七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演习题新版北师大版
七年级数学北师大版上册课时练第5章《应用一元一次方程——“希望工程”义演》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练应用一元一次方程——“希望工程”义演一、选择题1.北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51~100人时,每人门票价格45元;购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,442.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是()A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组3.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x 辆旅游大巴,则可列方程()A.45x+28=50x﹣12B.45x﹣28=50x+12C.45x﹣28=50x﹣12D.45x+28=50x+124.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.3205.某班同学一起去看电影,票价每张50元,20张以上(不含20张)打八折,他们一共花了1000元,则共买了()张电影票.A.20B.25C.20或25D.25或306.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是()A.()121826x x =-B.()181226x x =-C.()2181226x x ´=-D.()2121826x x ´=-7.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是()A.2(30)41x x --=B.(41)302xx +-=C.41302x x -+=D.3041x x-=-8.甲、乙、丙三人共捐611元支援山区建设,甲比乙多25元,比丙少36元,则丙捐款()A.200元B.175元C.236元D.218元9.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元11.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到州两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元12.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t 小时,下列方程正确的是()A.80.257t t -=B.()80.257t t-=C.()()80.2570.25t t-=+D.80.2570.25t t -=+13.在2016年“手拉手”活动中,新泰安实验小学向山区一所农村学校赠送了20个日记本和20支钢笔,价值共70元.已知每个日记本比每支钢笔少0.5元,则每个日记本和每支钢笔的价格分别为()A.1元,1.5元B.2元,2.5元C.1.5元,2元D.2元,1.5元14.《九章算术》是中国古代数学最重要的著作,奠定了中国古代数学的基本框架.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数,羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x 钱,则可列方程为()A.45375x x --=B.45357x x ++=C.45357x x --=D.45375x x ++=15.某班参加“3.12”植树活动,若每人植2棵树,则余21棵树;若每人植3棵树,则差24棵树,求该班有多少名学生?若设该班有x 名学生,则可列方程是()A.224321x x +=+B.224321x x -=-C.221324x x -=+D.221324x x +=-二、填空题16.一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则大人有____个,幼儿有____个.17.某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半,走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________角.18.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.19.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏_____元.20.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.21.校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块,则这些新团员中有______名男同学.三、解答题22.为拓宽学生视野,某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带19个学生,还剩11个学生没人带;若每位老师带20个学生,就有一位老师少带7个学生,为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3050租金/(元辆)300400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)这次活动全部租甲种客车行吗?如果行,怎样安排;如果不行,请说明理由.(3)学校计划此次研学旅行活动的租车总费用不超过4100元,租用乙种客车不少于7辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.24.临近春节,上海到扬州的单程汽车票价为80元/人,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打6折非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打8折.(1)若有15名非学生乘客团购买票,则共需购票款多少元?(2)已知一辆汽车共有乘客60名,非学生乘客若达到团购人数则按团购方式缴款,这一车总购票款为3680元,则车上有学生和非学生乘客各多少名?25.某种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案1-5:CDABC6-10:DCCAD 11-15:DDCCD 16.3417.4518.6419.9.20.721.3022.解:(1)设有x 个老师,依题意,得:19x +11=20x -7,解得:x =18,∴19x +11=353.(2)(18+353)÷30=12(辆)……11(人),12+1=13(辆),13×2=26(人),∵18<26,∴老师数不足以每辆车分2人,∴这次活动不能全部租甲种客车.(3)18+353-50×7=21(人),21<30<50,∴有两种租车方案,方案1:租用1辆甲种客车,7辆乙种客车;方案2:租用8辆乙种客车.方案1所需费用为300+400×7=3100(元);方案2所需费用为400×8=3200(元).∵3100<3200,∴方案1最省钱,即:租用1辆甲种客车,7辆乙种客车.23.解:(1)甲:2080.8(40)0.8128x x ´+-=+乙:(2080.8)0.90.72144x x ´+´=+(2)令0.81280.72144x x +=+200x =(3)(方案一)单独去甲店:0.8x 1280.860128176+=´+=(元)(方案二)单独去乙店:0.72x 1440.7260144187.2+=´+=(元)(方案三)208160´=0.80.9(6040)14.4´´-=(元)16014.4174.4+=由此方案三最省钱,即去甲店买20本笔记本,去乙店买20支圆珠笔.24.解:(1)由题意得:10×80+(15-10)×80×0.8=1120(元);(2)解:设车上有非学生x 人,则有学生(60-x )人,①若0≤x ≤10,由题意得:80x +80×0.6(60-x )=3680,x =25不符合题意,舍去,②若10<x ≤60,由题意得:80×10+80×0.8(x -10)+80×0.6(60-x )=3680,x =40符合题意,综上所述,x =40,25.解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样.根据题意:()()3055530550.9x x ´+-´=´+´,解得20x =.所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款()3051555200´+-´=(元),乙店需付款()3051550.9202.5´+´´=(元).因为200202.5<,所以,购买15盒乒乓球时,去甲店较合算.当购买30盒时:甲店需付款()3053055275´+-´=(元);乙店需付款()3053050.9270´+´´=(元).因为275270>,所以购买30盒乒乓球时,去乙店较合算.。
