土力学第四章解读
《土力学》 第四章土的压缩性

Soil compressibility and calculation of foundation deformation
学习基本要求
内 容
学时A(36学时制)
学时B(54学时制)
室内压缩试验与压缩性指标
1.5
1.5
现场载荷试验与指标
0.5
0.5
第四章土的压缩性与地基沉降计算
学习目标
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,以便观者准确的理解您传达的思想。
学习基本要求
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,以便观者准确的理解您传达的思想。
参考学习进度
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,以便观者准确的理解您传达的思想。
轴向应变
主应力差
室内三轴试验
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
一、e – p 曲线
0
100
200
300
400
0.6
0.7
0.8
0.9
1.0
压缩系数,kPa-1,MPa-1
1
e0
侧限压缩模量,kPa ,MPa 侧限变形模量
固体颗粒
孔隙
体积压缩系数, kPa-1 ,MPa-1
P(kPa)
Kiss
第四章土的压缩性与地基沉降计算
Soil compressibility and calculation of foundation deformation 由于沉降相互影响,两栋相邻的建筑物上部接触
第四章土的压缩性与地基沉降计算
土力学第四章、土的最终沉降量

一维固结力学模型
一维固结又称单向固结。土体在荷载作用 下土中水的渗流和土体的变形仅发生在一个方 向的固结问题。严格的一维固结问题只发生在 室内有侧限的固结试验中,实际工程中并不存 在。然而,当土层厚度比较均匀,其压缩土层 厚度相对于均布外荷作用面较小时,可近似为 一维固结问题。
使得上式与实测值之间的关系差 距较大。根据统计资料,E0值可 能是βEs值的几倍,一般说来, 土愈坚硬则倍数愈大,而软土的
E0值和βEs值比较接近。
4.2 地基最终沉降量计算
地基最终沉降量的计算方法主要有以 下几种方法:
1、 分层总和法 2、 规范法 3、 理论公式计算法
4.2.1 分层总和法
地基的最终沉 降量,通常采用 分层总和法进行 计算,即在地基 沉降计算深度范 围内划分为若干 层,计算各分层 的压缩量,然后 求其总和。
平均附加应力系数的物理
意义:分层总和法中地基附
加应力按均质地基计算,即 地基土的压缩模量Es不随深 度而变化。从基底至地基任 意深度Z范围内的压缩量为:
z
s'
dz
1
0
Es
0zzdzEAs
4.2.2 规范法分层总和法
附加应力面积:
z
z
Azdz p0dz
0
0
深度 z 范围内 的竖向平均附 加应力系数
土体变形机理非常复杂,土体不是 理想的弹塑性体,而是具有弹性、粘性 、塑性的自然历史的产物。
4.1.3 土的载荷试验及变形模量
通过载荷试验可测定地基变形模量,地 基承载力以及研究土的湿陷性等。
土力学-第四章土中应力

γ1 h1 + γ 2h2 + γ′3h3 + γ′4h4 + γw(h3+h4)
天津城市建设学院土木系岩土教研室
4.2.2
成层土中自重应力
土力学
【例】一地基由多层土组成,地质剖面如下图所示,试计算 一地基由多层土组成,地质剖面如下图所示, 并绘制自重应力σcz沿深度的分布图
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
4.2.4
土质堤坝自身的自重应力
土力学
为了实用方便,不论是均质的或非均质的土质堤坝, 为了实用方便,不论是均质的或非均质的土质堤坝,其自身任 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 效重度与土柱高度的乘积。 效重度与土柱高度的乘积。
土体在自身重力、建筑物荷载、交通荷载或其他因素( 土体在自身重力、建筑物荷载、交通荷载或其他因素(渗 地震等)的作用力下,均可产生土中应力。 流、地震等)的作用力下,均可产生土中应力。土中应力过大 会导致土体的强度破坏, 时,会导致土体的强度破坏,使土工建筑物发生土坡失稳或使 建筑物地基的承载力不足而发生失稳。 建筑物地基的承载力不足而发生失稳。 土中应力的分布规律和计算方法是土力学的基本内容之一 自重 应力
p0 = p − σ ch = p − γ m h
在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p =p-(0~1)σ 在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p0=p-(0~1)σch, 此式应保证坑底土质不发生泡水膨胀。 此式应保证坑底土质不发生泡水膨胀。
式中: 基底平均压力, Pa; σch—基底处土中自重应力,kPa; 基底处土中自重应力, 式中:p—基底平均压力,kPa; 基底平均压力 基底处土中自重应力 kPa; γm—基底标高以上天然土层的加权平均重度,水位以下的取浮重度,kN/m3; 基底标高以上天然土层的加权平均重度, 基底标高以上天然土层的加权平均重度 水位以下的取浮重度, h—从天然地面算起的基础埋深,m,h=h1+h2+…… 从天然地面算起的基础埋深, 从天然地面算起的基础埋深
土力学第四章(压缩)讲解

