同济大学大学物理活页作业第十二章(一)波动光学解答
大学物理下册波动光学习题解答 杨体强
波动光学习题解答1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm 。
求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ. (1)第1级和第3级亮条纹在屏上的位置分别为 (2)两干涉条纹的间距为 1-2 在杨氏双缝干涉实验中,用06328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。
求在下列两种情况下屏幕上干涉条纹的间距。
(1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为 所以相邻干涉条纹的间距为(1)在空气中时,n =1。
于是条纹间距为 (2)在水中时,n =1.33。
条纹间距为 1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。
这两条路径的光程差是多少?解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。
由移过条纹的根数即可推知气体的折射率。
(1)设待测气体的折射率大于空气折射率,干涉条纹如何移动?(2)设 2.0l cm =,条纹移过20根,光波长为589.3nm ,空气折射率为1.000276,求待测气体(氯气)的折射率。
解:(1)条纹向上移动。
(2)设氯气折射率为n,空气折射率为n 0=1.002760,则有:所以0k n =n + 1.00027600.0005893 1.0008653lλ=+=1-5 用波长为500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。
大学物理第12章学习题答案
习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动. 12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度. 解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 nR k D r 2)12(22λ-==液 两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。
波动光学大学物理答案
习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ). (C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。
(完整版)大学物理--波动光学题库及其答案.doc
一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3 ,则此路径 AB 的光程为(A) 1.5 .(B) 1.5 n.(C) 1.5 n .(D) 3 .[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 1 2 1 1 1 和 r .路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 n2t 2 ) (r1 n1t1 ) S1S2[]t1 r1t2Pn1 r2n2(B) [ r2 ( n2 1)t2 ] [ r1 (n1 1)t2 ](C) (r2 n2t 2 ) (r1 n1 t1 )(D) n2 t2 n1t1 []4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4 n e / .(B) 2 n e / .2 2(C) (4 n2 e / .(D) (2 n2 e / .[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.2 2 []n1n2 e n3① ②n1n2 en3[]① ②n1n2 e[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中, 1 2 距离相等,若单色光源 S 到两缝 S 、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A) 中央明条纹也向下移动,且条纹间距不变.S S2(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]大学物理波动光学们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n 119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) .(B) .(C) 2 .(D) 3 .[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10 -m.(B) 1.0 × 10 m.25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角 为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设 LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度 x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.[] 31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a .(A) a + b=6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远 的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10 - 1 mm.(B) 1.0 × 10 - 1 mm.(C) 1.0 × 10 - 2 mm.(D) 1.0 × 10 -3 mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0 的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I0 / 8.(D) 3 I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) I0/ 4 2 .(B) I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0 / 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)41、若一双缝装置的两个缝分别被折射率为n 1和 n2 的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1 = 1.00__________________________ .n2 = 1.30 en3 = 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5 的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为 1 2 的透明nn 和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为 dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )屏的距离 D =1.2 m ,若测得屏上相邻明条纹间距为 x = 1.5 mm ,则双缝的间距 d = __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为 n 的媒质中,双缝到观察屏的距离为 D ,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为 ,则屏上干涉条纹中相 邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为 x ,则入射光的波长为 _________________ . 