北师大版七年级数学上册第5章 5.5 应用一元一次方程—“希望工程”义演 培优训练(含答案)
北师版七年级上册第五章一元一次方程5.5应用一元一次方程——“希望工程”义演培优训练卷一.选择题(共10小题,3*10=30)1.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108B.54+x=80%(108-x)C.54-x=80%(108+x)D.108-x=80%(54+x)2.某公路收费站的收费标准如下:中型汽车为20元/辆,小型汽车为10元/辆.一天上午的某个时段内,该收费站共通过了50辆车,这些车共缴费700元,那么该时段内共通过小型汽车( )A.20辆B.25辆C.30辆D.10辆3. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D .2×22x =16(27-x)4.某车间有20名工人生产螺栓和螺母,每人每天能生产螺栓12个或螺母18个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =18(20-x)B .18x =12(20-x)C .2×18x =12(20-x)D .2×12x =18(20-x)5.某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( ) A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 6.在甲处工作的有272人,在乙处工作的有196人,如果要使乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设从乙处调x 人到甲处,则下列方程正确的是( ) A .272+x =13(196-x) B.13(272-x)=196-x C.13×272+x =196-x D.13(272+x)=196-x7.在一农场,鸡的只数与猪的头数的和是70,而鸡的脚数和猪的脚数的和是196,则鸡比猪多( )A.14只B.16只C.22只D.42只8.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额5个,问规定时间是多少.设规定的时间为x小时,则有( ) A.38x-15=42x+5B.38x+15=42x-5C.42x+38x=15+5D.42x-38x=15-59.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A.6名B.7名C.8名D.9名10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场二.填空题(共8小题,3*8=24)11.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为______人,根据题意,可列方程为________________,解得___________.12.根据图中提供的信息,可知一个杯子的价格是________.13.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为______________,解得________.14.一件工程,甲队单独做要8天完成,乙队单独做要9天完成,甲队做3天后,乙队来支援,两队合做x 天完成任务的34,则由此条件可列出的方程是_______________________. 15.甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为_________.16. 已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为________岁.17.打印一份材料,甲要16小时,乙要20小时,甲打印6小时,乙接着打印,乙还要_________小时完成.18.我市围绕“科学节粮减损,保障粮食安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小粮仓农户实际出资是___________.三.解答题(共7小题,46分)19. (6分) 某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?20. (6分)) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?21. (6分) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.22. (6分)某县中学生足球联赛共赛10轮(即每队需比赛10场),其中胜一场得3分,平一场得1分,输一场得0分,向明中学足球队在这次联赛中所负场数比踢平场数少3场,结果共得19分,向明中学足球队在这次联赛中胜了几场?23. (6分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?24. (8分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25. (8分) ) 公园门票价格规定如下表:某校七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)若两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案1-5BCDDD 6-10DABAC11. (54-x),8x =10(54-x),x =3012.8元13. (16+14)x =1,x =12514. x +38+x 9=3415.10天16. 1217. 12.518.80元19. 解:设创建小图书角x 个,则创建大图书角(30-x)个,根据题意可得160x +(30-x)×(2×160-80)=5600,解得x =20,则30-20=10,答:创建小图书角20个,则创建大图书角10个20. 解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x =1, 解这个方程,得x =115,115小时=2小时12分, 答:甲、乙一起做还需2小时12分才能完成工作21. 解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150-x)元, 依题意得50%x +60%(150-x)=80,解得x =100,150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元22. 解:设该足球队平x场,依题意得3[10-x-(x-3)]+x=19,解得x=4,所以[10-x-(x-3)]=5,答:向明中学足球队在这次联赛中胜5场23. 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)=140.所以x=10,15-x=15-10=5答:该公司应安排10天精加工,5天粗加工24. 解:(1)能履行合同.设甲、乙合做x天完成,则有(130+120)x=1,解得x=12<15,因此两人能履行合同(2)由(1)知,二人合作完成这项工程的75%需要的时间为12×75%=9(天),剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=1 24,因为130<124<120,故调走甲更合适25. 解:(1)设七(1)班有x人,则13x+11(104-x)=1240或13x+9(104-x)=1240,初中数学解得x=48或x=76(不合题意,舍去).答:七(1)班48人,七(2)班56人(2)1240-104×9=304(元).答:可省304元钱(3)要想享受优惠,由(1)可知七(1)班48人,只需多买3张,51×11=561,48×13=624>561,所以48人买51人的票可以更省钱11/ 11。
七年级数学上册 5.5应用一元一次方程“希望工程”义演课时练习含答案解析
