高中数学必修三 算法初步练习题

合集下载

(好题)高中数学必修三第二章《算法初步》测试题(答案解析)

(好题)高中数学必修三第二章《算法初步》测试题(答案解析)

一、选择题1.若执行如图所示的程序框图,输出S 的值为( )A .2log 23B .log 27C .3D .22.若执行下面的程序框图,输出S 的值为5,则判断框中应填入的条件是( )A .15?k ≤B .16?k ≤C .31?k ≤D .32?k ≤3.执行如图所示的程序框图,如果输入4n =,则输出的结果是( )A.32B.116C.2512D.137604.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭5.如图所示程序框图是德国数学家科拉茨1937年提出的一个著名猜想.根据猜想,不断重复程序运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.按照这种运算,若输出k的值为9,则输入整数N的值可以为()A.3 B.5 C.6 D.106.执行如图所示的程序框图,则输出S的值为()A.-1010 B.-1009 C.1009 D.10107.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图m=,则输出的S=()是求大衍数列前n项和的程序框图.执行该程序框图,输入10A.100 B.140 C.190 D.2508.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28 B.56 C.84 D.120 9.执行如图所示的程序框图,输出S的值等于()A.1111238+++⋅⋅⋅+B.1111237+++⋅⋅⋅+C.11111237+++++D.11111238++++⋅⋅⋅+10.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A.6 B.720 C.120 D.5040 11.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4 12.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2二、填空题13.根据下列算法语句,当输入x为60时,输出y的值为_______.14.运行如图所示的程序框图,则输出的S的值为________.15.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.16.根据如图所示算法流程图,则输出S 的值是__.17.执行如下图所示的程序框图,则输出的结果n =__________.18.更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入91a =,39b =, 则输出的值为______.19.阅读如图所示的程序框图,运行相应的程序,则输出n的值为___________20.根据如图所示的伪代码,可知输出的结果S为________.三、解答题21.已知辗转相除法的算法步骤如下:第一步:给定两个正整数m,n;第二步:计算m除以n所得的余数r;=,n r=;第三步:m nr=,则m,n的最大公约数等于m;否则,返回第二步.第四步:若0请根据上述算法画出程序框图.22.给出求满足不等式122010n ++⋅⋅⋅+>的最小正整数n 的一种算法,并作出程序框图. 23.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.24.指出下列程序框图表示的算法,并将最后输出的结果表示出来,指出相应的循环结构,并用另一种循环结构画出这个算法的程序框图.25.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.26.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】由题意,可得程序的功能是求S =log 23×log 34×log 45×log 56×log 67×log 78的值,原式=×××××==3.故选C.2.C解析:C【分析】根据流程图可知()231log 3log 4log 1k S k =⨯⨯⨯⨯+,根据输出值为5可得判断条件. 【详解】设判断条件为k m ≤,则输出值为()231log 3log 4log 1m S m =⨯⨯⨯⨯+, 而()()lg 1lg 1lg 3lg 415lg 2lg 3lg lg 2m m S m ++=⨯⨯⨯⨯==, 故31m =,故选:C.【点睛】本题考查流程图中判断条件的确定以及对数性质的应用,注意S 的计算应根据判断条件的临界值来计算,本题属于中档题.3.B解析:B【分析】 根据题意,运行程序可实现111112341S n =++++⋯+-运算求值,从而得答案. 【详解】第一次执行程序,1,2S i ==,第二次执行程序,11,32S i =+=, 第三次执行程序,111,423S i =++=, 因为44=,满足条件,跳出循环,输出结果116S =.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.4.B解析:B【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环; 以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭. 故选:B .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.5.C解析:C【分析】模拟程序的运行,可以从N 为1出发,按照规则,逆向求解即可求出N 的所有可能的取值.【详解】解:模拟程序的运行,可知输出时,1,9N k ==,逆向运行程序得:2,8N k ==⇐4,7N k ==⇐8N =或1(舍去),6k =⇐16,5N k ==⇐5,4N k ==⇐10,3N k ==⇐20N =或3,2k =⇐40N =或6,1k =.故选:C.【点睛】本题考查的知识点是程序框图的应用,推理与证明,考查新定义,考查学生分析解决问题的能力,属于中档题.6.D解析:D【分析】根据程序框图,先计算出N 和T 的含义,再根据S N T =-即可求得输出值.或利用等差数列的求和公式求解.依题意:得1352019N =+++⋯+,02462018T =++++⋯+.解法一:(10)(32)(54)(20192018)1010S N T =-=-+-+-++-=,故选:D. 解法二:(12019)1010101010102N +⨯==⨯,(02018)1010100910102T +⨯==⨯, 所以10101010101010091010(10101009)1010S N T =-=⨯-⨯=⨯-=, 故选:D.【点睛】本题考查了程序框图的简单应用,数列求和公式的应用,属于中档题.7.C解析:C【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果.【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行; 第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行, 第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行, 第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行, 第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行, 第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行, 第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行, 第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行, 第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行, 第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =. 故选:C【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题.8.C解析:C【分析】由已知中的程序可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序运行过程,分析循环中各变量值的变化情况,即可求解.【详解】模拟程序的运行,可得:0,0,0i n S ===执行循环体,1,1,1i n S ===;不满足判断条件7i ≥,执行循环体,2,3,4i n S ===;不满足判断条件7i ≥,执行循环体,3,6,10i n S ===;不满足判断条件7i ≥,执行循环体,4,10,20i n S ===;不满足判断条件7i ≥,执行循环体,5,15,35i n S ===;不满足判断条件7i ≥,执行循环体,6,21,56i n S ===;不满足判断条件7i ≥,执行循环体,7,28,84i n S ===;满足判断条件7i ≥,退出循环,输出S 的值为84.故选C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中模拟程序运行的过程,通过逐次计算和找出计算的规律是解答的关键,着重考查了推理与计算能力,属于基础题.9.C解析:C【解析】【分析】模拟执行程序框图,依次写出每次循环得到的,k S 的值,当8k时不满足条件8k <,退出循环,输出S 的值为11111237S +++=++,即可得解. 【详解】模拟执行程序框图,可得1,1k S ==,执行循环体,11,2S k =+=,满足条件18,11,32k S k <=++=; 满足条件118,11,423k S k <=+++=; …观察规律可知,当7k =时,满足条件,11111,8237S k ++++=+=;此时,不满足条件8k <,退出循环,输出11111237S +++=++. 故选C .【点睛】 本题主要考查了循环结构的程序框图,解题时应模拟程序框图的运行过程,即可得出正确的结论,着重考查了推理与运算能力,属于基础题.10.B解析:B【解析】【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案.【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==;第2次循环:满足判断条件,2,3S i ==;第3次循环:满足判断条件,6,4S i ==;第4次循环:满足判断条件,24,5S i ==;第5次循环:满足判断条件,120,6S i ==;第6次循环:满足判断条件,720,7S i ==;不满足判断条件,终止循环,输出720S =,故选B.【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题. 11.C解析:C【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案.【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=;第二循环:437,26719n S =+==⨯+=;第三循环:7310,2191048n S =+==⨯+=,要使的输出的结果为48,根据选项可知8k,故选C. 【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 12.B解析:B由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 二、填空题13.31【解析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算并输出分段函数的函数值当时则故答案为31点睛:算法是新课程中的新增加的内容也必然是新高考中的一个热点应高度重视程 解析:31【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数()0.550{250.65050x x y x x ≤=+-,,> 的函数值,当60x =时,则y 250.6605031=+-=(),故答案为31.点睛:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.14.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案.【详解】依题意,024*********T =++++++,135720192021N =++++++, 故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011【点睛】 本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.15.63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|x-y|解析:63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.16.9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S =0n =1满足条件n <6执行循环体S =1n =3满足条解析:9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得S =0,n =1满足条件n <6,执行循环体,S =1,n =3满足条件n <6,执行循环体,S =4,n =5满足条件n <6,执行循环体,S =9,n =7此时,不满足条件n <6,退出循环,输出S 的值为9.故答案为:9.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.17.9【解析】模拟程序的运行可得第一次执行循环不满足则返回继续循环;不满足则返回继续循环;不满足则返回继续循环;当时则最小值为此时故答案为点睛:识别运行程序框图和完善程序框图的思路:(1)要明确程序框图 解析:9【解析】模拟程序的运行,可得0S =,1n =,第一次执行循环,20log 21S =+=,12n n =+=,不满足3S >,则返回继续循环;231log 2S =+,13n n =+=,不满足3S >,则返回继续循环;22341log log 11223S =++=+=,14n n =+=,不满足3S >,则返回继续循环;⋅⋅⋅当n k =时,222234111log log log 1log 232k k S k ++=+++⋅⋅⋅+=+,1n k =+则211log 32k S +=+>,8k ≥,k 最小值为8,此时19n k =+=. 故答案为9.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.18.【解析】输入执行程序框图第一次;第二次;第三次;第四次满足输出条件输出的的值为故答案为解析:13【解析】输入91,39a b ==,执行程序框图,第一次52,39a b ==;第二次13,39a b ==;第三次13,26a b ==;第四次13,13,a b a b ===,满足输出条件,输出的a 的值为13,故答案为13.19.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n 的值为4故答案为4解析:4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4,因此当n=4时,满足判断框的条件,故跳出循环程序.故输出的n 的值为4.故答案为4.20.7【解析】第一次循环:;第二次循环:;第三次循环:;结束循环输出考点:循环结构流程图解析:7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图三、解答题21.详见解析【分析】根据辗转相除法的算法步骤画出程序框图得到答案.【详解】如图【点睛】本题考查了辗转相除法的程序框图,意在考查学生对于程序框图的理解和掌握. 22.见解析【分析】本题先要求12n ++⋅⋅⋅+,即每一项的变量都加一,设置两个变量:每一项的变量n ,且在循环中每次加一;每一项的和的变量T ,随着每一项的变量的增加而增加;再由题意得到退出循环的条件为2010T >.【详解】算法:1:1S n ←;2:0S T ←;3:S T T n ←+;4S ;如果2010T >,输出n ,结束;否则1n n ←+,回到3S .程序框图如下:【点睛】本题考查了算法和框图的知识,考查学生分析解决问题的能力,对于循环结构的分析可以先写出循环的部分,再确定最终循环结束的条件,本题属于中等题。

(典型题)高中数学必修三第二章《算法初步》测试题(含答案解析)

(典型题)高中数学必修三第二章《算法初步》测试题(含答案解析)

一、选择题1.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6 2.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3a b k分别为1,2,3,则输出的M ( ) 3.执行右面的程序框图,若输入的,,A.203B.72C.165D.1584.执行如图所示的程序框图,则输出的a=()A.-9 B.60 C.71 D.815.执行如图所示的程序框图,若输出S的值为511,则判断框内可填入的条件是()A .4i ≤B .5i ≤C .5i <D .6i ≤6.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A .261B .425C .179D .5447.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x 值为0,则输出的x 值为( )A.5740B.13380C.5732D.5893208.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A.7B.6C.5D.4 9.执行如下图的程序框图,如果输入的N的值是7,那么输出的p的值是()A.3 B.15 C.105 D.94510.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为10,14,则输出的a =( )A .6B .4C .2D .011.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为()A .5k <?B .5k ≥?C .6k <?D .6k ≥?12.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C.4D.2二、填空题13.下图所示的算法流程图中,输出的S表达式为__________.14.已知某程序框图如图所示,则该程序运行后输出S的值为__________.15.执行如图所示的程序框图,输出的值为__________.16.如图是一个算法流程图,则输出的S的值为______.17.阅读如图所示的程序框图,运行相应的程序,则输出n的值为___________18.下图程序运行结果是________.19.执行下图所示的程序框图,若输入,则输出的值为_____________.20.执行如图所示的程序框图,输出的T ______.三、解答题21.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB△的面积为y,求y与x之间的函数关系式,并画出程序框图.22.有关专家建议预测,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,试分析其算法并用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.23.写出一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.24.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n <0.000 01为止(该项不累加),然后求出π的近似值. 25.古希腊杰出的数学家丢番图的墓碑上有这样一首诗:这是一座古墓,里面安葬着丢番图.请你告诉我,丢番图的寿数几何?他的童年占去了一生的六分之一,接着十二分之一是少年时期,又过了七分之一的时光,他找到了自己的终身伴侣.五年之后,婚姻之神赐给他一个儿子,可是儿子不济,只活到父亲寿数的一半,就匆匆离去.这对父亲是一个沉重的打击,整整四年,为失去爱子而悲伤,终于告别了数学,离开了人世.试用循环结构,写出算法分析和算法程序. 26.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B.考点:1、程序框图;2、循环结构.2.A解析:A【分析】根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y ===第二次循环3,2,3z x y ===第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =.所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.3.D解析:D【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构4.C解析:C【分析】根据程序框图,模拟运算即可求解.【详解】第一次执行程序后,1a =-,i=2;第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71.故选:C【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.5.B【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】 1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯; 4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B.【点睛】 本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.6.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 7.C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210x x 、1i i =+”,然后进行运算并结合条件“4i ”得出结果。

高中数学必修三《算法初步》练习题

高中数学必修三《算法初步》练习题

高中数学必修三《算法初步》练习题一、选择题1.下面对算法描述正确的一项是 ( )A .算法只能用伪代码来描述B .算法只能用流程图来表示C .同一问题可以有不同的算法D .同一问题不同的算法会得到不同的结果2.程序框图中表示计算的是 ( ).A .B CD3将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )A B C D .4. 计算机执行下面的程序段后,输出的结果是( )1a = 3b = a a b =+ b a b =-PRINT a ,b A .1,3 B .4,1 C .0,0 D .6,05.当2=x 时,下面的程序运行后输出的结果是 ( )A .3B .7C .15D .17 6. 给出以下四个问题:①输入一个数x , 输出它的相反数 ②求面积为6的正方形的周长 ③输出三个数,,a b c 中的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A .1个 B .2个 C . 3个 D .4个7.图中程序运行后输出的结果为 ( ) A. 3 43 B. 43 3 C. 18- 16 D. 16 18-8. 如果右边程序执行后输出的结果是990,那么在程序中 UNTIL 后面的“条件”应为 ( )A. i>10B. i<8C. i<=9D. i<99. INPUT 语句的一般格式是( )A. INPUT “提示内容”;表达式B.“提示内容”;变量C. INPUT “提示内容”;变量D. “提示内容”;表达式10.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A . 一个算法只能含有一种逻辑结构 B. 一个算法最多可以包含两种逻辑结构 C. 一个算法必须含有上述三种逻辑结构D. 一个算法可以含有上述三种逻辑结构的任意组合 11. 如右图所示的程序是用来 ( )A .计算3×10的值B .计算93的值C .计算103的值D .计算12310⨯⨯⨯⋅⋅⋅⨯的值 12. 把88化为五进制数是( )A. 324(5)B. 323(5)C. 233(5)D. 332(5) 13.下列判断正确的是 ( )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构 14. 如果执行右边的框图,输入N =5,则输出的数等于( )A .54B.45C. 65 D.5615.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是 ( )A .2()f x x =B .1()f x x= C .()ln 26f x x x =+- D . ()f x x =二、填空题:16.(如右图所示)程序框图能判断任意输入的正整数x 是奇数或是偶数, 其中判断框内的条件是_____________17.执行右边的程序框图, 若0.8p =,则输出的n =18. 读下面程序 , 该程序所表示的函数是19.对任意非零实数a ,b ,若a b ⊗的运算原理如图所示,则21lg1000()2-⊗=________.20.将二进制数101 101(2) 化为八进制数,结果为 .21.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当2x =时的值的过程中,要经过 次乘法运算和 次加法运算,其中3v 的值是 . 三、解答题: 22.设计算法求S =201614121+⋅⋅⋅+++的值, 并画出程序框图.23.(1) 用辗转相除法求840与1785的最大公约数 ;(2) 用更相减损术求612 与468的最大公约数.高中数学必修三《算法初步》练习题-----参考答案一、 选择题:CABBC, BADCD, CBBDD二、填空题: 16. m = 0? 17. 4 18.10,00,10.x x y x x x +>⎧⎪==⎨⎪-+<⎩19 .1 20. 55(8) 21.5,5,64三、解答题: 22.解: (算法略)程序框图如右图所示. 23. 解:(1)105;(2)36.。

(压轴题)高中数学必修三第二章《算法初步》测试卷(答案解析)

(压轴题)高中数学必修三第二章《算法初步》测试卷(答案解析)

一、选择题1.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 22.运行下图所示的程序框图,如果输入的2020n=,则输出的n=()A.6 B.7 C.63 D.64 3.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.894.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次5.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A .74B .5627C .2D .164816.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n 7.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m = D .35m ≤8.如图,执行程序框图后,输出的结果是( )A .140B .204C .245D .300 9.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤ 10.执行如图所示的程序框图,若输入的6n =,则输出S =A .514B .13C .2756D .31011.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k 12.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-1二、填空题13.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.16.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序x=,问一开始输入的x=______斗.遇店添一倍,逢框图表达如图所示,即最终输出的0友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.17.如图是一个算法流程图,则输出的S的值为______.18.如图所示的程序框图,输出S的结果是__________.19.运行如图所示的程序,输出结果为___________.20.一个算法的程序框图如图所示,则该程序运行后输出的结果是.三、解答题21.如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为22cm,当一条垂直于底边BC(垂足为F)的直线l从B点开始由左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x(0≤x≤7),左边部分的面积为y,求y与x之间的函数关系式,画出程序框图,并写出程序.22.用程序框图描述算法:已知梯形的两底边长分别为a,b,高为h,求梯形面积.23.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.已知函数f(x)=221(0)25(0)x xx x⎧-≥⎨-<⎩每输入一个x值,都得到相应的函数值,画出程序框图并写出程序.25.分别标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出最重球的算法,并画出程序框图.26.写出计算102+202+…+1 0002的算法程序,并画出相应的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值.【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=; 第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.2.A解析:A【分析】根据题中所给的框图,模拟执行程序框图,求得结果.【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数,赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数,赋值126100n =>,且不是奇数,赋值63100n =<,赋值()2log 6316n =+=,输出6.故选:A【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.3.B解析:B【分析】通过不断的循环赋值,得到临界值,即可得解.【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ======================== 不满足50z ≤,输出即可,故选:B.【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.4.C解析:C【分析】根据程序框图依次计算得到答案.【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C .【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.5.C解析:C【分析】根据程序框图依次计算得到答案.【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =; 3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =.故选:C【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.7.B解析:B【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件.【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”.故选B.【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题. 8.B【分析】根据程序框图列举出算法的每一步,可得出输出结果.【详解】18n =>不成立,执行第一次循环,211b ==,011s =+=,112n =+=;28n =>不成立,执行第二次循环,224b ==,145s =+=,213n =+=; 38n =>不成立,执行第三次循环,239b ==,5914s =+=,314n =+=; 48n =>不成立,执行第四次循环,2416b ==,141630s =+=,415n =+=; 58n =>不成立,执行第五次循环,2525b ==,302555s =+=,516n =+=; 68n =>不成立,执行第六次循环,2636b ==,553691s =+=,617n =+=; 78n =>不成立,执行第七次循环,2749b ==,9149140s =+=,718=+=n ; 88n =>不成立,执行第八次循环,2864b ==,14064204s =+=,819n =+=; 98n =>成立,跳出循环体,输出s 的值为204,故选B.【点睛】本题考查程序框图运行结果的计算,一般利用算法程序框图将算法的每一步列举出来,考查计算能力,属于中等题.9.B解析:B【解析】【分析】 根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句. 【详解】 由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B.【点睛】本小题主要考查填写程序框图循环条件,属于基础题. 10.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C【解析】【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么.【详解】模拟程序的运行过程如下, 输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=, 131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=, 此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤. 故选:C .【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题. 12.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果.【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12; k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s 的值为2.故选:A .【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当 解析:12【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案.【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===;当2n =时,执行程序框图得,22512,5,12M a b =+⨯===;当3n =时,不满足判断条件框,直接输出 12M =.故答案为12.【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.14.63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|x-y|解析:63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【 解析:3【解析】【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可.【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去);当3x <时,210y x ==,解得5x = ,舍去,综上,x 的值为3,故答案为3 .【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程序框图的 解析:78【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果.【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =,执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 17.【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循 解析:7【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得1S =,1i =满足条件4i <,执行循环体,2S =,2i =满足条件4i <,执行循环体,4S =,3i =满足条件4i <,执行循环体,7S =,4i =此时,不满足条件4i <,退出循环,输出S 的值为7.故答案为7.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.【解析】阅读流程图可得该流程图计算的数值为:解析:【解析】阅读流程图可得,该流程图计算的数值为:sin 0sin 1sin 5262626S ππππππ⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 19.【详解】试题分析:第一次运行条件成立;第二次运行条件成立;第三次运行条件成立;第四次运行条件不成立;输出故答案应填:1考点:算法及程序语言解析:1【详解】试题分析:第一次运行,5,4s n ==条件14s <成立;第二次运行,9,3s n ==条件14s <成立;第三次运行,12,2s n ==条件14s <成立;第四次运行,14,1s n ==条件14s <不成立;输出1n =,故答案应填:1.考点:算法及程序语言.20.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细 解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.三、解答题21.221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【分析】根据直线l 将梯形分割的左边部分的形状进行分类讨论,求出函数关系式,即可根据条件结构画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2 cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212yx =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩ . 程序框图如下:程序:INPUT “x =”;xIF x >=0 AND x <=2 THENy =0.5 *x ^2ELSEIF x <=5 THENy =2*x -2ELSEy =-0.5*(x -7) ^2+10END IFEND IFPRINT yEND【点睛】本题主要考查分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考查学生分类讨论思想和算法语句的理解和书写.22.答案详见解析.【分析】分三步完成,先输入上下底和高,再计算面积S ,最后输出计算结果S.【详解】梯形面积S =12(上底+下底)×高, ∵梯形的两底边长分别为a ,b ,高为h ,∴程序算法如下:第一步:输入a ,b ,h 的值,第二步:计算S =()2a b h +, 第三步:输出S ,程序框图如下:【点睛】本题主要考查了算法及程序框图,属于中档题.23.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.24.见解析【分析】由条件可得函数为分段函数,这样就要进行判断,然后进行求解【详解】用变量x y ,分别表示自变量和函数值,步骤如下:第一步,输入x 的值第二步,判断x 的范围,若0x ≥,则用解析式21y x =-求函数值;否则,用225y x =-求函数值第三步,输出y 的值程序框图和程序如下.【点睛】本题考查的知识点是设计程序解决问题,由已知条件不难发现函数为分段函数,故需要进行对输入值的判定,然后再代入求解.25.见解析【解析】分析:挑最重的球需要把最重的一个球与其它都想比较,运用循环结构即可得出结果.详解:设六个小球的重量分别为ω1,ω2,…,ω6.算法如下:S1将1号球放在天平左边,2号球放在天平右边.S2比较两球的重量后,若两球一样重,则淘汰天平右边的球;若两球不一样重,则淘汰较轻的球,将较重的球放在天平左边.S3将下一号球放在天平右边比较重量,重复执行S2.S4最后留在天平左边的球是最重的球.程序框图如下图所示:点睛:本题的重点是掌握算法流程图书写的基本步骤,书写规范和方法,当需要解决的问题需要多次重复的相同的步骤时,实现算法需要通过循环结构来实现,在写算法和流程图时注意语言的表达要清晰,步骤要简洁完整.26.见解析【解析】试题分析:确定循环体为:S=S+i^2,i=i+10,再确定初始值和结束的条件即可试题程序如下:S=0;i=10;while i<=1000S=S+i^2;i=i+10;endprint(%io(2),S);程序框图如图所示:。

