二元一次方程组应用题大全

合集下载

二元一次方程组应用题经典题

二元一次方程组应用题经典题

列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?类型三:列二元一次方程组解决——商品销售利润问题(注:获利= 售价—进价)求该商场购进A、B两种商品各多少件;倍分问题为了改善住房条件, 小亮的父母考察了某小区的A、B 两套楼房, A 套楼房在第3层楼,B 套楼房在第5层楼, B 套楼房的面积比A 套楼房的面积大24平方米, 两套楼房的房价相同, 第3层楼和第5层楼的单价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?:列二元一次方程组解决——几何问题10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?列二元一次方程组解决——优化方案问题:1.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.举一反三:2、【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)

二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。

已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。

7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。

假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。

已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。

求出流水池的容积和通过自来水管道流出的水量之间的关系。

解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。

根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。

2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。

已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。

求出每本书的原始价格。

解题思路:设第一本书的价格为y元,第二本书的价格为z元。

根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。

3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。

已知数学成绩平均分为80分,英语成绩平均分为85分。

学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。

求出数学和英语成绩中,既高于平均分,又相等的学生人数。

解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。

根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。

二元一次方程组应用题

二元一次方程组应用题

1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.利润问题1、一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?2、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?3、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?产品销售问题1、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?2、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?1、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少?2、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额×20%)。

3、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。

二元一次方程组应用题大全

二元一次方程组应用题大全

二元一次方程组应用题【数字问题】1.甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数。

2.一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。

3.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数是多少。

4.一个两位数,比它十位上的数字与个位上的数字的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。

5.一个三位数是一个两位数的5倍。

如果把这三位数放在两位数的左边,得到一个五位数;如果把这三位数放在两位数的右边,得到另一个五位数,而后面的五位数比前面的五位数大18648,问:原两位数、三位数各是多少?【和差倍分】6.甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?7.某书店的两个下属分店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店该种图书的数量仍比甲书店该种图书的数量的一半还少400册.求这两个书店原有该种图书各多少。

8.甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?9.一个学生有中国邮票和外国邮票共325张,中国邮票的张数比外国邮票的张数的2倍少2张,这个学生有中国邮票和外国邮票各多少张?10.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍。

问题:根据这些信息,请你推测这群学生共有多少人?【行程问题】11.甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组是12.甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?13.一辆汽车从A地驶往B地,前1/3路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.汽车在普通公路和高速公路上各行驶了多少小时?14.某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度。

二元一次方程组应用题200道

二元一次方程组应用题200道

二元一次方程组应用题(200道)知能点1 销售和利润问题1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚80元,后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损60元,则该商场每件羊绒衫的进价为_____,标价为_______.2.某种彩电原价是2018元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.3.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为().A.10 B.12 C.14 D.174.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股100元的价格买入上海股票1 000股,当该股票涨到120元时全部卖出,该投资者的实际赢利为().A.2 0000元 B.1 9250元 C.18350元 D.19100元5.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35元,利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、乙两种商品各购进多少件?◆知能点2 利率、利税问题6.某公司存入银行甲、乙两种不同性质的存款共80万元,甲、乙两种存款的年利率分别为1.4%和3.7%,该公司一年共得利息(不计利息税)26000元,则甲种存款______,乙种存款______.7.某人以两种形式一共存入银行8 0000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为8%,一年共得利息8600元,若设甲种存入x元,乙种存入y元,根据题意列方程组,得_________.8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少.若设甲、乙两种贷款的数额分别为x万元和y万元,则().A.x=15,y=20 B.x=12,y=23 C.x=20,y=15 D.x=23,y=12◆开放探索创新9.某商场计划拨款180万元从厂家购进1000台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共1000台,用去180万元,请你研究一下商场的进货方案.◆中考真题实战10.(重庆)为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项是免交“借读费”.据统计,2004年秋季有15000名农民工子女进入主城区中小学学习,预测2005年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样2005年秋季将新增3480名农民工子女在主城区中小学学习.如果按小学生每年的“借读费”500元,中学生每年的“借读费”1000元计算,求2005年新增的1 160名中小学生共免收多少“借读费”.11.(南通)张栋同学到百货大楼买了两种型号的信封共28个,其中买A型号的信封用了1元5角,买B型号的信封用了1元8角,B型号的信封每个比A型号的信封便宜5分,则两种型号信封的单价各是多少元?知能点3 行程问题12.甲、乙两人相距60km,甲的速度是30km/h,乙的速度为20km/h,两人同时出发,(1)若同向而行,甲追上乙需_______h;(2)若相向而行,甲、乙需______h相遇;(3)若同向而行,乙先走1h,甲再追乙,经过______h甲可追上乙.14.两人在900m的圆形跑道上练习赛跑,方向相反时每60s相遇一次,方向相同时每3min相遇一次,若设两人速度分别为x(m/s)和y(m/s)(x>y),则由题意列出方程组为_________.15.A,B两地相距80km,甲从A地,乙从B地同时出发相向而行,经过8h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别为________.16.一只船在一条河上的顺流速度是逆流速度的5倍,则这只船在静水中的速度与水流速度之比为:_________.17.已知某铁路桥长1600m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90s,整列火车完全在桥上的时间是70s,求火车的速度和长度.知能点4 配套问题18.张阿姨要把若干个苹果分给小朋友们吃,若每人8个,则多1个;若每人9个,则缺2个,苹果有_______个,小朋友有_______个.19.两台拖拉机共运水泥58t,其中一台比另一台多运8t,则这两台拖拉机分别运送了水泥_______t和_________t.20.如图所示,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,则每个小长方形的面积为().A.30 B.20 C.10 D.1421.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x,宽为y,则可列方程组为().22.现用380张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?◆规律方法应用23.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现在有126张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?24.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲货车辆数(单位:辆)25乙货车辆数(单位:辆)36累计运货吨数(单位:吨)15.535现租用该公司6辆甲种货车及8辆乙种货车一次刚好运完这批货,如果按每吨付运费100元计算,则货主应付运费多少元?◆开放探索创新25.小颖在拼图时发现8个一样大小的矩形,恰好可以拼成一个大的矩形,如图(1)所示.小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为6mm的小正方形.你能帮他们解开其中的奥秘吗?◆中考真题实战26.(长沙)某工厂第一季度生产甲、乙两种机器共500台,改进生产技术后,计划第二季度生产这两种机器共580台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?27、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已37岁了。