第四章:土的压缩及沉降计算名词解释1、压缩系数:土体在侧限条件下孔隙比减少量与竖向压应力增量的比值。
2、压缩指数:在压力较大部分,e-lgp关系接近直线,其斜率称为土的压缩指数。
3、压缩模量:土在侧限条件下竖向压应力与竖向总应变的比值,或称为侧限模量。
4、变形模量:土在无侧限条件下竖向压应力与竖向总应变的比值。
5、体积压缩系数:在单位压应力作用下单位体积的变化量。
6、超固结比:先期固结压力pc与现时的土压力p0的比值。
7、前期固结压力:指土层在历史上曾经受过的最大有效固结压力。
8、最终沉降量:地基变形稳定后基础底面的沉降量。
9、固结:土体在压力作用下,压缩量随时间增长的过程。
10、固结度:在某一固结压力作用下,经过一定时间土体发生固结的程度。
简答1、为什么可以用孔隙比的变化来表示土的压缩性?答:土体压缩的实质是孔隙体积减小的结果,土粒体积保持不变;而孔隙比反映了孔隙的体积和土粒的体积比,因此可以用孔隙比的变化来表示土的压缩性。
2、地基土变形的两个最显著的特征是什么?答:体积变形是由于正应力引起的,只能使土体产生压密,孔隙体积减小,但不会使土体产生破坏;形状变形是由剪应力引起的,在剪应力作用下土颗粒间产生移动,使土体产生剪切破坏。
3、工程中常用的压缩系数和模量是什么?如何判定土的压缩性?答:压缩系数和压缩模量都是变量,为比较土的压缩性高低,工程中常用的压缩系数和压缩模量是压力在100-200kPa下的值。
a v<0.1MPa-1低压缩性土,0.1MPa-1≤a v<0.5MPa-1中压缩性土,a v≥0.5MPa-1高压缩性土;Es<4MPa高压缩性土,4MPa≤Es<15MPa中压缩性土,Es≥15MPa低压缩性土;4、自重应力在任何情况下都不会引起地基沉降吗?为什么?答:对于正常固结土和超固结土来说,自重应力不会引起地基沉降了,但对于欠固结土(新沉积的土或刚填筑的土)来说,由于现有的固结应力大于先期固结应力,自重应力也会引起地基沉降。
土力学第四章 流动阻力和水头损失

漩涡区中产生了较大的能量损失
漩涡区
C A C
D B
漩涡体形成、运转和分裂
漩涡区中产生了较大的能量损失
C A C
D B
流速分布急剧变化
漩涡区中产生了较大的能量损失
C A
D B
C 漩涡的形成,运转和分裂;流速分布急剧变化, 都使液体产生较大的能量损失。 这种能量损失产生在局部范围之内,叫做局部 水头损失hj 。
颜色水
l
hf
Q
V t
下游阀门再打开一点,管道中流速增大
红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散至全管, 使管中水流变成红色水。 这一现象表明:液体质点运动中会形成涡体,各涡体相 互混掺。
Q
V t
颜色水
l
hf
Q
水流半径R
R A
粘性流体的两种流态
4.2.1 雷诺实验
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业 1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
两个过水断面的湿周相同,形状不同,过水断面 面积一般不相同,水头损失也就不同。 因此,仅靠湿周也不能表征断面几何形状的影响。
由于两个因素都不能完全反映横向边界对水头损失
的影响,因此,将过水断面的面积和湿周结合起来,全
面反映横向边界对水头损失影响。
水流半径R:
R
A
土力学第四章抗剪强度

