必修三第一章算法初步

合集下载

高一数学人必修三课件第一章算法初步算法的概念

高一数学人必修三课件第一章算法初步算法的概念

05
算法的应用领域与发展趋势
算法在计算机科学中的应用
数据结构与算法
在计算机科学中,算法是数据结 构的基础,用于处理、管理和优
化数据。
操作系统
操作系统中的资源管理、进程调度 、内存管理等核心功能都依赖于高 效的算法。
网络技术
路由算法、拥塞控制算法等在网络 通信中发挥着关键作用,确保数据 的可靠传输。
02
算法的描述方法
自然语言描述
使用日常用语描述算 法步骤,易于理解。
但可能存在歧义,不 够精确。
表达方式灵活,不受 格式限制。
流程图描述
使用图形符号表示算法流程,直观明了。 便于理解和分析算法结构。
但绘制流程图需要一定的技巧和规范。
伪代码描述
介于自然语言和编程语言之间的一种描述方式。 结构清晰,易于理解。
算法的可扩展性与适应性
如何设计能够适应不同场景和需求的通用算法。
感谢您的观看
THANKS
时间复杂度和空间复杂度的关系
时间复杂度和空间复杂度是衡量算法性能的 两个重要指标,它们之间存在一定的关系。
在某些情况下,可以通过增加空间复杂度来 降低时间复杂度,从而提高算法的执行效率 。例如,使用哈希表存储数据可以实现常数 时间复杂度的查找,但需要额外的空间来存 储哈希表。
另一方面,如果算法的空间复杂度过高,可 能会导致内存溢出等问题,因此需要在时间 和空间之间做出权衡。在实际应用中,需要 根据具体需求和资源限制来选择合适的算法 和数据结构。
通过已知条件逐步推导 出问题的解,常用于求 解数列、递归等问题。
将问题分解为与原问题 相似的子问题,通过求 解子问题进而求解原问 题,常用于求解分治策 略的问题。
将原问题分解为若干个 规模较小、相互独立且 与原问题性质相同的子 问题,分别求解子问题 后再合并得到原问题的 解。

高一数学人必修三课件第一章算法初步算法案例

高一数学人必修三课件第一章算法初步算法案例

算法分类及应用领域
数值算法
求解数值问题的算法,如线性方 程组、矩阵运算、函数求值等。
非数值算法
解决非数值问题的算法,如排序 、查找、图形处理等。
算法分类及应用领域
计算机科学
在计算机科学中,算法被广泛应用于 各种软件系统和网络应用中,如操作 系统、数据库管理系统、人工智能等 。
工程领域
数学领域
在数学领域中,算法被用于解决各种 数学问题,如代数、几何、概率统计 等。
06
函数与递归调用算法案例
函数定义及调用方法
函数定义
函数是一段具有特定功能的代码块,它可以 接收输入参数并返回输出结果。在算法中, 函数通常用于实现某个具体的功能或计算任 务。
函数调用
函数调用是指通过函数名及所需参数来执行 函数体内的代码。在调用函数时,需要传递 正确的参数,并获取函数的返回值进行后续 处理。
高一数学人必修三课 件第一章算法初步算 法案例
汇报人:XX 20XX-01-21
contents
目录
• 算法初步概述 • 顺序结构算法案例 • 选择结构算法案例 • 循环结构算法案例 • 数组与矩阵运算算法案例 • 函数与递归调用算法案例
01
算法初步概述
算法定义与特点
算法定义
算法是一组有穷的规则,它们规定了解决某一特定类型 问题的一系列运算步骤。
案例三
判断一个数是否为素数。输入一 个正整数n,输出它是否为素数。 算法步骤为:定义变量n和i;输 入n的值;判断n是否小于等于1 ,如果是则输出“不是素数”, 结束算法;从2到n的平方根范围 内依次判断n能否被i整除,如果 能则输出“不是素数”,结束算 法;如果n不能被2到n的平方根 范围内的任何数整除,则输出“