北师大版数学七年级上册5.5应用一元一次方程--“希望工程”义演同步练习一、选择题1.足球比赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,那么这个对共胜了()场.A.3B.4C.5D.6答案:C解析:解答:设该队共平x场,则该队胜了14-x-5=9-x场,胜场得分是3(9-x)分,平场得分是x分.根据等量关系列方程得:3(9-x)+x=19,解得:x=4场,∴该队胜了14-x-5=9-4=5场.故选:C.分析:首先理解题意找出题中的等量关系:平场得分+胜场得分=19分,根据此列方程即可.2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元答案:C解析:解答:设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选C.分析:设手机的原售价为x元,根据原价的八折出售可获利14%,可得出方程,解出即可.3.某个商贩同时卖出两件上衣,售价都是140元.按成本计算,其中一件盈利75%,另一件亏损30%,在这次交易中,该商贩()A.不赔不赚B.赚10元C.赔10元D.赔20元答案:A解析:解答:设两件上衣的进价分别为a元,b元,根据题意得:(1+75%)a=140,(1-30%)b=140,解得:a=80,b=200,∴这次买卖中盈利的钱为140-80+140-200=0(元),则这次买卖中他不亏不赢.故选A.分析:设两件上衣的进价分别为a元,b元,根据题意列出算式求出a与b的值,由售价-进价=利润计算即可得到结果.4.小彬一家人在2013年8月到北京旅游了4天,这4天的日期数(如8月1日的日期数为1)之和是38,则他们一家在北京旅游最后一天的日期数是()A.8号B.9号C.10号D.11号答案:D解析:解答:设他们一家在北京旅游最后一天的日期数是x,则前面3天的日期分别为x-1,x-2,x-3,由题意,得x-1+x-2+x-3+x=38,解得:x=11.故选D.分析:设他们一家在北京旅游最后一天的日期数是x,则前面3天的日期分别为x-1,x-2,x-3,根据四天的日期和为38建立方程求出其解即可.5.小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.则小明爸爸追上小明所用的时间为()A.2分钟B.3分钟C.4分钟D.5分钟答案:C解析:解答:设小明爸爸追上小明所用的时间为x分钟,则小明走的路程为80(x+5)米,小明的爸爸走的路程为180x米,由题意,得80(x+5)=180x,解得:x=4,故选C.分析:设小明爸爸追上小明所用的时间为x分钟,则小明走的路程为80(x+5)米,小明的爸爸走的路程为180x米,根据小明走的路程=小明爸爸走的路程建立方程求出其解即可.6.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a、b、c对应的密文a+1,2b+4,3c+9,例如明文1,2,3,对应的密文为2,8,18,如果接收方收到密文7,18,15,则解密得到的明文为()A.6,5,2B.6,5,7C.6,7,2D.6,7,6答案:C解析:解答:根据题意得:a+1=7,解得:a=6.2b+4=18,解得:b=7.3c+9=15,解得:c=2.所以解密得到的明文为6、7、2.故选:C.分析:要求解密得到的明文,就要根据明文和密文之间的关系列方程,这个关系为:明文a,b,c对应的密文a+1,2b+4,3c+9.根据这个关系列出方程求解.7.泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗()棵.A.100B.105C.106D.111答案:C解析:解答:设原有树苗x棵,由题意得:5(x+21-1)=6(x-1),解得:x=106.故选:C.分析:设原有树苗x棵,根据两种栽种方法树苗的数量相等,可得出方程,解出即可.8.小红在月历的同一列上圈出相邻的三个数,若算出它们的和是39,则该列第一个数是()A.6B.12C.13D.14答案:A解析:解答:设中间的为x,则上面的数是x-7,下面的数是:x+7,根据题意得:x+x-7+x+7=39,解得,x=13.根据题意可知,该列第一个数x-7=6故选:A.分析:日历的一个竖列上圈出相邻的两个数相差为7,设较小的数是x,则较大的数是x+7,又x是整数,故两个数的和减去7后,必须是偶数.根据次规律可从下列答案中判断出正确答案.9.某商店换季准备打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为()A.230元B.250元C.270元D.300元答案:B解析:解答:设该商品的售价为x元,由题意得,0.75x+25=0.9x-20,解得:x=300,则成本价为:300×0.75+25=250(元).故选B.分析:设该商品的售价为x元,根据按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,列方程求出售价,继而可求出成本.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为()A.69B.84C.126D.207答案:D解析:解答:设圈出的数字中最小的为x ,则最大数为x +16,根据题意得:x +x +16=46,移项合并得:2x =30,解得:x =15,∴9个数之和为:15+16+17+22+23+24+29+30+31=207.故选D分析:设圈出的数字中最小的为x ,则最大数为x +16,根据题意列出方程,求出方程的解得到x 的值,进而确定出9个数字,求出之和即可.11.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打( )A .6折B .7折C .8折D .9折答案:C解析:解答:设最多可打x 折, 根据题意得:150********%10x ⨯-=⨯, 整理得:15x -100=20,解得:x =8,则最多打8折.故选C .分析:要保证利润率不低于20%,则最多可打x 折,根据题意列出方程,求出方程的解即可得到结果.12.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为( )A .1000元B .900元C .800元答案:A解析:解答:设小磊的利息为x元,由题意,得20%x=4.5,解得x=22.5.设存入银行的本金为y元,由题意,得2.25%y=22.5,解得:y=1000.故选A.分析:先设小磊的利息为x元根据利息税求出利息,再设存入银行的本金为y元由利息问题的数量关系就可以求出结论.13.元旦节日期间,某商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以168元卖出,这批夹克每件的成本价是()A.80元B.84元C.140元D.100元答案:C解析:解答:设这批夹克每件的成本价是x元,依题意得:(1+50%)×0.8x=168,解得:x=140.即这批夹克每件的成本价是140元.故选:C.分析:设这批夹克每件的成本价是x元,然后按照成本价×(1+50%)×0.8=60列出方程,解方程就可以成本价.14.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是()A.10B.15C.20D.25解析:解答:设原价为x元,由题意得:0.9x-0.8x=2解得x=20.故选:C.分析:等量关系为:打九折的售价-打八折的售价=2.根据这个等量关系,可列出方程,再求解.15.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?()A.35人B.40人C.45人D.50人答案:C解析:解答:设有x名学生,根据书的总量相等可得:3x+20=4x-25,解得:x=45.故选:C.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.二、填空题16.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是______.答案:50元.解析:解答:设这种裤子的成本是x元,由题意得:(1+50%)x×80%-x=10,解得:x=50,故答案为:50元.分析:设这种裤子的成本是x元,标价为(1+50%)x,根据题意可得等量关系:标价×八折-进价=利润,根据等量关系列出方程即可.17.如图是一个玩具火车轨道,A点有个变轨开关,可以连接B或C.小圈轨道的周长是1.5米,大圈轨道的周长是3米.开始时,A连接C,火车从A点出发,按照顺时针方向再轨道上移动,同时变轨开关每隔一分钟变换一次轨道连接.若火车的速度是每分钟10米,则火车第10次回到A点时用了______分钟.答案:2.1解析:解答:第一分钟走10米.这样走AC轨道,经过了3次A点,距离A点1米,然后开通AB轨道,会向A点前进,就是说要在1.2分钟才能第4次经过4次A点,在经过0.8分钟,会经过10×0.8÷1.5会经过5次,还会超过A点0.5米,再开通AC轨道,只需0.1分钟就能走完AB轨道再从AC轨道前进.所以一共要走的距离为4×3+6×1.5=21米.设需要时间为x,则得到方程:10x=21解得:x=2.1答:需要时间为2.1分钟.分析:要求用多少时间,就要理解本题的等量关系,本题中注意在AC轨道上,如果变轨开关突然改成AB轨道,也会走到A点再走AB轨道.18.