时对试样施加垂直压力后,每小时测读垂直变形一次,直至变形
稳定。变形稳定标准为变形量每小时不大于0.005mm,在拔去固 定销,剪切过程同快剪试验。所得强度称为固结快剪强度,相应
指
第四章 土的抗剪强度
标称为固结快剪强度指标,以cR,υR表示。 (三)慢剪(S) 慢剪试验是对试样施加垂直压力后,待固结稳定后,再拔去固定 销,以小于0.02mm/min的剪切速度使试样在充分排水的条件下进 行剪切,这样得到的强度称为慢剪强度,其相应的指标称为慢剪
第四章 土的抗剪强度
直剪试验 为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快 慢将直剪试验划分为快剪、固结快剪和慢剪三种试验类型。 (一)快剪(Q) 《土工试验方法标准》规定抗剪试验适用于渗透系数小于10-6cm / s 的细粒土,试验时在试样上施加垂直压力后,拔去固定销钉,立即以
第四章 土的抗剪强度
θ
3
1
第四章 土的抗剪强度
(二)土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状态,此时的 莫尔应力圆即称为极限应力圆或破坏应力圆,相应的一对平面即称为 剪切破坏面(简称剪破面)。
第四章 土的抗剪强度
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于极限平衡状 态时的应力条件及其、小主应力之间的关系,该关系称为土的极限 平衡条件。
第四章 土的抗剪强度
②也可由式(4-9)计算达到极限平衡条件时所需要得大主应力 值为σ1f,此时把实际存在的大主应力σ3 =480kPa及强度指标c, υ代入公式(4-8)中,则得
由计算结果表明, σ3<σ3f , σ1 >σ1f ,所以该单元土体早已 破坏。
第四章 土的抗剪强度
4-3 确定强度指标的试验
土力学-第四章-概述 土的压缩性测试方法 张丙印

t
s
s3
s2
s1
t
§4.2 土的压缩性测试方法 – 压缩试验
智者乐水 仁者乐山
压缩曲线及特点
• 侧限变形(压缩)模量:
加载:
Es
Δσ z Δεz
卸载和重加载:
Ee
Δσz Δεz
非线性 弹塑性
土的一般化的压缩曲线
z= p
1 Ee 1 Es
e
z
( e )
侧限压缩试验
18
§4.2 土的压缩性测试方法 – 三轴试验
常规三轴:
• 存在破坏应力
侧限压缩试验:
• 不存在破坏应力 • 存在体积压缩极限
z=p
侧限压 缩试验
常规三 轴试验
e
z
( e )
常规三轴与侧限压缩试验
22
§4.2 土的压缩性测试方法
智者乐水 仁者乐山
变形模量 Et 与侧限变形模量 Es间的关系
虎 εz
σz Et
νt Et
σx σy
克 定 律
墨西哥某宫殿
左部:1709年 右部:1622年 地基:20多米厚粘土
问题: 沉降2.2米,且左右 两部分存在明显的 沉降差。左侧建筑 物于1969年加固
智者乐水 仁者乐山
工程实例
6
§4.1 概述
智者乐水 仁者乐山
墨西哥城的一幢建筑, 可清晰地看见其发生的 沉降及不均匀沉降。该 地的土层为深厚的湖相 沉积层,土的天然含水 量高达 650 %,液限 500% ,塑性指数 350 , 孔隙比为 15 ,具有极 高的压缩性。
《土力学1》之第四章
土的压缩性与地基沉降计算
张丙印
清华大学土木水利学院 岩土工程研究所
土力学 第四章 土的压缩与固结