(易错题)高中数学必修三第二章《算法初步》测试题(含答案解析)

(易错题)高中数学必修三第二章《算法初步》测试题(含答案解析)

一、选择题1.执行如图所示的程序框图,如果输入n=3,输出的S=( )A .67B .37C .89D .492.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x 的取值范围是( )A .[)0,2B .[]2,7C .[]2,4D .[]0,73.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为6,3,则输出的n=()A.2 B.3 C.4 D.5 4.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭5.执行如图所示的程序框图,如果输入x=5,y=1,则输出的结果是()A .261B .425C .179D .5446.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n7.某程序框图如图所示,则该程序运行后输出的值是( )A.3-B.3-C.3D.38.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28 B.56 C.84 D.1209.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是()A .102i >B .102i ≤C .100i >D .100i ≤10.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .111.执行如图所示的程序框图,输出的结果为( )A.201921-22-D.2020 21-B.201922-C.202012.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2二、填空题13.运行如图所示的程序框图,则输出的S的值为________.14.如图是某算法流程图,则程序运行后输出S的值为____.15.根据如图所示算法流程图,则输出S的值是__.t=,则输出的n=_______________.16.执行下面的程序框图,如果输入的0.0217.根据如图所示的算法流程图,可知输出的结果S为______.18.阅读如图所示的流程图,运行相应的程序,则输出n的值为______.19.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.20.如图,如图所示程序框图输出的结果是________.三、解答题21.编写一个程序,要求输入两个正数a和b的值,输出a b和b a的值,并画出程序框图. 22.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.23.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.24.画出求方程lg x+x-3=0在区间(2,3)内的近似解(精确到0.01)的程序框图.25.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.26.试画出求2222++++的值的算法的程序框图.1299100【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和. 【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.2.D解析:D 【详解】 解答: 根据题意,得 当x ∈(−2,2)时,f (x )=2x , 1⩽2x ⩽8,∴0⩽x ⩽3;故02x ≤< 当x ∉(−2,2)时,f (x )=x +1, ∴1⩽x +1⩽8, ∴0⩽x ⩽7,∴x 的取值范围是[2,7]. 故选:D点睛:本题考查的实质问题是分段函数,当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出故选:B .【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.4.B解析:B【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环; 以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭. 故选:B .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.5.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 6.A解析:A因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.7.D解析:D【分析】该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案.【详解】 该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++.因为7132017sin sin sin sin3333ππππ=====28142012sin sin sin sin 3333ππππ=====, 39152013sinsin sin sin 03333ππππ=====,410162014sinsin sin sin 3333ππππ=====,511172015sin sin sin sin33332ππππ=====-,612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D【点睛】 本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.C解析:C【分析】由已知中的程序可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序运行过程,分析循环中各变量值的变化情况,即可求解.【详解】模拟程序的运行,可得:0,0,0i n S ===执行循环体,1,1,1i n S ===;不满足判断条件7i ≥,执行循环体,2,3,4i n S ===;不满足判断条件7i ≥,执行循环体,3,6,10i n S ===;不满足判断条件7i ≥,执行循环体,4,10,20i n S ===;不满足判断条件7i ≥,执行循环体,5,15,35i n S ===;不满足判断条件7i ≥,执行循环体,6,21,56i n S ===;不满足判断条件7i ≥,执行循环体,7,28,84i n S ===;满足判断条件7i ≥,退出循环,输出S 的值为84.故选C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中模拟程序运行的过程,通过逐次计算和找出计算的规律是解答的关键,着重考查了推理与计算能力,属于基础题.9.B解析:B【解析】【分析】根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句. 【详解】由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B.【点睛】本小题主要考查填写程序框图循环条件,属于基础题. 10.C解析:C【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值.【详解】第一次进入循环,因为56除以18的余数为2,所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0,所以0r =,2m =,0n =,判断r 等于0,跳出循环,输出m 的值为2.故选C.【点睛】 本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.故选C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 12.B解析:B【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 二、填空题13.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011【分析】根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案.【详解】依题意,024*********T =++++++,135720192021N =++++++, 故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011【点睛】 本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.14.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次 解析:41【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案.【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=;第二次循环,2n =,不满足判断框的条件,54213S =+⨯=;第三次循环,3n =,不满足判断框的条件,134325S =+⨯=;第四次循环,4n =,不满足判断框的条件,254441S =+⨯=;第五次循环,5n =,满足判断框的条件,输出41S =,故答案为41.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题. 15.9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S =0n =1满足条件n <6执行循环体S =1n =3满足条解析:9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得S =0,n =1满足条件n <6,执行循环体,S =1,n =3满足条件n <6,执行循环体,S =4,n =5满足条件n <6,执行循环体,S =9,n =7此时,不满足条件n <6,退出循环,输出S 的值为9.故答案为:9.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案.详解:执行如图所示的程序框图:第一次循环:11,,124S m n===,满足条件;第二次循环:11,,248S m n===,满足条件;第三次循环:11,,3816S m n===,满足条件;第四次循环:11,,41632S m n===,满足条件;第五次循环:11,,53264S m n===,满足条件;第六次循环:11,,664128S m n===,不满足条件,推出循环,此时输出6n=;点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.【解析】执行循环为点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的解析:3 4【解析】执行循环为1111111131122334223344 S=++=-+-+-=⨯⨯⨯点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4【解析】()1,0,0111,2n S S S===+-⨯=-≥不成立;()22,1121,2n S S==-+-⨯=≥不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 19.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图. 20.105【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第三次循环满足条件 解析:105【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的T 的值.【详解】输入T 1,I 1,==第一次循环T 1,I 3==,不满足条件;第二次循环T 3,I 5==,不满足条件;第三次循环T 15,I 7==,不满足条件;第三次循环T 105,I 9==,满足条件,输出105T =.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.三、解答题21.见解析;【解析】试题分析: 先利用INPUT语句输入两个正数a和b的值,再分别赋值a b和b a的值,最后输出a b和b a的值试题程序和程序框图分别如下:22.见解析;【解析】试题分析: 先利用INPUT语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:23.(1)-4;(2)1009;(3)答案见解析.【解析】试题分析:(1)利用所给的程序框图运行程序可得当x=9时,y=-4,则t的值为-4.(2)结合程序的算法和循环结构的特点可知共输出(x,y)的组数为1009;(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO语句的形式.试题(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x,y)的组数为201821 009.(3)程序框图的程序语句如下:x=1y=0n=1DOPRINT(x,y)n=n+2x=3*xy=y-2LOOP UNTIL n>2 017END点睛:程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换.24.见解析【解析】试题分析:根据据二分法求方程近似解的步骤设计程序框图,注意循环变量.试题程序框图如下图所示.25.见解析【解析】试题分析:在两个不同的条件下批发金额公式不同,只需编写一个条件语句即可实现.试题程序框图如下图所示.程序如下:i=input(“批发双数i=”);if i<300T=2.5* i;elseT=2.2* i;endprint(%io(2),T);26.见解析【解析】试题分析:这是一个累加求和问题,共100项相加,故循环变量的初值可设为1,终值可设为100,步长为1,进而得到相应的程序.试题由题意,所求程序框图如下:。

高中数学必修三《算法初步》练习题(内含答案)

高中数学必修三《算法初步》练习题(内含答案)

2、基本算法语句:①输入语句。

输入语句的格式:INPUT “提示内容”;变量②输出语句。

输出语句的一般格式:PRINT“提示内容”;表达式③赋值语句。

赋值语句的一般格式:变量=表达式④条件语句。

(1)“IF—THEN—ELSE”语句格式:IF 条件THEN语句1ELSE语句2END IF⑤循环语句。

(1)当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND(2)“IF—THEN”语句格式:IF 条件THEN语句END IF(2)直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件高中数学必修三《算法初步》练习题一、选择题1.下面对算法描述正确的一项是 ( )A .算法只能用伪代码来描述B .算法只能用流程图来表示C .同一问题可以有不同的算法D .同一问题不同的算法会得到不同的结果2.程序框图中表示计算的是 ( ).A .B CD3将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )A B C D .4. 计算机执行下面的程序段后,输出的结果是( )1a = 3b = a a b =+ b a b =-PRINT a ,b A .1,3 B .4,1 C .0,0 D .6,05.当2=x 时,下面的程序运行后输出的结果是 ( )A .3B .7C .15D .17 6. 给出以下四个问题:①输入一个数x , 输出它的相反数 ②求面积为6的正方形的周长 ③输出三个数,,a b c 中的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A .1个 B .2个 C . 3个 D .4个7.图中程序运行后输出的结果为 ( ) A. 3 43 B. 43 3 C. 18- 16 D. 16 18-8. 如果右边程序执行后输出的结果是990,那么在程序中 UNTIL 后面的“条件”应为 ( )A. i>10B. i<8C. i<=9D. i<99. INPUT 语句的一般格式是( )A. INPUT “提示内容”;表达式B.“提示内容”;变量C. INPUT “提示内容”;变量D. “提示内容”;表达式10.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( )A . 一个算法只能含有一种逻辑结构 B. 一个算法最多可以包含两种逻辑结构 C. 一个算法必须含有上述三种逻辑结构D. 一个算法可以含有上述三种逻辑结构的任意组合11. 如右图所示的程序是用来 ( )A .计算3×10的值B .计算93的值C .计算103的值D .计算12310⨯⨯⨯⋅⋅⋅⨯的值12. 把88化为五进制数是( )A. 324(5)B. 323(5)C. 233(5)D. 332(5)13.下列判断正确的是 ( )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构14. 如果执行右边的框图,输入N =5,则输出的数等于( ) A .54B.45C. 65 D.5615.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是 ( )A .2()f x x =B .1()f x x =C .()ln 26f x x x =+-D . ()f x x =二、填空题: 16.(如右图所示)程序框图能判断任意输入的正整数x 是奇数或是偶数, 其中判断框内的条件是_____________17.执行右边的程序框图, 若0.8p =,则输出的n =18. 读下面程序 , 该程序所表示的函数是19.对任意非零实数a ,b ,若a b ⊗的运算原理如图所示,则21lg1000()2-⊗=________.20.将二进制数101 101(2) 化为八进制数,结果为 .21.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当2x =时的值的过程中,要经过 次乘法运算和 次加法运算,其中3v 的值是 .三、解答题: 22.设计算法求S = 201614121+⋅⋅⋅+++的值, 并画出程序框图.23.(1) 用辗转相除法求840与1785的最大公约数 ;(2) 用更相减损术求612 与468的最大公约数.高中数学必修三《算法初步》练习题-----参考答案一、选择题:CABBC, BADCD, CBBDD二、填空题:16.m = 0?17.4 18.10,00,10.x xy xx x+>⎧⎪==⎨⎪-+<⎩19.1 20.55(8)21.5,5,64三、解答题:22.解:(算法略)程序框图如右图所示.23. 解:(1)105;(2)36.。