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是______米.答案:120解析:解答:设这列火车的长度是x米.由题意得:(600+x)÷30=x÷5,解得:x=120.∴这列火车的长度是120米.分析:等量关系为:(隧道长度+火车长度)÷30=火车长度÷5.19.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为______元.答案:1600解析:解答:设它的成本是x元,由题意得:2200×80%-x=160,解得:x=1600,故答案为:1600.分析:首先设它的成本是x元,则售价是0.8x元,根据售价-进价=利润可得方程2200×80%-x=160,再解方程即可.20.一只船沿河顺水而行的航速为30千米/小时,若按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为______千米.答案:3解析:解答:设船在静水中的速度为x km/时,则水的流速为(30-x)千米/小时,根据题意得5[x-(30-x)]=30×3,解得x=24,所以30-x=6,6×12=3.答:此船在该河上顺水漂流半小时的航程为3千米.故答案为:3.分析:设船在静水中的速度为x km/时,则水的流速为(30-x)千米/小时,根据速度公式和同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等得到5[x-(30-x)]=30×3,解得x=24,则30-x=6,然后计算6×12即可.三、解答题21.有一些分别标有3,6,9,12…的卡片,后一张卡片上的数比前一张卡片上的数大3,小华拿到了相邻的5张卡片,这些卡片之和为150.(1)小华拿到了哪5张卡片?答案:24,27,30,33,36解答:(1)设中间的卡片上的数为x,则左边两数为x-3,x-6,右边两数为x+3,x+6,根据题意得:(x-6)+(x-3)+x+(x+3)+(x+6)=150,解得x=30,则五数分别为:24,27,30,33,36;(2)你能拿到5张相邻卡片,使得这些卡片上的数之和为100吗?答案:不可能拿到满足条件的5张卡片.解答; 设这5张卡片为x-6,x-3,x,x+3,x+6,则5x=100,即x=20由于20不是3的倍数,所以不可能拿到满足条件的5张卡片.解析:分析:(1)可设中间的卡片上的数为x,则左边两数为x-3,x-6,右边两数为x +3,x+6;根据五数之和为150列出方程求解即可.(2)同(1)理求得中间数的解,再判断符合不符合题意即可.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?答案:1800米.解析:解答:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000-x)米.根据题意列方程:30001060 64x x-+⨯=去分母得:2x+3(3000-x)=10×60×12.去括号得:2x+9000-3x=7200.移项得:2x-3x=7200-9000.合并同类项得:-x=-1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60-x)秒.根据题意列方程6x+4(10×60-x)=3000,去括号得:6x+2400-4x=3000.移项得:6x-4x=3000-2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.分析:若设王强以6米/秒的速度跑了x米,则根据总时间=以6米/秒的速度跑的时间+以4米/秒的速度跑的时间列出方程即可.23.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米相遇?答案:经过2小时或2.5小时相距50千米相遇.解答:设第一次相距50千米时,经过了x小时.(120+80)x=450-50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米相遇.解析:分析:应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.24.某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?答案:700元.解答:设进价为x元,可列方程:x×(1+10%)=900×90%-40,解得:x=700,答:这种商品的进价为700元.解析:分析:通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%-40,得出等量关系为x×(1+10%)=900×90%-40,求出即可.25.一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■(此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?答案:一题不做或做错扣1.5分解答:设一题不做或做错扣x分,则16×5-(20-16)x=74,解得:x=1.5答:一题不做或做错扣1.5分.解析:分析:文文做对了16道,做对一题得5分.按说应该得80分,但只得了74分.说明一题不做或做错要扣分.本题可根据得分情况来列等量关系.得分-扣分=74,即74=5×对的题数-x×错的题数.。
七年级数学上册一元一次方程应用一元一次方程—希望工程义演新版北师大版(与“数学”相关文档共8张)
第第55页页,/共共8页8。页
第第66页页,/共共8页8。页
第第77页页,/共共8页8。页
第第88页页,/共共8页8。页
七年级数学上册5一元一次方程5应用一元一
次方程—希望工程义演新版北师大版
1
第第11页页,/共共8页8。页
第第22页页,/共共8页8。页
七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版 七年级数学上册5一元一次方程5应用一元一次方程—希望工程义演新版北师大版
数学七年级上册5.5《应用一元一次方程--希望工程义演》当堂检测及课后作业(后附答案)
七年级上册 5.5 应用一元一次方程——“希望工程”义演一、学习目标1.借助表格分析复杂问题中的数量关系2.会用一元一次方程解决实际问题3.会检验方程的解是否符合实际意义二、当堂检测A组1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是( )A.3x-20=4x-25 B.3x+20=4x+25 C.3x-20=4x+25 D.3x+20=4x-252、小月买了A、B两瓶果汁,一共花了8元,其中A果汁比B果汁贵2元,则A果汁单价为____ 元,B果汁单价为元3、本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?B组(2)所付票款可能是2645元吗?三、课后作业A组1、父亲与小强下棋(设没有平局,且输的一方分数记为0),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.7 B.6 C.5 D.42、某农场要对一块麦田施底肥,现有化肥若干千克.如果每公顷施肥400千克,那么余下化肥800千克;如果每公顷施肥500千克,那么缺少化肥300千克.若设现有化肥x千克,则可列方程为___________________________________.3、学校决定对数学竞赛优胜者进行奖励,获胜者共25人,其中获省级奖的每人奖励价值为200元的奖品,获得市级奖的每人奖励价值50元的奖品,共花去2000元,那么你知道获得省、市奖的学生各有多少人?4、某文具店购进两种型号的笔共80支进行销售,其进价和售价如表:型号进价(元/支)售价(元/支)A型8 12B型10 13(1)该店用700元可以购进A,B两种型号的笔各多少支?(2)在(1)的条件下,若把所购进A,B两种型号的笔全部销售完,能获利多少元?B组5、某车间28名工人生产螺栓和螺母,螺栓与螺母个数1∶2,每人每天平均生产螺栓12个或螺母18个,刚好配套.求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为()。
最新北师大版七上数学应用一元一次方程“希望工程”义演习题课件 (2)
类型之二 总量调配问题
某车间有 62 名工人,生产甲、乙两种零件,每人每天平均能生产甲 种零件 12 个或乙种零件 23 个,应分配多少人生产甲种零件,多少人生产乙 种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每 3 个甲种零件 和 2 个乙种零件配成一套) 解:设应分配 x 人生产甲种零件,则(62-x)人生产乙种零件. 根据题意,得132x=23(622-x), 解得 x=46,所以 62-x=16. 则应分配 46 人生产甲种零件,16 人生产乙种零件.