二元一次方程(组)解应用题(含答案)

二元一次方程(组)解应用题(含答案)

第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组专项练习50题(有答案)1、已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及30元计算,则货主应付运费多少元?5、(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。

二元一次方程组应用题33道及答案

二元一次方程组应用题33道及答案

第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。

”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

二元一次方程组应用题类型大全

二元一次方程组应用题类型大全

根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成

二元一次方程组应用题大全

二元一次方程组应用题大全

二元一次方程组应用题大全【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。

解:设乌鸦有x 只,树有y 棵。

由题意可列方程组3 5( )x x ⨯+=⎧⎨⨯-=⎩解得 x y =⎧⎨=⎩答:乌鸦有 只,树有 棵。

1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。

求参加会议的人数和宿舍数。

分析:两个相等关系:① ;② 。

2、将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?3、用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。

分配问题(2)1、一组学生用一条绳子测一块的长,量12次,还余80 m 没有量,量14次,超出地段20 m ,求绳长和地段长。

2、在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。

问马路有多长?树有多少棵?3、有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。

”另一名强盗说:“每人分7匹,可又少8匹。

”问有几个强盗几匹布?4、现有一批物资运往三峡工地,由铁路装运,如果每节车皮装50吨,则还缺2节车皮才能把全部物资运走,如果每节车皮多装5吨,则还可再装200吨其它物资,问原有多少物资,共有多少节车皮?调配问题【例】甲乙隔河放牧羊,两人相互问数量;甲说得乙羊九只,我羊是你羊二倍;乙说得甲羊八只。

两人羊数正相当。

请你帮忙算一算,甲乙各放多少羊?分析:两个等量关系:(1)甲羊数+9=2×(乙羊数-9);(2)乙羊数+8=甲羊数-8解:设甲放羊x 只,乙放羊y 只。

10道二元一次方程组应用题及答案(精品文档)

10道二元一次方程组应用题及答案(精品文档)

1:某校为同学们安排宿舍。

若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。

求该年级同学人数和宿舍间数。

(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。

(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。

有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。

(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。

二元一次方程(应用题)

二元一次方程(应用题)

二元一次方程组应用题一、计划问题1.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比定货任务少100套,如果每天生产23套服装,就可超过订货任务20套,问这批服装的定货任务是多少套?原计划几天完成?2.某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?3.我市某中学八年级实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则正好空出一间教室.问这个学校现有空教室多少间?八年级共有多少人?4.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?二、配套问题1.某车间有29名工人生产螺栓和螺母,每人每小时平均能生产螺栓15个或螺母21个,应如何分配生螺栓和螺母的工人,才能使螺栓和螺母正好配套(两个螺栓配三个螺母)?2.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?3.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?1.甲、乙二人相距8千米,二人同时出发,同向而行,甲2.5小时可追上乙;相向而行,1小时相遇,二人的平均速度各是多少?2.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度3.青岛和大连相距360千米,一轮船往返于两地之间,顺水行船用18小时,逆水行船用24小时,那么船在静水中的速度是多少?水流速度是多少?4.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)1.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?五、百分率问题1.十堰市东方食品厂2003年的利润(总产值-总支出)为200万元,2004年总产值比2003年增加了20%,总支出减少了10%.2004年的利润为780万元.问2003年总产值、总支出各是多少万元?2.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?3.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林”的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元,据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?六、分段计费1.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?3.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?七、其它1.本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。

