XV若连续性随机变量 X 的概率密度为f (X )二丁:: ei 0X 服从参数为■的泊松分布记为若连续性随机变量 X 具有概率密度〔丄f(x)二 b-aI 0 a £ x £ b■ ■,则成X 在区间(a,b)上服从 ,其他,x. 0 ,其他其中二0为常数,则称X服从参数为V 的指数分布。
(3 )正态分布若 连 续 型 随 机 变 量 X 的 概 率 密 度 为d (x-P 2f (x ): ----- e 匚,-:::::x ::::,<'2ncr其中」,二(二■ 0)为常数,则称X 服从参数为」,二的正态分布或 高斯分布,记 为X ~ N (,二2)特别,当-0, ;「=1时称随机变量X 服从标准正态分布§ 5随机变量的函数的分布h(y) !h '(y)^ a < y < P 0 ,其他第三章 多维随机变量§ 1二维随机变量定义 设E 是一个随机试验,它的样本空间是 S 二{e }. X =X (e )和丫二丫(e )是定义在S上的随机变量,称 X =X (e )为随机变量,由它们构成的一个向量( X ,Y )叫做二维随机变量设(X , Y )是二维随机变量,对于任意实数x , y ,二元函数 F (x ,y )二 P {(X <x ) f(Y ^y )}记成P {X 空 x ,Y < y }称为二维随机变量(X ,Y )的 分布函数如果二维随机变量(X ,Y )全部可能取到的值是有限对或可列无限多对,则称( X , Y )是离散型的随机变量。