4.2土的压缩特性 (土的压缩试验与压缩性指标)
一.室内压缩试验(1)
一、室内压缩试验 土的室内压缩试验亦
称固结试验,是研究土压 缩性的最基本的方法。室 内压缩试验采用的试验装 置为压缩仪。
整理课件
试验一时.将室切内有土压样缩的环试刀验置于(刚2性护)环中,由于金属
环刀及刚性护环的限制,使得土样在竖向压力作用下只能 发生竖向变形,而无侧向变形。在土样上下放置的透水石 是土样受压后排出孔隙水的两个界面。压缩过程中竖向压 力通过刚性板施加给土样,土样产生的压缩量可通过百分 表量测。常规压缩试验通过逐级加荷进行试验,常用的分 级加荷量p为:50、100、200、300、400kPa。
2.地基土按固结分类
前期固结应力pc:土在历史上曾受到过的最大的、垂直的
有效应力 四. 土的应力历史(4)
超固结比OCR :前期固结应力与现有有效应力之比,即
OCR= pc/p1
正常固结土: OCR=1 pc=p1
超固结土: OCR>1,OCR愈大,土受到的超固结作用愈强,
在其他条件相同的情况下,其压缩性愈低。 pc> p1
作用下再压缩稳定后的孔隙比,相应地可绘制出再压
缩曲线,如图4-6(a)中cdf曲线所示。可以发现其中df
段像是ab段的延续,犹如其间没有经过卸载和再压的
过程一样。
整理课件
二. 压缩性指标(10)
(a)e-p曲线;
(b)e-lgp曲线
图 4-3 土的回弹—在压缩曲线 整理课件
三、 现场载荷试验及变形模量(1)
2.由于孔隙水的排出而引起的压缩对于饱和粘性土来说是
需要时间的,土的压缩随时间增长的过程称为土的固结。
这是由于粘性土的透水性很差,土中水沿着孔隙排出速度
土力学课程讲解第4章

土力学
厦门大学
土木系
29
P 解:(1) σ Z = α ⋅ 2 Z
z=2, r=0,1,2,3,4m,α 查表可知,求σz后绘出图 (2)同理,r=0, z=0,1, 2,3,4m,求出σz后绘出图 (3)反算
【例4-3】解答
土力学
厦门大学
土木系
30
二、矩形面积受竖向均布荷载的 地基附加应力
1 矩形均布荷载角点下的应力 积分法求矩形荷载面角点下的地 基附加应力。
一、基底压力
1 中心荷载作用下基底压力 2 偏心荷载作用下基底压力
二、基底附加应力
土力学
厦门大学
土木系
16
二、基底附加压力
作用在基础底面的压力与基地处建前土自重应力之差。
p 0 = p − σ ch = p − γ m h
土力学
厦门大学
土木系
17
二、基底附加压力
卸荷应力、变形:卸荷理论涉及岩土介质的本构关系、 卸荷原理、卸荷过程,分析计算方法等,目前在理论 上还很不完善,工程应用不广泛,只在大型工程中由 大的科研机构承担一些探索性的研究。
(3)O点在荷载面边缘外侧 σZ=(αCⅠ﹣αCⅡ+αCⅢ﹣αCⅣ)po e Ⅳ o h Ⅱ a g d c abcd可看Ⅰ由(ofbg)与Ⅱ (ofah)之差和Ⅲ(oecg) 与Ⅳ(oedh)之差合成
f
b 厦门大学 土木系
34
土力学
二、矩形面积受竖向均布荷载的 地基附加应力
(4)O点在荷载面角点外侧 σZ=(αCⅠ﹣αCⅡ﹣αCⅢ﹢αCⅣ)po e d c 荷载面由Ⅰ(ohce),Ⅳ (ogaf)两个面积中扣除 Ⅱ(ohbf)和Ⅲ(ogde)
土力学
厦门大学
土力学完整课件---4第4章-土的压缩性和地基沉降计算可编辑全文

σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
4.计算基底附加压力
G G Ad 20 4 4 320 kN
p F G 1440 320 110kPa p0 p d 110 16 1 94kPa
A
44
5.计算基础中点下地基中附加应力
系数s(与土质和土层的模量等因素有关, 可从规范中的相关表中查得).
地基最终沉降 量修正公式
s s s s
n i 1
p0 Esi
(
zi
i
zi1 ) i1
i、i-1——基础底面至第i层土、第i-1层土底面范围内平均附加应
力系数,可通过积分求出,规范中已制成表供查用。可查表。
zi、zi-1——基础底面至第i层土、第i-1层土底面的距离(m)
用角点法计算,过基底中点将荷载面四等分,计算边长l=b=2m, σz=4αap0,αa由表查得
z(m) z/b αa σz(kPa) σc(kPa) σz /σc
0
0 0.2500 94.0 16
zn (m)
1.2 0.6 0.2229 83.8 35.2
2.4 1.2 0.1516 57.0 54.4
在一定厚度的均质土层上施加无限均布荷载,土层 产生竖向压缩,没有侧向变形。
△p
∞
s
∞ 土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2,
竖向应力增量为△p
可压缩土层
H2
H1
S
由于
H1
H2
e1 e2 1 e1
H1
a e= e1 e2
所以
p p2 p1
3.单向压缩分层总和法
土力学-第四章

