电磁场与电磁波的应用

合集下载

电磁场与电磁波在电子通信技术中的应用研究

电磁场与电磁波在电子通信技术中的应用研究

电磁场与电磁波在电子通信技术中的应用研究摘要:在对电磁现象讨论研究的过程中,电磁场的概念应运而生。

电磁场最早由英国科学家提出,随着研究的深入,电磁场的概念不断完善,人们发现电和磁关系密切。

在实验的过程中,在导体中放入导棒就会产生很强的电流,说明了二者之间关系密切。

带电物体产生的物理场就是电磁场,其具有相互联系、依存的特点。

电磁波的产生需要垂直和振荡的电场以及电磁场,二者在波的状态下移动时,物体会有电磁波产生和释放。

在电子通信技术中,电磁波和电磁场发挥了十分重要的作用。

尤其是电磁波的应用十分广泛,包括手机、网络传输等,为人们的通信带来了极大的便利。

关键词:电磁场;电磁波;电子通信技术;应用分析1电磁场电磁场是带电物体发射的物理磁场,在电磁场中带电的物体将清楚地感受到电磁场引起的相互作用力。

电磁场本身是内部耦合的,电材料和磁性材料相互存在,并且随着时间的推移,电材料产生磁性材料。

随着时间的延长,磁性材料产生电材料,它们成为每个人的原因和后果,形成整个电磁场。

当电磁场每天运行时,这可能是由带电粒子或其自身变速运动强度的变化引起的。

随着时间的变化,电磁场的时变电磁场与静态电磁场本身之间存在显着的差异,并且经常会观察到某些时变材料效应。

这些物质效应对产业发展具有重要意义,对产业发展具有重要作用。

电磁场的整体结构包括电材料和磁性材料两个方面。

在实际使用中,必须使用材料e的电强度(或电位移d)和磁性材料b的密度(或磁场强度h)来表达特异性。

据国外著名物理学家麦克斯韦称,权力产生磁场、电材料和磁性材料的理论是密切相关的。

随时间变化的电材料产生磁性材料,磁性材料也产生电材料。

当与发电有关的磁场开始随时间变化时,这种结构中的电材料和磁性材料相互摩擦,导致电磁场强烈的相互运动,形成电磁波。

电磁波在自由空间的透射率为c=3× 108米/秒。

2电磁波电磁波的概念始于1865年。

电磁波的概念是麦克斯韦提出的。

赫兹确认电磁波的存在直到1887年才实现。

电磁场与电磁波的理论与应用

电磁场与电磁波的理论与应用

电磁场与电磁波的理论与应用电磁场与电磁波是电磁学中的重要概念,它们在现代科技与生活中有着广泛应用。

本文将围绕电磁场与电磁波的理论基础展开讨论,并探索它们在实际应用中的意义。

1. 电磁场的理论基础电磁场是由带电粒子周围的电荷所形成的一种物理场。

根据电场与磁场之间的相互作用,我们可以推导出麦克斯韦方程组,这是电磁场理论的基础。

麦克斯韦方程组包括四个方程式,分别是:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定理。

这些方程式描述了电荷的分布、电流的产生和磁场的形成,从而揭示了电磁场的本质。

2. 电磁波的理论基础电磁波是指由变化的电场和磁场相互作用而形成的波动现象。

根据麦克斯韦方程组的推导,我们可以得到有关电磁波的方程式,即麦克斯韦方程的波动解。

其中,电磁波的传播速度等于光速,即300,000km/s。