高中必修三数学第一章算法初步

高中必修三数学第一章算法初步

第一章 算法初步一、选择题1.如果输入3n ,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5D .程序出错,输不出任何结果 2.算法:此算法的功能是( ). A .输出a ,b ,c 中的最大值 B .输出a ,b ,c 中的最小值 C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.右图执行的程序的功能是( ). A .求两个正整数的最大公约数B .求两个正整数的最大值C .求两个正整数的最小值D .求圆周率的不足近似值 4.下列程序: INPUT “A =”;1 A =A *2 A =A *3 A =A *4 A =A *5 PRINT A(第1题)(第2题)(第3题)END输出的结果A 是( ). A .5B .6C .15D .1205.下面程序输出结果是( ).A .1,1B .2,1C .1,2D .2,26.把88化为五进制数是( ). A .324(5)B .323(5)C .233(5)D .332(5)7.已知某程序框图如图所示,则执行该程序后输出的结果是( ). A .1- B .1C .2D .12(第5题)(第7题)8.阅读下面的两个程序:甲 乙对甲乙两程序和输出结果判断正确的是( ).A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同9.执行右图中的程序,如果输出的结果是4,那么输入的 只可能是( ).A .-4B .2C .2 或者-4D .2或者-410.按照程序框图(如右图)执行,第3个输出的数是( ). A .3 B .4 C .5 D .6二、填空题(第8题)(第9题)11.960与1 632的最大公约数为 .12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为 _________.13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为 .(第13题)14.下列所画流程图是已知直角三角形两条直角边a ,b 求斜边的算法,其中正确的是 .(写出正确的序号)(第12题)15.流程图中的判断框,有1个入口和 个出口. 16.给出以下问题:①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数; ③求键盘所输入的两个数的最小数;④求函数⎩⎨⎧=22)(x x x f 当自变量取x 0时的函数值.其中不需要用条件语句来描述算法的问题有 . 三、解答题17.编写一个程序,计算函数f (x )=x 2-3x +5当x =1,2,3,…,20时的函数值.,x ≥3,x <318.编写程序,使得任意输入的3个整数按从大到小的顺序输出.19.编写一个程序,交换两个变量A和B的值,并输出交换前后的值.20.编写一个程序,计算两个非零实数的加、减、乘、除运算的结果(要求输入两个非零实数,输出运算结果).参考答案一、选择题1.C解析:本题通过写出一个算法执行后的结果这样的形式,来考查对算法的理解及对赋值语句的掌握.2.B解析:此算法为求出a,b,c中的最小值.3.A解析:本题通过理解程序语言的功能,考查求两个正整数最大公约数的算法.4.D解析:A=1×2×3×4×5=120.5.B解析:T=1,A=2,B=T=1.6.B解析:∵88=3×52+2×5+3,∴88为323(5).7.A解析:本题以框图为载体,对周期数列进行考查.数列以3项为周期,2 010除以3余数为0,所以它与序号3对应相同的数.8.B解析:结果均为 1+2+3+…+1 000,程序不同.9.B解析:如x≥0,则x2=4,得x=2;如x<0,则由y=x,不能输出正值,所以无解.10.C解析:第一个输出的数是1;第二个输出的数是3;第三个输出的数是5.二、填空题11.96.解析:(1 632,960)→(672,960)→(672,288)→(384,288)→(96,288)→(96,192)→(96,96).12.f (x )=⎩⎨⎧0 ,4- 50<,32x x x x -解析:根据程序框图可以知道这是一个分段函数. 13.答案:i ≥4?. 解析:根据程序框图分析:可知答案为i ≥4?. 14.①.解析:③、④选项中的有些框图形状选用不正确;②图中的输入变量的值应在公式给出之前完成.15.2.解析:判断框的两个出口分别对应“是”(Y)或“否”(N). 16.①②.解析:③④需用条件语句. 三、解答题 17.程序:(如图)18.第一步,输入3个整数a ,b ,c .第二步,将a 与b 比较,并把小者赋给b ,大者赋给a .第三步,将a 与c 比较.并把小者赋给c ,大者赋给a ,此时a 已是三者中最大的.≥ (第17题)第四步,将b 与c 比较,并把小者赋给c ,大者赋给b ,此时a ,b ,c 已按从大到小的顺序排列好.第五步,按顺序输出a ,b ,c . 程序:(如下图所示)19.程序:20.程序:。

必修三第一章《算法初步》

必修三第一章《算法初步》

第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题(1)解二元一次方程组有几种方法? (2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点. 点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.1.1.2 程序框图与算法的基本逻辑结构整体设计教学分析用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.程序框图用图形的方式表达算法,使算法的结构更清楚、步骤更直观也更精确.为了更好地学好程序框图,我们需要掌握程序框的功能和作用,需要熟练掌握三种基本逻辑结构.三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.课时安排4课时教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图. 推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7,求a 2的值.解:根据题意221a a =7, ∵a 1=3,∴a 2=11.即a 2的值为11.例3 写出通过尺轨作图确定线段AB 的一个5等分点的程序框图. 解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n ,都可以按照这个算法的思想,设计出确定线段的n 等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 因此,价格的变化情况表为:年份 2004 2005 2006 2007 2008 钢琴的价格 10 00010 30010 60910 927.2711 255.09程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如下给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.作业习题1.1A 1.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:点评:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示.。

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术
高二数学必修3第一章算法初步知识点:辗转相
除法与更相减损术
高二数学对于知识点的掌握的要求是比较高的。

小编准备了高二数学必修3第一章算法初步知识点,希望能帮助到大家。

1.3.1辗转相除法与更相减损术
1、辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n 得到一个商
S和一个余数
R;(2):若
R=0,则n为m,n的最大公约数;若
R0,
则用除数n除以余数0
R得到一个商
1
S和一个余数
1
R;(3):若
1
R=0,则
1
减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例2 用更相减损术求98与63的最大公约数. 分析:(略)3、辗转相除法与更相减损术的区别:
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到以上是高二数学必修3第一章算法初步知识点的全部内容,更多精彩内容请同学们持续关注查字典数学网。

高一数学必修3第一章《算法初步》

高一数学必修3第一章《算法初步》

v2 v1x an2
v3
v2
x
an3
vn vn1x a0
用秦九韶算法求 n 次多项式仅需要 n 次乘法运算, n 次加法运算 实质:把 n 次多项式的求值问题转化成了求 n 个一次多项式的值的问题
秦九韶算法求一般多项式 f ( x) an xn an 1 xn 1
a1 x a0 的值
v1 an x an1
一共做了 4 乘法运算,4 次加法运算
秦九韶算法适用于一般的多项式:
f ( x) an xn an 1 xn 1
a1 x a0 的求值问题吗?
第 1 步:不断提取 x,将多项式变形
f (x) (((an x an1)x an2 )x a1)x a0
第 2 步:由内向外逐层计算
v1 an x an1
一共做了 4 乘法运算,4 次加法运算
西方称为: 霍纳算法
秦九韶:我国南宋时期数学家(男,公元1202-1261) 划时代巨著 ———《数书九章》
怎样求多项式 f ( x) 2x4 4x3 3x2 6x 7 当 x 5 时的值?
第 1 步:不断提取 x,将多项式变形
f (x) 2x4 4x3 3x2
高一数学必修3第一章《算法初步》
怎样求多项式 f ( x) 2x4 4x3 3x2 6x 7 当 x 5 时的值?
算法 1:常规方法
f (x) 2 (5 5 5 5) 4 (5 5 5) 3 (5 5) 6 5 7
一共做了 10 次乘法运算,4 次加法运算
算法 2:提高效率
f (x) 2 x3 x 4 x2 x 3 x x 6 x 7
2x3 4x2 3x
6x 7 6x 7