水平向自重应力
地基中自重应力
必须指出:只有通过土粒接触点传递的粒间应力,才
能使土粒彼此挤紧,从而引起土的变形,而粒间应力又是
影响土体强度的一个重要因素,所以粒间应力又称为有效 应力。因此,土中自重应力可定义为土自身有效重力在土
体中引起的应力。土中竖向和侧向的自重应力一般均指有
效自重应力。为简便起见,常把σCZ称为自重应力,用σC表 示。
静止侧压 力系数
4.2.2 水平向自重应力
x cx
E
E
cz
cy 0
cx cy
1
cz
4.2.2 水平向自重应力
K0—— 静止侧压力系数,它是在无侧向变 形条件下水平有效应力与竖向有效应力之
比。其值由试验确定,与土层应力历史及
土的类型、重度等有关。
z1 t1 pt
z2 a t1 p0 t2 pt
t是m,n的函数,其中n=L/b,m=z/b。 b是沿
三角形分布方向上的长度,z是从基底起算的 深度。
矩形面积基底受水平荷载角点下的 竖向附加应力
注意:b是平行于水平荷载作 用方向的长度。
圆形面积均布荷载作用中心的附加应力
重应力等于单位面积上覆土柱的有效重量。 天然地面
cz z
cz
σcz= z
z
cy
cz
cx
1
1
z
4.2.1 竖向自重应力
二、成层土的自重应力计算
a
h1
天然地面
b
1
2 3
1 h 1
cz 1h1 2 h2 h3 i hi
'
土力学课件第四章土的压缩与固结

THANKS
感谢观看
房屋建设中的土的压缩与固结问题
总结词
房屋建设中的土的压缩与固结问题主要表现在地基沉降和建筑物开裂两个方面。
详细描述
在房屋建设中,地基的沉降会导致建筑物开裂,影响建筑物的安全性和使用寿命。为了解决这个问题,需要在施 工前进行土质勘察和试验,了解土的压缩性和固结性,采取适当的措施进行地基处理,如桩基、扩基等,以减小 地基沉降。
表示土体的固结性能越好。
土的固结系数与土的渗透性、压 缩性、应力历史等因素有关。
土的固结系数可以通过室内试验 和原位观测等方法进行测定。
03 土的压缩与固结 的关系
土的压缩与固结的相互影响
土的压缩
土在压力作用下体积减小的性质 。主要由于土中孔隙体积减小。
土的固结
土体在外力作用下,经过排水、排 气、气泡的破裂和合并等过程,使 孔隙体积减小,土体逐渐被压缩的 过程。
土压力计算
在挡土墙设计、基坑支护等工程中, 需要考虑土压力对结构的影响,而土 压力与土的压缩和固结密切相关。
土的压缩与固结的研究展望
深入研究土的微观结构和孔隙分布对 压缩和固结的影响机制,建立更为精 确的理论模型。
考虑环境因素对土的压缩和固结的影 响,如温度、湿度、气候变化等。
发展新型的试验技术和测试方法,以 更准确地测定土的压缩和固结性能。
01
02
03
04
土的矿物成分
不同矿物成分的土具有不同的 压缩性,例如粘土矿物具有较
高的压缩性。
孔隙比
孔隙比越大,土的压缩性越高 。
含水率
含水率越高,土的压缩性越大 。
应力状态
在较低应力水平下,土的压缩 性较小,随着应力水平的增加
土力学第四章抗剪强度