根据频率和波长的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等不同类型。

3. 电磁场与电磁波的应用电磁场与电磁波的理论已广泛应用于各个领域,为人类的生活与科技进步做出了重要贡献。

3.1 通信领域电磁波在通信领域起着关键作用。

无线电通信、手机通讯、卫星通信等都依赖于电磁波的传输和接收。

通过合理的调制和解调信号,我们可以实现远距离的信息传递。

3.2 医学领域医学成像技术如X射线、磁共振成像(MRI)和超声波等都利用了电磁波在物质中的相互作用特性。

这些技术可以帮助医生进行诊断和治疗,为疾病的早期发现和治疗提供了可能。

3.3 物理学研究电磁场与电磁波在物理学研究中扮演着重要角色。

例如,研究电磁波的干涉和衍射现象可以揭示光的性质;通过电磁场的分析,可以研究电磁波与物质的相互作用规律。

这些研究对于理解自然界和推动科学发展具有重要意义。

3.4 能源领域电磁场与电磁波在能源领域也有广泛应用。

太阳能板利用光的电磁辐射转化为电能,而微波炉则是利用微波的电磁波来产生加热效果。

这些应用不仅改善了人们的生活质量,还为减少对化石燃料的依赖做出了贡献。

看见无形的力量电磁场与电磁波的应用与原理

看见无形的力量电磁场与电磁波的应用与原理

看见无形的力量电磁场与电磁波的应用与原理看见无形的力量——电磁场与电磁波的应用与原理电磁场和电磁波是当今科学技术领域中至关重要的概念,它们具有广泛的应用和深远的影响。

不可见的电磁场和电磁波,正是支撑着我们日常生活中的许多现象和技术。

本文将就电磁场和电磁波的基本概念以及它们在现实生活中的应用进行探讨。

一、电磁场的基本概念与原理1. 什么是电磁场电磁场是由带电物体或变化的电流所产生的一种物理现象。

在电磁场中,电荷之间存在相互作用力,这种力被称为电磁力。

电磁场可以分为静电场和磁场。

静电场是由带电粒子产生的场,而磁场则由电流所产生。

2. 电磁场的产生和传播当电荷或电流产生时,它们会形成电场和磁场。

电场是由电荷引起的,而磁场是由电流引起的。

电磁场的变化会导致电磁波的产生和传播,这是电磁场与电磁波之间密切关联的一个重要方面。

3. 电磁场的数学描述电磁场可以用数学方程来描述。

麦克斯韦方程组是描述电磁场和电磁波的基本方程。

它们包括四个方程,即麦克斯韦方程组的两个高斯定律和两个法拉第定律。

通过这些方程,我们可以描述电磁场的起源和性质。

二、电磁波的基本概念与原理1. 什么是电磁波电磁波是由电磁场的变化产生的一种波动现象。

电磁波可以传播在真空中,也可以传播在介质中。

电磁波由电场和磁场相互作用而构成,其传播速度为光速。

2. 电磁波的特性电磁波具有很多特性,包括振幅、波长、频率、传播速度等。

振幅决定了电磁波的强度,波长和频率决定了电磁波的性质和种类。

电磁波的传播速度在真空中为光速,即约为300,000 km/s。

3. 电磁波的分类根据频率的不同,电磁波可以分为不同的种类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