2x2 4x 3 x 6 x 7

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

人教版高中必修3第一章算法初步课程设计

人教版高中必修3第一章算法初步课程设计

人教版高中必修3第一章算法初步课程设计课程目标本课程旨在帮助学生了解算法的基本概念和常用算法的实现方式,以及培养学生的编程思维能力和解决问题的能力。

教学内容1.算法的基本概念2.常用排序算法:冒泡排序、选择排序、插入排序、快速排序3.常用查找算法:顺序查找、二分查找4.算法的复杂度分析教学重点和难点教学重点•算法的基本概念和特点•常用排序算法和查找算法的原理和实现方式教学难点•快速排序的原理和实现方式•算法的复杂度分析教学方法本课程采用“理论讲授+案例分析+编程实践”的教学方法,具体如下:1.理论讲授:教师通过讲解PPT、示意图等形式,介绍算法的基本概念、常用算法的原理和实现方式。

2.案例分析:教师通过具体的案例,让学生在实践中理解算法的应用和优化。

3.编程实践:教师通过提供一些编程练习题,让学生进行算法实现和分析。

并在课堂上展示部分学生的优秀代码。

课程安排本课程共计4个课时,具体安排如下:1.第1课时:算法的基本概念。

介绍算法的定义、特点、效率和正确性等基本概念。

2.第2-3课时:排序算法。

介绍冒泡排序、选择排序、插入排序、快速排序的实现方式和时间复杂度分析。

3.第4课时:查找算法和复杂度分析。

介绍顺序查找、二分查找的实现方式和时间复杂度分析,以及算法的复杂度分析方法。

课程评价本课程考核方式为闭卷笔试和编程实践,笔试占60%,编程实践占40%。

针对学生的不同水平,编程实践的难度分为初级和高级两个难度级别,学生可以自主选择挑战。

同时,教师也将根据学生的课堂表现和编程作业进度,对学生进行平时成绩评价。

总结本课程以算法初步为主要内容,重点介绍了排序算法和查找算法,并通过编程实践提高学生的编程能力和解决问题的能力。

希望学生能通过本课程的学习,了解算法的概念和特点,掌握常用算法的实现方式,培养良好的编程思维和解决问题的能力,为后续专业学习打下基础。

高中数学第一章算法初步-程序框图课件人教版必修三

高中数学第一章算法初步-程序框图课件人教版必修三

s p(p - a)(p - b)(p - c)
第四步,输出s
输出s 结束
练习1:任意给定一种正实数,设计一种算法求以 这个数为半径旳圆旳面积,并画出程序框图表达.
解:算法环节为:
程序框图:
开始
第一步,输入圆旳半径 r .
第二步,计算s r2
输入r
第三步,输出s.
计算 s r 2
输出s
结束
例2、写出下列程序框图旳运营成果:
开始 输入a,b
a=2 b=4
S=a/b+b/a
输出S
(1)图中输出S= ;
结束
5/2
练习2:写出下列算法旳功能。
开始
输入a,b
d=a2+b2
c= d
输出c 结束
左图算法旳功能
求两数平方和
是 旳 算术平方根 ;
三、课时小结:
1、掌握程序框旳画法和功能。
2、了解什么是程序框图,懂得学习 程序框图旳意义。
(B)2. 下图形符号表达输入输出框旳是(B )
(C)矩形框
(B) 平行四边形框
(D)(C) 圆角矩形框 (D) 菱形框
(E)3.下图形符号表达处理数据或计算框旳是 A ()
(F)矩形框
(B) 平行四边形框
(G)(C) 圆角矩形框 (D) 菱形框
顺序构 造
开始 输入n
i=2
求n除以i旳余数
循环构造
输入n i=2
求n除以i旳余数
第三步,用i除n,得到余数r.
第四步,判断“r=0”是否成 立.若是,则n不是质数,结束算 法;不然将i旳值增长1,仍用i 表达.
第五步,判断“i>(n-1)”是否 成立.若是,则n是质数,结束算 法;不然返回第三步.

人教版高中数学-必修3第一章《算法初步》概述

人教版高中数学-必修3第一章《算法初步》概述

数学·必修3(人教A版)
本章概述
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)能根据问题设计运算(执行)步骤.
(3)
理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
算法是从2007年开始出现在高考中的,从目前情况看,已成为高考必考内容,现在各地高考中算法主要考查程序框图的阅读和理解,而且难度较小,今后高考不排除考查阅读程序语言、画程序框图甚至写程序语言.由于采用“一标多本”的模式,因此考查框图的可能性最大.
算法初步。

人教版高中数学必修三课件:第一章 算法初步(共25张PPT)

人教版高中数学必修三课件:第一章 算法初步(共25张PPT)

当型循环在每次执行循环体前对循环条件进行判 断,当条件满足时执行循环体,不满足则停止;(当条 件满足时反复执行循环体)
循环体
满足条件?