54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________ .55、用 = 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个 (不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m . (1 nm=10 - 9 m)56、在空气中有一劈形透明膜,其劈尖角 = 1.0×10 -4nm 的单色 rad ,在波长 = 700 光垂直照射下,测得两相邻干涉明条纹间距 l = 0.25 cm ,由此可知此透明材料的折射率n= ______________________ . (1 nm=10 - 9 m)57、用波长为 的单色光垂直照射折射率为 n 2 的劈形膜 (如图 )图中各部分折射率的关系是n 1< n 2< n 3 .观察反射光的干涉条纹, n 1n 2 从劈形膜顶开始向右数第 5 条暗条纹中心所对n 3应的厚度 e = ____________________ .58、用波长为 的单色光垂直照射如图所示的、折射率为n的n 12劈形膜 (n 1 > n 2 , n 3> n 2 ),观察反射光干涉.从劈形膜顶n 2n 3开始,第 2 条明条纹对应的膜厚度e = ___________________ .59、用波长为 的单色光垂直照射折射率为 n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为 l ,则劈尖角 = _______________ .60、用波长为 的单色光垂直照射如图示的劈形膜(n > n > n ),观n 1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n 2 厚度 e = ___________________________ .n 361 、已知在迈克耳孙干涉仪中使用波长为 的单色光.在干涉仪的可动反射镜移 动距离 d 的过程中,干涉条纹将移动 ________________ 条.62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9 m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9 m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30 方向,单缝处的波面可分成的半波带数目为________ 个.74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测 得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气 劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1) 求入射光的波长.O(2) 设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为 0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内 (400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有8000 条缝,用钠黄光可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光强为 I 0的平行自然光垂直入射在P1上.(1) 求通过 P 后的光强 I .2 (589.3 nm) 垂直入射,试求出II0P 1P3P 2(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 0 / 32 ,求: P3的偏振化方向与P1的偏振化方向之间的夹角(设为锐角).89、三个偏振片P 、 P 、 P 顺序叠在一起,P 、 P3 的偏振化方向保持相互垂直,P11 2 3 1与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1 的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2 后的出射光强为最大出射光强的 1 / 4 时, P1 、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1) 入射角 i 是多大?r(2) 图中玻璃上表面处折射角是多大?Ⅱ(3) 在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ). 水当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.大学物理 ------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41. ( n 1 n 2 )e or (n 2 n 1 )e ; 42. 2.60e ; 43. 3.0e+λ/2 or 3.0e-λ/2;44. (4ne1) or(4ne 1) ; 45. n( r 2r 1 ) ; 46. 2 (n 2n 1 ) e;47. 2 d sin / ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大;49. 0.75 ; 50. 0.45mm ; 51. 变小, 变小; 52.D ; 53.dx; 54. D ;dn 5D N55. 1.2 m ; 56. 1.40 ; 57.9; 58. 3; 59.rad ; 60. ;4n 24n 22nl2n 261. 2d / ; 62. 2(n 1)d ; 63. 2d / N ; 64. 1.2mm , 3.6mm ;65. 7.60 10 2 mm ;66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4 ;69. 子波, 子波相干叠加; 70. 相干叠加; 71. 10 6 m ; 72.30 0 ; 73.2 ; 74.;75. 300 ; 76. 2 ; 77. 2D / l ; 78. 625nm ;79. 传播速度, 单轴; 80. 波动, 横波。
大学物理习题及解答(振动与波、波动光学)
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
波动光学大学物理答案
波动光学大学物理答案习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ](A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[答案:A](3)一束波长为 的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ](A) λ / 4.(B) λ / (4n).(C) λ / 2.(D) λ / (2n).[答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[](A) λ / 2.(B) λ / (2n).(C) λ / n.(D) λ / [2(n-1)].[答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.[答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。
大学物理规范作业上册12解答完整课件
可看到的2 级 , 2 2次 , 0 1, 分 9 1, 7 别 1, 6 1 为 , 4 1, 3 1, 1 1, 0 8, 7, 5, 4, 2, 1, 0
大学物理规范作业上册12解答完整
8
2. 将三个偏振片叠放在一起,第二个和第三个偏振
片的偏振化方向分别与第一个偏振片的偏振化方向成
45°和90°角。光强为I0的自然光垂直穿过这一堆偏 振片。(1)求经过每一个偏振片后的光强;(2)如
一束平行入射面振动的线偏振光以起偏角入到某介质表面则反射光与折射光的偏振情况是反射光是垂直入射面振动的线偏光折射光是平行入射面振动的线偏光
大学物理规范作业上册
总(12) 衍射光栅 光的偏振
大学物理规范作业上册12解答完整
1
一、选择题
1.一衍射光栅对某一定波长的垂直入射光,在屏幕上
只能出现零级和一级主极大,欲使屏幕上出现更高级
次的主极大,应该:
【
(A) 换一个光栅常数较小的光栅;
B】
(B) 换一个光栅常数较大的光栅;
(C) 将光栅朝靠近屏幕的方向移动;
(D) 将光栅朝远离屏幕的方向移动。
分析:由光栅方程 dsink
要屏幕上出现更高级次的主极大,d就要变大, 即换个光栅常数大的光栅。
大学物理规范作业上册12解答完整
2
2.一束平行入射面振动的线偏振光以起偏角入到某介 质表面,则反射光与折射光的偏振情况是 【D】 (A) 反射光与折射光都是平行入射面振动的线偏光. (B) 反射光是垂直入射面振动的线偏光, 折射光是平行 入射面振动的线偏光. (C) 反射光是平行入射面振动的线偏光, 折射光是垂直 入射面振动的线偏光. (D) 折射光是平行入射面振动的线偏光,看不见反射光.