这些电磁波在科学研究、通信、医疗、遥感等领域都有广泛的应用。

三、电磁场与电磁波的应用1. 通信技术电磁场和电磁波在通信技术中起着至关重要的作用。

无线电波被广泛应用于广播、电视、手机和无线网络等通信领域。

电磁场与电磁波的历史发展与典型应用论文

电磁场与电磁波的历史发展与典型应用论文

电磁场与电磁波理论的发展与应用论文电磁理论如今已经拥有十分完备的体系,并且广泛应用于我们的生活中,大大提高了我们的生活质量。

这并不是某一位科学家的功劳,而是靠着一代代科学家前赴后继,后人站在前人的肩膀上不断探索发现,不断发展的结果。

公元前6,7世纪,人们发现了磁石吸铁,磁石指南以及摩擦生电现象,从此人们对“磁"有了概念,但是也仅仅停留于经验阶段,并没有理论研究。

并且,19世纪以前,人们还是认为,“电"与“磁"是两个不相关的概念。

18实际末期,德国科学家谢林认为,宇宙是由活力的,而不是僵死的。

他认为电就是宇宙的活力,是宇宙的灵魂,磁、光、热是相互联系的。

1777年,法国物理学家库仑发明了能够以非常高的精度测出非常小的力的扭秤,利用扭秤可以算出磁力或者静电力的大小。

1785年,库仑利用自己的扭秤建立了库仑定理,即两个电荷之间的力与两电荷的乘积成正比,与他们之间的距离平方成反比。

库伦定理是电学史上第一个定量规律,他使电学研究从定性阶段进入到了定量阶段,在电学史上是一块重要的里程碑。

1789年,生物学家迦伐尼发现了动物电。

1800年,迦伐尼的好朋友伏打用锌片与铜片夹以盐水浸湿的纸片叠成电堆产生了电流,这个装置后来称为伏打电堆,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放多这样的小杯子中联起来,组成电池。

他指出这种电池"具有取之不尽,用之不完的电”,“不预先充电也能给出电击"。

伏打电堆(电池)的发明,提供了产生恒定电流的电源――化学电源,使人们有可能从各个方面研究电流的各种效应。

从此,电学进入了一个飞速发展的时期――电流和电磁效应的新时期。

直到现在,我们用的干电池就是经过改时后的伏打电池。

干电池中用氯化铵的糊状物代替了盐水,用石墨棒代替了铜板作为电池的正极,而外壳仍然用锌皮作为电池的负极。

人们为了纪念他们的功绩,就把这种电池称为伽伐尼电池或伏打电池,并把电压的单位用"伏特"来命名。

电磁场与电磁波在电子通信技术领域中的应用

电磁场与电磁波在电子通信技术领域中的应用

电磁场与电磁波在电子通信技术领域中的应用电、磁现象是大自然最重要的物理现象,也是最早被科学家们关心和研究的物理现象。

19世纪以前,电、磁现象作为两个独立的物理现象,没有发现电与磁的联系,但是这些研究为电磁学理论的建立奠定了基础。

18世纪末期,德国哲学家谢林认为,宇宙是有活力的,而不是僵死的。

他认为电就是宇宙的活力,是宇宙的灵魂,电、磁、光、热是相互联系的。

法拉第在谢林的影响下,相信电、磁、光、热是相互联系的。

奥斯特1820年发现电流以力作用于磁针后,法拉第敏锐地意识到,电可以对磁产生作用,磁也一定能够对电产生影响。

1821年他开始探索磁生电的实验。

1831年他发现,当磁捧插入导体线圈时,导体线圈中就产生电流。

这表明电与磁之间存在着密切的联系。

麦克斯韦深入研究并探讨了电与磁之间相互作用的关系,并发展了场的概念。

他在法拉第实验的基础上,总结了宏观电磁现象的规律,引进位移电流的概念。

这个概念的核心思想是:变化着的电场能产生磁场;与变化着的磁场产生电场相对应。

在此基础上提出了一组表达电磁现象基本规律的偏微分方程,称为麦克斯韦方程组,成为经典电磁场理论的基本内容。

电磁场作为无线电技术的理论基础,集中于三大类应用问题的研究。

电磁场(或电磁波)作为能量的一种形式,是当今世界最重要的能源,其研究领域涉及能量的产生、储存、变换、传输和综合利用;电磁波作为信息传输的载体,成为当今人类社会发布和获取信息的主要手段,主要研究领域为信息的产生、获取、交换、传输、储存、处理、再现和综合利用;电磁波作为探测未知世界的一种重要手段,主要研究领域为电磁波与目标的相互作用特性、目标特征的获取与重建、探测新技术等。