二元一次方程组应用题30道专项练习

二元一次方程组应用题30道专项练习

二元一次方程组应用题30道专项练习1、一个两位数,它的个位数字与十位数字之和为11.将这个两位数的个位数字与十位数字互换,得到的新数比原数大63.求原来的两位数。

2、一批货物需要运往某地。

货主准备租用汽车运输公司的甲、乙两种货车。

已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆25乙种货车辆数/辆36累计运货吨数/吨15.535现在租用该公司3辆甲种货车和5辆乙种货车,刚好可以运完这批货。

如果按每吨付运费30元计算,问:货车应付运费多少元?3、初一级学生去某处旅游。

如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么会多出1辆汽车。

问需要多少辆汽车和多少名学生?4、某校举办物理竞赛,共有120人报名参加。

竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分。

问这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人?5、甲乙两地相距20千米。

A从甲地向乙地方向前进,同时B从乙地向甲地方向前进。

两小时后二人在途中相遇。

相遇后A就返回甲地,B仍向甲地前进。

A回到甲地时,B离甲地还有2千米。

求A、B二人的速度。

6、甲乙两地相距60千米。

A、B两人骑自行车分别从甲乙两地相向而行。

如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。

求A、B两人骑自行车的速度。

7、某公司去年的总收入比总支出多50万元。

今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元。

求去年的总收入与总支出。

8、XXX承包了25亩地。

今年春季改种茄子和西红柿两种大棚蔬菜,用去了元。

其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元。

问XXX一共获得多少纯利?9、XXX和XXX分别从相距20千米的甲、乙两地相向而行。

经过2小时两人相遇。

相遇后XXX即返回原地,XXX继续向甲地前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。

2、已知板凳和木马共有33个,腿共有101条。

板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。

其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。

问成人票与学生票各售出多少张?分析:两个相等关系:①;②。

4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。

已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。

及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。

解:设乌鸦有x只,树有y棵。

1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。

求参加会议的人数和宿舍数。

分析:两个相等关系:①;②。

2、将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?3、用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。

分配问题(2)1、一组学生用一条绳子测一块的长,量12次,还余80 m没有量,量14次,超出地段20 m,求绳长和地段长。

2、在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。

问马路有多长?树有多少棵?3、有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。

”另一名强盗说:“每人分7匹,可又少8匹。

”问有几个强盗几匹布?4、现有一批物资运往三峡工地,由铁路装运,如果每节车皮装50吨,则还缺2节车皮才能把全部物资运走,如果每节车皮多装5吨,则还可再装200吨其它物资,问原有多少物资,共有多少节车皮?调配问题1、甲、乙两盒中各放着一些球,一共有9个,如果从甲盒中拿出5个放入乙盒,乙盒的球数是甲盒的2倍。

问甲、乙两盒中原来各放着多少个球?2、某工厂第一车间人数比第二车间人数的45少30人,若从第二车间调10人到第一车间,则第一车间的人数是第二车间人数34,求各车间的人数。

3、有一大群羊,其中一部分已上山,另一部分还在山下。

如果山下的羊中有3只上了山,则山下的羊是整个羊群的13;如果从山上下来3只羊,则山上、山下的羊就一样多了。

问原来山上、山下各有羊多少只?配套问题样分配,才能使每天生产的螺栓和螺帽刚好配套?2、八年级A班同学50人,为参加学校举办的迎国庆文艺活动,做一批道具,每人每天平均做花18朵,面具16个,如果一个面具配两朵花,应分配多少学生做面具,多少学生做花,才能使面具和花刚好配套?3、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12个或乙零件23个,应分配多少人生产甲零件,多少人生产乙零件,才能使每天生产的甲零件和乙零件刚好配套?(每3个甲零件和2个乙零件配成一套)年龄问题1、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁。

”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁。

”问甲、乙各多少岁?2、10年前,小兰妈妈的年龄是小兰年龄的3倍;10年后,妈妈的年龄是小兰年龄的2倍,问小兰和妈妈现在的年龄各是多少岁?3、已知仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的2倍,龟祖的年龄是龟孙的5倍,它们四位的年龄和的3倍恰好是900岁。