波动光学作业题解(12物理)doc
波动光学作业题解第一章 光的干与在杨氏实验装置中,光源波长5104.6-⨯=λ厘米,两狭缝间距d 为毫米,光屏离狭缝距离0r 为50厘米。
试求:(a )光屏上第一亮条纹和中央亮纹之间的距离;(b )假设有P 点离中央亮纹的距离y 为毫米,问两束光在P 点的位置差是多少。
(c )求P 点的光强度和中央点的强度之比。
解:(a )按公式(1—7)得厘米25001100.8 104.604.050--⨯=⨯⨯==-λd r y y (b )由图几何关系可知 5012108.05001.004.0sin -⨯==≈≈-r y d d r r θ厘米 由公式(1-1)得 4108.0104.62)(25512ππλπϕ=⨯⨯⨯=-=∆--r r (c )由公式(1-6)得8536.042224cos1 8cos 0cos 421cos 2cos42cos 42022022122122=+=+==⋅=∆∆==πππϕϕA A A A I I Op O P在杨氏实验中,P 为光屏上第5级亮纹所在的位置。
现将玻璃片插入从S 1发出的光束途中,那么P 点变成中央亮条纹的位置,求玻璃片的厚度h (已知光的波长λ为5106-⨯厘米,玻璃折射率n 为)。
解:未加玻璃片时,S 1、S 2到P 点的程差,由公式(1-1)可知为λππλϕπλ5252212=⨯=∆=-r r 此刻S 1发出的光束途中插入玻璃片时,P 点程差为0022])[(12=⨯='∆=+--πλϕπλnh h r r 因此玻璃片的厚度为41210660000105.051-⨯====--=An r r h λλ厘米波长λ为7000A的光源与菲涅耳双镜的相交棱之间的距离r 为20厘米,这棱到屏间的距离L 为180厘米,假设所得干与条纹的相邻亮纹的距离为1毫米,求双镜平面之间的交角θ。
解:21105.3 1071.0202201802 2sin 235021'=⨯=⨯⨯⨯⨯+=∆⋅+≈+≈⋅≈==--弧度λθθθy r r L r L r r r d S S透镜表面通常覆盖一层如)38.1(2=n MgF 一类的透明薄膜,其目的是利用干与来降低玻璃表面的反射。
上海理工 大学物理 第十二章 波动光学(一)
一. 选择题[ B ]1. 在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变. (C) 不移动,但间距改变. (D) 向上平移,且间距改变. 参考解答:(解题思想参考计算题第2小题)。
[B ]2. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹参考解答:光程差变化了2.5λ,原光程差为半波长的偶数倍(形成明纹),先光程差为半波长的奇数倍,故变为暗条纹。
[ B ]3.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).参考解答:需考虑半波损失。
[B ]4. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度h 应满足如下关系式:212nh λλ+=⋅(要考虑半波损失),由此解得/(4)h n λ=。
[ B ]5. 用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移. 参考解答:根据牛顿环公式,此时固定位置的k 变大。
大学物理第十二节波动光学
第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2v l f5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1S S PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A长λ=500nm(1nm = 10-9m)的单色光垂直照射.示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光SλT12-1-40图T12-1-44图如有帮助欢迎下载支持(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ如有帮助欢迎下载支持53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图如有帮助欢迎下载支持[ ] (A) 双缝干涉(B) 牛顿环干涉(C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。
大学物理B(上)规范作业12波动光学单元测试解答.
fa
联立以上方程,解得:
1 510 7 m, 2 410 7 m
14
5.波长λ=600nm的单色光,垂直入射到一光栅上,测得 第二级主极大的衍射角为30°,且第三级是缺级,求:(1) 光栅常数d二?(2)透光缝可能的最小缝宽a=?(3)在选定 了上述d和a 以后,在屏上可能呈现的主极大级数。
45
偏振片有损耗时:
I1
1 2
I0 (1
0.05)
I0 (1
0.05) cos2
1 2
2I0
cos2 1 1/ 2
42
(1 0.05)
透过p2后
I2 I1(1 0.05) cos2 I2 I0 / 2 I1 I0
cos2 I0 / 2
I0 (1 0.05)
43.5
18
k 11,10,8,7,5,4,2,1,0
单缝衍射中央明纹区为第一级暗纹中心间的距离。
根据单缝衍射暗纹条件 a sin k
第一级暗纹中心所对应的衍射角满足:sin 1
a
下面就是求在 1 1范围可以看到几条主极大。
在第一级暗纹中心的位置上,有:
(a
b) sin 1
(a
b)
a
3
即在第一级暗纹中心的位置上为第3级主极大。
x N
f
d
即x0
N
f d
7
4.在图示的光路中,S为光源,透镜L1、L2的焦距都为f, 图中光线SaF与光线SoF的光程差1=___0___,光线SbF
路径中有长为l ,折射率为n的玻璃,这光线与SoF的光
程差 2 =_____n_l __l________。
14光学2
ab ab k k 3 (2) ∵第三级缺级 k a a ab 当k 1时 amin 0.8 106 m 3 (3) a b 1 kmax 6 a b 2.4 10 kmax 4 9 600 10
4.
用每毫米有425条刻痕的平面光栅观察
589nm 的钠光谱,垂直入射时,能看到
的最高级次谱线是第 3 级。若以 i 30斜
入射时,能看到的最高级次谱线是第
原来的零级谱线处现在是第 5 级。
级,
5.