1887年,德国科学家赫兹用火花隙激励一个环状天线,用另一个带隙的环状天线接收,证实了麦克斯韦关于电磁波存在的预言,这一重要的实验导致了后来无线电报的发明。

从此开始了电磁场理论应用与发展的时代,并且发展成为当代最引人注目的学科之一。

电磁场与电磁波谢处方pdf

电磁场与电磁波谢处方pdf

电磁场与电磁波谢处方pdf电磁场与电磁波是物理学中非常重要的概念,对我们的生活、科技和社会发展都有着深远的影响。

本文将介绍电磁场与电磁波的基本概念,并探讨它们在各个领域的应用和意义。

首先,我们来了解一下什么是电磁场。

电磁场是由电荷和电流引起的空间中的物理场,它包括电场和磁场两个部分。

电场是由电荷产生的力场,描述了电荷之间的相互作用。

磁场是由电流产生的力场,描述了电流所产生的磁力和磁感应强度。

电磁场的存在对我们生活中的各种电器和通讯设备起着至关重要的作用。

例如,电磁场可以通过无线电波传输信息,实现手机和电视的无线通讯。

此外,电磁场也广泛应用于医学领域,如核磁共振成像(MRI)技术利用强大的磁场和电磁波来观察人体内部结构,帮助医生做出准确的诊断。

接下来,我们来了解一下电磁波。

电磁波是电磁场的一种传播方式,它是一种特殊的波动现象,可以在空间中传播而不需要媒质的支撑。

电磁波具有等电场和等磁场的交替变化,并以光速传播。

根据波长的不同,电磁波被分为不同的频段,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

电磁波在我们的生活中起着至关重要的作用。

无线电波使得我们能够通过无线电收音机和电视接收到远方的信息,微波炉利用微波来加热食物,光线使得我们能够看到周围的世界。

此外,紫外线可以杀灭细菌和病毒,被广泛应用于消毒和杀虫。

电磁场和电磁波的研究对于我们理解自然界的基本规律和发展新技术有着重要的意义。

我们通过对电磁场和电磁波的认识,掌握了无线通信技术、医学诊断技术、光电子技术等一系列重要的科学和技术。

我们能够利用电磁波来探测遥远的星系和宇宙,推动了天文学的发展。

同时,电磁场和电磁波的研究也带动了量子物理学、相对论等前沿领域的发展。

总之,电磁场与电磁波是物理学中非常重要的概念。

它们在我们的生活中起到了举足轻重的作用,广泛应用于电子技术、通讯技术、医学技术等领域。

我们的科技和社会发展离不开对电磁场和电磁波的研究。

电磁场与电磁波的应用

电磁场与电磁波的应用

电磁场与电磁波的应用0 引言电磁场与电磁波简介:电磁波是电磁场的一种运动形态。

电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。

变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。

如果没有发现电磁波,现在的社会生活将是无法想象的。

所以,本文主要研究电磁场与电磁波在生活中的多项应用,其中,将主要研究电能的无线传输技术。

1 电磁场与电磁波理论的建立在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。

现在人们已经认识清楚,电磁场是物质在一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。

电磁场本身的运动服从波动的规律。

这种以波动形式运动变化的电磁场称为电磁波。

库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。

安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。

基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。

但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。

直到法拉第, 他认为场是真实的物理存在, 电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。

他在1831 年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。

1846 年, 法拉第还提出了光波是力线振动的设想。

法拉第提出的电磁感应定律表明,磁场的变化要产生电场。

高中物理课件 电磁波及其应用

高中物理课件  电磁波及其应用

判一判 (1)变化的电场一定产生变化的磁场。 (×) (2)恒定电流周围产生磁场,磁场又产生电场。 (×) (3)电磁波和光在真空中的传播速度都是3.0×108 m/s。 (√ ) (4)麦克斯韦预言并验证了电磁波的存在。 (×) (5)电磁波在任何介质中的传播速度均为3×108 m/s。 (×)
知识点二、电磁波谱的理解 角度1. 各种电磁波的共性和个性 1.共性: (1)在本质上都是电磁波,遵循相同的规律,各波段之间的区别并没有 绝对的意义。 (2)都遵循公式v=λf,在真空中的传播速度都是c=3×108 m/s。 (3)传播都不需要介质。 2.个性:不同的电磁波由于具有不同的波长(频率),故具有不同的特性。
第六章 电磁现象与电磁波 6.4 电磁波及其应用
知识梳理 一、电磁场与电磁波 1.电磁场:(1)麦克斯韦电磁场理论的两个基本假设: ①变化的磁场能够在周围空间产生_电__场__(如图甲所示)。 ②变化的电场能够在周围空间产生_磁__场__(如图乙所示)。
(2)电磁场:变化的_电__场__和变化的_磁__场__交替产生,形成不可分割 的统一体,称为_电__磁__场__。