数学必修三第一章算法初步练习题

数学必修三第一章算法初步练习题

数学必修三第一章算法初步练习题学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 有一堆形状大小相同的珠子,其中只有一粒质量比其他的轻,某同学经过思考,认为根据科学的算法,利用天平(不用砝码),二次称量肯定能找到这粒质量较轻的珠子,则这堆珠子最多有()粒.A.6B.7C.9D.122. 下列算法:①z=x;②x=y;③y=z;④输出x,y关于算法作用,下列叙述正确的是()A.交换了原来的x,yB.让x与y相等C.变量z与x,y相等D.x,y仍是原来的值3. 执行如图所示的程序框图,若输入x的值为256,则输出x的值为()A.8B.3C.log23D.log2(log23)4. 我国古代“伏羲八卦图”中的八卦与二进制、十进制的互化关系如下表,依据表中规律,A、B处应分别填写()A.110、6B.110、12C.101、5D.101、105. 下列各数中最小的数为()A.214(7)B.1101010(2)C.412(5)D.10220(3)6. 读如图的程序:上面的程序如果在执行的时候,输入93,那么输出的结果为()A.99B.39C.39.3D.99.37. 算法用流程图(Flowcℎart)来表示,开始/结束框是用来表示算法的开始和结束,以下哪个表示开始/结束框()A. B. C. D.8. 右面程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“mMODn”表示m除以n的余数),若输入的m,n分别为272,153,则输出的m=( )A.15B.17C.27D.349. 右图程序运行后输出的结果为()A.3456B.4567C.5678D.678910. 下列选项那个是正确的()A.PRINT4∗xB.INPUTC.INPUTB=3D.PRINTy=2∗x+111. 如图所示,流程图中输出d的含义是________.12. 459和357的最大公约数是________.13. 运行如图所示的伪代码,其结果为________.14. 对于多项式p(x)=a n x n+a n−1x n−1+...+a1x+a0,用秦九韶算法求P(x0)可做加法和乘法的次数分别记为m,r,则当n=25时,m+r=________.15. 用秦九韶算法计算f(x)=3x4+2x2+x+4,当x=10时的V2=________.16. 如果执行如图所示的程序,则输出的数t=________.17. 某算法流程图如图所示,则输出的结果是________18. 在不同的进位制之间的转化中,若132(k )=42(10),则k =________.19. 给出以下四个问题:①x ,输出它的绝对值.②求面积为6的正方形的周长.③求三个数a ,b ,c 中最大数.④求函数f(x)={x −1,x ≥0x +2,x <0的函数值.其中不需要用条件语句来描述其算法的有________个.20. 210(6)转化为十进制为________,转化为二进制为________.21. 某居民区的物业管理部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费只需画出程序框图即可.22. (1)将二进制数${101101_{ 22.(2)}}${化为十进制数为________(2)将十进制}1375{转化为六进制数为________}${_{(6)}}$ 22.(3)${212_{(8)}= }{_{(2)}}$.23. 如图的茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分,试回答下列问题:(1)在伪代码中“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.24. 一个算法的流程图如图所示,则输出的a的值为 .25. 试编写程序语句,求下列算式的值:1+12+12+12+...+.26. 一个算法的伪代码如图所示,执行此算法,输出S的值为___________.27. 以下给出一个算法:第一步,输入x第二步,若x<0,则y=x+1;否则执行第三步第三步,若x=0,则y=0;否则y=x第四步,输出y.请写出上述算法程序.28. 在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?29. 执行如图所示的程序框图,当输入n=100时,试写出其输出S的数学式子(不要求写出运算结果).30.(1)用辗转相除法计算228与1995的最大公约数;(2)用更相减损术求378与90的最大公约数.31. 观察所给语句,写出它所表示的函数.并求满足f(2−a2)>f(a)的实数a的取值范围.输入xIf x>=0Tℎeny=x∧2+4∗xElseY=4∗x−x∧2输出y.32. 求和1+11+2+11+2+3+⋯+11+2+3+⋯+n.33. 若,,求.34. 已知三角形的三边长分别为a,b,c,借助三角形的面积公式S△ABC=√p(p−a)(p−b)(p−c)(其中p=12(a+b+c)),用输入、输出语句和赋值语句表示计算三角形面积的一个算法.35. 已知f(x)=x2−1,求f(2),f(−3),f(3),并计算f(2)+f(−3)+f(3)的值,设计出解决该问题的一个算法,并画出程序框图.36. 用秦九韶算法求多项式f(x)=4x6+3x5+4x4+2x3+5x2−7x+9在x=4时的值.37. 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.38. 用秦九韶算法求多项式式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x= 2时的值.39. 某中学高三年级男子体育训练小组2012年5月测试的50米跑的成绩(单位:s)如下:6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,设计一个算法,从这些成绩中搜索出小于6.8s的成绩,并画出程序框图.40. 问题:1+2+3+….+100=?其算法步骤如下第一步:i=1第二步:Sum=0第三步:若满足i<=100,则执行下一步(进入循环),i超过100转到第六步,即退出循环.第四步:Sum=sum+i第五步:i=i+1 (i增加1),转到第三步.第六步:输出sum请根据算法步骤画出程序框图.参考答案与试题解析数学必修三第一章算法初步练习题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】算法的概念【解析】已知最多两次就找出这粒较轻的珠子,那么第二次所测的珠子的个数最多为3个;即将其中的两个放在天平的两边,若天平平衡,那么不在天平中的珠子就是最轻的珠子,如果天平不平衡,很较轻的珠子就是所找的珠子.同理,在第一次测量中,最多可测出三组珠子,因此这堆珠子最多有9个.【解答】解:这堆珠子最多有9个.将这堆珠子平均分成3组,将其中的两组放在天平的两边进行第一次测量;若天平平衡,那么较轻的珠子在没称的那堆珠子里;若天平不平衡,那么较轻的珠子就在较轻的那堆珠子里;然后将较轻的那堆珠子进行第二次测量,同第一次测量一样,将其中两个放在天平的两端;若天平平衡,那么没称的珠子就是所找的珠子;若天平不平衡,那么较轻的珠子就是所找的珠子.因此最多用两次即可找出较轻的珠子.故选:C.2.【答案】A【考点】赋值语句算法的概念【解析】交换两个数的赋值必须引入一个中间变量,其功能是暂时储存的功能,根据算法中赋值规则即可得到答案.【解答】解:由算法规则得:第一步:将x的值赋予z,第二步:将y的值赋予x,第三步:将z的值赋予y,这样一来,交换了原来的x,y.故选A.3.【答案】C【考点】条件结构程序框图循环结构的应用【解析】本题考查程序框图,循环结构和条件结构,解题的关键是模拟程序运行,由已知条件,模拟程序运行,直至程序结束即可求解.【解答】解:输入n=1,x=256>1,y=log2256=8,n=1+1=2,x=8,n<8,继续执行循环,x=8>1,y=loℎ28=3,n=2+1=3,x=3,n<8,继续执行循环,x=3>1,y=log23,n=3+1=4,x=log23,n < 8,继续执行循环,x=log23>1,y=log2(log23),n=4+1=5,x=log2(log23),n < 8,继续执行循环,x=log2(log23)<1,y=2log2(log23)=log23,n=5+1=6,x=log23,n < 8,继续执行循环,x=log23>1,y=log2(log23),n=6+1=7,,x=log2(log23),n < 8,继续执行循环,x=log2(log23) < 1,y=2log2(log23)=log23,n=7+1=8,x=log23,满足条件,结束循环,输出x=log23.故选:C.4.【答案】A【考点】进位制【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】排序问题与算法的多样性【解析】由非十进制转化为十进制的方法,我们将各数位上的数字乘以其权重累加后,将各数化成十进制数后比较大小即可得到答案.【解答】=4+1⋅71+2⋅72=109,解:214(7)=0+1⋅2+0⋅22+1⋅23+0⋅24+1⋅25+1⋅26=106,1101010(2)412=2+1⋅5+4⋅52=107,(5)10220=0+2⋅31+2⋅32+0⋅33+1⋅34=105,(3)∴最小的数是10220.(3)故选D.6.【答案】B【考点】条件语句【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是交换数的个位与十位数值.【解答】解:本程序的运行过程是,a是93除以10的商,∴a=9;b是93除以10的余数,∴b=3;x=10×b+a=39.∴输出的结果为39.故选:B.7.【答案】C【考点】程序框图的三种基本逻辑结构的应用【解析】算法用流程图(Flowcℎart)来表示,利用圆角矩形表示算法的开始和结束,故可得结论.【解答】解:算法用流程图(Flowcℎart)来表示,利用圆角矩形表示算法的开始和结束,故选C.8.【答案】B【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得:m=272,n=153,第一次执行循环体:r=119,m=153,n=119,不满足退出循环的条件;第二次执行循环体,r=34,m=119,n=34,不满足退出循环的条件;第三次执行循环体,r=17,m=34,n=17,不满足退出循环的条件;第四次执行循环体,r=0,m=34,n=0,满足退出循环的条件;故输出的m值为17.故选B.9.【答案】A【考点】循环语句【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出z的值,模拟程序的循环过程,并用表格对程序运行过程中的数据进行分析,不难得到正确的答案.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:程序在运行过程中各变量的值如下表示:是否继续循环x y z循环前110进入循环:第一圈是121第二圈是132第三圈是143第四圈否退出内循环,故输出第一个z的值为:3接下来再次进入循环…对照选项,只有A正确故选A.10.【答案】A【考点】输入、输出语句【解析】根据输入和输出语句的格式和功能,我们逐一分析四个答案中程序的功能和格式,分别判断其正误,即可得到答案.【解答】解:A中,PRINT 4∗x表示先计算表达式4∗x的值,再输出,故A正确;B中,INPUT后面要跟有保存输入数据的变量名,故B不正确;C中,INPUTB=3没有直接赋值的功能,故C不正确;D中,PRINTy=2∗x+1,无赋值功能,故D不正确;故选A二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】点(x0, y0)到直线Ax+By+C=0的距离【考点】顺序结构的应用【解析】先按照程序框图判断出所取的值,在判断出该值表示的几何意义.【解答】解:据程序框图得到所求的值为d=00√A2+B2此式子表示的是点(x0, y0)到直线Ax+By+C=0的距离故答案为:点(x0, y0)到直线Ax+By+C=0的距离12.【答案】51【考点】辗转相除法【解析】用大数除以小数,得到商和余数,再用上面的除数除以余数,有得到商和余数,继续做下去,知道刚好能够整除为止,得到两个数的最大公约数.【解答】解:∵459÷357=1...102,357÷102=3...51,102÷51=2,∴459和357的最大公约数是51,故答案为:5113.【答案】17【考点】伪代码(算法语句)赋值语句【解析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S的值.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是:累加并输出S=1+1+3+5+7的值,所以S=1+1+3+5+7=17.故答案为:17.14.【答案】50【考点】算法的概念【解析】由秦九韶算法可以知道,要进行的乘法运算的次数与最高次项的指数相等,要进行的加法运算,若多项式中有常数项,则与乘法的次数相同,本题共进行了25次乘法运算和25次加法运算.【解答】解:由秦九韶算法可以知道,要进行的乘法运算的次数与最高次项的指数相等,要进行的加法运算,若多项式中有常数项,则与乘法的次数相同,∴当n=25时,本题共进行了25次乘法运算和25次加法运算,∴m+r=25+25=50,故答案为:5015.【答案】302【考点】秦九韶算法【解析】利用“秦九韶算法”可知:f(x)=(((3x+0)x+2)x+1)x+4,即可得出.【解答】解:由“秦九韶算法”可知:f(x)=3x4+2x2+x+4=(((3x+0)x+2)x+1)x+ 4,在求当x=10时的值的过程中,v0=3,v1=30,v2=302,故答案为:302.16.【答案】120【考点】循环结构的应用赋值语句【解析】根据题意,模拟程序语言的运行过程,即可得出该程序输出的是什么.【解答】解:模拟程序语言的运行过程,得出该程序输出的是:t=1×2×3×4×5=120.故答案为:120.17.【答案】16【考点】循环结构的应用【解析】根据流程图所示的顺序,模拟程序运行顺序,逐步分析即可得到答案.【解答】解:根据程序流程图,将程序中相关变量的值列表如下:是否进入循环b n循环前/11第1圈是22第2圈是43第3圈是164第4圈否∴最后输出的b值为16故答案为:1618.【答案】5【考点】进位制【解析】由已知中132(k )=42(10),可得:k 2+3k +2=42,解得答案.【解答】解:∵ 132(k )=42(10),∴ k 2+3k +2=42,解得:k =5,或k =−8(舍去),故答案为:519.【答案】1【考点】条件语句【解析】对于选项②值,代入相应的公式求,不必事先进行判断;对于选项①,③,④值域代入相应的公式时需要分类讨论,故要用到条件语句来描述其算法.【解答】解:对于①输入一个正数x ,输出它的绝对值时,须对绝对值内的值进行分类讨论求解,需要用条件语句来描述其算法;对于②,求面积为6的正方形的周长,代入a 2求a 后计算4a 即可;对于③,求三个数a ,b ,c 中的最大数,必须先进行大小比较,要用条件语句;对于④,求函数f(x)={x −1,x ≥0x +2,x <0的函数值,必须对所给的x 进行条件判断,也要用条件语句.其中不需要用条件语句来描述其算法的有1个.故答案为:1.20.【答案】78,1001110【考点】排序问题与算法的多样性【解析】①由以下方法210(6)=2×62+1×61+0×60即可转化为十进制数②把78转化为2进制,利用“除2取余法”即可.【解答】解:①210(6)=2×62+1×61+0×60=78.②∵78=2×39+0,39=2×19+1,19=2×9+1,9=2×4+1,4= 2×2+0,2=2×1+0,1=2×0+1,∴210(6)=78=1001110(2)法二:用下面的除法算式表示:∴210(6)=78=1001110(2)故答案为78,1001110(2)三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:依题意得,费用y与人数n之间的关系为:y={5(n≤3)5+1.2(n−3)(n>3).程序框图如图所示:【考点】程序框图的三种基本逻辑结构的应用【解析】本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中应收取的卫生费计费方法,然后可根据分类标准,设置两个判断框的并设置出判断框中的条件,再由各段的输出,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,再编写满足题意的程序.【解答】解:依题意得,费用y与人数n之间的关系为:y={5(n≤3)5+1.2(n−3)(n>3).程序框图如图所示:22.【答案】45; ${10211_{(6)}};{10001010_{(2)}}$45,10211【考点】排序问题与算法的多样性【解析】(1)由题意知101 ${101_{(2)}=1×2^{0}+0×2^{1}+1×2^{2}+1×2^{3}+0×2^{4}+1×2^{5}}${计算出结果即可选出正确选项.(2)利用“除}k{取余法”是将十进制数除以}6{,然后将商继续除以}6{,直到商为}0,然后将依次所得的余数倒序排列即可得到答案.(3)首先把八进制数字转化成十进制数字,用所给的数字最后一个数乘以8的0次方,依次向前类推,相加得到十进制数字,再用这个数字除以2,倒序取余.【解答】解:${(1)101101_{(2)}=1×2^{0}+0×2^{1}+1×2^{2}+1×2^{3}+0×2^{4}+1×2^{5}=1+4+8+32}{= 45}${.(2):}1375÷6=229...1{}229÷6=38...1{}38÷6=6...2{}6÷6=1...0{}1÷6=0...1{故}${1375_{(10)}= 10211_{(6)}}$(3):${212_{(8)}= 2\times 8^{2}+ 1\times 8^{1}+ 2\times 8^{0}= 138},∵ {138\div 2= 69...0}{69\div 2= 34...1}{34\div 2= 17...0}{17\div 2= 8...1}{8\div 2= 4...0}{4\div 2= 2...0}{2\div 2= 1...0}{1\div 2= 0...1}∴ {212_{(8)}= 10001010_{(2)}}$解:(1)全班32名学生中,有15名女生,17名男生;在伪代码中,根据“S←S/15,T←T/17”可以推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;∴横线①处是求全班成绩的平均分,应填“(S+T)/32”;(2)根据茎叶图中的数据得,输出的为:(90+93+80+80+82+82+83+83+85+70+71+73+女生的平均分是S=11575+66+57)=78,(53+57+62+62+67+71+74+75+80+82+83+男生的平均分是T=11786+86+86+93+93+96)=77,(78×15+77×17)≈77.47;全班成绩的平均分是A=132(3)根据统计数据知,15名女生成绩的平均分为78,17名男生成绩的平均分为77;从中可以看出女生成绩比较集中,整体水平稍高于男生;男生中高分段比女生高,低分段比女生多,相比较男生两极分化比较严重.【考点】茎叶图循环语句【解析】(1)分析茎叶图中的数据,得出伪代码中“k=1”和“k=0”的意义以及横线①处的内容是什么;(2)根据茎叶图中的数据,求出女生的平均分、男生的平均分以及全班成绩的平均分;(3)根据统计数据,可以分析该班男女生的学习情况.【解答】解:(1)全班32名学生中,有15名女生,17名男生;在伪代码中,根据“S←S/15,T←T/17”可以推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;∴横线①处是求全班成绩的平均分,应填“(S+T)/32”;(2)根据茎叶图中的数据得,输出的为:(90+93+80+80+82+82+83+83+85+70+71+73+女生的平均分是S=11575+66+57)=78,(53+57+62+62+67+71+74+75+80+82+83+男生的平均分是T=11786+86+86+93+93+96)=77,(78×15+77×17)≈77.47;全班成绩的平均分是A=132(3)根据统计数据知,15名女生成绩的平均分为78,17名男生成绩的平均分为77;从中可以看出女生成绩比较集中,整体水平稍高于男生;男生中高分段比女生高,低分段比女生多,相比较男生两极分化比较严重.9【考点】程序框图【解析】此题暂无解析【解答】解:第1步:n=1<4成立,a=a+3=3,n=n+1=2;第2步:n=2<4成立,a=a+3=6,n=n+1=3;第3步:n=3<4成立,a=a+3=9,n=n+1=4;第4步:n=4<4不成立,退出循环.所以a=9.故答案为:9.25.【答案】解:S=0i=0WHILE i<=9S=S+1/2i i=i+1WENDPRINT SEND运行该程序,输出:S=1+12+12+12+...+12.【考点】设计程序框图解决实际问题输入、输出语句【解析】这是一个累加求和问题,共10项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.但要注意循环变量的初值、终值及步长的设置.【解答】解:S=0i=0WHILE i<=9S=S+1/2i i=i+1WENDPRINT SEND运行该程序,输出:S=1+12+122+123+...+129.26.【答案】34【考点】伪代码(算法语句)程序框图【解析】此题暂无解析【解答】解:第1步:i=1, S=12;第2步:i=2.S=12+12×3=23;第3步:i=3,S=23+13×4=34,退出循环.故答案为:34.27.【答案】解:上述算法程序是:Input xIf x<0 Tℎen y=x+1ElseIf x=0Tℎen y=0Else y=xEnd IfEnd Ifi=i+1PRINT yEND【考点】条件结构的应用输入、输出语句【解析】分析:这是一个求分段函数的函数值的问题,可设计一个条件语句,用选择结构实现这一算法.【解答】解:上述算法程序是:Input xIf x<0 Tℎen y=x+1ElseIf x=0Tℎen y=0Else y=xEnd IfEnd Ifi=i+1PRINT yEND28.【答案】解:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.【考点】输入、输出语句【解析】由程序语句中各种运算符表示的意义对题目中的各运算符逐一进行判断,即可得到答案.【解答】解:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.29.【答案】解:第一次执行:S=0+12,i=2;第二次执行:S=12+22,i=3;第三次执行:S=12+22+32,i=4;……当i=100时,满足i≤n,S=12+22+32+...+1002,i=101;i=101不满足条件,退出循环,输出S.所以,S=12+22+32+...+1002.…【考点】程序框图【解析】执行程序框图,依次写出每次循环得到的S,i的值,当i=101>100,退出循环,输出S的值,即可得解.【解答】解:第一次执行:S=0+12,i=2;第二次执行:S=12+22,i=3;第三次执行:S=12+22+32,i=4;……当i=100时,满足i≤n,S=12+22+32+...+1002,i=101;i=101不满足条件,退出循环,输出S.所以,S=12+22+32+...+1002.…30.【答案】解:(1)∵1995÷228=8⋯171,228÷171=1⋯57,171÷57=3,∴228与1995的最大公约数是57.(2)∵378−90=288,288−90=198,198−90=108,108−90=18,90−18=82,72−18=54,54−18=36,36−18=18,∴378与90的最大公约数为18.【考点】辗转相除法【解析】(1)用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.(2)用较大的数字减较小的数字,得到差,然后再用上一式中的减数和得到差中较大的减较小的,以此类推,当减数和差相等时,可得最大公约数.【解答】解:(1)∵1995÷228=8⋯171,228÷171=1⋯57,171÷57=3,∴228与1995的最大公约数是57.(2)∵378−90=288,288−90=198,198−90=108,108−90=18,90−18=82,72−18=54,54−18=36,36−18=18,∴378与90的最大公约数为18.31.【答案】解:由已知可得:f(x)={x2+4x,x≥0−x2+4x,x<0,故函数f(x)的图象如下图所示:则函数f(x)在R上为增函数,若f(2−a2)>f(a),则2−a2>a,解得:a∈(−1, 2)【考点】顺序结构的应用【解析】由已知中的语句,分析出函数的解析式,进而分析出函数的单调性,将不等式f(2−a2)>f(a)化为一个关于a的不等式,解得答案.【解答】解:由已知可得:f(x)={x2+4x,x≥0−x2+4x,x<0,故函数f(x)的图象如下图所示:则函数f(x)在R上为增函数,若f(2−a2)>f(a),则2−a2>a,解得:a∈(−1, 2)32.【答案】解:∵11+2+3+⋯+n =2n(n+1)=2(1n−1n+1)∴ 1+11+2+11+2+3+⋯+11+2+3+⋯+n=2(1−12+12−13+13−14+⋯+1n −1n +1) =2(1−1n+1)=2n n+1.分析:因为数列的通项为11+2+3+⋯+n =2n (n+1),显然可以利用为裂项相消法求和.【考点】函数的图象赋值语句循环结构的应用【解析】此题暂无解析【解答】略33.【答案】5、59【考点】顺序结构的应用伪代码根式与分数指数幂的互化及其化简运算【解析】试题分析:因为0<α<π2,所以π4<α<π2,又cos (π4+α)=13,所以sin (π4+α)=2√23,由cos (π4−β2)=√33,得 sin (π4+β2)=√33,又−π2<β<0,则0<π4+β2<π4,所以cos (π4+β2)=√63,因此 cos (α+β2)=sin [π4+α)+(π4+β2)]=5√39【解答】此题暂无解答34.【答案】程序如下:a =input(“a =”)b =input(“b =”)c =input(“c =”)p =(a +b +c)/2S =sqr (p ∗(p −a)∗(p −b)∗(p −c))Print S【考点】伪代码(算法语句)【解析】本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中函数的解析式,用输入、输出语句和赋值语句即可编写满足题意的程序算法.【解答】程序如下:a=input(“a=”)b=input(“b=”)c=input(“c=”)p=(a+b+c)/2S=sqr(p∗(p−a)∗(p−b)∗(p−c))Print S35.【答案】解:算法如下:第一步:x=2;第二步:y1=x2−1;第三步:x=−3;第四步:y2=x2−1;第五步:x=3;第六步:y3=x2−1;第七步:y=y1+y2+y3;第八步:输出y1,y2,y3,y.程序框图:【考点】顺序结构的应用【解析】先求f(2),f(−3),f(3),写出算法,然后计算f(2)+f(−3)+f(3)的值利用赋值语句进行表示,最后根据算法画出相应的流程图即可.【解答】解:算法如下:第一步:x=2;第二步:y1=x2−1;第三步:x=−3;第四步:y2=x2−1;第五步:x=3;第六步:y3=x2−1;第七步:y=y1+y2+y3;第八步:输出y1,y2,y3,y.程序框图:36.【答案】解:f(x)=(((((4x+3)x+4)x+2)x+5)x−7)x+9,v0=4v1=4×4+3=19v2=19v4+4=80v3=80×4+2=322v4=322×4+5=1293v5=1293×4−7=5165v6=5165×4+9=20669∴f(4)=20669.【考点】秦九韶算法【解析】把所给的函数式变化成都是一次式的形式,逐一求出从里到外的函数值的值,最后得到当x=4时的函数值.【解答】解:f(x)=(((((4x+3)x+4)x+2)x+5)x−7)x+9,v0=4v1=4×4+3=19v2=19v4+4=80v3=80×4+2=322v4=322×4+5=1293v5=1293×4−7=5165v6=5165×4+9=20669∴f(4)=20669.37.【答案】解:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0⋅x5+3⋅x4+0⋅x3+0⋅x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.【考点】算法的概念【解析】利用秦九韶算法一步一步地代入运算,注意本题中有几项不存在,此时在计算时,我们应该将这些项加上,比如含有x3这一项可看作0⋅x3.【解答】解:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0⋅x5+3⋅x4+0⋅x3+0⋅x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.38.【答案】解:f(x)=((7x+6)+5)x+4)x+3)x+2)x+1)xV0=7,V1=7×2+6=20,V2=20×2+5=45,V3=45×2+4=94,V4=94×2+3=191,V5=191×1+2=384,V6=384×2+1=769,V7=769×2=1538,∴f(2)=1538即当x=2时,函数值是1538.【考点】秦九韶算法【解析】把所给的函数式变化成都是一次式的形式,逐一求出从里到外的函数值的值,最后得到当x=2时的函数值.【解答】解:f(x)=((7x+6)+5)x+4)x+3)x+2)x+1)xV0=7,V1=7×2+6=20,V2=20×2+5=45,V3=45×2+4=94,V4=94×2+3=191,V5=191×1+2=384,V6=384×2+1=769,V7=769×2=1538,∴f(2)=1538即当x=2时,函数值是1538.39.【答案】解:算法:第一步:i=1第二步:输入一个数a第三步:若a<6.8,则输出a;否则,执行第四步第四步:i=i+1第五步:若i>9,则结束算法,否则,执行第二步.程序框图:(如图)【考点】程序框图算法的概念【解析】首先根据是解题所给的条件,先输入一个数a,若a<6.8,则输出a,否则不能输出a,据此设计从这些成绩中搜索出小于6.8s的成绩算法,进而根据做出的算法,画出程序框图,注意条件的设置.【解答】解:算法:第一步:i=1第二步:输入一个数a第三步:若a<6.8,则输出a;否则,执行第四步第四步:i=i+1第五步:若i>9,则结束算法,否则,执行第二步.程序框图:(如图)40.【答案】解:满足条件的程序框图如下:【考点】程序框图【解析】由已知中,程序的功能我们可以利用循环结构来解答本题,因为这是一个累加问题,循环前累加器S=0,由于已知中的式子,可得循环变量i初值为1,步长为1,终值为100,累加量为1,由此易画出程序框图.【解答】解:满足条件的程序框图如下:。