土力学第四章抗剪强度土力学第四章抗剪强度一、引言土力学是研究土体力学性质及其应力、应变关系的学科,而抗剪强度是土力学中的重要概念之一。
本文将探讨土力学第四章中与抗剪强度相关的内容,包括抗剪强度的定义、影响因素以及在工程实践中的应用。
二、抗剪强度的定义抗剪强度是指土体抵抗剪切力的能力。
在土力学中,土体通常是以颗粒状存在,受力时会发生内部颗粒之间的相对位移,导致剪切变形。
抗剪强度是土体抵抗这种剪切变形的能力的一种表征。
三、影响抗剪强度的因素1. 土体类型:不同类型的土体具有不同的抗剪强度。
粘土的抗剪强度相对较高,而砂土的抗剪强度相对较低。
2. 湿度:湿度对土体的抗剪强度有着显著的影响。
在一定范围内,湿度的增加会使土体的抗剪强度增加。
3. 应力状态:土体在不同应力状态下的抗剪强度也会有所不同。
例如,在三轴压缩试验中,土体在不同的主应力差下会表现出不同的抗剪强度。
4. 颗粒形状和排列方式:土体中颗粒的形状和排列方式对抗剪强度有着重要影响。
颗粒形状不规则或排列紧密的土体具有较高的抗剪强度。
四、抗剪强度的实验测定方法为了准确测定土体的抗剪强度,工程实践中通常使用一系列实验方法。
常用的方法包括直剪试验、三轴剪切试验和动三轴剪切试验等。
这些实验方法可以通过施加不同的剪切应力来测定土体的抗剪强度。
五、抗剪强度在工程实践中的应用抗剪强度是土力学中一个非常重要的参数,广泛应用于各种工程实践中。
在土壤基础工程中,准确测定和分析土体的抗剪强度可以帮助工程师评估土体的稳定性,并设计合理的基础结构。
此外,在土木工程中,抗剪强度也被用来评估土体的抗冲刷能力和抗滑移能力。
六、结论土力学第四章中的抗剪强度是研究土体力学性质时的重要内容。
本文从抗剪强度的定义、影响因素、实验测定方法以及在工程实践中的应用等方面进行了论述。
通过深入研究和理解抗剪强度这一概念,可以更好地应用于土壤力学和土木工程实践中,提高工程设计的可靠性和安全性。
参考文献:1. 毛振泉,王曙明,李敏. 工程土力学基础. 北京: 中国建筑工业出版社,2013.2. 刘福赉, 张猛, 刘允斌. 土力学与岩土工程高级课程. 西安: 西安建筑科技大学出版社,2014.。
土力学 第4章 土的变形性质及地基沉降计算

土的压缩特性及地 基沉降计算
4.1 土的压缩性
◆土是一种由土粒和孔隙组成的散粒体沉积物,具有较高 的压缩性。地基土在建筑荷载的作用下将会发生变形,建 筑的基础也会随之沉降。对于非均质地基或上部结构荷载 差异较大时,基础还会出现不均匀沉降。如果沉降或不均 匀沉降超过允许范围,就会导致建筑物的开裂或影响其正 常使用,甚至造成建筑物破坏。
n
s si i 1
(4-19)
式中:s—地基的最终沉降量(mm); △si—第i分层土的最终沉降量(mm); n—沉降计算深度范围内划分的总土层数。
1.基本假定
① 地基是均质、连续、各向同性的半无限线弹性变形体。
该假定表明,地基中的附加应力可按第3章中的方法确定。
② 地基在外荷载作用下像侧限压缩试验中的土样,只产生竖
(2)体积减小的原因
①土颗粒、孔隙中的水被压缩→可忽略不计(压缩过程中土粒体积不变) ②孔隙中气被压缩→导致孔隙体积减小 ③孔隙中的气溶于水→导致孔隙体积减小但可忽略不计 ④孔隙中的水和气被排除→导致孔隙体积减小
结论:土的压缩实质就是孔隙中的水和气被挤出、从而使孔隙 体积减小的过程。
对地基:产生均匀或不均匀沉降
2. 分层总和法
将地基沉降计算深度Zn内的土层划分为若干个水平薄 土层,计算出每一薄土层的压缩量(计算方法与无侧向变形 条件下的压缩量计算方法相同),然后求其和,即认为是压 缩层(即地基)的最终沉降量。
(1)确定沉降计算深度Zn
基础底面以下需要计算压缩变
P0
形所达到的深度。确定原则为:
① 一般取附加应力与自重应力的比值
在压缩曲线上两点连线的斜率表示压缩系数a。即
a tan e e1 e2
土力学第四章-附加应力