Until(直到型)循环
循环体
满足条件?
是 否
While(当型)循环 17
练习: 1.就逻辑结构,说 出其算法功能.
开始
2.此为某一函数的求值程序 图,则满足该流程图的函数 解析式为( ).
6
(2)构成程序框图的图形符号及其作用
终端框 (起止框) 输入、 输出框
表示一个算法的起始和结束
表示一个算法输 入和输出的信息
处理框
赋值、计算
(执行框)
判断某一条件是否成立,成
判断框
立时在出口处标明“是” 或“Y”,不成立时标明“否”
或“N”.
流程线
连接程序框
连结点
连接程序框图的两部分
7
6
开始

(3)程序设计语言 1.2基本算法语句中讲解
4
算法初步
§1.1.2 程序框图
5
二、新课
1、程序框图 (1)程序框图的概念
程序框图又称流程图,是一种用规定的 程序框、流程线及文字说明来准确、直观地 表示算法的图形。
在程序框图中,一个或几个程序框的组 合表示算法中的一个步骤;带有方向箭头的 流程线将程序框连接起来,表示算法步骤的 执行顺序。
k 8 _________?_____
k=10 , s=1

s=s×k k=k-1
第7题图

输出s 结束
25
1
讲授新课
1.算法的定义
在数学中,算法通常是指按照一定规则 解决某一类问题的明确和有限的步骤.现在, 算法通常可以编成计算机程序,让计算机执 行并解决问题.

重点高中必修三数学第一章算法初步

重点高中必修三数学第一章算法初步

重点高中必修三数学第一章算法初步————————————————————————————————作者:————————————————————————————————日期:第一章 算法初步一、选择题1.如果输入3n ,那么执行右图中算法的结果是( ).A .输出3B .输出4C .输出5D .程序出错,输不出任何结果 2.算法:第一步,m = a .第二步,b <m ,则m = b . 第三步,若c <m ,则m = c . 第四步,输出 m .此算法的功能是( ). A .输出a ,b ,c 中的最大值 B .输出a ,b ,c 中的最小值 C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.右图执行的程序的功能是( ). A .求两个正整数的最大公约数B .求两个正整数的最大值C .求两个正整数的最小值D .求圆周率的不足近似值 4.下列程序: INPUT “A =”;1 A =A *2 A =A *3 A =A *4 A =A *5 PRINT A第一步,输入n . (第1(第2(第3END输出的结果A是().A.5 B.6 C.15 D.120 5.下面程序输出结果是().A.1,1 B.2,1 C.1,2 D.2,2 6.把88化为五进制数是().A.324(5)B.323(5)C.233(5)D.332(5) 7.已知某程序框图如图所示,则执行该程序后输出的结果是().A.1-B.1 C.2 D.12(第5开始a =2,i=1i≥211aa=-i=i+结束输出a是否(第78.阅读下面的两个程序:甲乙对甲乙两程序和输出结果判断正确的是().A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同9.执行右图中的程序,如果输出的结果是4,那么输入的只可能是().A.-4B.2C.2 或者-4D.2或者-410.按照程序框图(如右图)执行,第3个输出的数是().A .3B.4C.5D.6二、填空题(第8(第911.960与1 632的最大公约数为.12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为_________.13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为.(第13题)14.下列所画流程图是已知直角三角形两条直角边a,b求斜边的算法,其中正确的是.(写出正确的序号)(第12开始输入实数xx<0f(x)=2x -3输出f(x)结束是f(x)=5-4x否15.流程图中的判断框,有1个入口和 个出口. 16.给出以下问题:①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数;③求键盘所输入的两个数的最小数;④求函数⎩⎨⎧=22)(x xx f 当自变量取x 0时的函数值.其中不需要用条件语句来描述算法的问题有 . 三、解答题17.编写一个程序,计算函数f (x )=x 2-3x +5当x =1,2,3,…,20时的函数值.,x≥318.编写程序,使得任意输入的3个整数按从大到小的顺序输出.19.编写一个程序,交换两个变量A和B的值,并输出交换前后的值.20.编写一个程序,计算两个非零实数的加、减、乘、除运算的结果(要求输入两个非零实数,输出运算结果).参考答案一、选择题 1.C解析:本题通过写出一个算法执行后的结果这样的形式,来考查对算法的理解及对赋值语句的掌握.2.B解析:此算法为求出 a ,b ,c 中的最小值. 3.A解析:本题通过理解程序语言的功能,考查求两个正整数最大公约数的算法. 4.D解析:A =1×2×3×4×5=120. 5.B解析:T =1,A =2,B =T =1. 6.B解析:∵88=3×52+2×5+3,∴88为323(5). 7.A解析:本题以框图为载体,对周期数列进行考查.数列以3项为周期,2 010除以3余数为0,所以它与序号3对应相同的数. 序 号 1 2 3 4 5 6 7 … a (输出)221-1221 -12…8.B解析:结果均为 1+2+3+…+1 000,程序不同. 9.B解析:如x ≥0,则x 2=4,得x =2;如x <0,则由y =x ,不能输出正值,所以无解. 10.C解析:第一个输出的数是1;第二个输出的数是3;第三个输出的数是5. 二、填空题1111.96.解析:(1 632,960)→(672,960)→(672,288)→(384,288)→(96,288)→(96,192)→(96,96).12.f (x )=⎩⎨⎧0 ,4- 50<,32x x x x - 解析:根据程序框图可以知道这是一个分段函数.13.答案:i ≥4?.解析:根据程序框图分析: i1 2 3 s4 12 48可知答案为i ≥4?.14.①. 解析:③、④选项中的有些框图形状选用不正确;②图中的输入变量的值应在公式给出之前完成.15.2.解析:判断框的两个出口分别对应“是”(Y )或“否”(N ).16.①②.解析:③④需用条件语句.三、解答题17.程序:(如图)18.第一步,输入3个整数a ,b ,c .第二步,将a 与b 比较,并把小者赋给b ,大者赋给a .第三步,将a 与c 比较.并把小者赋给c ,大者赋给a ,此时a 已是三者中最大的.x =1 WHILE x <=20 y =x^2-3*x +5 x =x +1 PRINT “y =”;y WEND END ≥(第12 第四步,将b 与c 比较,并把小者赋给c ,大者赋给b ,此时a ,b ,c 已按从大到小的顺序排列好.第五步,按顺序输出a ,b ,c .程序:(如下图所示)19.程序:20.程序:INPUT “a ,b ,c =”; a ,b ,c IF b >a THEN t =a a =b b =t END IF IF c >a THEN t =a INPUT A INPUT B PRINT A ,B X =A A =B INPUT “a(a ≠0),b(b ≠0)=”;a ,b X =a +bY =a -bZ =a *bQ =a/b。