(典型题)高中数学必修三第二章《算法初步》测试卷(含答案解析)

(典型题)高中数学必修三第二章《算法初步》测试卷(含答案解析)

一、选择题1.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列2.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .84B .56C .35D .283.执行如图所示的程序框图,输出S 的值为( )A.1-B.0 C.1 D.2 4.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭5.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤ 6.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .767.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .68.执行如下图的程序框图,如果输入的N 的值是7,那么输出的p 的值是( )A .3B .15C .105D .945 9.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A.6 B.720 C.120 D.5040 10.执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.1111.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999C.n<999 D.n>999 12.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.10102021二、填空题13.如图是一个算法流程图,若输入x的值为2,则输出y的值为_______. .14.执行如图所示的程序框图,输出的值为__________.15.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.16.执行如图所示的算法框图,若输入的x 的值为2,则输出的n 的值为__________.17.如图是一个算法的流程图,则输出的a 的值是___________.18.101110(2)转化为十进制数是__________.19.程序如下:以上程序输出的结果是_________________20.如图所示的程序框图输出的值是 .三、解答题21.(1)用辗转相除法求840与1 764的最大公约数;(2)用更相减损术求440 与556的最大公约数.1,2上的近似根的算法.(近似根与精确解的差22.用二分法设计一个求方程230x-=在[]的绝对值不超过0.0005)23.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x 的值.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句;(2)写出相应的程序.25.分别标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出最重球的算法,并画出程序框图.26.已知华氏温度与摄氏温度的转换公式是(华氏温度532)9-⨯=摄氏温度.编写一个程序,输入一个华氏温度,输出其相应的摄氏温度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能.【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A .【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.2.A解析:A【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可.【详解】按照程序框图运行程序,输入0i =,0n =,0S =,则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环;6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =.故选:A .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.3.C解析:C【分析】由函数()πsin 2x f x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】 由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==, ()3π3sin 12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C【点睛】 本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.4.B解析:B【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环; 以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭. 故选:B .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.5.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 6.B解析:B【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论.【详解】模拟程序的运行,可得49N =,50N =,不满足条件()13N MOD ≡,51N =;不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =.故选:B.【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.7.C解析:C【分析】根据框图模拟程序运算即可.【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环,第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环,第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C.【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题. 8.C解析:C【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.【详解】模拟程序的运行,可得:7,1,1N k p ===,满足条件7k <,执行循环体,3,3k p ==;满足条件7k <,执行循环体,5,15k p ==;满足条件7k <,执行循环体,7,105k p ==;此时,不满足条件7k <,推出循环,输出p 的值为105,故选C .【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B【解析】【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案.【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==;第2次循环:满足判断条件,2,3S i ==;第3次循环:满足判断条件,6,4S i ==;第4次循环:满足判断条件,24,5S i ==;第5次循环:满足判断条件,120,6S i ==;第6次循环:满足判断条件,720,7S i ==;不满足判断条件,终止循环,输出720S =,故选B.【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题. 10.C解析:C【分析】根据程序框图列出算法循环的每一步,结合判断条件得出输出的n 的值.【详解】执行如图所示的程序框图如下:409S =≥不成立,11S 133==⨯,123n =+=; 1439S =≥不成立,1123355S =+=⨯,325n =+=; 2459S =≥不成立,2135577S =+=⨯,527n =+=; 3479S =≥不成立,3147799S =+=⨯,729n =+=. 4499S =≥成立,跳出循环体,输出n 的值为9,故选C. 【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.11.C解析:C【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容.【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <. 故选C.【点睛】lg lg lg(1)1n n n n =-++,通过将除法变为减法,达到简便运算的目的. 12.C解析:C【解析】【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果.【详解】 由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯, 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭, 111113355720172019S ∴=++++⨯⨯⨯⨯ 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-= ⎪⎝⎭. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题13.5【分析】直接模拟程序即可得结论【详解】输入的值为2不满足所以故答案是:5【点睛】该题考查的是有关程序框图的问题涉及到的知识点有程序框图的输出结果的求解属于简单题目解析:5【分析】直接模拟程序即可得结论.【详解】输入x 的值为2,不满足1x ≤,所以3325y x =+=+=,故答案是:5.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.14.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为解析:42【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值.【详解】输入0,2,1S a i ===,第一次循环,2,4,2S a i ===;第二次循环,6,6,3S a i ===;第三次循环,12,8,4S a i ===;第四次循环,20,10,5S a i ===;第五次循环,30,12,6S a i ===;第六次循环,42,14,7S a i ===,退出循环,输出42S =,故答案为42.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程 解析:20【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.16.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1;当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2;当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件,故输出的n 值为2;故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 17.9【解析】:试题分析:由题意可得a 是在不断变大的b 是在不断变小当程序运行两次时a=9b=5a>b 跳出程序输出a=9;考点:算法的流程图的计算 解析:9【解析】:试题分析:由题意可得,a 是在不断变大的,b 是在不断变小,当程序运行两次时,a=9,b=5,a>b,跳出程序,输出a="9;"考点:算法的流程图的计算18.46【解析】试题分析:考点:进位制间的关系解析:46【解析】试题分析:2345(2)101110121212021246=⨯+⨯+⨯+⨯+⨯=.考点:进位制间的关系. 19.24【解析】考点:程序框图专题:图表型分析:由程序中循环的条件为i≤4我们易得到最后一次循环时i=4又由循环变量i 的初值为2故我们从2开始逐步模拟循环的过程即可得到结论解答:解:模拟程序的运行结果:解析:24【解析】考点:程序框图.专题:图表型.分析:由程序中循环的条件为i≤4,我们易得到最后一次循环时i=4,又由循环变量i 的初值为2,故我们从2开始逐步模拟循环的过程,即可得到结论.解答:解:模拟程序的运行结果:i=2时,t=2,i=3时,t=6,i=4时,t=24,故答案为24点评:本题考查的知识点是程序框图及程序代码,在写程序运行结果时,模拟程序的运行过程是解答此类问题最常用的方法,模拟时要分析循环变量的初值,步长和终值 20.144【分析】直接利用循环结构计算循环各个变量的数值当满足判断框的条件推出循环输出结果【详解】判断前第1次判断循环;第2次判断循环第3次判断循环;第4次判断循环;第5次判断循环;第6次判断循环;第7 解析:144【分析】直接利用循环结构,计算循环各个变量的数值,当10k =满足判断框的条件,推出循环,输出结果.【详解】判断前,2c =,第1次判断循环,1,2,2,3a b k c ====;第2次判断循环,2,3,3,5a b k c ====第3次判断循环,3,5,4,8a b k c ====;第4次判断循环,5,8,5,13a b k c ====;第5次判断循环,8,13,6,21a b k c ====;第6次判断循环,13,21,7,34a b k c ====;第7次判断循环,21,34,8,55a b k c ====;第8次判断循环,34,55,9,89a b k c ====;第9次判断循环,55,89,10,144a b k c ====;第10次判断不满足判断框条件,退出循环,输出144c =,故答案为144.【点睛】本题考查循环结构的应用,注意每一步循环的变量的数值,计算准确是解题的关键.三、解答题21.(1)84;(2)4.【分析】(1)根据辗转相除法,求余数,直至余数为零,(2)根据更相减损术,求减数,直至减数为零.【详解】(1)用辗转相除法求840与1 764 的最大公约数.1 764 = 840×2 + 84 840 = 84×10 +0所以840与1 764 的最大公约数是84.(2)用更相减损术求440 与556的最大公约数.556-440 = 116 440-116 = 324324-116 = 208 208-116 = 92116-92 = 24 92-24 = 6868-24 = 44 44-24 = 2024-20 = 4 20-4 = 1616-4 = 12 12-4 = 88-4 = 4所以440 与556的最大公约数4.【点睛】本题考查辗转相除法与更相减损术,考查基本求解能力.22.见解析【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法.【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==; 第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0;第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =; 第四步:判断120.0005x x -≤是否成立?若是,则12,x x 之间的任意值均为满足条件的近似根;若不是,则返回第二步.【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用.23.(1) 22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩当0x =时,y 无解.(2) 2x =-.【分析】(1)根据框图得到函数解析式;(2)结合第一问得到的函数表达式,分情况得到x 值即可.【详解】(1)函数解析式为22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩,当0x =时,y 无解.(2)当0x <时,24x =,2x =-或2(舍).当04x ≤≤时,2log 4x =,解得16x =(舍).当4x >时,24x =,解得2x =(舍)所以2x =-【点睛】这个题目考查了程序框图的应用,以及分段函数的应用;解决分段函数求值问题的策略:(1)在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.24.(1)2T T =;(2)见解析 【解析】【分析】⑴要计算239111112222S =+++++的一个程序框图的值需要用直到型循环结构,利用被累加数列的通项公式求解即可⑵根据框图写出对应得程序语句,即可得解【详解】(1)的意图为表示各累加项,即数列的通项公式,故为2T T =(2)程序如下:【点睛】本题主要考查了程序框图的补全,结合题意运用数列的通项公式求出结果,然后再给出程序,需要熟练掌握各知识点。