土力学第四章-附加应力
附加应力是土力学中重要的概念,它指的是在加载或者其他类型的地质活动作用下,
实际应力大于平均应力的本构必需承受的应力。
附加应力主要来自于三个主要方面:第一是由于地质活动的作用而产生的应力;第二
是由于形成构造部分的应力;第三是由于结构失稳而产生的应力。
在地质活动作用下,从加应力和结构失稳产生附加应力,它是实际应力产生时本构问
题中必不可少的。
特别是该地区新型地质活动,非常重要,可能会带来严重后果,因此,
在地质作用下,对附加应力的研究和理解尤为重要。
结构失稳产生的附加应力,主要是山体立足点发生位移后,其坡面、基底和连接点处
造成的应力,这样的含水体在特定的水位变化下,会产生垂直和水平的结构失稳,以及边
坡附加应力和耕作痕和。
它们会占限加应力的很大比例,因此在山体滑动中也是不可忽视的。
此外,山体构造也会构成附加应力。
由于山体构造比装置构造更为复杂,因此在结构
方向上产生的应力和加应力也会增加。
山体构造部分的附加应力,主要是山体断层移动产
生的类似拉力的力,山体接连处的应力和构造变形产生的附加应力,这些应力的分布也
会影响山体的滑动稳定性。
因此,附加应力是决定山体地面滑动稳定性的重要因素,研究者在分析结构体滑动和
滑坡稳定性时,必须正确估计附加应力,以此估计从构造成型到发生滑坡期间可能发生的
滑动方向及滑坡角度,以提高滑坡预测的准确性。
因此,对附加应力有较全面系统的理解,对于山体滑动的研究是不可或缺的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 概述
由于沉降相互影响,两栋相邻的建筑物上部接触
工程实例
§4.1 概述
基坑开挖,引起阳台裂缝
工程实例
§4.1 概述
新 建 筑 引 起 原 有 建 筑 物 开 裂
§4.1 概述
高层建筑物由于不均匀沉降而被爆破拆除
工程实例
§4.1 概述
建 筑 物 立 面 高 差 过 大
工程实例
§4.1 概述
E0 1 2
速率 • 三维固结
§4.4 地基变形与 时间的关系
主线、重点:一维问题!
概述
第四章:土的压缩性与地基沉降计算
§4.1 概述 §4.2 土的压缩性 §4.3 地基的最终沉降量计算 §4.4 应力历史对地基沉降的影响 §4.5 地基变形与时间的关系 §4.6 地基沉降计算有关问题综述
§4.2 土的压缩性
土的压缩性测试方法 一维压缩性及其指标 地基的最终沉降量计算 饱和土体的渗流固结理论
试验方法 压缩性指标 沉降的大小 沉降的过程
土的压缩性与地基沉降计算
第四章:土的压缩性与地基沉降计算
§4.1 概述 §4.2 土的压缩性 §4.3 地基的最终沉降量计算 §4.4 应力历史对地基沉降的影响 §4.5 地基变形与时间的关系 §4.6 地基沉降计算有关问题综述
§4.2 土的压缩性
压缩系数a1-2常用作 比较土的压缩性大小
土的类别 高压缩性土 中压缩性土 低压缩性土
a1-2 (MPa-1) >0.5
0.1-0.5 <0.1
e
压缩系数:
1.0
0.9
e
a e p
0.8
p
0.7
0.6
0 100 200 300 p(kPa)
e-p曲线–压缩系数a
§4.2 土的压缩性
第四章:土的压缩性与地基沉降计算
本章提要
• 土的压缩性 -测试方法和指标 • 地基的最终沉降量-分层总和法 • 地基的沉降过程-饱和土渗流固结理论
本章特点 • 有一些较严格的理论
• 有较多经验性假设和公式
学习难点
• 应力历史及先期固结压力 • 不同条件下的总沉降量计算 • 渗流固结理论及参数
土的压缩变形问题
土压缩变形的快慢与土的渗透性有关。
饱和无粘性土
建筑物施工完毕,压缩变形完成
饱和粘性土
压缩过程所需时间长
• 土的固结:土在外力作用下,压缩随时间增长的过程
土体变形的机理
§4.2 土的压缩性
室内试验 现场试验
• 侧限压缩试验 • 三轴压缩试验 • 其他特殊试验
• 荷载试验 • 旁压试验
一维问题 三轴应力状态
压缩指数
e
e0