高一数学 (人教版必修3):第一章 算法初步 word版含解析

高一数学 (人教版必修3):第一章 算法初步 word版含解析

重点列表:重点详解:1.算法的概念及特点(1)算法的概念在数学中,算法通常是指按照一定______解决某一类问题的________和________的步骤.(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效的执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念程序框图又称流程图,是一种用、及来表示算法的图形.(2)构成程序框图的图形符号、名称及其功能3.算法的基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式:(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式:程序语句1.输入(INPUT)语句输入语句的一般格式: .要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,“提示内容”原原本本地在计算机屏幕上显示,提示内容与变量之间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔.2.输出(PRINT)语句输出语句的一般格式: .功能:实现算法输出信息(表达式).要求:(1)表达式是指算法和程序要求输出的信息;(2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开;(3)如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.3.赋值语句赋值语句的一般格式: .赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样.作用:赋值语句的作用是将表达式所代表的值赋给变量.要求:(1)赋值语句左边只能是变量,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的;(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”、“B=A”的含义和运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的;(3)不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等).4.条件语句(1)“IF—THEN”语句格式:____________________.说明:当计算机执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句.(2)“IF—THEN—ELSE”语句格式:____________________.说明:当计算机执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2.【答案】1.(1)规则明确有限(2)确定有序有穷2.(1)程序框流程线文字说明(2)①终端框(起止框) ②输入、输出框③处理框(执行框) ④判断框⑤流程线⑥连接点3.(1)从上到下依次执行程序语句1.INPUT “提示内容”;变量2.PRINT “提示内容”;表达式3.变量=表达式4.(1)IF 条件THEN语句体END IF(2)重点1:算法的概念【要点解读】算法是指按照一定规则解决某一类问题的明确和有限的步骤.【考向1】算法的概念【例题】下列语句是算法的个数为( )①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否为大树;④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积.4A.1 B.2 C.3 D.【评析】算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果.【考向2】经典算法【例题】“韩信点兵”问题.韩信是汉高祖刘邦手下的大将,为了保守军事机密,他在点兵时采用下述方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4.这样,韩信很快就知道了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.解:在本题中,士兵从1~3报数,最后一个士兵报2,说明士兵的总人数是除以3余2,其他两种情况依此类推.(算法一)步骤如下:第一步:先确定最小的满足除以7余4的数是4;第二步:依次加7就得到所有满足除以7余4的数:4,11,18,25,32,39,46,53,60,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:18;第四步:依次加上35,得18,53,88,…;第五步:在第四步得到的一列数中,找到最小的满足除以3余2的正整数:53,这就是我们要求的数.(算法二)步骤如下:第一步:先确定最小的满足除以3余2的数是2;第二步:依次加3就得到所有满足除以3余2的数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:8;第四步:然后依次加15就得8,23,38,53,…,不难看出,这些数既满足除以3余2,又满足除以5余3;第五步:在第四步所得的一列数中找到满足除以7余4的最小数是53,这就是我们要求的数.【评析】给出一个问题,设计算法时要注意:(1)认真分析问题,研究解决此问题的一般方法;(2)将解决问题的过程分解成若干步骤;(3)用简练的语言将各步骤表示出来;(4)把解题过程条理清楚地表达出来,就得到一个明确的算法.对于同一问题,可以设计不同的算法,其最终的结果是一样的,但解决问题的繁简程度不同,我们要寻找最优算法. 重点2:顺序结构 【要点解读】(1)程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形. (2)程序框图通常由程序框和流程线组成.(3)基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框. 输入语句、输出语句、赋值语句的格式与功能【考向1【例题】已知点P (x 0,y 0)和直线l :Ax +By +C =0,求点P (x 0,y 0)到直线l 的距离d ,写出其算法并画出流程图. 解:算法如下:第一步:输入x 0,y 0及直线方程的系数A ,B ,C . 第二步:计算z 1=Ax 0+By 0+C . 第三步:计算z 2=A 2+B 2. 第四步:计算d =||z 1z 2.第五步:输出d . 流程图如图所示:【评析】顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.【考向2】顺序结构语句【例题】请写出下面运算输出的结果.(1)a=5b=3c=(a+b)/2d=c*cPRINT “d=”;d(2)a=1b=2c=a+bb=a+c-bPRINT “a=,b=,c=”;a,b,c(3)a=10b=20c=30a=bb=cc=aPRINT “a=,b=,c=”;a,b,c解:(1)语句“c=(a+b)/2”是将a,b之和的一半赋值给变量c,语句“d=c*c”是将c的平方赋值给d,最后输出d的值.故输出结果为d=16.(2)语句“c=a+b”是将a,b之和赋值给c,语句“b=a+c-b”是将a+c-b的值赋值给了b.故输出结果为a=1,b=2,c=3.(3)经过语句“a=b”后a,b,c的值是20,20,30,经过语句“b=c”后a,b,c的值是20,30,30,经过语句“c=a”后a,b,c的值是20,30,20.故输出结果为a=20,b=30,c=20.【评析】①将一个变量的值赋给另一个变量,前一个变量的值保持不变;②可先后给一个变量赋多个不同的值,但变量的取值总是最后被赋予的值. 