(完整word版)高中数学必修三算法初步练习题

(完整word版)高中数学必修三算法初步练习题

考纲点击 1•以选择题或填空题的形式考查程序框图,以含有循环结构的程序框 图为主•2.以数列、分段函数、统计以及不等式为载体,考查算法的三种逻辑 结构•3•给出某种算法语句进行运行计算,主要以熟悉的当前的某种数学运 算为背景• 真题试做1. (2015高考课标卷n )下边程序框图的算法思路源于我国古代数学名著 《九 章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14, 18, 则输出的a =( )A . 0B . 2C . 4D . 14 解析:选B.开始a = 14, b = 18.第一次循环: 14工 18且 14V 18,b = 18- 14= 4;第二次循环:14工4且 14>4,a = 14-4= 10; 第三次循环:10工4且 10>4,a = 10-4 = 6; 第四次循环:6工4且6>4, a = 6 — 4 = 2;第十一章 DI SHI Y| ZHANG 算法初步第五次循环:2工4且2v4, b = 4 — 2 = 2;第六次循环:a= b= 2,退出循环,输出a = 2,故选B.2. (2015高考课标卷I )执行下面所示的程序框图,如果输入的t= 0.01,则输出的n=( )A. 5 B . 6C. 7D. 8_ 11解析:选 C.运行第一次:S= 1 —2=2= 0.5, m= 0.25, n= 1,S> 0.01;运行第二次:S= 0.5—0.25= 0.25, m= 0.125, n = 2,S> 0.01;运行第三次:S= 0.25—0.125= 0.125, m= 0.062 5,n = 3, S> 0.01;运行第四次:S= 0.125—0.062 5= 0.062 5, m= 0.031 25, n= 4, S> 0.01;运行第五次:S= 0.031 25, m= 0.015 625, n = 5, S>0.01;运行第六次:S= 0.015 625, m= 0.007 812 5, n = 6,S> 0.01;运行第七次:S = 0.007 812 5, m = 0.003 906 25, n = 7,S v 0.01.输出n = 7.故选C.3. (2015高考天津卷)阅读下边的程序框图,运行相应的程序,则输出 S 的 值为(-10 解析:选 B.S = 20, i = 1, i = 2i = 2, S = S — i = 20— 2= 18,不满足 i>5; i = 2i = 4, S = S — i = 18— 4= 14,不满足 i>5; i = 2i = 8, S = S — i = 14— 8 = 6,满足 i>5, 故输出S = 6.考点一算法与程序框图 命题点1求输出结果的程序框图 C . 14 D . 18 考点研析 题组冲关 输出書 /1. 算法的概念算法:通常是指按照一定规则解决某一类问题的明确和有限的步骤.2 •程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带方向箭头,按照算法进行的顺序将程序框连接起来.3 •算法的三种基本逻辑结构(1) 顺序结构:是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.(2) 条件结构:是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为(3) 循环结构:是指从某处开始,按照一定条件反复执行某些步骤的情况,反复执行的处理步骤称为循环体.循环结构又分为当型(WHILE)和直到型(UNTIL).其结构形式为题组冲关1.(2015高考陕西卷)根据下边框图,当输入x 为2 006时,输出的y =()C . 10解析:选C.x 每执行一次循环减少2,当x 变为一2时跳出循环,y = 3-x + 1 =32+ 1 = 10.2. (2015高考湖南卷)执行如图所示的程序框图,如果输入 n =3,则输出的 S =()S=S+ (2^1X2i+lFD . 28損化训妹摄升考能 x=x-2/端出y/(结町/输人* /? -----足尸:尸门是,/皿/6A. 71解析:选B.第一次循环:, i= 2;1 X 31 1第二次循环:s=丙+ 3XX5 i二3;1 1 1第三次循环:S= 1 % 3+ 3>< 5+ 5X 7,i = 4,满足循环条件,结束循环.111故输出 1 X 3 +3X 5 +5X 71 1 1 1 1 1 3 =2 1-3 +3- 5 +5- 7 二7,故选 B.I題组悟法I输出的结果要依据程序框图解决的问题而定,有的是代数式的值或范围,有的是运算循环次数,有的是表达式等.命题点2求输入变量值的程序框图题组冲关3. 给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等, 则这开始否样的x值的个数是()心一3结束C. 3 解析:选C.当x<2 时,y= x2= x,解得x i = 0, x2= 1, 当2v x< 5 时,y=2x—3=x,解得X3= 3;r」1当x>5 时,y= x = x,入解得x= ±1(舍去),故x可为0, 1, 3.4. 阅读如图程序框图,如果输出的函数值在区间[1 , 3]上,则输入的实数x 的取值范围是()伸1為/A. {x€ R|0<x< Iog23}B. {x€ R| —2<x<2}C. {x€ R|0<x< Iog23或x= 2}D. {x€ R| —2<x<Iog23或x= 2}解析:选C.依题意及程序框图可得—2<x<2,或x|>2,K 2x< 3 K x+ K 3,解得0W x< log23 或x= 2,选 C.I题组悟法I此类题目相当于已知输出结果求输入量,一般采用逆推法.建立方程或不等式求解.命题点3求判断条件或求程序框中的运算式题组冲关5. (2016豫东、豫北十所名校联考)阅读如图所示的程序框图,若输出的的值为15,则判断框中填写的条件可能为()A. m<57?C . m>57?解析:选D.运行该程序,第一次循环:m = 2X 1 + 1= 3, n = 3;第二次循环: m = 33 + 1= 28,n = 7;第三次循环:m = 2X 28 + 1= 57,n = 15,此时结束循环,输出n ,故判断框中可填 m 》57?,故选D.1 1 16. (2016许昌调研)如图给出的是计算2+ 4+…+ 而的值的一个程序框图, 则图中判断框内(1)处和执行框中的 ⑵处应填的语句是( )以变量i 应满足i >50,因为是求偶数的和,所以应使变量 n 满足n = n + 2. 1 1 解析:选c.因为5,4,- 1…,100共50个数,所以算法框图应运行50次,所C . i>50, n = n + 2D . i < 50, n = n + 2[anB . m W 57?D . m >57?A. i>100, n = n + 1B. i>100, n = n + 2.:蛉|嗣-加/f=2n+lI题组悟法I循环结构中的条件判断循环结构中的条件是高考常考的知识点,主要是控制循环的变量应该满足的条件是什么•满足条件则进入循环或者退出循环,此时要特别注意当型循环与直 到型循环的区别.考点二算法语句命题点1输入、输出和赋值语句的应用输入语句、输出语句、赋值语句的格式与功能1.计算机执行下面的程序段后,输出的结果是()B. 4, 1D . 6, 0 解析:选 B.a = 1, b = 3,得 a = 1 + 3 = 4.b = 4 — 3= 1,输出值为 4, 1.2.写出下列语句的输出结果为 __________ .a = 5b = 3语句一般格式 功能 输入语句 INPUT “提示内容”: 变量输入信息输出语句 PRINT “提示内容”:表达式输出常量、变量的值和系统信息赋值语句 变量=表达式将表达式代表的值赋给变量强化机练提升才能 题组冲关C . 0, 0解析:a = 5, b = 3,:c = 2 = 4, d = C= 16,即输出 d = 16.答案:d = 16I 題组悟法I (1) 输入、输出、赋值语句是任何一个算法中必不可少的语句•一个输出语句可以输出多个表达式的值.在赋值语句中,变量的值始终等于最近一次赋给它 的值,先前的值将被替换.(2) —个赋值语句只给一个变量赋值,但一个语句行可以写多个赋值语句.(3) 不能利用赋值语句进行代数式的演算(如化简、分解因式、解方程等)• 命题点2条件语句的格式条件语句(1) 程序框图中的条件结构与条件语句相对应.(2) 条件语句的格式及框图① IF — THEN 格式②IF — THEN —3 •根据下列算法语句,当输入x为60时,输出y的值为()A. 25B. 30C. 31D. 610.5x, x< 50,解析:选C.由题意,得y=25+ 0.6 (x—50), x>50.当x= 60 时,y= 25+ 0.6X (60 —50) = 31.•••输出y的值为31.4. 以下给出了一个程序,根据该程序回答:(1) 若输入4,则输出的结果是__________ ;(2) 该程序的功能所表达的函数解析式为_________ .解析:(1)x=4 不满足x v3,:y=x2—1= 42—1 = 15.输出15.⑵求x v3 时,y= 2x,当x>3 时,y=x2—1;否则,即x= 3, y= 2.I 題组悟法I一般分段函数可用条件语句编程•编写程序时,“IF ” “END IF ”配套成对出 现•第一个IF ”与程序中最后一个E ND IF ”配套;第二个IF ”与倒数第二个E ND IF ”配套等.命题点3循环语句的格式循环语句 (1) 程序框图中的循环结构与循环语句相对应.(2) 循环语句的格式及框图.5. 已知某算法如下:「y = 2 x = 3,x 2- 1 x > 3.2xx v 3 答案: (1)15 (2)y = 2 x = 3 2 x —1 x > 3 2xx v 3, ① UNTILDO循环体LOOP UNTIL 条件② WHILE 语句 WHILE 条件 循环体 WEND(1)⑵当i = 5时,求输出结果s.解析:⑴当i = 2时,满足i < 20,•0= 1+ 1;t= 1, a= 1, b= 1 + 1= 2, i = 3,i = 3< 20,s= 2+ 2;t= 1, a= 2, b= 3, i = 4,i = 4< 20,?••s= 1+ 1 + 2+ 3 …该程序表示数列1, 1, 2, 3, 5,…的前20项和.(2) 当i = 5 时,s= 1 + 1+ 2 + 3+ 5= 12,输出s= 12.6. (2016东北三校模拟)下面程序运行的结果为()n = 10S = 100DOS = S — nn = n — 1LOOPUNTIL S v= 70PRINT n ENDA . 4B . 5 C. 6 D . 7解析:选 C.n = 10, S = 100,:S = 100— 10= 90;n = 10— 1 = 9,••S = 90— 9= 81;n = 9— 1= 8,S = 81 — 8= 73;n = 8 — 1 = 7,S = 73— 7= 66W 70.n = 7— 1= 6.I 題组悟法I当型循环与直到型循环的不同点必须准确把握.循环次数不清致误1 1 1 素能提升学科培优失分警示系列23[典例](2016金华十校联考)如图是输出的值为1 +1+舌+…+ 99的一个程序框图,框内应填入的条件是()A. i<99?C. i>99?S= 0, i二1; S= 1, i = 3; S= 1+ 3, i二5;…;S= 1+3+…+ 需,i =101,输出结果正解故填入i < 99.答案A一111 1[错因](1)题意读错,误认为1+ 2 + 3+ 4+^+ 99.(2)区分不开A与B的结果,错选为B.(3)弄不清程序的功能,不能应用其他知识点求解;⑷不能准确把握判断框中的条件,对条件结构中的流向和循环结构中循环次数的确定不准确.111 1[易误]⑴此框功能是求数列的和:1 + 3+1+ ^+…十99;i有两个作用:计数变量和被加的数,可以试运行几次归纳出答案.(2)在解决循环结构问题时,一定要弄明白计数变量和累加变量是用什么字母表示的,再把这两个变量的变化规律弄明白,就能理解这个程序框图的功能了, 问题也就清楚了.提能训练| SlkililU屋升世执行两次如图所示的程序框图,若第一次输入的a的值为一1.2,第二次输入的a的值为1.2,则第一次,第二次输出的a的值分别为()• a = — 1.2 + 1 = — 0.2, a<0, a = — 0.2+ 1 = 0.8, a>0.v0.8<1,输出 a = 0.8. 当 a = 1.2 时,:a 》1 ,「a = 1.2— 1 = 0.2. v0.2<1,输出 a = 0.2.1. 考前必记⑴程序框图各个图示的意义和作用.(2) 三种基本逻辑结构框图的模型.(3) 输入语句、输出语句、赋值语句的格式和功能.(4) 条件语句的格式和功能.(5) 当型循环语句、直到型循环语句的格式和功能.2. 答题指导(1) 看到循环问题,想到是当型循环还是直到型循环,弄清楚循环变量和次 数.(2) 看到循环结构求输出的值,想到把变量值输入,依次计算.(3) 看到需要变量的值时,想到输入语句;看到需要输出变量的值时,想到 输出A . 0.2, 0.2 C . 0.8, 0.2B . 0.2, 0.8 D . 0.8, 0.8 解析:选C.由程序框图可知:当 a =— 1.2 时,t a<0, 应考迷津展示 63语句;看到对变量或代数式赋值处理时,想到赋值语句.(4) 看到因变量取值不同而有不同的运行时,想到条件语句.(5)看到先满足条件而执行循环体时,想到当型循环结构. 看到先执行循环体后判断条件时,想到直到型循环结构.课时规范训练[A级基础演练]1. (2015高考天津卷)阅读下边的程序框图,运行相应的程序,则输出i的值为()A. 2 B . 3C. 4D. 5解析:选 C.S= 10,i = 0,i = i + 1 = 1,S= S—i = 10—1= 9,不满足S w 1,i = i + 1 = 2,S= S—i = 9—2= 7,不满足S w 1,i = i + 1 = 3,S= S—i = 7—3= 4,不满足S w 1,i = i + 1 = 4,S= S—i = 4—4= 0,满足S w 1,所以输出i = 4.2. (2014高考北京卷)执行如图所示的程序框图,输出的S值为()A . 1 C . 7解析:选C.程序框图运行如下:k = 0<3, S = 0 + 2°= 1, k = 1<3; S = 1 + 21 = 3, k = 2<3; S = 3 + 22= 7, k = 3. 输出S = 7.3. (2015高考安徽卷)执行如图所示的程序框图(算法流程图),输出的n 为 ()A . 3B . 4C . 5D . 63解析:选B.a = 1, n = 1时,条件成立,进入循环体;a = 2, n = 2时,条件 7 17成立,进入循环体;a =5, n = 3时,条件成立,进入循环体;a =衫,n = 4时, 条件不成立,退出循环体,此时 n 的值为4.4. (2015高考陕西卷)根据下边所示框图,当输入x 为6时,输出的y =()D . 15B . 322 22B. 2D . 10解析:选D.当x = 6时,x = 6— 3= 3,此时x = 3>0; 当 x = 3 时,x = 3 — 3= 0,此时 x = 0> 0; 当 x = 0 时,x = 0 — 3= — 3,此时 x = — 3<0, 则 y = (—3)2 +1 = 10.5. (2015高考四川卷)执行如图所示的程序框图,输出C .A . 1 C . 5 S 的值为()解析:选D.当k = 2时,k>4不成立;当k = 3时,k>4不成立;当k = 4时,5 nk = 5时,输出 S = sin^ = sin6. (2016贵阳检测)执行如图所示的程序框图,若判断框中填入“ k >8?解析:选B.第一次循环:S = 10+ 1 = 11, k = 10— 1 = 9;第二次循环:S = 11 + 9= 20, k = 9— 1 = 8,跳出循环,故输出的 S = 20.7. (2015高考山东卷)执行下边的程序框图,若输入的 x 的值为1,则输出的y 的值是 _________ .〔结切解析:输入x 的值后,根据条件执行循环体可求出 y 的值.当 x = 1 时,1V 2,贝U x = 1+ 1 = 2;当 x = 2 时,不满足 x v 2,贝U y = 3X 22 + 1= 13.k>4不成立,n n1 n —6 =si n 6 = 2.则输出的S =( )A . 11 C . 28iTT®s=5+习 a *4441s|B . 20 D . 35〔开始〕斗 1, ./曲n 』/答案:138. (2014高考天津卷)阅读下边的框图,运行相应的程序,输出S的值为解析:n = 3, S= 0+ (-2)3= —8, n—1 = 2>1; S= —8+ (—2)2= —4, n—1 =1< 1,终止循环,故输出S= —4.答案:—49. (2014高考山东卷)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为_________ ./wwn=Ol解析:由x2—4x+ 3<0,解得Kx<3.当x= 1时,满足Kx<3,所以x= 1+ 1 = 2, n= 0+ 1= 1;当x= 2时,满足Kx< 3,所以x= 2+ 1 = 3, n= 1+ 1 = 2;当x= 3时,满足1 <x< 3,所以x= 3+ 1 = 4, n= 2+ 1 = 3;当x= 4时,不满足Kx<3,所以输出n = 3.答案:3解析:初始值: i = 0, S= 0,10. (2014高考辽宁卷)执行如图所示的程序框图,若输入n = 3,贝U输出T①i = 1, S= 1, T= 1;②i= 2, S= 3, T=4;③i = 3, S= 6, T= 10;④i= 4, S= 10, T= 20,由于此时4W 3不成立,停止循环,输出T = 20.答案:20[B级能力突破]T= 0, n= 3,1 •执行如图所示的程序框图,如果输入的x, t均为2,则输出的S=( )A. 4 B . 5C. 6解析:选 D.x = 2, t = 2, M = 1, S = 3, k = 1. 1k <t , M = 1X 2 = 2, S = 2+ 3= 5, k = 2; 2k <t , M = 2X 2 = 2, S = 2+ 5= 7, k = 3; 3>2,不满足条件,输出S = 7.2. (2016长春质量检测)下面左图是某学习小组学生数学考试成绩的茎叶图, 1号到16号同学的成绩依次为A 1, A 2,…,A 16,右图是统计茎叶图中成绩在一 定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是()D. 92 解析:选B.由算法流程图可知,其统计的是数学成绩大于或等于90的学生人数,由茎叶图知:数学成绩大于或等于 90的学生人数为10,因此输出的结果 为10.故选B.3. (2015高考重庆卷)执行如图所示的程序框图,则输出 C . 91s 的值为( ;|;人B . 1025 241解析:选D.由s = 0, k = 0满足条件,则k = 2, s =㊁,满足条件;k = 4, s二2+4二3,满足条件;&6, s =3+1二 11满足条件,㈠8, s =12+8^25,4. 如图所示的程序框图,则该程序框图表示的算法功能是( )不满足条件,此时输出 25A 24, 故选 D.3A. 输出使1X2X4X-X i> 1 000成立的最小整数iB. 输出使1X2X4X-X i> 1 000成立的最大整数iC. 输出使1X2X4X-X i> 1 000成立的最大整数i + 2D. 输出使1X2X4X-X i> 1 000成立的最小整数i + 2解析:选D.该程序框图表示的算法功能是输出使1X2X4X-X i > 1 000成立的最小整数i + 2,选D.5. (2014高考湖北卷)阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为 __________ .wins~r解析:由题意,程序运行如下:k= 1v9, S= 21+ 1= 3, k= 2v9; S= 3 + 22+ 2 = 9, k= 3v9;S= 9 + 23+ 3 = 20, k= 4v 9;S= 20+ 24+ 4 = 40, k= 5v9;S= 40+ 25+ 5= 77, k= 6v9;S= 77+ 26+ 6= 147, k= 7v9;S= 147+ 27+ 7= 282, k= 8v 9;S= 282+ 28+ 8= 546, k= 9< 9;S= 546+ 29+ 9= 1 067, k= 10>9,输出S= 1 067,程序结束.答案:1 0676. 阅读如图所示的程序框图,运行相应的程序,输出的结果S= ________ .S」+ 丄+••• +1=1X 2+2X 3+ +2 015X 2 016解析:由程序框图知,S可看成一个数列{a n}的前2 015项的和,其中a n=1n (n+ 1)(n€ N*, n W2 015),1 12 015—2 016=1 —命=謊•故输出的是 2 0152 016.答案: 2 015 2 016专题测试六概率、统计、算法初步、推理与证明一、选择题(本大题共12小题,每小题5分,共60分)1. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32 排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③某中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名•为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是A •①简单随机抽样;②系统抽样;③分层抽样B. ①简单随机抽样;②分层抽样;③系统抽样C. ①系统抽样;②简单随机抽样;③分层抽样D. ①分层抽样;②系统抽样;③简单随机抽样解析:选A.由各抽样方法的适用范围可知较为合理的抽样方法是:①简单随机抽样;②系统抽样;③分层抽样•故选A.2. —支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取()A. 6人 B . 8人C. 12 人 D . 14 人解析:选B.v有男运动员28人,女运动员21人,.••总体个数是28 + 21 = 49, 从全体队员中抽出一个容量为14的样本,每个个体被抽到的概率是培=••男一2运动员应抽取28 X 7= 8(人),选B.3•为了测算如图阴影部分的面积,作一个边长为4的正方形将其包含在内,并向正方形内随机投掷400个点,已知恰有100个点落在阴影部分内,据此,可 估计阴影部分的面积是()A . 12 C . 64.某中学为了检验1 000名在校高三学生对函数模块的掌握情况,进行了一 次测试,并把成绩进行统计,得到的频率分布直方图如图所示, 则考试成绩的中位数大约(保留两位有效数字)为( )A . 70 C . 75解析:选B.设考试成绩的中位数为x ,则有(x — 70) X 0.035+ (0.025+ 0.01 + 0.005)X 10= 0.5,解得x ~73,即中位数约为73,故选B.5.执行下面的程序框图,如果输入的依次是1,2, 4, 8,则输出的S 为()解析: 选D.正方100400X 16 = 4.故选 D. B . 73 D . 76D . 40.0350 02040 5ft 60 7(19(1 IM鬲A. 2 B . 2 2 C . 4 D . 6解析:选B.由程序框图可知,S = 1, i = 1; S = 1, i = 2; S = 2, i = 3, S = 2, i = 4; S = 2 2, i = 5,此时跳出循环,输出 S = 2 2,故选B.6•从1,2, 3,4,5中随机抽取三个不同的数,则其和为奇数的概率为( )解析:选B.从1, 2, 3, 4, 5中随机抽取三个不同的数共有(1, 2, 3)、(1,2, 4)、(1, 2, 5)、(1, 3, 4)、(1, 3, 5)、(1, 4, 5)、(2, 3, 4)、(2, 3, 5)、 (2, 4, 5)、(3, 4, 5)共 10种情况,其中(1, 2, 4)、(1, 3, 5)、(2, 3, 4)、(2, 4, 5)中三个数字和为奇数,所以概率为£.选B.17 .已知m 是区间[0, 4]内任取的一个数,那么函数f (x )=?3— 2x 2 + m 2x + 3 在x € R 上是增函数的概率是(A.4 小1 2 CiD . 21解析:选C.因为函数f (x ) = §x 3 — 2x 2 + m 2x + 3在x € R 上是增函数,所以f'x )=x 2 — 4x + m 2 >0 恒成立,所以 △= (—4)2—4m 2< 0,解得 m 》2 或 m W — 2,而4 — 2 1m € [0' 4]'所以m € [2,4],所以所求的概率为石-28. (2016太原一模)如果随机变量E 〜N(— 1, /),且P(— 3< W — 1) = 0.4,则 P (少 1)=()A . 0.4B . 0.3C . 0.2D . 0.1解析:选D.因为 E 〜N (— 1,內,由正态曲线的性质知P (驴1) = 0.5— P (—3< W — 1) = 0.1.A.5 49. (2014高考陕西卷)某公司10位员工的月工资(单位:元)为x i , X 2,…, x io ,其均值和方差分别为x 和S ,若从下月起每位员工的月工资增加 100元,则这10位员工下月工资的均值和方差分别为( )B . x + 100,s 2+ 1002D . x + 100,s 2解析:选B.该程序框图的作用是计算分段函数f (x )二 2 ‘ xJ 2‘2]’的值域•因为输出的函数值在区间寸鳥2, x €(—%,— 2) U (2,+x )42A . x ,s 2+ 1002C . x ,s 2解析: x 1 + x 2 + …+ x 10选 D. = 10 y i = x i + 100,所以 y 1, y 2, …,y 10的均值 为x + 100,方差不变,故选D.10•阅读如图所示的程序框图,如果输出的函数值在区间 1 14,1内,那么输入的实数x 的取值范围是(A.(―乂,一 2]C.[ —1, 2]D . [2,+^ )2 C.33 D. 3解析:选C.当切线的倾斜角a€ n 3冗时,切线斜率的取值范围是(一%, 4, 421—1] U [1 , +x ),抛物线x = 4y 在x =x o 处的切线斜率是2X 0,故只要x o € (— ,—2] U [2 ,+鸡)即可,若在区间[—6, 6]内取值,则只能取区间[—6,— 2] U [2, 86]内的值,这个区间的长度是8,区间[—6, 6]的长度是12,故所求的概率是12= 2 3.12. 如图,A , B 两点之间有6条网线连接,它们能通过的最大信息量分别为 1,1, 2, 2, 3, 4.从中任取3条网线且使每条网线通过最大信息量,设这 3条网线通过的最大信息量之和为 g 当E 》6时,保证线路信息畅通,则线路信息畅通的概率为( )解析:选C.从6条网线中随机任取3条网线共有C 6= 20种方法,1 + C 2C2 1•••1+ 1 + 4= 1 + 2+ 3= 6,AP(= 6)= C 6 =4,C 2C 2 +1 1•1 + 2+ 4= 2+ 2+ 3= 7,.・.P(= 7)= & =4,C 2 + 1 3•1 + 3+ 4= 2+ 2+ 4= 8,:P(= 8) = -^p = %,C 2丄•2+ 3+ 4= 9,. .P( = 9) = C 6= io ,A.11 a B .33113 13••P (少6)= P (自6) + P (E 7)+ P (片8) + P (E9) = 4 + 4 + 20 + 矿4 二、填空题(本大题共4小题,每小题5分,共20分)13. 架子上有2个不同的红球,3个不同的白球,4个不同的黑球.若从中 取2个不同色的球,则不同的取法种数为 _________ .解析:由题知,共有不同的取法 2X 3+ 2X 4+ 3X 4 = 26种. 答案:2614.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为 m ,众数为n ,平均 数为X ,则m ,n ,x 的大小关系为 _________ .(用“<”示)解析:由图可知,30名学生得分的中位数为第15个数和第16个数(分别为 5, 6)的平均数,即m = 5.5;又5出现次数最多,故n = 5; x =2X 3+ 3X 4+ 10X 5 + 6X 6+ 3X 7 + 2X 8 + 2X 9+ 2X 10 ,30 M 5.97.故 n< m<x. 答案:n<m<x3 1 n15. 若・2+厂 的展开式的第7项与倒数第7项的比是1 : 6,贝U n =33n -—4所以n = 9.答案:9解析:由题知,T 7= C n (32)n -6丄633 6 1-=6,化简得16. 已知a, b, c为集合A= {1 , 2, 3, 4, 5}中三个不同的数,通过如图所示的算法框图给出一个算法,输出一个整数a,则输出的数a= 5的概率是結柬解析:由算法可知输出的a是a, b, c中最大的一个,若输出的数为5,则这三个数中必须要有5,从集合A={1 , 2, 3, 4, 5}中选三个不同的数共有10种取法:123, 124, 125, 134, 135, 145, 234, 235, 245, 345 满足条件的有6 种,所以所求概率为器3答案:35三、解答题(解答应写出文字说明,证明过程或演算步骤)17. (10分)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负.设这支篮球队与其他篮球队比赛,获得胜利的事件是独立的,并且获得胜利1的概率是1(1)求这支篮球队首次获得胜利前已经负了2场的概率;(2)求这支篮球队在6场比赛中获胜场数的期望和方差.解:(1)由题知,这支篮球队第一、二场负,第三场胜,三个事件互相独立,1 114所求概率 P i = 1 — 3 x 1 - 3 x 3=27. 1(2)获胜场数E 服从二项分布B 6, 3 , 1•'•E( B = 6 x 3 = 2,D (B =6x 3x 1 —1 = 3.18. (12分)在试验中得到变量y 与x 的数据如下表:X0.250.20.1250.10.062 5y 8 10 16 22 341 1由经验知,y 与X 之间具有线性相关关系,令u i =经计算得.1误!未 定 义 书43. £ y = 90. S u : =461(1)试求y 与x 之间的回归方程;£, a 的值保留两位小数)⑵当x =2.19时,预报y 的值.Snuy __附■■— -”22u t— n uJ = 1解:(1) V 工— 974 - ZZ u, — 43 *;■ 1 ai ・ 18.6, 丁 = 18,Aa = 18 — 2.19x 8.6心一0.83.S=461,—=•°.y = — 0.83+ 2.19u.所求回归方程为y =- 2.19- 0.83+ .xA 2 19(2)当 x = 2.19 时,y = — 0.83+ 2^9= 0.17.19. (12分)某市工业部门计划对所辖中小型工业企业推行节能降耗技术改 造,对所辖企业是否支持改造进行问卷调查,结果如下表:术改造与企业规模有关”?⑵从180家支持节能降耗改造的企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小型企业每家 50万元、10万元, 记9家企业所获奖励总数为X 万元,求X 的分布列和数学期望.n (ad — be ) 2 _________(a + b )( e + d )( a + e )( b + d ), 310X (60x 100—30x 120)90 X 220 X 180X 130因为3.854>3.841,所以能在犯错误的概率不超过 0.050的前提下认为“是否 支持节能降耗技术改造与企业规模有关”.(2)由题可知支持节能降耗技术改造的企业中,中、小型企业数之比为1 : 2, 按分层抽样得到的12家中,中、小型企业分别为4家和8家.设9家获得奖励的企业中,中、小型企业分别为m 家和n 家,则(m ,n)可附:K 2 = n = a + b + e + d.解: (1)K 22-7854,能为(1, 8),(2, 7),(3, 6),(4, 5).与之对应,X的可能取值为130, 170, 210, 250.C4C8 1 C345C8 12PQ13。

高中数学必修三第一章《算法初步》章节练习题(含答案)

高中数学必修三第一章《算法初步》章节练习题(含答案)