x
x
解:设小明有外国邮票 x 枚,故可列方程 2x-5+x=145,解得 x=50.
则他有中国邮票 95 枚,外国邮票 50 枚.
【点悟】 通过列表的方式分析实际问题中的等量关系,使题中的已知条件与未知 条件的关系清晰明了.
1.学校机房今年和去年共购置了 100 台计算机,已知今年购置计算机数量
类型之三 利用表格解决其他问题
小明喜欢集邮,他共有中外邮票 145 枚,其中中国邮票的枚数比外
国邮票的枚数的 2 倍少 5 枚,请问:小明有中外邮票各多少枚? 【解析】 我们通过列表的方式分析实际问题中的等量关系.设小明有外国邮票 x
枚,列表如下:
中国邮票 的枚数 145-x 2x-5
外国邮票
的枚数
(2)记录了两次加油时的累积里程(注:“累积里程”指汽车从出厂开始累
积行驶的路程).以下是李老师连续两次加油时的记录:
加油时间
加油量 加油时的累计
(升)
里程(千米)
2017 年 3 月 18 日 15
1 200
【志鸿全优设计】七年级数学上册 第五章 5应用一元一次方程——“希望工程”义演例题与讲解 北师大版
5 应用一元一次方程——“希望工程”义演1.等量关系的确定列方程解应用题的关键是找出能够反映题意的一个等量关系.对于复杂问题的等量关系可采用列表法分析数量之间的关系.一般可从以下几个方面确定等量关系:(1)抓住问题中的关键词,确定等量关系.如问题中的“和”、“差”、“倍”、“多”、“少”、“快”、“慢”等都是确定等量关系的关键词.(2)利用公式或基本数量关系找等量关系.(3)从变化的关系中寻找不变的量,确定等量关系.【例1】刘成用150元买了甲、乙两种书,共20本,甲种书单价10元,乙种书单价5元,则刘成买了这两种书各多少本?分析:本题的两个等量关系是:甲种书款+乙种书款=150元,甲种书量+乙种书量=20本.本题有两个未知数:甲种书的数量和乙种书的数量.因此既可以设甲书的数量为未知数,又可以设乙书的数量为未知数.解:(方法1)设刘成买了甲种书x本,则买了乙种书 (20-x)本,根据题意,得10x+5(20-x)=150,10x+100-5x=150,5x=50,x=10,20-10=10(本).答:刘成买了甲、乙两种书各10本.(方法2)设买了乙种书x本,则甲种书有(20-x)本.根据题意,得10(20-x)+5x=150,200-10x+5x=150,-5x=-50,x=10,20-10=10(本).答:刘成买了甲、乙两种书各10本.2.未知数的设法较复杂的问题,未知量可能有两个或两个以上,选择一个适当的未知量设为未知数非常重要.未知数设的适当,能给列方程带来简便.未知数的设法大致有两种:直接设未知数和间接设未知数.另外还可以根据解决问题的需要设出辅助未知数帮助解答.(1)直接设未知数直接设未知数,就是题目中问什么就设什么.对于只有一个相等关系的问题,直接设未知数就能解决问题.而对于较复杂的问题,直接设未知数时列方程可能会较困难.(2)间接设未知数,就是所设的未知数不是问题中最后所要求的未知数,而是设另外的量为未知数,这样做的好处是便于理顺数量关系、易于列方程.(3)设辅助未知数在列方程解应用题时,有时为了解题的需要,将某些量之间的关系说得更清晰,我们引入一些辅助未知数.这些未知数在解方程的过程中,往往是约掉了或者抵消了,最后求出的问题的解与这些未知数无关,因此,被称为辅助未知数.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例2-1】 一位老人立下遗嘱:把17头牛按12,13,19分给他的大儿子、二儿子、三儿子,问三个儿子各分得多少头牛?分析:解答本题,若直接设三个儿子分别分得多少头牛来求解比较困难,因为遗嘱中规定的大儿子、二儿子、三儿子应分得牛的头数的比例为12∶13∶19=9∶6∶2,所以可设一份为x ,然后根据“大儿子所分得的牛的头数+二儿子所分得的牛的头数+小儿子所分得的牛的头数=17”列方程求解.解:因为12∶13∶19=9∶6∶2,所以设每一份为x 头牛,则三人所分得的牛的头数分别为9x,6x,2x .根据题意,得9x +6x +2x =17.解这个方程,得x =1.所以9x =9,6x =6,2x =2.答:三个儿子分别分得9头、6头、2头牛.【例2-2】 高一某班在入学体检中,测得全班同学的平均体重是48千克,其中男同学平均体重比女同学平均体重多20%,而女同学人数比男同学人数多20%.求男、女同学的平均体重.分析:本题中的未知量有四个——男、女同学的平均体重和男、女同学的人数,可以设女同学的平均体重为x 千克,男同学有y 人两个未知数,根据本题中的相等关系“男女同学的总体重=全班同学的平均体重×总人数”列出一个方程,其中的未知数y 在解方程的过程中被约掉了,这里的y 就是辅助未知数.解:设女同学平均体重为x 千克,则男同学平均体重为1.2x 千克,设男同学为y 人,则女同学为1.2y 人.根据题意,得1.2xy +1.2xy =48(y +1.2y ).合并同类项,得2.4xy =48×2.2y .∵y ≠0,∴方程两边同除以2.4y ,得x =44.∴1.2x =1.2×44=52.8 (千克).答:男同学的平均体重为52.8千克,女同学的平均体重为44千克.3.几种复杂的应用问题含有两个或两个以上的等量关系的应用题主要有以下三种:(1)按比例分配问题按比例分配问题是指已知两个或几个未知量的比,分别求几个未知量的问题.比例分配问题中的相等关系是: 不同成分的数量之和=全部数量.