荧光效应
最强
电磁波谱 用途
无线电波 红外线
可见光 紫外线
X射线
γ射线
通信、广 播、导航
加热遥测、 遥感、红外 摄像、红外 制导
日光灯、杀 照明、
菌消毒、治 照相等
疗皮肤病等
检测、探 探测、
测、透视、 治疗
治疗
提醒: (1)波长越长的电磁波频率越低,能量越低,衍射能力越强,穿透力越差。 (2)波长越短的电磁波频率越高,能量越高,衍射能力越弱,穿透力越强。
2.雷达: (1)雷达是利用_电__磁__波__进行测距、定位的仪器。 (2)组成:雷达主要由发射机、接收机和显示器等部分组成。 (3)雷达工作时使用的是_微__波__(选填“长波”“中波”或“微波”)。 3.移动电话: (1)_现__代__通__信__技__术__是电磁波最辉煌的应用成果之一。 (2)无线电话、无线对讲机、移动电话均是通过_电__磁__波__实现信号的发射 KH—12光学侦察卫星,采用先进的自适应光学 成像技术,地面分辨率最高可达0.1 m,是美国天基侦查的主力军。那么, 你知道它上面携带的相机在夜间进行红外摄像时工作在什么波段吗?该波 段有什么特点?

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用摘要:电磁场和电磁波在现代通信技术中扮演着重要的角色。

电磁场和电磁波在现代通信技术中的应用具有广泛的前景和巨大的潜力,将会在未来的科技发展中发挥越来越重要的作用。

本文主要探讨了电磁场和电磁波的物理特性、传输方式以及在通信技术中的应用。

关键字:电子通信技术;电磁场;电磁波引言:自从人类发现电磁现象以来,电磁场和电磁波就一直扮演着重要的角色。

电磁波作为电磁场的传播方式,被广泛应用于无线电通信、微波通信、光纤通信等方面。

随着电子通信技术的快速发展,电磁场和电磁波的应用范围也在不断扩大和深化。

在现代通信系统中,电磁场和电磁波已成为不可或缺的基础,对通信技术的性能、速度和可靠性起着至关重要的作用。

一、电子通信技术中电磁场和电磁波的运用现状1.在无线电通信方面,电磁场和电磁波被广泛应用于移动通信、卫星通信、雷达系统等。

移动通信技术中,电磁场和电磁波是无线信号的主要传输媒介,而卫星通信系统中则是重要的传输和接收方式。

雷达系统中,电磁场和电磁波被用于探测、跟踪和测量远距离目标。

2.在微波通信方面,电磁场和电磁波被广泛应用于微波电路、微波天线、微波雷达等方面。

微波通信技术中,电磁场和电磁波的高频特性使得其在高速数据传输、远距离通信、高分辨率成像等方面具有优势。

3.在光纤通信方面,电磁场和电磁波被用于光纤传输和光通信技术中。

光纤通信技术中,光信号是通过光纤中的电磁波来传输的,其高带宽、低损耗、抗干扰等特性使得其在高速数据传输、长距离通信、安全通信等方面具有广泛的应用前景。

二、电子通信技术中电磁场和电磁波的运用策略1.研究和创新高效的电磁场和电磁波的产生和传输技术,以提高通信的速度和质量。

研究和创新高效的电磁场和电磁波的产生和传输技术,对于提高通信速度和质量具有非常重要的意义。

随着信息时代的到来,人们对于通信的要求越来越高,传统的通信方式已经无法满足现代化的需求。

因此,研究和创新电磁场和电磁波的技术成为当务之急,这不仅可以提高通信的速度和质量,还可以开发出更为高效和智能的通信技术,满足人们日益增长的通信需求。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活中扮演着重要的角色。