Cc
lg
e1 e2 p2 lg
p1
e1 e2 lg( p2 )
p1
Cc越大,土的压缩性越大
土的类别
Cc
e1
高压缩性土
>0.4
e2
中压缩性土 0.2-0.4
低压缩性土
<0.2
0
lgp1 lgp2 lgp
e-lgp曲线
§4.2 土的压缩性
侧限压缩模量
Es与压缩系数成反比
Es
土体的变形特性
土体的特点:散粒体
▪ 土的压缩性
• 固体土颗粒被压缩 • 土中水及封闭气体被压缩 • 水和气体从孔隙中被挤出
压缩量微不足道 主要原因
土的压缩可只看做是土中水和气体从孔隙中被挤
出,与此同时,土颗粒相应发生移动,重新排列, 靠拢挤紧,从而土孔隙体积减少。
土体变形的机理
§4.2 土的压
t
e1 e 2S
S 2 1
S
3
e
3
t
§4.2 土的压缩性
e e0 e
1
孔隙
固体 颗粒
Si H0
e0
ds (1 w0 )w
1
由三相草图:
H0 1 e0 H0 Si 1 e
e
e0
(1
e0
)
Si H0
可得到e-p关系
侧限压缩试验
§4.2 土的压缩性
压缩系数 KPa-1,MPa-1
土的变形特性测定方法
§4.2 土的压缩性
固结容器:
环刀、护环、导环、透水 石、加压上盖和量表架等
加压设备:杠杆比例1:10 变形测量设备
侧限压缩(固结)仪
变形测量 固结容器
加
压
设
支架
备
§4.2 土的压缩性
侧限压缩试验 • 施加荷载,静置至 变形稳定 • 逐级加大荷载
测定:
• 轴向压缩应力 • 轴向压缩变形
建筑物过长:长高比7.6:1
47m
39
87
150
194 199
175
沉降曲线(mm)
工程实例
§4.1 概述
压缩性
• 室内:三轴压缩 侧限压缩
测试 • 室外:荷载试验
旁压试验
最终沉 • 一维压缩:基本方法
降量 • 复杂条件:修正
§4.2 土的压缩性
§4.3 地基的最终 沉降量计算
沉降 • 一维固结
e
a e e1 e2 p p2 p1
1.0
0.9
e
0.8
p
0.7
0.6
0 100 200 300 p(kPa)
不同土的压缩系数不同,
a越大,土的压缩性越 大
同种土的压缩系数a不
是常数,与应力p有关
通常用a1-2即应力范围为
100-200 kPa的a值对不 同土的压缩性进行比较
e-p曲线
透水石
试样
百分表
加压上盖 环刀 压缩 容器
护环
p
P
P
3
P
2
1
es
e
0
ee
1
s
2s
2
1
t
s
3
e
3
t
§4.2 土的压缩性
已知:
• 试样初始高度H0 • 试样初始孔隙比
e0 试验结果:
每级压力p作用下 试样的压缩变形S p(kpa)=50、100、200、300、 400
p
P
1
es
e0
侧限压缩试验
百分表 环刀
e
1
Cc
0.9
0.8 1 Ce
0.7
0.6
100
1000
p(kPa,lg)
指标:
• 压缩指数
Cc
e (lgp)
• 回弹指数
(再压缩指数) Ce
Ce << Cc, 一般Ce≈0.1-0.2Cc
e-lgp曲线
§4.2 土的压缩性
自学
载荷试验与旁压试验
§4.2 土的压缩性
pcr
pu p
0
a
b
s
c
变形模量E0:
z z
p
z
土的类别 Es(kPa或MPa)
高压缩性土
<4MPa
p2 p1 H / H1
p2 p1 e1 e2
1 e1
1 e1 a
中压缩性土 低压缩性土
压缩系数的倒数 1/a
e e1 e
4-15MPa >15MPa
孔隙
固体
压缩模量 1
颗粒
§4.2 土的压缩性
侧限压缩模量
Es
p
压缩系数
a e p
e
1 e1
Es
1 e1 a
e e1 e
1
孔隙
固体 颗粒
压缩指数
Cc
lg
e1 e2 p2 lg
p1
e1 e2 lg( p2 )
p1
压缩指标间的关系
§4.2 土的压缩性
土的回弹曲线
e
e0 a
残
压缩曲线
余
变 形
弹 性
c
变
b
再压缩曲线
形回弹曲线
d
o pi
f p
土的回弹曲线
§4.2 土的压缩性