(2)工程问题工程问题中的相等关系是: 工作量=工作效率×工作时间; 甲的工作效率+乙的工作效率=合作的工作效率; 甲完成的工作量+乙完成的工作量=完成的总工作量.解答工程类问题时,常常把总工作量看成整体1.找出工作效率(即单位时间内的工作量)是解答的关键.(3)资源调配问题 资源调配问题一般采取列表法分析数量关系,利用表格,可以很清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.【例3】 甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否完成该合同?为什么?(2)现两人合作了该工程的75%,因别处有急事,必须调走一人,问调走谁更合适一些?为什么?分析:(1)设甲、乙两人合作x 天完成合同,列出一元一次方程求出x 的值,即可知道甲、乙两人能否完成该合同;(2)因两人已完成了该工程的75%,分别计算出甲、乙两人单独做完未完成的25%各需要多少时间,调走合同期内不能完成任务的人更合适一些.解:(1)设甲、乙两人合作x 天完成合同,则甲、乙的工作效率分别为130,120.依题意,得⎝ ⎛⎭⎪⎫130+120x =1.解这个方程,得x =12.因为12<15,所以两人能完成该合同. (2)调走甲更合适一些.理由:设甲单独完成剩下的工程需x 天,乙单独完成剩下的工程需y 天.依题意,得130x =1-75%,120y =1-75%.解得x =7.5,y =5. 因为两人合作12天完成任务,所以完成任务的75%需要12×75%=9(天),所以还剩6天可以让另一个人单独完成任务.而7.5>6,5<6,说明甲不能按期完成任务,而乙能完成.所以调走甲更合适一些.。
第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上
初中数学北师大版七年级上学期第五章 5.5应用一元一次方程——“希望工程”义演一、单选题1.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树。
设男生有x人,则( )A. 3x+2(30-x)=72B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 2x+3(72-x)=302.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设A 种饮料单价为x元/瓶,那么下面所列方程正确的是A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=133.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.4.2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A. 21时B. 22时C. 23时D. 24时5.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A. 10x+5y=75B. 5x+10y=75C. 10x﹣5y=75D. 10x=75+5y二、填空题6.有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.设大和尚有x人,则可列一元一次方程为________.7.鸡兔同笼是我国古代著名趣题之一,书中是这样叙述的:“今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?意思是有若干只鸡兔在同一个笼子里从上面数有35个头,从下面数有94只脚,则笼子中鸡________只,兔________只。
初中数学北师大版七年级上册 应用一元一次方程——“希望工程“义演
实际问题
数学问题
已知量、未知量、等量关系
方程
方程的解
解的合理性
解释
抽象
分析
列出
求出
验证
合理
不合理
作业内容
教材作业
从课后习题中选取
自主安排
配套练习册练习
(2)不办会员卡花200元,办会员卡时花20+200×0.8= 180(元),所以买标价为200元的商品时,办会员卡合算,能省20元.
(1)设买标价x元的商品办会员卡与不办会员卡花钱一样多.根据题意,得x=20+0.8x,解得x=100.
所以买标价100元的商品办会员卡与不办会员卡花钱一样多.
(3)不办会员卡花60元,办会员卡花20+60×0.8=68(元),所以买标价为60元的商品时,不办会员卡合算,能省8元.
3.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2∶3,甲桶果汁与乙桶果汁的体积比为4∶5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满大纸杯 ( )A.64个 B.100个 C.144个 D.225个
B
4.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元,巧克力每块3元,问班主任分别买了多少果冻和巧克力?
《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是( )A.5x-45=7x-3 B.5x+45=7x+3 C. D.
y=1750
+=1000
讨论:如果票价不变,那么售出1000张票所得 票款可能是6930元吗?为什么?