《算法初步》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.如图是某程序框图的一部分,其算法的逻辑结构为( )A.顺序结构B.判断结构C.条件结构D.循环结构2.下列各进位制数中,最大的数是( )A.11111(2)B.1221(3)C.312(4)D.56(8)3.如图所示,当输入x为2 006时,输出的y= ( )A.28B.10C.4D.2【补偿训练】执行如图所示的程序框图,若输出的结果是9,则判断框内m的取值范围是( )A.(42,56]B.(56,72]C.(72,90]D.(42,90]4.168,54,264的最大公约数是( )A.4B.6C.8D.95.下列程序的功能是( )S=1i=3WHILE S<=10000S=S ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n【补偿训练】如图程序框图中,语句“S=S×n”将被执行的次数是( )A.4B.5C.6D.76.执行如图所示程序框图,输出的k值为( )A.3B.4C.5D.6【补偿训练】如图是计算函数y=的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2二、填空题(每小题4分,共12分)7.执行如图所示的程序框图,若输入n的值为8,则输出s的值为.【补偿训练】某程序框图如图所示,若使输出的结果不大于37,则输入的整数i的最大值为.8.对任意非零实数a,b,若a⊗b的运算原理如图所示,则log8⊗= .29.阅读如图所示的程序框图,运行相应的程序,输出的结果s= .【补偿训练】阅读如图所示的程序框图,运行相应的程序,输出的S值等于.三、解答题(每小题10分,共20分)10.已知一个5次多项式为f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.11.为了节约用水,学校改革澡堂收费制度,实行计时收费,洗澡时间在30分钟以内(含30分钟),每分钟收费0.1元,30分钟以上超出的部分每分钟0.2元,请设计程序,使用基本语句完成澡堂计费工作,要求输入时间,输出费用.【补偿训练】陈老师购买安居工程集资房62m2,单价为3 000元/m2.一次性国家财政补贴27 900元,学校补贴18 600元,余款由个人负担.房地产开发公司对教师实行分期付款(注①),每期为一年,等额付款.签订购房合同后一年付款一次,再经过一年又付款一次,共付10次,10年后付清.如果按年利率5.6%,每年按复利计算(注②),那么每年应付款多少元?画出程序框图,并写出计算所需的程序.注:①各期所付款的本息和的总和,应等于个人负担的购房余款的本息和.②每年按复利计算,即本年利息计入次年的本金中生息.《算法初步》章节练习题参考答案(30分钟50分)一、选择题(每小题3分,共18分)1.如图是某程序框图的一部分,其算法的逻辑结构为( )A.顺序结构B.判断结构C.条件结构D.循环结构【解析】选C.条件结构是处理逻辑判断并根据判断结果进行不同处理的结构,由算法流程图知,该算法的逻辑结构为条件结构.2.下列各进位制数中,最大的数是( )A.11111(2)B.1221(3)C.312(4)D.56(8)【解析】选C.11111(2)=1+1×2+1×22+1×23+1×24=1+2+4+8+16=31.1221(3)=1+2×3+2×32=1+6+18+27=52.312(4)=2+1×4+3×42=2+4+48=54.56(8)=6+5×8=6+40=46.3.(2015·陕西高考改编)如图所示,当输入x为2 006时,输出的y= ( )A.28B.10C.4D.2【解题指南】模拟执行程序框图,依次写出每次循环得到的x的值,当x=-2时不满足条件x ≥0,计算并输出y的值为10.【解析】选B.模拟执行程序框图,可得x=2 006,x=2 004满足条件x≥0,x=2 002满足条件x≥0,x=2 000…满足条件x≥0,x=0满足条件x≥0,x=-2不满足条件x≥0,y=10输出y的值为10.【补偿训练】执行如图所示的程序框图,若输出的结果是9,则判断框内m的取值范围是( )A.(42,56]B.(56,72]C.(72,90]D.(42,90]【解析】选B.第一次运行:S=2,k=2;第二次运行:S=6,k=3;…;第七次运行:S=56,k=8;第八次运行:S=2+4+6+…+16=72,k=9,输出结果.故判断框中m的取值范围是(56,72].4.(2015·襄阳高一检测)168,54,264的最大公约数是( )A.4B.6C.8D.9【解析】选B.168-54=114,114-54=60,60-54=6,54-6=48,48-6=42,42-6=36,36-6=30,30-6=24,24-6=18,18-6=12,12-6=6,故168和54的最大公约数为6.又因为264=44×6+0,所以6是264和6的最大公约数.所以这三个数的最大公约数为6.5.下列程序的功能是( )S=1i=3WHILE S<=10000S=S ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n【解析】选D.法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最后输出的是计数变量i,而不是累乘变量S.【补偿训练】如图程序框图中,语句“S=S×n”将被执行的次数是( )A.4B.5C.6D.7【解析】选B.由程序框图知:S=1×2×3×…×n.又1×2×3×4×5=120<200,1×2×3×4×5×6=720>200.故语句“S=S×n”被执行了5次,选B.6.(2015·北京高考改编)执行如图所示程序框图,输出的k值为( )A.3B.4C.5D.6【解题指南】按照程序框图顺序执行.【解析】选B.k=0,a=3,q=;a=,k=1;a=,k=2;a=,k=3;a=,k=4.【补偿训练】如图是计算函数y=的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2【解析】选B.当x> -1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.二、填空题(每小题4分,共12分)7.(2015·苏州高一检测)执行如图所示的程序框图,若输入n的值为8,则输出s的值为.【解析】第一次循环,s=×(1×2)=2,i=4,k=2;第二次循环,s=×(2×4)=4,i=6,k=3;第三次循环,s=×(4×6)=8,i=8,k=4.此时退出循环,输出s的值为8.答案:8【补偿训练】某程序框图如图所示,若使输出的结果不大于37,则输入的整数i的最大值为.【解析】S=(20+1)+(21+1)+(22+1)+…+(2i-1+1).当i=1时,S=2;当i=2时,S=2+3=5;当i=3时,S=2+3+5=10;当i=4时,S=2+3+5+9=19;当i=5时,S=2+3+5+9+17=36;当i=6时,S=2+3+5+9+17+33>37.所以i的最大值为5.答案:58⊗= .8.对任意非零实数a,b,若a⊗b的运算原理如图所示,则log2【解析】log28<,则题意知,log28⊗=3⊗4==1.答案:19.(2015·大同高一检测)阅读如图所示的程序框图,运行相应的程序,输出的结果s= .【解析】程序在运行过程中各变量的值如下表示:第一次循环:当n=1时,得s=1,a=3.第二次循环:当n=2时,得s=4,a=5.第三次循环:当n=3时,得s=9,a=7,此时n=3,不再循环,所以输出s=9.答案:9【补偿训练】阅读如图所示的程序框图,运行相应的程序,输出的S值等于.【解析】第一次循环:S=1,k=1<4,S=2×1-1=1,k=1+1=2.第二次循环:k=2<4,S=2×1-2=0,k=2+1=3.第三次循环:k=3<4,S=2×0-3=-3,k=3+1=4,当k=4时,k<4不成立,循环结束,此时S=-3.答案:-3三、解答题(每小题10分,共20分)10.已知一个5次多项式为f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.【解析】根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值;v0=5;v1=5×5+2=27;v2=27×5+3.5=138.5;v3=138.5×5-2.6=689.9;v4=689.9×5+1.7=3 451.2;v5=3 451.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.的值.”【延伸探究】若本题中已知条件不变,求“当x=2时v3【解析】v0=5;v1=5×2+2=12;v2=12×2+3.5=27.5;v3=27.5×2-2.6=52.4.故x=2时,v3=52.4.11.(2015·武汉高一检测)为了节约用水,学校改革澡堂收费制度,实行计时收费,洗澡时间在30分钟以内(含30分钟),每分钟收费0.1元,30分钟以上超出的部分每分钟0.2元,请设计程序,使用基本语句完成澡堂计费工作,要求输入时间,输出费用.【解题指南】题目为分段函数,用条件结构求解.【解析】设时间为t分钟,则费用y为y=程序框图如图所示.这里应用的是条件结构,应该用条件语句来表述,INPUT tIF t<=30 THENy=0.1tELSEy=3+(t-30)0.2END IFPRINT yEND【补偿训练】陈老师购买安居工程集资房62m2,单价为3 000元/m2.一次性国家财政补贴27 900元,学校补贴18 600元,余款由个人负担.房地产开发公司对教师实行分期付款(注①),每期为一年,等额付款.签订购房合同后一年付款一次,再经过一年又付款一次,共付10次,10年后付清.如果按年利率5.6%,每年按复利计算(注②),那么每年应付款多少元?画出程序框图,并写出计算所需的程序.注:①各期所付款的本息和的总和,应等于个人负担的购房余款的本息和.②每年按复利计算,即本年利息计入次年的本金中生息.【解析】设每年应付款x元,那么第一年付款的本息和为x×1.0569元,第二年付款的本息和为x×1.0568元,…第九年付款的本息和为x×1.056元,第十年付款为x元.所以各期所付款的本息和的总和为x(1+1.056+1.0562+…+1.0569).所购房余款的本息和为[3 000×62-(27 900+18 600)]×1.05610=139 500×1.05610,故有x(1+1.056+1.0562+…+1.0569)=139 500×1.05610,即x=.程序框图如下图所示:。

高中数学必修3算法初步试题及答案 必修3_新课标人教版

高中数学必修3算法初步试题及答案 必修3_新课标人教版

第一章 算法初步测试题一、选择题:(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语言中,哪一个是输入语句 ( ) A.PRINT B.INPUT C.IF D.LET2.右边程序的输出结果为 ( ) A . 3,4 B . 7,7 C . 7,8 D . 7,113.算法 S1 m=aS2 若b<m ,则m=b S3 若c<m ,则m=d S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值 B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序4.下图给出的是计算0101614121+⋅⋅⋅+++的值的一个程序框图, 其中判断框内应填入的条件是 ( )A .. i<=100B .i>100C .i>50D .i<=50 5.读程序甲:INPUT i=1 乙:INPUT I=1000 S=0 S=0 WHILE i≤1000 DOS=S+i S=S+i i=i+l I=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( ) A .程序不同结果不同 B .程序不同,结果相同 C .程序相同结果不同 D .程序相同,结果相同6.在下图中,直到型循环结构为 ( )X =3Y =4 X =X +Y Y =X +YPRINT X ,Y循环体 满足条件? 是否循环体满足条件?否是满足条件?循环体是否满足条件?循环体否是A .B .C . D7.用冒泡排序法将待排序的数据8,7,2,9,6从小到大进行排序,经过( )趟排序才能完成。

A .2 B .3 C .4 D .58.数4557、1953、5115的最大公约数应该是 ( ) A .651 B .217 C . 93 D .31 9.阅读下列程序:输入x ;if x <0, then y =32x π+;else if x >0, then y =52x π-;else y =0; 输出 y .如果输入x =-2,则输出结果y 为A .3+πB .3-πC .π-5D .-π-510.阅读右边的程序框,若输入的n 是100,则输出的 变量S 和T 的值依次是 ( ) A .2550,2500 B .2550,2550 C .2500,2500 D .2500,2550二、填空题:(本大题共4小题,每小题5分,共20分 )11. 下列关于算法的说法,正确的是 。

高中数学必修三练习及答案

高中数学必修三练习及答案

乌鲁木齐市高级中学必修3《算法初步》测试题一.选择题: (每小题4分,共48分)1. 算法的三种基本结构是( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2. 将两个数a=8,b=17下面语句正确一组是(A. B.3. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个4. 下面为一个求20个数的平均数的程序,在横线上应填充的语句为( )A. i>20B. i<20C. i>=20D. i<=205.若)(xf在区间[]b a,内单调,且0)()(<⋅bfaf,则)(xf在区间[]ba,内( )A. 至多有一个根B. 至少有一个根C. 恰好有一个根 D. 不确定6. 将389 化成四进位制数的末位是( )A. 1B. 2C. 3D. 07. 下列各数中最小的数是( )A.)9(85 B.)6(210 C.)4(1000 D.)2(1111118. 用秦九韶算法计算多项式1876543)(23456++++++=xxxxxxxf当4.0=x时的值时,需要做乘法和加法的次数分别是( )A. 6 , 6B. 5 , 6C. 5 , 5D. 6 , 59. 用秦九韶算法计算多项式654323567983512)(xxxxxxxf++++-+=在4-=x时的值时,3V的值为( )A. -845B. 220C. -57D. 3410.10、求方程023=-xx的近似根,要先将它近似地放在某两个连续整数之间,下面正确的是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间11. 程序运行后输出的结果为 ( )A. 50B. 5C. 25D. 012. 程序运行后输出的结果为 ( )A. 3 4 5 6B. 4 5 6 7C. 5 6 7 8D. 6 7 8 9 二. 填空题.(每小题3分,共12分)13、书写算法有5种语句,包括 。

(典型题)高中数学必修三第二章《算法初步》测试(包含答案解析)

(典型题)高中数学必修三第二章《算法初步》测试(包含答案解析)

一、选择题1.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6 2.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3 n 时,执行如图所示的程序框图,则输出的S值为()3.当4A .9B .15C .31D .634.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .825.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A .261B .425C .179D .5448.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n9.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A.7B.6C.5D.410.执行如图所示的程序框图,若输入的,a b的值分别为1,2,则输出的S是()A.70 B.29 C.12 D.511.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2 12.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.10102021二、填空题13.运行如图所示的程序框图,则输出的S的值为________.14.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.15.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.16.执行如图所示的程序框图,输出S 的值为___________.17.阅读如图所示的流程图,运行相应的程序,则输出n的值为______.18.根据如图所示的伪代码,可知输出的结果S为________.19.执行如图所示的程序框图,输出的T ______.20.如图所示的程序框图输出的值是 .三、解答题+++的一个算法,按照逐一相加的程序进行:21.以下给出了求1234第一步:计算12+,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10.⨯⨯⨯⨯的一个算法.请设计一个求1234522.读下列程序:(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.23.给出某班45名同学的数学测试成绩,60分及以上为及格,要求统计及格人数,及格同学的平均分,全班同学的平均分,画出程序框图,并写出程序语句.24.分别标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出最重球的算法,并画出程序框图.25.试编写程序确定S=1+4+7+10+…中至少加到第几项时S ≥300. 26.利用海伦公式编写一个计算三边长为,,a b c 的三角形面积的程序. [海伦公式为:1()()();()2S p p a p b p c a b c =---=++].【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.2.A解析:A根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y ===第二次循环3,2,3z x y ===第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =.所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.3.C解析:C【解析】由程序框图可知,1,3,2,7,3,15k s k s k s ======,4,31,54k s k ===>,退出循环,输出s 的值为31,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.A解析:A【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5.C解析:C按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求.【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f x x ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=, 此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=, 此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=, 此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=, 此时1.4375 1.3750.06250.1-=<,符合精确度要求.退出循环,输出n 的值为4.故选:C.【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.6.D解析:D【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=;不满足判断条件,2112112,13s s i i i =⋅=⨯=+=;不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D本题考查由输出值辨别判断语句,属于中档题7.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 8.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.9.C解析:C【分析】将所有的算法循环步骤列举出来,得出5i =不满足条件,6i =满足条件,可得出n 的取值范围,从而可得出正确的选项.【详解】110133S =+=⨯,112i =+=; 2i n =>不满足,执行第二次循环,1123355S =+=⨯,213i =+=; 3i n =>不满足,执行第三次循环,2135577S =+=⨯,314i =+=; 4i n =>不满足,执行第四次循环,3147799S =+=⨯,415i =+=; 5i n =>不满足,执行第五次循环,415991111S =+=⨯,516i =+=; 6i n =>满足,跳出循环体,输出S 的值为511,所以,n 的取值范围是56n ≤<. 因此,输入的n 的值为5,故选C.【点睛】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.10.B解析:B【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果.【详解】解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =.故选B.【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.11.B解析:B【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 12.C解析:C【解析】【分析】 首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果.【详解】 由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯, 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭, 111113355720172019S ∴=++++⨯⨯⨯⨯ 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-= ⎪⎝⎭. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题13.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011【分析】根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案.【详解】依题意,024*********T =++++++,135720192021N =++++++, 故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011【点睛】 本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.14.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程序框图的 解析:78【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果.【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =,执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程 解析:20【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.16.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4817.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4【解析】()1,0,0111,2n S S S ===+-⨯=-≥ 不成立; ()22,1121,2n S S ==-+-⨯=≥ 不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.7【解析】第一次循环:;第二次循环:;第三次循环:;结束循环输出考点:循环结构流程图解析:7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图19.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =20.144【分析】直接利用循环结构计算循环各个变量的数值当满足判断框的条件推出循环输出结果【详解】判断前第1次判断循环;第2次判断循环第3次判断循环;第4次判断循环;第5次判断循环;第6次判断循环;第7 解析:144【分析】直接利用循环结构,计算循环各个变量的数值,当10k =满足判断框的条件,推出循环,输出结果.【详解】判断前,2c =,第1次判断循环,1,2,2,3a b k c ====;第2次判断循环,2,3,3,5a b k c ====第3次判断循环,3,5,4,8a b k c ====;第4次判断循环,5,8,5,13a b k c ====;第5次判断循环,8,13,6,21a b k c ====;第6次判断循环,13,21,7,34a b k c ====;第7次判断循环,21,34,8,55a b k c ====;第8次判断循环,34,55,9,89a b k c ====;第9次判断循环,55,89,10,144a b k c ====;第10次判断不满足判断框条件,退出循环,输出144c =,故答案为144.【点睛】本题考查循环结构的应用,注意每一步循环的变量的数值,计算准确是解题的关键.三、解答题21.见解析【分析】利用类比的思想,把示例中的加变为乘,按照逐一相乘的方法,一直乘到5即可.【详解】第一步:计算1乘2,得到2;第二步:将第一步中的运算结果2乘以3,得到6;第三步:将第二步中的运算结果6乘以4,得到24;第四步:将第三步中的运算结果24乘积5,得到120.【点睛】本题考查算法的设计和类比思想的应用;同时让学生体会算法在解决数学问题中的作用;属于中档题.22.(1)程序框图见解析;(2)2,02,0x x y x x ⎧<=⎨≥⎩,2x =±. 【分析】(1)根据程序语句可知该程序是条件结构框图,并根据程序语句作出相应的程序框图; (2)根据程序语句得出当x 取不同范围内的值时,函数的解析式也不同,然后可根据程序框图结合x 的不同取值范围,得出函数的解析式,然后分0x <和0x ≥解方程4y =,从而可解出输入的x 的值.【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是2,02,0x x y x x ⎧<=⎨≥⎩. 当0x <时,由24y x ==得2x =-;当0x ≥时,由24y x ==得2x =.出当输出的4y =时,输入的x 的值是2x =±.【点睛】本题考查条件程序框图的应用,同时考查了根据程序框图计算输入值,解题时要对x 的取值范围分段来讨论,考查分析问题和解决问题的能力,属于中等题.23.程序图见解析.【解析】【分析】因为只统计及格人数,所以设计一个条件语句,对于求和设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句.【详解】用M表示及格人数,S表示及格同学的总分。

重点高中必修三数学第一章算法初步

重点高中必修三数学第一章算法初步

重点高中必修三数学第一章算法初步————————————————————————————————作者:————————————————————————————————日期:第一章 算法初步一、选择题1.如果输入3n ,那么执行右图中算法的结果是( ).A .输出3B .输出4C .输出5D .程序出错,输不出任何结果 2.算法:第一步,m = a .第二步,b <m ,则m = b . 第三步,若c <m ,则m = c . 第四步,输出 m .此算法的功能是( ). A .输出a ,b ,c 中的最大值 B .输出a ,b ,c 中的最小值 C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.右图执行的程序的功能是( ). A .求两个正整数的最大公约数B .求两个正整数的最大值C .求两个正整数的最小值D .求圆周率的不足近似值 4.下列程序: INPUT “A =”;1 A =A *2 A =A *3 A =A *4 A =A *5 PRINT A第一步,输入n . (第1(第2(第3END输出的结果A是().A.5 B.6 C.15 D.120 5.下面程序输出结果是().A.1,1 B.2,1 C.1,2 D.2,2 6.把88化为五进制数是().A.324(5)B.323(5)C.233(5)D.332(5) 7.已知某程序框图如图所示,则执行该程序后输出的结果是().A.1-B.1 C.2 D.12(第5开始a =2,i=1i≥211aa=-i=i+结束输出a是否(第78.阅读下面的两个程序:甲乙对甲乙两程序和输出结果判断正确的是().A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同9.执行右图中的程序,如果输出的结果是4,那么输入的只可能是().A.-4B.2C.2 或者-4D.2或者-410.按照程序框图(如右图)执行,第3个输出的数是().A .3B.4C.5D.6二、填空题(第8(第911.960与1 632的最大公约数为.12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为_________.13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为.(第13题)14.下列所画流程图是已知直角三角形两条直角边a,b求斜边的算法,其中正确的是.(写出正确的序号)(第12开始输入实数xx<0f(x)=2x -3输出f(x)结束是f(x)=5-4x否15.流程图中的判断框,有1个入口和 个出口. 16.给出以下问题:①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数;③求键盘所输入的两个数的最小数;④求函数⎩⎨⎧=22)(x xx f 当自变量取x 0时的函数值.其中不需要用条件语句来描述算法的问题有 . 三、解答题17.编写一个程序,计算函数f (x )=x 2-3x +5当x =1,2,3,…,20时的函数值.,x≥318.编写程序,使得任意输入的3个整数按从大到小的顺序输出.19.编写一个程序,交换两个变量A和B的值,并输出交换前后的值.20.编写一个程序,计算两个非零实数的加、减、乘、除运算的结果(要求输入两个非零实数,输出运算结果).参考答案一、选择题 1.C解析:本题通过写出一个算法执行后的结果这样的形式,来考查对算法的理解及对赋值语句的掌握.2.B解析:此算法为求出 a ,b ,c 中的最小值. 3.A解析:本题通过理解程序语言的功能,考查求两个正整数最大公约数的算法. 4.D解析:A =1×2×3×4×5=120. 5.B解析:T =1,A =2,B =T =1. 6.B解析:∵88=3×52+2×5+3,∴88为323(5). 7.A解析:本题以框图为载体,对周期数列进行考查.数列以3项为周期,2 010除以3余数为0,所以它与序号3对应相同的数. 序 号 1 2 3 4 5 6 7 … a (输出)221-1221 -12…8.B解析:结果均为 1+2+3+…+1 000,程序不同. 9.B解析:如x ≥0,则x 2=4,得x =2;如x <0,则由y =x ,不能输出正值,所以无解. 10.C解析:第一个输出的数是1;第二个输出的数是3;第三个输出的数是5. 二、填空题1111.96.解析:(1 632,960)→(672,960)→(672,288)→(384,288)→(96,288)→(96,192)→(96,96).12.f (x )=⎩⎨⎧0 ,4- 50<,32x x x x - 解析:根据程序框图可以知道这是一个分段函数.13.答案:i ≥4?.解析:根据程序框图分析: i1 2 3 s4 12 48可知答案为i ≥4?.14.①. 解析:③、④选项中的有些框图形状选用不正确;②图中的输入变量的值应在公式给出之前完成.15.2.解析:判断框的两个出口分别对应“是”(Y )或“否”(N ).16.①②.解析:③④需用条件语句.三、解答题17.程序:(如图)18.第一步,输入3个整数a ,b ,c .第二步,将a 与b 比较,并把小者赋给b ,大者赋给a .第三步,将a 与c 比较.并把小者赋给c ,大者赋给a ,此时a 已是三者中最大的.x =1 WHILE x <=20 y =x^2-3*x +5 x =x +1 PRINT “y =”;y WEND END ≥(第12 第四步,将b 与c 比较,并把小者赋给c ,大者赋给b ,此时a ,b ,c 已按从大到小的顺序排列好.第五步,按顺序输出a ,b ,c .程序:(如下图所示)19.程序:20.程序:INPUT “a ,b ,c =”; a ,b ,c IF b >a THEN t =a a =b b =t END IF IF c >a THEN t =a INPUT A INPUT B PRINT A ,B X =A A =B INPUT “a(a ≠0),b(b ≠0)=”;a ,b X =a +bY =a -bZ =a *bQ =a/b。