重点3:分支结构 【要点解读】 条件语句(1)算法中的条件结构与条件语句相对应. (2)条件语句的格式及框图 ①IF -THEN 格式②IF -THEN -ELSE 格式【考向1】分支机构程序框图【例题】某铁路客运部门规定甲、乙两地之间旅客托运行李的费用c (单位:元)与行李的重量w (单位:kg)之间的关系为c =⎩⎪⎨⎪⎧0.53w ,w ≤50,50×0.53+(w -50)×0.85,w >50.写出计算费用c 的算法并画出程序框图. 解:算法如下:第一步:输入行李的重量w ;第二步:如果w ≤50,那么c =0.53w , 否则c =50×0.53+(w -50)×0.85; 第三步:输出托运费c . 程序框图如图所示:【评析】条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.【考向2】条件语句【例题】设计算法,求关于x的方程ax+b=0的解.解:程序框图如图所示.根据框图可写出程序语言:INPUT a,bIF a〈〉0 THENPRINT “x=”;-b/aElSEIF b=0 THENPRINT “解集为R”ELSEPRINT “此方程无解”END IFEND IFEND【评析】对于三段或三段以上的分段函数求函数值的问题,通常需用条件语句的嵌套结构.本例是条件语句内套条件语句,即用了两个条件语句,必须有两个END IF,请读者指出前后END IF分别结束的条件语句.难点列表:难点详解:循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是 .反复执行的步骤称为 . 循环结构有如下两种形式:①如图1,这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.因此,这种循环结构称为____________.②如图2表示的也是常见的循环结构,它有如下特征:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.因此,这种循环结构称为____________.循环语句 (1)当型循环语句当型(WHILE 型)语句的一般格式为: ________________. (2)直到型循环语句直到型(UNTIL 型)语句的一般格式为: ______________.【答案】循环结构 循环体 ①直到型循环结构 ②当型循环结构(1)WHILE 条件循环体WEND (2)DO 循环体LOOP UNTIL 条件难点1:循环结构 【要点解读】 循环语句(1)算法中的循环结构与循环语句相对应. (2)循环语句的格式及框图. ①UNTIL 语句②WHILE 语句【考向1】循环结构程序框图【例题】设计一个算法求1+12+…+19+110的值,并画出程序框图.解:当型循环: 算法如下:第一步:令i =1,S =0;第二步:若i ≤10成立,则执行第三步,否则,输出S ; 第三步:计算S =S +1i,i =i +1,返回第二步.程序框图如图所示:直到型: 算法如下:第一步:令i =1,S =0; 第二步:计算S =S +1i,i =i +1;第三步:若i >10,则输出S ,否则,返回第二步. 程序框图如图所示:【评析】如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要使条件的表述恰当、准确.【考向2】循环语句【例题】读下面的程序:INPUT ni=1S=1WHILE i<=nS=S*ii=i+1WENDPRINT SEND上面的程序在执行时输入6,那么输出的结果为( )A.6 B.720 C.120 D.1【评析】计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND 之间的循环体,然后返回到WHILE语句再判断上述条件是否成立,直至返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而执行WEND后面的语句,这是当型循环.难点2:算法案例【要点解读】算法案例(1)辗转相除法辗转相除法是用于求两个正整数的最大公约数的一种方法,这种算法是由欧几里得在公元前330年左右首先提出的,因此又叫欧几里得算法.(2)更相减损术的定义任给两个正整数(若是偶数,先用2约数),以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数,直到所得的数相等为止,则这个数(等数)(或这个数与约简的数的乘积)就是所求的最大公约数.(3)秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n次多项式的值的方法.【考向1】辗转相除法与更相减损术【例题】用更相减损术求120与75的最大公约数时,反复相减,直至求出结果,进行减法运算的次数为( )A.4 B.5C.6 D.3解析:∵120-75=45,75-45=30,45-30=15,30-15=15,∴120与75的最大公约数是15,共进行4次减法运算.答案:A【考向2】秦九昭算法【例题】用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x+8的值,当x=3时,v3的值为( )A.27 B.86C.262 D.789答案:B【趁热打铁】1.用辗转相除法求108和45的最大公约数为( )A.2 B.9C.18 D.272.已知程序如下:当输入x的值为5时,输出的结果为( )A.15 B.76C.84 D.343.某程序框图如图所示,该程序运行后输出S的结果是( )A.32B.16C.2512D.137604.下列程序运行后的输出结果是( )A.17 B.19C.21 D.235.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号,与10进制的对应关系如下表:A.1 612 B.364C.5 660 D.3606.如下框图,当x1=6,x2=9,p=8.5时,x3等于( )A.7 B.8C.10 D.117.如图框图(1)若输入4,则输出的是________;(2)若输出32,则输入的是________.8.阅读如图所示的程序框图,运行相应的程序,输出的结果S=________.9.根据如图所示的框图,说明该流程图解决什么问题,写出相应的算法,并回答下列问题:(1)若输入x 的值为5,则输出的结果是什么? (2)若输出的值为8,则输入的x 的值是什么? (3)要使输出的值最小,输入的x 的值应是多少?10.如图是为求310的值而设计的程序框图,请回答下列问题.(1)将空白处补上,指明它是循环结构中的哪一种类型; (2)画出它的另一种循环结构框图.第一章1解析:∵108=2×45+18,45=2×18+9,18=9×2, ∴108和45的最大公约数为9. 答案:B2解析:该程序表示的是输入x 输出函数y =⎩⎪⎨⎪⎧3x , x ≤5,5.5×10+x -, x >5的值.答案:A答案:C5解析:16C (16)=1×162+6×16+12×160=256+96+12=364. 答案:B6解析:当x 3=7时,|6-9|<|9-7|,即3<2,此时p =9+72=8,输出p =8,A 不正确;当x 3=8时,|6-9|<|9-8|,即3<1,此时p =9+82=8.5,输出p =8.5,B 正确.同理可验证C 、D 不正确.答案:B7解析:(1)若输入4, ∵4>1,∴y=-2×4+32=24.(2)若输出32,当x 2+4x =32时,x 1=4,x 2=-8; 当32=-2x +32时x =0,∵4>1,-8<1,当x =0时,y =02+4×0=0≠32, ∴x=-8.答案:(1)24 (2)-88解析:第一次循环S =1,a =3,n =2, 第二次循环S =4,a =5,n =3, 第三次循环S =9,a =7,跳出循环. 故输出的值为9. 答案:910解:(1)空白部分应填:i≤10?,它为当型循环结构;(2)直到型循环结构的程序框图如下图所示:。