七年级数学上册 第五章 一元一次方程课时练习 (新版)北师大版
第五章 一元一次方程1 认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=22.方程x +3=-1的解是( ) A .x =2 B .x =-4 C .x =4 D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-32.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.2 求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x2.解方程-3x +4=x -8时,移项正确的是( ) A .-3x -x =-8-4 B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来.解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.第2课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?第3课时 利用去分母解一元一次方程1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?3 应用一元一次方程——水箱变高了1.内径为120mm的圆柱形玻璃杯,和内径为300mm、内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A.150mmB.200mmC.250mmD.300mm2.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A.4cm2B.6cm2C.8cm2D.12cm23.将一个底面半径是5cm,高为10cm的圆柱体冰淇淋盒改造成一个直径为20cm的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.4 应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?5 应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?6 应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是( )A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第五章一元一次方程1 认识一元一次方程第1课时一元一次方程1.C2.B3.84.3x+20=4x-25第2课时等式的基本性质1.D2.D3.解:(1)x =5.(2)x =-4.(3)x =-7.2 求解一元一次方程第1课时 利用移项解一元一次方程1.D2.A3.B4.解:(1)x =-32.(2)x =92. 5.解:他的解答不正确.正确解答:移项,得2x +x =5+1,合并同类项,得3x =6,系数化为1,得x =2.第2课时 利用去括号解一元一次方程1.D2.A3.-14.解:(1)x =6.(2)y =-6.(3)x =8.(4)x =0.5.解:设他投进3分球x 个,则投进2分球(x +4)个.由题意得2(x +4)+3x =23,解得x =3,则x +4=7.答:他投进了7个2分球,3个3分球.第3课时 利用去分母解一元一次方程1.D2.D3.(1)92 (2)434.解:(1)x =3.(2)x =32.(3)x =-516.(4)y =-25. 5.解:设这个班共有x 名学生,根据题意得x 8=x6-2,解得x =48. 答:这个班共有48名学生.3 应用一元一次方程——水箱变高了1.B2.C3.解:设改造后圆柱体的高为x cm ,根据题意得25π×10=100πx ,解得x =2.5. 答:改造后圆柱体的高为2.5cm.4.解:设这个正方形挂衣架的边长为x dm ,根据题意得4x =3+4+5,解得x =3,则x 2=9. 答:这个正方形挂衣架的面积为9dm 2.4 应用一元一次方程——打折销售1.C2.D3.B4.解:设进价是x 元,由题意得0.9×(1+20%)x =x +20,解得x =250.答:进价是250元.5.解:设打x折时利润率为10%,根据题意得0.1x×1100=600×(1+10%),解得x=6.答:为了保证利润率不低于10%,最低可打6折销售.5 应用一元一次方程——“希望工程”义演1.解:设应分配给甲仓库x吨,则分配给乙仓库(15-x)吨,根据题意得35+x=2(19+15-x),解得x=11,则15-x=4.答:应分配给甲仓库11吨,分配给乙仓库4吨.2.解:设新团员中有x名男同学,则有(65-x)名女同学,由题意得32x+24(65-x)=1800,解得x=30.答:这些新团员中有30名男同学.3.解:设应分配x名工人生产脖子上的丝巾,则分配(70-x)名工人生产手上的丝巾,由题意得1800(70-x)=2×1200x,解得x=30,则70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.6 应用一元一次方程——追赶小明1.B2.163.解:设轮船在静水中的速度是x千米/时,根据题意得2(x+3)=3(x-3),解得x=15.答:轮船在静水中的速度是15千米/时.4.解:设快车开出x小时后与慢车相遇,则此时慢车开出(x+1.5)小时,根据题意得80x+40(x +1.5)=300,解得x=2.答:快车开出2小时后与慢车相遇.(本资料素材和资料部分来自网络,供参考。
北师大版初中数学七年级上册5.5 应用一元一次方程“希望工程”义演1
北师大初中数学七年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!5.5 应用一元一次方程——“希望工程”义演1.(8分)(2012·柳州中考)列方程解应用题:今年“六一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?2.(8分)老牛:“累死我了!”小马:“你还累?这么大的个儿,才比我多驮了2个.”老牛:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!”小马:…根据老牛和小马的对话,你能列方程求出它们各驮了多少个包裹吗?【拓展延伸】3.(10分)某班组织春游,A,B两个风景点每人任选一处.去A风景点的每人付费20元,去B风景点的每人付费30元.全班共付费1200元.(1)若去A,B两风景点的人数相等,问该班有学生多少人?(2)若去B风景点的人数比去A风景点的多5人,去A,B两风景点的学生各多少人?答案解析1.【解析】设甲种礼物买了x件,则乙种礼物买了(x+1)件,根据题意得:1.2x+0.8(x+1)=8.8,解方程得:x=4.答:甲种礼物买了4件,乙种礼物买了5件.2.【解析】设小马驮了x个包裹,则老牛驮了(x+2)个包裹.由题意得:x+2+1=2(x-1),解方程得:x=5.所以x+2=5+2=7.答:小马驮了5个包裹,老牛驮了7个包裹.3.【解析】(1)设该班有学生x人,由题意得:x·20+x·30=1200,解方程得:x=48.答:该班有学生48人.(2)设去A风景点有y人,则去B风景点有(y+5)人,由题意得:20y+30(y+5)=1200,解方程得y=21,y+5=26.答:去A风景点有21人,去B风景点有26人.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
数学思维可以让他们更理性地看待人生。
北师大版七年级上册数学 5.5 应用一元一次方程——“希望工程”义演 试题