月球距地面大约 3.86 10 km ,假设月光
5
波长可按计算 550nm ,那么在地球上用
解: d k
k 2 6000 1010 d 2.4 106 ( m ) 30
d 由于第三级缺级: k k a
k 1时 k 2时
d 3 k a
d a 0.8 106 m 3 2d a 1.6 106 m 3
(A)是自然光; (B)是完全偏振光且光矢量的 振动方向垂直于入射面; (C)是完全偏振光且光矢量的 振动方向平行于入射面;
(D)是部分偏振光。
8.一束光是自然光和线偏振光的混合光,让 它垂直通过一偏振片,若以此入射光束为 轴旋转偏振片,测得透射光强度最大值是 最小值的5倍,那么入射光束中自然光与 线偏振光的光强比值为 (A) (A) 1 (B) 1 2 5
3.设一平面透射光栅,当入射的平行单色光从 垂直于光栅平面入射变为斜入射时,能观察 到的光谱线的最高级数k (B) (A) 变小
(B) 变大
(C) 不变 (D) 无法确定
4.一束光强为I0的自然光垂直穿过两个偏振
波动光学大学物理答案
习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ).(C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。
大学物理波动光学习题答案
第七章波动光学习题答案1.从一光源发出的光线,通过两平行的狭缝而射在距双缝100 cm的屏上,如两狭缝中心的距离为0.2 mm,屏上相邻两条暗条纹之间的距离为3 mm,求光的波长(Å为单位)。
已知 D=100cm a=0.2mm δx=3mm 求λ[解]λ=aδx/D=3×10-3×0.2×10-3/100×10-2=0.6×10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm,求两缝间距离。
[解]明条纹间距cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm的双缝上,求在离双缝50 cm处光屏上干涉条纹间距的大小。
[解]=2.4mm5.什么是光程?在不同的均匀媒质中,单色光通过相等光程时,其几何路程是否相同? 需要时间是否相同?[解]光程=nx。
在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。
需要时间相同6.在两相干光的一条光路上,放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。
求玻璃片厚度。
已知 n=1.6 λ=6.6×103Å求 d[解]光程差MP-d+nd-NP=0∵ NP-MP=6λ∴(n-1)d=6λd=6λ/(n-1)=6.6×10-6m7.在双缝干涉实验中,用钠光灯作光源(λ=5893 Å),屏幕离双缝距离D=500mm,双缝间距a=1.2mm,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n水=1.33 λ=5893 Å D=500 mm a=1.2mm 比较δx水和δx空气[解]δx水=Dλ/na=500×5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4mδx空气=Dλ/a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm的薄膜上,薄膜的折射率为1.5。
大学物理活页作业答案及解析((全套))
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m j i v-= )/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mgk m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
波动光学习题参考答案
=5.19×10-4 (mm) =590 (nm)
结束 返回
18、 一柱面平凹透镜A,曲率半径为R放在平玻 璃片B上,如图所示。现用波长为l 的单色平行光 自上方垂直往下照射,观察A和B间空气薄膜的反 射光的干涉条纹,如空气膜的最大厚度d =2l , (1)分析干涉条纹的特点(形状、分布、级次高 低),作图表示明条纹; (2)求明条纹距中心线的距离; (3)共能看到多少条明条纹; (4)若将玻璃片B向下 A 平移,条纹如何移动? d 若玻璃片移动了l /4, B 问这时还能看到几条明条纹?
结束 返回
解:由暗纹条件 解:
l = (k 1 )l 2ne = (2k+1) 2 +2
设 l 1 =500nm 为第k级干涉极小
l2 =700nm 为第(k-1)级干涉极小
1 1 1 l (k + 2 ) 1 = (k 1) 2 + 2 l2
l 1+ l 2 500+700 k= = 2(700-200) 2( l2 l1 )
x ´为k 级新的明条纹位置
x´
原来的光程差为 d = r 2 r 1 = dsinj = d x = kl D d b + d (x ´ x ) =0 两式相减得到: D´ D D Δ x ´= b (x ´ x ) <0 D´
即条纹向下移动,而条纹间距不变
D´ S 2
o
D
结束 返回
7、 用单色光源S照射双缝,在屏上形 成干涉图样,零级明条纹位于O 点,如图所 示。若将缝光源 S 移至位置S ´,零级明条 纹将发生移动。欲使零级明条纹移回 O 点, 必须在哪个缝处覆盖一薄云母片才有可能? 若用波长589nm的单 色光,欲使移动了4个 屏 S1 明纹间距的零级明纹 S´ O 移回到O点,云母片的 S 厚度应为多少?云母片 S2 的折射率为1.58。