本文将会探讨电磁场与电磁波的定义、特性以及应用。

首先,我们来了解什么是电磁场。

电磁场是由电荷和电流产生的一种物理场,在空间中具有能量和动量。

电磁场包含了电场和磁场两个要素。

电场是由电荷产生的力场,而磁场则是由电流产生的力场。

当电荷或电流存在时,它们会在周围产生电场和磁场,这些场相互作用并相互影响,形成电磁场。

电磁场的特性非常丰富。

首先,电磁场是无形的,即我们无法直接感知电磁场的存在。

然而,我们可以通过观察电场和磁场的效应来间接感知电磁场。

例如,当我们将一个带有电荷的物体靠近另一个带有电荷的物体时,它们会相互排斥或吸引,这是由于它们之间相互作用的电场产生的效应。

其次,电磁场具有传播性。

当电荷或电流发生变化时,电磁场会随之变化,并以一种特定的形式传播出去,形成电磁波。

电磁波是电磁场的一种特殊表现形式,它可以在真空中传播,并以光速传播。

电磁波包括了不同频率和波长的波,例如无线电波、微波、可见光、紫外线、X射线和γ射线等。

电磁场和电磁波在许多领域有广泛的应用。

其中一个重要的应用是通信。

无线电波被广泛用于无线电通信、电视和手机等设备中。

电磁波还被应用于医疗诊断和治疗领域。

例如,X射线被用于检查骨骼和器官,而核磁共振成像(MRI)则被用于观察人体内部的结构和病变。

此外,电磁场和电磁波还被用于能源和工业领域。

例如,电力是通过电磁场的作用而传输的。

发电厂中的发电机通过生成电流产生电磁场,并将电能输送到我们的家庭和工厂。

另外,激光器利用强大的电磁场来产生一束高强度的激光光束,广泛用于切割、焊接和激光打印等工业应用。

除了以上的应用外,电磁场和电磁波还在科学研究中扮演着重要角色。

电磁波可以用于研究星际空间和宇宙中的天体。

天文学家通过收集来自外太空的电磁波,并分析其中的信息,来研究宇宙的演化和构成。

此外,科学家们还利用电磁波来研究物质的微观结构和性质,以及探索量子力学等领域。

电磁场与电磁波在生活中的应用

电磁场与电磁波在生活中的应用

电磁场与电磁波在现实生活中的应用高功率射频武器技术:在进攻性电子战装备体系中,电子硬摧毁武器已经成为越来越重要的组成部分。

从根本上来说,电子硬摧毁武器可分为两大类,即反辐射武器和高功率射频武器。

随着科学技术的不断进步,这两类武器迅速成长为能够彻底摧毁敌方电子设备和电子信息系统的最具威胁的电子战主战装备。

其中,反辐射武器只能针对单一目标辐射源,而且还必须精确地知道并预先装定目标辐射源的技术参数(尤其是目标辐射源的位置坐标);传统的高功率微波武器虽然不需要了解目标电子设备或系统的详细技术参数及辐射源位置,却是完全依靠着大功率、高能来产生毁伤作用,而且主要的耦合途径是通过目标系统的孑L、缝、窗口、线缆等等透射到其内部的“后门耦合”途径。

另外,由于这种高功率射频武器完全工作在开环的模式下,因此,能量的利用率很低,损毁目标电子设备或系统所需要的功率阈值非常高。

若要使传统高功率射频武器达到更大的杀伤半径,必须要极大地增大其有效辐射功率或能量,而功率、能量的提高总是存在一定的物理极限,而且代价巨大。

新型的高功率射频武器应该是一种灵巧型射频武器,它是利用微波能量能够对许多敏感器件和电子电路产生“分子热”或“电冲激”效应的基本原理.主要通过“前门耦合”途径进入目标系统内部,对系统中的关键而又敏感易损的电子电路达成永久性功能毁伤,从而使目标系统完全失效。