5.5 应用一元一次方程——“希望工程”义演一、选择题(每小题4分,共12分)1.根据图中提供的信息,可知一个杯子的价格是( )A.51元B.35元C.8元D.7.5元2.某牧场放养的鸵鸟和奶牛一共70头,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟比奶牛多( )A.20头B.14头C.15头D.13头3.学校买篮球和排球共30个,共用936元,篮球每个36元,排球每个24元,则篮球买了( )A.12个B.15个C.16个D.18个二、填空题(每小题4分,共12分)4.(2012·山西中考)图1是边长为30cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.5.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块,问这些新团员中有名男同学.6.一个三位数,其各位上数字之和为15,百位上的数字比十位上的数字少1,个位上的数字是十位上的数字的2倍,则这个三位数是.答案解析1.【解析】选C.设一个杯子为x元,一杯一壶为43元,则一壶为(43-x)元,由题知二杯二壶+一杯=94元,即:43×2+x=94,解得:x=8.2.【解析】选B.设奶牛为x头,则鸵鸟的头数为(70-x)头,由题意得:4x+2(70-x)=196,解方程得x=28,故70-2x=14.3.【解析】选D.设篮球买了x个,则排球买了(30-x)个,则可以列出方程为:36x+24(30-x)=936,解方程得:x=18.4.【解析】设长方体的高为x cm,则长方体宽为2x cm,所以x+2x+x+2x=30,解得x=5 cm,所以长方体的宽为10cm,长方体的长为30-2×5=20(cm),长方体的体积为:5×10×20=1 000(cm3).答案:1 000【归纳整合】解答图形问题需要注重数形结合,首先要认真观察,分析图形的组成,尤其要弄清图形中某些量之间的关系.然后设出未知数,表示出各个量,再根据图形构成中的相等关系列方程,从而解决问题.5.【解析】设新团员中有x名男同学,则有(65-x)名女同学,由题意得:32x+24(65-x)=1800,解方程得:x=30.答案:306.【解析】设十位上的数字为x,则百位上的数字为(x-1),个位上的数字为2x,由题意得:x-1+x+2x=15,解方程得:x=4,则百位上的数字为3,个位上的数字为8,则这个三位数是348.答案:348。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每小 时能挖土18 m3或运土12 m3,为了使挖出的土能及时运走,安排x台机 械挖土,则可列方程( B ) A.18x-12x=15 B.18x=12(15-x) C.12x=18(15-x) D.18x+12x=15 5.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙 票,总计用了112元,已知每张甲票比乙票贵2元.则甲票、乙票的票价 分别是( A ) A.甲票10元/张,乙票8元/张 B.甲票8元/张,乙票10元/张 C.甲票12元/张,乙票10元/张 D.甲票10元/张,乙票w1w2w元.ni/u张享牛牛文档分 牛牛文档分 享
13.一项工程,甲单独做需要 40 天完成,乙单独做需要 50 天完成,甲 先单独做 4 天,然后两人合作 x 天完成这项工程,则可列的方程是( D ) A.440+40+x 50=1 B.440+40×x 50=1 C.440+5x0=1 D.440+4x0+5x0=1 14.数学考试出了 15 道题,做对一题得 4 分,做错一题扣 2 分,若王刚 做了全部 15 道题,共得了 36 分,那么他做对了( B ) A.10 道题 B.11 道题 C.,一共租了10条船,刚好坐满,已知每条大船可 坐8人,每条小船可坐4人,问大船和小船各租了多少条? 解:设大船租了x条,则小船租了(10-x)条,依题意得8x+4(10-x)= 64,解得x=6,10-x=4,即租大船6条,小船4条
6.一项工程,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天, 余下的工作由乙继续完成,则从开始到结束这一工程共需的天数为 ( D) A.3天 B.4天 C.6天 D.7天 7.将一摞笔记本分给若干名同学,每个同学6本,则剩下9本;个同 学8本,又差了3本,问共有多少本笔记本?多少个同学? 响,今年某些农产品的价格有所上涨.张大叔在 承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元,其中甲种蔬 菜每亩获利1200元,乙种蔬菜每亩获利1500元,则甲、乙两种蔬菜各种 植了多少亩? 解:甲、乙动手整修操场,如果让七年级学生单独工作,需 要6小时完成;如果让八年级学生单独工作,需要4小时完成.现在由七 年级、八年级学生一起工作x小时,完成了任务.根据题意,可列方程 为___(16_+__14_)_x_=__1_____,解得x=_1_52__. 11.现有面值为2元和5元的人民币共39张,币值共计111元,则面值2元 的人民币有__2_8_张,面值5元的人民币有__1_1_张. 12.甲、乙两工厂某种原料共有247吨,现在甲工厂每天用原料17吨, 乙工厂每天用原料12吨,7天后两厂剩下原料相等,甲工厂原有原料 __1_4_1___吨,乙工厂原有原料赛,班长安排小明购买奖品,如图是小明买 回奖品时与班长的对话情境:
请根据上面的信息解决问题. (1)试计算两种笔记本各买了多少本; (2)请你解释:小明为什w么ww不.niu可wk能.co找m享牛回牛6文8库元文?档分
解:(1)设单价为 5 元的笔记本买了 x 本,则单价为 8 元的笔记本买了(40 -x)本,依题意得 5x+8(40-x)=300-68+13,解得 x=25,40-x= 15,则单价为 5 元和单价为 8 元的笔记本分别买了 25 本和 15 本 (2) 设买了 m 本单价为 5 元的笔记本,则买了(40-m)本单价为 8 元的笔记 本,依题意得 5m+8(40-m)=300-68,解得 m=838,因为 m 应是正 整数,所以 m=838,不合题意,故不可能找回 68 元
5.应用一元一1.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样 分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子 的人数为___(5_4_-__x_)__人,根据题意,可列方程为___8_x_=__1_0_(_5_4_-__x_)____, 解得x=__3_0_. 2.(2015·荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20 元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种 药材买了__5__千克. 3.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好 用去14元.如果设水性笔的单价为x元,那么下列方程正确的是( A ) A.5(x-2)+3x=14 B.5(x+2)+3x=14 C.5x+3(x+2)=14 Dw.ww5.xn+iuw3k.(cxo-m乙两种商品共160件,其进价和售价如下表,若 商店计划销售完这批商品后能获利1100元(注:获利=售价-进价),问 甲、乙两种商品应分别购进多少件?
进价(元/件) 售价(元/件)
甲乙 15 35 20 45
解:设甲种商品应购进x件,则乙种商品应购进(160-x)件,依题意得 (20-15)x+(45-35)(160-x)=1100,解得x=100,则160-x=60,即 购进甲种商、小聪两人负责选购圆珠笔、钢笔共22支,送 给某山区学校的同学,他们去商场,看到圆珠笔每支5元,钢笔每支6 元. (1)若他们购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了 多少支? (2)若购买圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100 元的前提下,请你写出一种选购方案. 解:(1)圆珠笔买了12支,钢笔买了10支 (2)答案不唯一,圆珠笔不少于19支即可