高中数学必修3第一章算法初步(课堂PPT)

高中数学必修3第一章算法初步(课堂PPT)

二、程序框图
用程序框、流程线及文字说明来表示算 法的图形称为程序框图,它使算法步骤显得 直观、清晰、简明.

终端框 输入、 处理框 (起止框) 输出框 (执行框) 判断框 流程线 连接点
5
程序框图又称流程图,是一种用规定的图形,指向线及 文字说明来准确、直观地表示算法的图形。
程序框
名称
功能
终端框(起 表示一个算法的起始和结束 止框)
算法最重要的特征: 1.有序性 2.确定性 3.有限性
3
算法的基本特点
1、有限性
一个算法应包括有限的操作步骤,能在执 行有穷的操作步骤之后结束。
2、确定性 算法的计算规则及相应的计算步骤必须是唯 一确定的,既不能含糊其词,也不能有二义 性。
3、有序性 算法中的每一个步骤都是有顺序的,前一步 是后一步的前提,只有执行完前一步后,才 能执行后一步,有着很强逻辑性的步骤序列4。
结束
END 17
练:编写一程序,求实数X的绝对值。
开始
程序:
输入X 条件结构: INPUT X 条件语句:
X≥0 N
Y 输出X
输出-X
IF X>=0 THEN PRINT X
ELSE PRINT -X
END IF
结束
END
18
当型循环语句
练:设计一算法,求和1+2+3+ … +100。
程序框图: 程序语句:
(2)一个语句可以给多个变 量赋值,中间用“,”分隔
(3)无计算功能
可输出表达式 的值,计算
(1)表达式可以是变量, 计算公式,或系统信息 (2)一个语句可以输入多
个表达式,中间用“,”分隔 (3)有计算功能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