(好题)高中数学必修三第二章《算法初步》测试题(有答案解析)

(好题)高中数学必修三第二章《算法初步》测试题(有答案解析)

一、选择题1.运行下图所示的程序框图,如果输入的2020n =,则输出的n =( )A .6B .7C .63D .642.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是()A .4?k <B .5?k <C .6?k <D .7?k < 3.执行如图所示的程序框图,如果输入4n =,则输出的结果是( )A .32B .116C .2512D .13760 4.如图给出的是计算1232018⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的是( )A .2018i <B .2018i =C .2018i ≤D .2018i > 5.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次6.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k > 7.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k 的值为( )A .4B .5C .6D .78.执行如图所示的程序框图,输出S 的值等于( )A.1111238+++⋅⋅⋅+B.1111237+++⋅⋅⋅+C.11111237+++++D.11111238++++⋅⋅⋅+9.执行如下图的程序框图,如果输入的N的值是7,那么输出的p的值是()A.3 B.15 C.105 D.945 10.执行如下的程序框图,则输出的S是()A .36B .45C .36-D .45-11.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k 12.执行如下图的程序框图,那么输出S 的值是( )A.2 B.1 C.12D.-1二、填空题13.若下面程序中输入的n值为2017,则输出的值为__________.14.如图所示的程序框图,输出的S的值为()A .12B .2C .1-D .12- 15.根据如图所示的伪代码可知,输出的结果为______.16.执行如图的程序框图,则输出的S =__________.17.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.18.执行如图所示的算法框图,若输入的x的值为2,则输出的n的值为__________.19.如图,运行伪代码所示的程序,则输出的结果是________.20.已知下列程序INPUTtIFt≤3THENC=0.2ELSEC=0.2+0.1*(t-3)ENDIFPRINTCEND当输入t=5时,输出结果是____.三、解答题21.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y 值为12,求点Q 的坐标. 22.试画出求4+11414?4+++(共10个4)的值的程序框图.23.下面给出一个用循环语句编写的程序:k =1sum =0WHILE k <10sum =sum +k ∧2k =k +1WENDPRINT sumEND(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.24.(1)用for 语句写出计算1×3×5×7×…×2 015的值的程序.(2)用while 语句写出求满足1+1123++ (1)>10的最小自然数n 的程序. 25.试编写程序确定S=1+4+7+10+…中至少加到第几项时S ≥300. 26.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题中所给的框图,模拟执行程序框图,求得结果.【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数,赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数,赋值126100n =>,且不是奇数,赋值63100n =<,赋值()2log 6316n =+=,输出6.故选:A【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.2.C解析:C【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体.【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=,3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=,5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”.故选:C .【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.3.B解析:B 【分析】根据题意,运行程序可实现111112341S n =++++⋯+-运算求值,从而得答案. 【详解】第一次执行程序,1,2S i ==, 第二次执行程序,11,32S i =+=, 第三次执行程序,111,423S i =++=, 因为44=,满足条件,跳出循环,输出结果116S =. 故选:B . 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.4.D解析:D 【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确 【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=; 不满足判断条件,2112112,13s s i i i =⋅=⨯=+=; 不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D 【点睛】本题考查由输出值辨别判断语句,属于中档题5.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.6.C解析:C 【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件. 【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=,∴程序运行的结果S 为120, 模拟程序的运行,由题意可得 k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5 不满足判断框内的条件,执行循环体,S=30,k=4 不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120. 故判断框中应填入的关于k 的判断条件是k <4? 故选:C 【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.7.B解析:B 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =; 故选B 【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置8.C解析:C 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,k S 的值,当8k 时不满足条件8k <,退出循环,输出S 的值为11111237S +++=++,即可得解. 【详解】模拟执行程序框图,可得1,1k S ==, 执行循环体,11,2S k =+=, 满足条件18,11,32k S k <=++=; 满足条件118,11,423k S k <=+++=; …观察规律可知,当7k =时,满足条件,11111,8237S k ++++=+=; 此时,不满足条件8k <,退出循环,输出11111237S +++=++. 故选C . 【点睛】本题主要考查了循环结构的程序框图,解题时应模拟程序框图的运行过程,即可得出正确的结论,着重考查了推理与运算能力,属于基础题.9.C解析:C 【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案. 【详解】模拟程序的运行,可得:7,1,1N k p ===, 满足条件7k <,执行循环体,3,3k p ==; 满足条件7k <,执行循环体,5,15k p ==; 满足条件7k <,执行循环体,7,105k p ==; 此时,不满足条件7k <,推出循环,输出p 的值为105, 故选C . 【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=;28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=; 88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=; 98i =≤不成立,跳出循环体,输出S 的值为36,故选A. 【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.11.C解析:C 【解析】 【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么. 【详解】模拟程序的运行过程如下,输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=,131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=, 此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤.故选:C . 【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题.12.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12;k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2, K=2019时,结束循环,输出s 的值为2. 故选:A . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于解析:20172018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值. 所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.14.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12.【详解】模拟执行程序框图,可得 2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=,满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A. 【点睛】本题主要考查了循环结构的程序框图,属于基础题.15.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不解析:72 【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72. 【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ; 满足条件8i <,执行循环体,745i S ==, ; 满足条件8i <,执行循环体,9i =,72S =; 不满足条件8i <,退出循环,输出S 的值为72, 故答案为72 【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.16.88【解析】运行该程序即答案为88解析:88 【解析】运行该程序,2,2;3,7;4,18;5,41;6,88;k S k S k S k S k S ========== 即答案为88.17.【解析】时时输出的两个值的和为故答案为解析:54【解析】1x =-时,11124y --==,1x =时,()2log 111y =+=,15144∴+=,输出的两个y 值的和为54,故答案为54. 18.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2 【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1; 当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2; 当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件, 故输出的n 值为2; 故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.19.34【解析】由题设循环体要执行3次第一次循环结束后第二次循环结束后;第三次循环结束后;故答案为34点睛:本题考查循环结构解决此题关键是理解其中的算法结构与循环体执行的次数然后依次计算得出结果;由于的解析:34 【解析】由题设循环体要执行3次, 第一次循环结束后3a a b =+=,5b a b =+=,2i = 第二次循环结束后8a a b =+=,13b a b =+=,4i =;第三次循环结束后21a a b =+=,34b a b =+=,6i =;故答案为34.点睛:本题考查循环结构,解决此题关键是理解其中的算法结构与循环体执行的次数,然后依次计算得出结果;由于a b ,的初值是12,,故在第一次循环中,3a a b =+=,5b a b =+=,计数变量从2开始,以步长为2的速度增大到6,故程序中的循环体可以执行3次,于是可以逐步按规律计算出a 的值.20.4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 的值将t=5代入即可得到答案【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 的值 故答案为04【点睛】算法是新课标高考的一大解析:4 【分析】由已知中的程序语句可知该程序的功能是计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩ 的值,将t =5代入即可得到答案. 【详解】由已知中程序语句可知该程序的功能是:计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值 50.20.1(53)0.4t C =∴=+-=,故答案为0.4. 【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.三、解答题21.(1)cos 2x y =,cos 2x y =-.(2) 1(,22-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭;综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos 2x y =,cos 2xy =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭; 当2x ππ<<时,1cos22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭.点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 22.见解析 【解析】试题分析: 根据已知的函数解析式的规律,可利用循环结构得算法及流程图.用计数器i 来控制循环次数.14A A=+求解析式. 试题解析;程序框图如下图所示.【dj 】本题考查流程图的概念,解答本题关键是掌握住本问题的解决方法,根据问题的解决方案制订出符合要求的框图,熟练掌握框图语言,能正确用框图把算法表示出来,属于基本知识的考查.23.(1)答案见解析;(2)答案见解析. 【解析】【试题分析】(1) 所用的循环语句是WHILE 循环语句,其功能是计算222129+++的值.(2)另一种循环语句就是UNTIL 型.按UNTIL 型语句改写出程序. 【试题解析】(1)本程序所用的循环语句是WHILE 循环语句,其功能是计算12+22+32+…+92的值. (2)用UNTIL 语句改写程序如下: k=1 sum=0 DOsum=sum+k ∧2 k=k+1LOOP UNTIL k>=10 PRINT sum END 24.见解析【解析】试题分析:(1)确定循环体为“S=S* i”,再由for i=3:2:2015即可实现;(2)确定循环体为“i=i+1; S=S+1/i”,当型条件为:while S<=10再赋予初始值即可.试题(1)S=1;for i=3:2:2015S=S* i;endprint(%io(2),S);(2)S=1;i=1;while S<=10i=i+1;S=S+1/i;endprint(%io(2),i);点睛:本题考查的是算法与程序语句.算法与流程图的的考查.先明晰算法及程序语句的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确程序研究的数学问题,是求和还是求项25.答案见解析【解析】试题分析:直接利用已知条件和循环语句编写算法程序.试题程序如下:S=0;n=1;i=0;while S<300S=S+n;n=n+3;i=i+1;endi=i-1print “i=”;i26.见解析【解析】,并将其代入函数解析式求出试题分析:根据已知的函数解析式,分别令自变量为3,5各函数值,最后累加各个函数值,并输出,利用顺序结构可得算法及流程图.试题f的值.第一步:求()3f-的值.第二步:求()5第三步:将前两步的结果相加,存入y.第四步:输出y的值.所求程序框图如下:。

新人教版必修3算法初步练习题及答案

新人教版必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

(典型题)高中数学必修三第二章《算法初步》测试题(答案解析)

(典型题)高中数学必修三第二章《算法初步》测试题(答案解析)

一、选择题1.若执行如图所示的程序框图,输出S的值为()A.2log23 B.log27 C.3 D.22.该程序中k的值是()A.9 B.10 C.11 D.123.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.34.执行如图所示的程序框图,输出的S值为()A.511 B.512 C.1022 D.1024 5.执行如下图的程序框图,如果输入的N的值是7,那么输出的p的值是()A.3 B.15 C.105 D.9456.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999 C.n<999 D.n>9997.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为10,14,则输出的a=()A.6 B.4 C.2 D.08.某程序框图如图所示,若运行该程序后输出S=()A.53B.74C.95D.1169.下列赋值语句正确的是 ()A.S=S+i2B.A=-A C.x=2x+1 D.P=10.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.31011.执行如图的程序框图,则输出x的值是 ()A.2018B.2019C.12D.212.执行如下图的程序框图,那么输出S的值是( )A.2 B.1 C.12D.-1二、填空题13.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.14.下图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x 值与输出的y值满足关系式y=-2x+4,则这样的x值___个.15.运行如图所示的程序框图,则输出的所有y值之和为___________.16.如图所示的程序框图,输出的S的值为()A.12B.2 C.1-D.12-17.如图所示的伪代码,最后输出的S值为__________.18.执行如图所示的程序框图,输出的S值为__________.19.执行如图所示的程序框图,输出S的值为___________.20.执行如图所示的流程图,则输出的的值为___________.三、解答题21.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.22.设计算法求111112233499100++++⨯⨯⨯⨯的值,要求画出程序框图,并用基本的算法语句编写程序.23.图C1-6所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.24.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能.25.一队士兵来到一条有鳄鱼的深河的左岸,只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸,并将这个算法用程序框图表示.26.画出求的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】由题意,可得程序的功能是求S =log 23×log 34×log 45×log 56×log 67×log 78的值,原式=×××××==3.故选C.2.B解析:B【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<;第二次循环,6,12,1214k y ==<;第三次循环,8,14,1414k y ===;第四次循环,10,16,1614k y ==>,退出循环,输出10k =,故选:B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.C解析:C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】模拟执行程序框图,可得:1,1,1a b n ===,第1次循环,可得3,1,3,2S a b n ====;第2次循环,可得5,3,5,3S a b n ====;第3次循环,可得11,5,11,4S a b n ====,满足判断条件,输出11S =.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题. 4.C解析:C【分析】直接根据程序框图计算得到答案.【详解】 根据程序框图知:92391012222 (2222102212)S -=++++==-=-. 故选:C.【点睛】 本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.5.C解析:C【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.【详解】模拟程序的运行,可得:7,1,1N k p ===,满足条件7k <,执行循环体,3,3k p ==;满足条件7k <,执行循环体,5,15k p ==;满足条件7k <,执行循环体,7,105k p ==;此时,不满足条件7k <,推出循环,输出p 的值为105,故选C .【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容.【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <. 故选C.【点睛】lg lg lg(1)1n n n n =-++,通过将除法变为减法,达到简便运算的目的. 7.C解析:C【分析】由程序框图,先判断,后执行,直到求出符合题意的a .【详解】由题意,可知10a =,14b =,满足a b ,不满足a b >,则14104b =-=, 满足a b ,满足a b >,则1046a =-=, 满足a b ,满足a b >,则642a =-=, 满足a b ,不满足a b >,则422b =-=, 不满足a b ,输出2a =. 故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题. 8.D解析:D【分析】 通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果.【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值. 9.B解析:B【解析】在程序语句中乘方要用“^”表示,所以A 项不正确;乘号“*”不能省略,所以C 项不正确;DSQR(x)表示,所以D 项不正确;B 选项是将变量A 的相反数赋给变量A ,则B项正确.选B.10.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力. 11.D解析:D【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==; 满足条件2019y <,执行循环体,1,4x y =-= ;…观察规律可知,x 的取值周期为3,由于20196733⨯=,可得:满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2.故选D .【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.12.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果.【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12; k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s 的值为2.故选:A .【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3【解析】【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可.【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去);当3x <时,210y x ==,解得5x = ,舍去,综上,x 的值为3,故答案为3 .【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.14.2【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用根据题意 解析:2【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果. 根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个,故答案是:2.【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.15.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可.【详解】输入2n =-,第一次循环,8,1y n ==-;第二次循环,3,0y n ==;第三次循环,0,1y n ==;第四次循环,1,2y n =-=;退出循环,可得所有y 值之和为830110++-=,故答案为10.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.16.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A【解析】【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 【详解】模拟执行程序框图,可得2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=, 满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A.【点睛】本题主要考查了循环结构的程序框图,属于基础题.17.21【解析】分析:先根据伪代码执行循环直到I<8不成立结束循环输出S 详解:执行循环得结束循环输出点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪解析:21【解析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得3,23+3=95,25+3=137,27+3=179,29+3=21;8I S I S I S I S I ==⨯==⨯==⨯==⨯>;;;结束循环,输出21S =.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37【解析】根据图得到:n=18,S=19,n=12S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37.故答案为:37.19.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4820.【解析】试题分析:由程序框图第一次循环时第二次循环时第三次循环时第四次循环时退出循环输出考点:程序框图解析:4【解析】试题分析:由程序框图,第一次循环时,1,1k S ==,第二次循环时,22,112k S ==+=,第三次循环时,23,226k S ==+=,第四次循环时,24,63156k S ==+=>,退出循环,输出4k =.考点:程序框图.三、解答题21.见解析;【解析】试题分析: 先利用INPUT语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:22.见解析【解析】【分析】根据已知条件,程序的功能可以利用循环结构来解答。