十年后,鹤父和鹤女之和的5倍,加上龟祖、龟孙的年龄也是900岁,试求它们分别是多少岁?销售问题(1)【例】某书店向学校推销甲、乙两种素质教育用书,如果原价买这两种书共需1760元,书店推销时甲种书打了8折,乙种书打了7.5折,结果两种书共少要了400元。

问甲、乙两种书原价各需多少钱?分析:两个等量关系:(1)甲种书原价+乙种书原价=1760;(2)甲种书折后价+乙种书折后价=1760-400。

1、新华书店向某校推销甲、乙两种科普书,如以原价买这两种书共需880元,甲种书书店按8折销售,乙种书书店按7.5折销售,结果这两种书共少要了200元,问原来买这两种书各需要多少元?2、“五一”黄金周,人民商场女装部推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客买了一套女装和一套男装,优惠前需付700元,而她实际付款580元。

问男装、女装原价各是多少元?3、某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品原销售价之和为500元,问这两种商品的原销售价分别为多少元?销售问题(2)1、华联商场购进甲、乙两种商品后,甲商品加价50%,乙商品加价40%作为标价,后适逢元旦商场搞促销活动,甲商品打八折销售,乙商品打八五折销售。

某顾客购买甲、乙商品各一件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价。

2、某商场购进甲、乙两种服装后,都加价40%标价出售。

“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。

某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,求这两种服装的进价和标价各是多少元?3、某商场欲购甲、乙两种商品共50件,甲种商品每件进价为35元,利润率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?增长率问题(1)【例】某工厂去年的利润为200万。

今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。

去年的总产值、总支出各是多少万元?解:设去年的总产值为x万元,总支出y万元。

则有根据上表可列方程组 ⎧⎨⎩ 解得: x y =⎧⎨=⎩答:去年的总产值为 万元,总支出 万元。

1、某企业去年的总收入比总支出多500万元,今年的总收入比去年增加10%,总支出节约15%,因此总收入比总支出多800万元。

求去年的总收入和总支出。

2、某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产两种机器共544台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%。

该厂第一季度生产甲、乙两种机器各多少台?3、革命老区百色的某个芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少万元? 增长率问题(2)1、某校计划向灾区捐赠图书3500册,实际共捐了4125册,其中初中生比原计划多捐了20%,高中生捐了原计划的115%,问该校初、高中生实际各捐赠图书多少册?解:设初中生实际捐了x 册,高中生实际捐了y 册。

则有根据上表可列方程组 ⎧⎨⎩ 解得: x y =⎧⎨=⎩答:设初中生实际捐了 册,高中生实际捐了 册。

2、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划总产值比去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少元。

储蓄问题【例】小明以两种方式储蓄了压岁钱2000元,其中一种是年利率为2.25%的教育储蓄,另一种是年利率为3.06%的一年期定期存款,一年后共得利息45.99元,求这两种储蓄各存了多少钱?分析:两个等量关系:(1)两种储蓄共有2000元;(2)教育储蓄的利息+定期存款的税后利息=42.75元。

解:设存一年教育储蓄的钱为x 元,存一年定期存款的钱为y 元。

初中生捐书(册) 高中生捐书(册) 共捐书(册) 实际捐书 x y 5125 计划捐书3500()%-%120元,存一年定期存款的钱为1、某储户存入银行甲、乙两种利息的存款,共计2万元,甲种存款的年利率是3%,乙种存款的年利率是1.5%,不计利息税,该储户一年共得利息525元,求甲、乙两种存款各是多少万元?2、小明以两种方式共储蓄了3000元教育储蓄,一种的年利率为2.25%,另一种的年利率为3.06%,一年后本息和为3079.65元,求每种存款各为多少元?3、王凯以两种方式分别储蓄了2000元和1000元,一年后全部取出,扣除利息税后,可得利息43.9元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?数字问题(1)1、一个两位数,十位上的数字是个位上的数字的3倍,将个位上的数字与十位上的数字对调后所得的两位数比原来的两位数小18,求这个两位数。

2、有一个两位数,个位上的数比十位上的数大5。

如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。

3、一个两位数的十位数字与个位数字的和为7,如果这个两位数加45,那么恰好成为个位数字与十位数字对调后所成的两位数,求这个两位数。

4、有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数。

数字问题(2)1、两个两位数的和是85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。

已知前一个四位数比后一个四位数大1287。

求这两个两位数。

2、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数。

已知前面的五位数比后面的五位数大225,求这个三位数和两位数。

3、有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的三位数。

相遇问题1、甲、乙两人在一条长400米的环形跑道上跑步,甲的速度是6米/秒,乙的速度是4米/秒。

相关文档
最新文档