程序框图
考纲说明:
流程图:
1.通过具体实例,进一步认识程序框图.
2.了解工序流程图.(重点)
3.会画简单实际问题的流程图,体会流程图在解决实际问题中的作用.(难点)
结构图:
1.通过具体实例,了解结构图.
2.会画简单问题的结构图,体会结构图在揭示事物联系中的作用.(重点)
3.能够解读结构图,并灵活运用结构图.(难点)
思维导图:
1.流程图
(1)构成元素:图形符号,文字说明,流程线.
(2)起点与终点:通常会有一个“起点”,一个或多个“终点”.
(3)顺序:从左到右,从上到下.
(4)常见的流程图:程序框图和工序流程图.
(5)优点:流程图可以直观、明确地表示动态过程从开始到结束的全部步骤,在日常生活和工作的很多领域都得到广泛应用.
2.工序流程图
描述工业生产的流程图称为工序流程图.
【例1】某程序框图如图4­1­2所示,则输出的结果为________.
图4­1­2
[解析] 由循环结构知,S =0+11×3+13×5+…+19×11=12⎣⎢⎡⎦
⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫19-111=511. ∴输出的结果为511. [答案] 511
在解决循环结构问题时,一定要弄明白计数变量和累加变量是用什再把这两个变量的变化规律弄明白,在解决带有循环结构的程序框图问题时,循环结构的终止条件是至关重要的,这也是考生非常容易弄错的地方,考生一定要根据问题的情境弄清楚这点【例2】 某药厂生产某产品的过程如下:
(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装、包装;
(2)提取环节经检验,合格,进入下一工序,否则返回前处理;
(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品.画出生产该产品的工序流程图.
答案 生产该产品的工序流程图如图:
从需要管理的任务的总进度着眼,进行合理的工作或工序的划分
明确各工作或工序之间的关系
①衔接关系,各工作或各工序之间的先后顺序
②平等关系,
图4­1­3
(2)如图4­1­4是某工厂加工笔记本电脑屏幕的流程图:
图4­1­4
根据此流程图回答下列问题:
①一件屏幕成品可能经过几次加工和检验程序?
②哪些环节可能导致废品的产生?二次加工产品的来源是什么?
[答案](1)9
(2)①一件屏幕成品经过一次加工、二次加工两道加工程序和检验、最后检验两道检验
程序;也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验,最后检验三道检验程序.
②返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.
明确所给流程图是程序框图,还是工序流程图
若是程序框图,明确程序执行后输出什么结果,条件结构的判断条件是什么,循环结构中,控制循环的条件是什么
若是工序流程图,明确有几道工序,各工序之间的关系
课堂练习:流程图
1.画流程图的一般要求为( )
A.从左到右,从上到下
B.从右到左,从上到下
C.从左到右,自下而上
D.从右到左,自下而上
[答案]A
2.如图4­1­5,某人拨通了客服电话,准备手机充值须如下操作( )
图4­1­5
A.1-5-1-1 B.1-5-1-5
C.1-5-2-3 D.1-5-2-1
[答案]D
3.某工程的工序流程图如图4­1­6所示(工时单位:天),现已知工程总工时数为10天,则工序c所需工时为________天.
图4­1­6
[答案]4[设工序c所需工时为x天,由题意知:
工序:①→③→④→⑥→⑦→⑧所需工时为0+2+3+3+1=9天,
工序:①→②→④→⑥→⑦→⑧所需工时为1+0+3+3+1=8天,∴工序:①→②→⑤→⑦→⑧所需工时应为10天.∴1+x+4+1=10.∴x=4.]
4.如图4­1­7是一个程序框图,则输出的k的值是____________.
图4­1­7
[答案]5[解一元二次不等式k2-5k+4>0,得k<1或k>4,依据k的初始值和增量,可知当k=5时跳出循环.故输出的k值是5.]
5.在工业上用黄铁矿制取硫酸大致经过三道程序:造气、接触氧化和SO3的吸收.造气:黄铁矿与空气在沸腾炉中反应产生SO2,矿渣作废物处理,SO2再经过净化处理;接触氧化;使SO2在接触室中反应产生SO3和SO2,其中SO2再循环进行接触氧化;SO3的吸收:SO3在吸收塔内反应产生硫酸和废气.请根据上述简介,画出制取硫酸的工序流程图.[答案]按照工序要求,可以画出如图所示的工序流程图.
1.结构图的概念
结构图是一种描述系统结构的图示,一般由构成系统的若干要素和表达各要素之间关系
的连线(或方向箭头)构成,各要素之间是从属关系或逻辑的先后关系.
2.结构图的分类
(1)按功能分类.
(2)按结构图形状分类,可分为“环”形结构图和“树”形结构图.
【例1】(1)如图4­2­4是“集合”的知识结构图,如果要加入“子集”,则应该放在( )
图4­2­4
A.“集合的概念”的下位B.“集合的表示”的下位
C.“基本关系”的下位D.“基本运算”的下位
(2)画出“推理与证明”这一章的知识结构图.
[解析](1)子集属于集合的基本关系中的概念.
[答案]C
(2)如图所示.
分析知识结构首先整体把握知识块构成,再由逻辑关系找主线,从属关系找分支,进而确定要素及要素的排列顺序
各要素的呈现形式
①从上到下或从左到右
②从属关系使用“树”形结构,逻辑的先后关系使用“环”形结构
【例2】(1)现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物,狼、狗属于哺乳运动,鹰、长尾雀属于飞行动物,请你把下列结构图4­2­5补充完整:①为______,②为________,③为________.
图4­2­5
(2)北京期货商会组织结构设置如下:
①会员代表大会下设监事会、会长办公会,而会员代表大会与会长办公会共同管辖理事会;
②会长办公会下设会长,会长管理秘书长;
③秘书长分管秘书处、规范自律委员会、服务推广委员会、发展创新委员会.
据上绘制其组织结构图.
(1)[解析]根据题意,动物分成三大类:爬行动物、哺乳动物和飞行动物,故可填上
②,然后细分每一种动物包括的种类。

填上①③.
[答案](1)地龟哺乳动物长尾雀
(2)组织结构图如图所示.
提示:由组织结构图分析可得:
财务部直属总裁管理;而总裁又由董事长管理,董事长服从于董事会.
人力资源部由董事长助理直接管理,董事长助理服从于董事长,董事长又服从于董事会,董事会是最高管理部门.
【例3】国内知名网站搜狐设有房地产频道,其栏目结构图如图4­2­6所示:
图4­2­6
(1)某人若上网搜索租房信息应如何操作?
(2)某人在建材装修方面遇到法律咨询方面的需求应如何办?
[答案](1)搜索租房信息:打开搜狐网站→房产首页→租房搜索.
(2)建材装修方面法律咨询:打开搜狐网站→房产首页→建材装修→律师楼.
1.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是( )
[答案]A[从知识结构划分:函数包括函数的定义域、函数的值域、函数的对应法则.] 2.要描述一工厂的组成情况,应用( )
A.程序框图B.工序流程
C.知识结构图D.组织结构图
[答案]D[工厂的组成情况为组织结构图.]
3.根据如图4­2­7所示的结构图可以看出总裁的直接下属是__________.
图4­2­7
[答案]行政总裁、控股总裁、财务部[根据结构图可以发现总裁的下一层级有三个要素:行政总裁、控股总裁、财务部.]
4.在图4­2­8中,“求简单函数的导数”的“上位”要素有________个.
图4­2­8
[答案]2[由题意可知,有“基本导数公式”和“函数四则运算求导法则”,共2个.] 5.某中学行政机构关系如下:校长下设两名副校长和校长办公室,两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处,各科室共同管理和服务各班级.试画出该校的行政组织结构图.
[答案]该校的行政组织结构图如图所示:
6.某校学生会由学生会主席管理下属两个副主席,而两个副主席又分别管理生活、学习、宣传和体育、文艺、纪检部门,各部门又由部长管理本部门.试画出该学生会的组织结构图.
[答案]组织结构图如图.。

相关文档
最新文档