必修3算法初步练习题及答案

必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考纲点击1.以选择题或填空题的形式考查程序框图,以含有循环结构的程序框图为主.2.以数列、分段函数、统计以及不等式为载体,考查算法的三种逻辑结构.3.给出某种算法语句进行运行计算,主要以熟悉的当前的某种数学运算为背景.1.(2015·高考课标卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B.开始a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,退出循环,输出a=2,故选B.2.(2015·高考课标卷Ⅰ)执行下面所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6C.7 D.8解析:选C.运行第一次:S=1-12=12=0.5,m=0.25,n=1,S>0.01;运行第二次:S=0.5-0.25=0.25,m=0.125,n=2,S>0.01;运行第三次:S=0.25-0.125=0.125,m=0.062 5,n=3,S>0.01;运行第四次:S=0.125-0.062 5=0.062 5,m=0.031 25,n=4,S>0.01;运行第五次:S=0.031 25,m=0.015 625,n=5,S>0.01;运行第六次:S=0.015 625,m=0.007 812 5,n=6,S>0.01;运行第七次:S=0.007 812 5,m=0.003 906 25,n=7,S<0.01.输出n=7.故选C.3.(2015·高考天津卷)阅读下边的程序框图,运行相应的程序,则输出S的值为()A.-10 B.6C.14 D.18解析:选B.S=20,i=1,i=2i=2,S=S-i=20-2=18,不满足i>5;i=2i=4,S=S-i=18-4=14,不满足i>5;i=2i=8,S=S-i=14-8=6,满足i>5,故输出S=6.考点一算法与程序框图命题点1求输出结果的程序框图1.算法的概念算法:通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带方向箭头,按照算法进行的顺序将程序框连接起来.3.算法的三种基本逻辑结构(1)顺序结构:是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)条件结构:是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为(3)循环结构:是指从某处开始,按照一定条件反复执行某些步骤的情况,反复执行的处理步骤称为循环体.循环结构又分为当型(WHILE)和直到型(UNTIL).其结构形式为1.(2015·高考陕西卷)根据下边框图,当输入x为2 006时,输出的y=()A.2 B.4C.10 D.28解析:选C.x每执行一次循环减少2,当x变为-2时跳出循环,y=3-x+1=32+1=10.2.(2015·高考湖南卷)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.67 B .37 C.89D .49 解析:选B.第一次循环:S =11×3,i =2; 第二次循环:S =11×3+13×5,i =3; 第三次循环:S =11×3+13×5+15×7,i =4,满足循环条件,结束循环. 故输出S =11×3+13×5+15×7=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17=37,故选B.输出的结果要依据程序框图解决的问题而定,有的是代数式的值或范围,有的是运算循环次数,有的是表达式等.命题点2 求输入变量值的程序框图3.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .4解析:选C.当x ≤2时,y =x 2=x ,解得x 1=0,x 2=1, 当2<x ≤5时,y =2x -3=x ,解得x 3=3; 当x >5时,y =1x =x ,解得x =±1(舍去),故x 可为0,1,3.4.阅读如图程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A .{x ∈R |0≤x ≤log 23}B .{x ∈R |-2≤x ≤2}C .{x ∈R |0≤x ≤log 23或x =2}D .{x ∈R |-2≤x ≤log 23或x =2} 解析:选C.依题意及程序框图可得 ⎩⎪⎨⎪⎧-2<x <2,1≤2x ≤3或⎩⎪⎨⎪⎧|x |≥2,1≤x +1≤3,解得0≤x ≤log 23或x =2,选C.此类题目相当于已知输出结果求输入量,一般采用逆推法.建立方程或不等式求解.命题点3 求判断条件或求程序框中的运算式5.(2016·豫东、豫北十所名校联考)阅读如图所示的程序框图,若输出的n 的值为15,则判断框中填写的条件可能为( )A.m<57? B.m≤57?C.m>57? D.m≥57?解析:选D.运行该程序,第一次循环:m=2×1+1=3,n=3;第二次循环:m=33+1=28,n=7;第三次循环:m=2×28+1=57,n=15,此时结束循环,输出n,故判断框中可填m≥57?,故选D.6.(2016·许昌调研)如图给出的是计算12+14+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.i>100,n=n+1 B.i>100,n=n+2C.i>50,n=n+2 D.i≤50,n=n+2解析:选C.因为12,14,…,1100共50个数,所以算法框图应运行50次,所以变量i应满足i>50,因为是求偶数的和,所以应使变量n满足n=n+2.循环结构中的条件判断循环结构中的条件是高考常考的知识点,主要是控制循环的变量应该满足的条件是什么.满足条件则进入循环或者退出循环,此时要特别注意当型循环与直到型循环的区别.考点二算法语句命题点1输入、输出和赋值语句的应用输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句INPUT“提示内容”;变量输入信息输出语句PRINT“提示内容”;表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式代表的值赋给变量1.计算机执行下面的程序段后,输出的结果是()a=1b=3a=a+bb=a-bPRINT a,bENDA.1,3B.4,1C.0,0 D.6,0解析:选B.a=1,b=3,得a=1+3=4.b=4-3=1,输出值为4,1. 2.写出下列语句的输出结果为________.a=5b=3c=(a+b)/2d=c*cPRINT“d=”;d解析:∵a=5,b=3,∴c =a+b2=4,d=c2=16,即输出d=16.答案:d=16(1)输入、输出、赋值语句是任何一个算法中必不可少的语句.一个输出语句可以输出多个表达式的值.在赋值语句中,变量的值始终等于最近一次赋给它的值,先前的值将被替换.(2)一个赋值语句只给一个变量赋值,但一个语句行可以写多个赋值语句.(3)不能利用赋值语句进行代数式的演算(如化简、分解因式、解方程等).命题点2条件语句的格式条件语句(1)程序框图中的条件结构与条件语句相对应.(2)条件语句的格式及框图①IF-THEN格式IF条件THEN语句体END IF②IF-THEN-ELSE格式IF条件THEN语句体1ELSE语句体2END IF3.根据下列算法语句,当输入x为60时,输出y的值为()31 D .61解析:选C.由题意,得y =⎩⎪⎨⎪⎧0.5x , x ≤50,25+0.6(x -50),x >50.当x =60时,y =25+0.6×(60-50)=31. ∴输出y 的值为31.4.以下给出了一个程序,根据该程序回答:(1)________;(2)该程序的功能所表达的函数解析式为________. 解析:(1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)求x <3时,y =2x ,当x >3时,y =x 2-1;否则,即x =3,y =2.∴y =⎩⎪⎨⎪⎧2x x <3,2 x =3,x 2-1 x >3.答案:(1)15(2)y =⎩⎨⎧2x x <32 x =3x 2-1 x >3一般分段函数可用条件语句编程.编写程序时,“IF ”“END IF ”配套成对出现.第一个“IF ”与程序中最后一个“END IF ”配套;第二个“IF ”与倒数第二个“END IF ”配套等.命题点3 循环语句的格式 循环语句(1)程序框图中的循环结构与循环语句相对应. (2)循环语句的格式及框图.①UNTIL 语句 ②WHILE 语句 DO 循环体LOOP UNTIL 条件WHILE 条件循环体WEND5.已知某算法如下:(2)当i=5时,求输出结果s.解析:(1)当i=2时,满足i≤20,∴s=1+1;t=1,a=1,b=1+1=2,i=3,i=3≤20,s=2+2;t=1,a=2,b=3,i=4,i=4≤20,⋮∴s=1+1+2+3…该程序表示数列1,1,2,3,5,…的前20项和.(2)当i=5时,s=1+1+2+3+5=12,输出s=12. 6.(2016·东北三校模拟)下面程序运行的结果为()n=10S=100DOS=S-nn=n-1LOOPUNTIL S<=70PRINT nENDA.4B.5C.6 D.7解析:选C.n=10,S=100,∴S=100-10=90;n=10-1=9,∴S=90-9=81;n=9-1=8,S=81-8=73;n=8-1=7,S=73-7=66≤70.n=7-1=6.当型循环与直到型循环的不同点必须准确把握.循环次数不清致误[典例](2016·金华十校联考)如图是输出的值为1+13+15+…+199的一个程序框图,框内应填入的条件是()A.i≤99?B.i<99?C.i≥99? D.i>99?正解S=0,i=1;S=1,i=3;S=1+13,i=5;…;S=1+13+…+199,i=101,输出结果故填入i≤99.答案 A[错因](1)题意读错,误认为1+12+13+14+…+199.(2)区分不开A与B的结果,错选为B.(3)弄不清程序的功能,不能应用其他知识点求解;(4)不能准确把握判断框中的条件,对条件结构中的流向和循环结构中循环次数的确定不准确.[易误](1)此框功能是求数列的和:1+13+15+17+…+199;i有两个作用:计数变量和被加的数,可以试运行几次归纳出答案.(2)在解决循环结构问题时,一定要弄明白计数变量和累加变量是用什么字母表示的,再把这两个变量的变化规律弄明白,就能理解这个程序框图的功能了,问题也就清楚了.执行两次如图所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次,第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8C.0.8,0.2 D.0.8,0.8解析:选C.由程序框图可知:当a=-1.2时,∵a<0,∴a=-1.2+1=-0.2,a<0,a=-0.2+1=0.8,a>0.∵0.8<1,输出a=0.8.当a=1.2时,∵a≥1,∴a=1.2-1=0.2.∵0.2<1,输出a=0.2.1.考前必记(1)程序框图各个图示的意义和作用.(2)三种基本逻辑结构框图的模型.(3)输入语句、输出语句、赋值语句的格式和功能.(4)条件语句的格式和功能.(5)当型循环语句、直到型循环语句的格式和功能.2.答题指导(1)看到循环问题,想到是当型循环还是直到型循环,弄清楚循环变量和次数.(2)看到循环结构求输出的值,想到把变量值输入,依次计算.(3)看到需要变量的值时,想到输入语句;看到需要输出变量的值时,想到输出语句;看到对变量或代数式赋值处理时,想到赋值语句.(4)看到因变量取值不同而有不同的运行时,想到条件语句.(5)看到先满足条件而执行循环体时,想到当型循环结构.看到先执行循环体后判断条件时,想到直到型循环结构.课时规范训练[A级基础演练]1.(2015·高考天津卷)阅读下边的程序框图,运行相应的程序,则输出i的值为()A.2 B.3C.4 D.5解析:选C.S=10,i=0,i=i+1=1,S=S-i=10-1=9,不满足S≤1,i=i+1=2,S=S-i=9-2=7,不满足S≤1,i=i+1=3,S=S-i=7-3=4,不满足S≤1,i=i+1=4,S=S-i=4-4=0,满足S≤1,所以输出i=4.2.(2014·高考北京卷)执行如图所示的程序框图,输出的S值为()A.1 B.3C.7 D.15解析:选C.程序框图运行如下:k=0<3,S=0+20=1,k=1<3;S=1+21=3,k=2<3;S=3+22=7,k=3.输出S=7.3.(2015·高考安徽卷)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4C.5 D.6解析:选B.a=1,n=1时,条件成立,进入循环体;a=32,n=2时,条件成立,进入循环体;a=75,n=3时,条件成立,进入循环体;a=1712,n=4时,条件不成立,退出循环体,此时n的值为4.4.(2015·高考陕西卷)根据下边所示框图,当输入x为6时,输出的y=()A.1 B.2C.5 D.10解析:选D.当x=6时,x=6-3=3,此时x=3≥0;当x=3时,x=3-3=0,此时x=0≥0;当x=0时,x=0-3=-3,此时x=-3<0,则y=(-3)2+1=10.5.(2015·高考四川卷)执行如图所示的程序框图,输出S的值为()A.-32B.32C.-12D.12解析:选D.当k=2时,k>4不成立;当k=3时,k>4不成立;当k=4时,k>4不成立,当k=5时,输出S=sin 5π6=sin⎝⎛⎭⎪⎫π-π6=sinπ6=12.6.(2016·贵阳检测)执行如图所示的程序框图,若判断框中填入“k>8?”,则输出的S=()A.11 B.20C.28 D.35解析:选B.第一次循环:S=10+1=11,k=10-1=9;第二次循环:S=11+9=20,k=9-1=8,跳出循环,故输出的S=20.7.(2015·高考山东卷)执行下边的程序框图,若输入的x的值为1,则输出的y的值是________.解析:输入x的值后,根据条件执行循环体可求出y的值.当x=1时,1<2,则x=1+1=2;当x=2时,不满足x<2,则y=3×22+1=13.答案:138.(2014·高考天津卷)阅读下边的框图,运行相应的程序,输出S的值为________.解析:n=3,S=0+(-2)3=-8,n-1=2>1;S=-8+(-2)2=-4,n-1=1≤1,终止循环,故输出S=-4.答案:-49.(2014·高考山东卷)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为________.解析:由x2-4x+3≤0,解得1≤x≤3.当x=1时,满足1≤x≤3,所以x=1+1=2,n=0+1=1;当x=2时,满足1≤x≤3,所以x=2+1=3,n=1+1=2;当x=3时,满足1≤x≤3,所以x=3+1=4,n=2+1=3;当x=4时,不满足1≤x≤3,所以输出n=3.答案:310.(2014·高考辽宁卷)执行如图所示的程序框图,若输入n=3,则输出T =________.解析:初始值:i=0,S=0,T=0,n=3,①i=1,S=1,T=1;②i=2,S=3,T=4;③i=3,S=6,T=10;④i=4,S=10,T=20,由于此时4≤3不成立,停止循环,输出T=20.答案:20[B级能力突破]1.执行如图所示的程序框图,如果输入的x,t均为2,则输出的S=() A.4 B.5C.6 D.7解析:选D.x=2,t=2,M=1,S=3,k=1.k≤t,M=11×2=2,S=2+3=5,k=2;k≤t,M=22×2=2,S=2+5=7,k=3;3>2,不满足条件,输出S=7.2.(2016·长春质量检测)下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1,A2,…,A16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是()A.6 B.10C.91 D.92解析:选B.由算法流程图可知,其统计的是数学成绩大于或等于90的学生人数,由茎叶图知:数学成绩大于或等于90的学生人数为10,因此输出的结果为10.故选B.3.(2015·高考重庆卷)执行如图所示的程序框图,则输出s的值为()A.34B.56C.1112D.2524解析:选D.由s=0,k=0满足条件,则k=2,s=12,满足条件;k=4,s=1 2+14=34,满足条件;k=6,s=34+16=1112,满足条件,k=8,s=1112+18=2524,不满足条件,此时输出s=2524,故选D.4.如图所示的程序框图,则该程序框图表示的算法功能是()A.输出使1×2×4×…×i≥1 000成立的最小整数iB.输出使1×2×4×…×i≥1 000成立的最大整数iC.输出使1×2×4×…×i≥1 000成立的最大整数i+2D.输出使1×2×4×…×i≥1 000成立的最小整数i+2解析:选D.该程序框图表示的算法功能是输出使1×2×4×…×i≥1 000成立的最小整数i+2,选D.5.(2014·高考湖北卷)阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.解析:由题意,程序运行如下:k=1<9,S=21+1=3,k=2<9;S=3+22+2=9,k=3<9;S=9+23+3=20,k=4<9;S=20+24+4=40,k=5<9;S=40+25+5=77,k=6<9;S=77+26+6=147,k=7<9;S=147+27+7=282,k=8<9;S=282+28+8=546,k=9≤9;S=546+29+9=1 067,k=10>9,输出S=1 067,程序结束.答案:1 0676.阅读如图所示的程序框图,运行相应的程序,输出的结果S=________.解析:由程序框图知,S可看成一个数列{a n}的前2 015项的和,其中a n=1n(n+1)(n∈N*,n≤2 015),∴S=11×2+12×3+…+12 015×2 016=⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 015-12 016=1-12 016=2 0152 016.故输出的是2 0152 016.答案:2 015 2 016专题测试六概率、统计、算法初步、推理与证明一、选择题(本大题共12小题,每小题5分,共60分)1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③某中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是A.①简单随机抽样;②系统抽样;③分层抽样B.①简单随机抽样;②分层抽样;③系统抽样C.①系统抽样;②简单随机抽样;③分层抽样D.①分层抽样;②系统抽样;③简单随机抽样解析:选 A.由各抽样方法的适用范围可知较为合理的抽样方法是:①简单随机抽样;②系统抽样;③分层抽样.故选A.2.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取() A.6人B.8人C.12人D.14人解析:选B.∵有男运动员28人,女运动员21人,∴总体个数是28+21=49,从全体队员中抽出一个容量为14的样本,每个个体被抽到的概率是1449=27,∴男运动员应抽取28×27=8(人),选B.3.为了测算如图阴影部分的面积,作一个边长为4的正方形将其包含在内,并向正方形内随机投掷400个点,已知恰有100个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12 B.8C.6 D.4解析:选D.正方形面积为16,阴影部分面积约为100400×16=4.故选D.4.某中学为了检验1 000名在校高三学生对函数模块的掌握情况,进行了一次测试,并把成绩进行统计,得到的频率分布直方图如图所示,则考试成绩的中位数大约(保留两位有效数字)为()A.70 B.73C.75 D.76解析:选B.设考试成绩的中位数为x,则有(x-70)×0.035+(0.025+0.01+0.005)×10=0.5,解得x≈73,即中位数约为73,故选B.5.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为()A.2 B.2 2C.4 D.6解析:选B.由程序框图可知,S=1,i=1;S=1,i=2;S=2,i=3,S=2,i=4;S=22,i=5,此时跳出循环,输出S=22,故选B.6.从1,2,3,4,5中随机抽取三个不同的数,则其和为奇数的概率为()A.15B.25C.35D.45解析:选B.从1,2,3,4,5中随机抽取三个不同的数共有(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,其中(1,2,4)、(1,3,5)、(2,3,4)、(2,4,5)中三个数字和为奇数,所以概率为25.选B.7.已知m是区间[0,4]内任取的一个数,那么函数f(x)=13x3-2x2+m2x+3在x∈R上是增函数的概率是()A.14B.13C.12D.23解析:选C.因为函数f(x)=13x3-2x2+m2x+3在x∈R上是增函数,所以f′(x)=x2-4x+m2≥0恒成立,所以Δ=(-4)2-4m2≤0,解得m≥2或m≤-2,而m∈[0,4],所以m∈[2,4],所以所求的概率为4-24-0=12.8.(2016·太原一模)如果随机变量ξ~N(-1,σ2),且P(-3≤ξ≤-1)=0.4,则P(ξ≥1)=()A.0.4 B.0.3C.0.2 D.0.1解析:选D.因为ξ~N(-1,σ2),由正态曲线的性质知P(ξ≥1)=0.5-P(-3≤ξ≤-1)=0.1.9.(2014·高考陕西卷)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .x ,s 2+1002B .x +100,s 2+1002C .x ,s 2D .x +100,s 2解析:选D.x 1+x 2+…+x 1010=x ,y i =x i +100,所以y 1,y 2,…,y 10的均值为x +100,方差不变,故选D.10.阅读如图所示的程序框图,如果输出的函数值在区间⎣⎢⎡⎦⎥⎤14,12内,那么输入的实数x 的取值范围是( )A.(]-∞,-2 B .[]-2,-1 C.[]-1,2D .[)2,+∞解析:选 B.该程序框图的作用是计算分段函数f (x )=⎩⎪⎨⎪⎧2x ,x ∈[-2,2],2,x ∈(-∞,-2)∪(2,+∞)的值域.因为输出的函数值在区间⎣⎢⎡⎦⎥⎤14,12内,故14≤2x ≤12,所以x ∈[-2,-1],选择B.11.在区间[-6,6]内任取一个元素x 0,抛物线x 2=4y 在x =x 0处的切线的倾斜角为α,则α∈⎣⎢⎡⎦⎥⎤π4,3π4的概率为( )A.89B .13C.23 D .34解析:选C.当切线的倾斜角α∈⎣⎢⎡⎦⎥⎤π4,3π4时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x 2=4y 在x =x 0处的切线斜率是12x 0,故只要x 0∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6]内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是812=23.12.如图,A ,B 两点之间有6条网线连接,它们能通过的最大信息量分别为1,1,2,2,3,4.从中任取3条网线且使每条网线通过最大信息量,设这3条网线通过的最大信息量之和为ξ,当ξ≥6时,保证线路信息畅通,则线路信息畅通的概率为( )A.12 B .13 C.34D .45解析:选C.从6条网线中随机任取3条网线共有C 36=20种方法, ∵1+1+4=1+2+3=6,∴P (ξ=6)=1+C 12C 12C 36=14,∵1+2+4=2+2+3=7,∴P (ξ=7)=C 12C 12+1C 36=14,∵1+3+4=2+2+4=8,∴P (ξ=8)=C 12+1C 36=320,∵2+3+4=9,∴P (ξ=9)=C 12C 36=110,∴P (ξ≥6)=P (ξ=6)+P (ξ=7)+P (ξ=8)+P (ξ=9)=14+14+320+110=34. 二、填空题(本大题共4小题,每小题5分,共20分)13.架子上有2个不同的红球,3个不同的白球,4个不同的黑球.若从中取2个不同色的球,则不同的取法种数为________.解析:由题知,共有不同的取法2×3+2×4+3×4=26种. 答案:2614.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m ,众数为n ,平均数为x ,则m ,n ,x 的大小关系为________.(用“<”表示)解析:由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m =5.5;又5出现次数最多,故n =5;x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.故n <m <x .答案:n <m <x15.若⎝ ⎛⎭⎪⎪⎫32+133n的展开式的第7项与倒数第7项的比是1∶6,则n =________.解析:由题知,T 7=C 6n (32)n -6⎝ ⎛⎭⎪⎪⎫1336,T n +1-6=T n -5=C n -6n(32)6⎝ ⎛⎭⎪⎪⎫133n -6.由C 6n (32)n -6⎝⎛⎭⎪⎪⎫1336C n -6n(32)6⎝ ⎛⎭⎪⎪⎫133n -6=16,化简得6n 3-4=6-1,所以n 3-4=-1,所以n =9.答案:916.已知a ,b ,c 为集合A ={1,2,3,4,5}中三个不同的数,通过如图所示的算法框图给出一个算法,输出一个整数a ,则输出的数a =5的概率是________.解析:由算法可知输出的a 是a ,b ,c 中最大的一个,若输出的数为5,则这三个数中必须要有5,从集合A ={1,2,3,4,5}中选三个不同的数共有10种取法:123,124,125,134,135,145,234,235,245,345满足条件的有6种,所以所求概率为610=35.答案:35三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(10分)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负.设这支篮球队与其他篮球队比赛,获得胜利的事件是独立的,并且获得胜利的概率是13.(1)求这支篮球队首次获得胜利前已经负了2场的概率; (2)求这支篮球队在6场比赛中获胜场数的期望和方差.解:(1)由题知,这支篮球队第一、二场负,第三场胜,三个事件互相独立,所求概率P 1=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13×13=427.(2)获胜场数ξ服从二项分布B ⎝ ⎛⎭⎪⎫6,13, ∴E (ξ)=6×13=2, D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.18.(12分)在试验中得到变量y 与x 的数据如下表:x 0.25 0.2 0.125 0.1 0.062 5 y810162234由经验知,y 与1x 之间具有线性相关关系,令u i =1x i,经计算得错误!未定义书签。

相关文档
最新文档