高功率射频武器的基本概念:高功率射频武器,人们有时又称之为高功率微波武器,主要通过发射高密度的电磁波束来损坏或摧毁敌方设备或设施中的敏感和关键电子电路或其他器件而使其失效。

高功率射频武器技术是定向能武器技术的一个主要且潜在应用前景广阔的分支领域。

在以非线性、非接触和远距离/超视距精确打击为主要特征的现代战争中,高功率射频武器已经成为一种不容忽视的具有潜在抗衡能力的新型电子战武器。

利用微波能量的作用机理,高功率射频武器有时还可用来针对作战人员,使其丧失作战能力。

例如美国于2005年9月装备部队使用的首批“治安官”主动拒止系统(ADS)就是针对伊拉克反美武装人员的非致命高功率微波武器,其工作频率为95GHz,发射功率约100kW,有效作用距离为lkm左右,它所发出的微波能量可穿透到人体皮肤0.36mm深度处,不要1秒钟就可将皮肤中的水分子加热到54.44℃,从而使被照射者饱尝不可忍受的烧灼痛苦而丧失行为能力或者选择逃离。

电磁波与电磁场在通信技术方面的应用(电信)

电磁波与电磁场在通信技术方面的应用(电信)

电磁波与电磁场在通信技术方面的应用(电信)专业:通信工程学生:李梦紫学号:10387131 指导老师:谢致远老师摘要电磁场与电磁波作为无线电技术的理论基础,集中于三大类应用问题的研究。

电磁场(电磁波)作为能量的一种形式,是当今最重要的能源,其研究领域涉及能量的生产、存储、交换、传输和综合利用。

电磁波作为信息传送的载体,传输信息的主要技术之一,主要研究信息的产生、获取、交换、传输、处理、再现和综合利用。

在无线通信方面作为信息的主要载体,其研究领域涉及信息的产生、储存、变换、传输和综合利用,成为人们交流信息的重要技术。

即对无线技术的研究就是对电磁波传输的研究。

从08年中国电信业务重组后,到09年1月中国3G牌照的发放,中国电信正式进入3G时代,中国电信由传统的基础网络运营商转型为全业务的综合信息服务提供商。

面对来自中国移动和中国联通的激烈竞争,中国电信借助3G和Wi-Fi网络同时提供差异化的无线宽带服务,建立自己独有的竞争优势。

本文主要介绍中国电信的无线通信技术CDMA2000。

关键字:电磁波,电磁场,能量,通信,信息,中国电信,CDMA2000AbstractElectromagnetic field and electromagnetic wave as the theoretical basis of radio technology, has focused on three types of application study of the problem. Emf (electromagnetic wave) as a form of energy is the most important source of energy, its research areas related to energy production, storage, exchange, transfer and comprehensive utilization. Electromagnetic wave as the carrier of information transmission, one of the main technology of transmission information, mainly is the study of the production of information, access, switching, transmission, processing, and comprehensive utilization. In the aspect of wireless communication as the main carrier of information, its research area involves information production, storage, conversion, transmission and utilization, as an important technology of the people to exchange information. The research on wireless technology is the study of electromagnetic wave transmission. From 08 after restructuring of China telecom business, to January 09, the issuance of 3 g licenses, China formally entered the 3 g era, China telecom, China telecom transformation from the traditional foundation network operator for the whole business of integrated information service provider. Faced with fierce competition from China mobile and China unicom, China telecom with 3 g and wi-fi networks at the same time provide differentiated wireless broadband services, set up their own unique competitive advantage. This paper mainly introduces the China telecom wireless communication technologies.Key words: electromagnetic wave, electromagnetic field, energy, communications, information, and China telecom, CDMA2000引言当今是一个通信的时代,随着3G时代的到来,中国三大运营商,中国移动,中国电信,中国联通之间的竞争不断激烈,都争相利用有限的频带资源向用户提供更快捷,更方便,更经济的网络通信服务。

电路中的电磁场与电磁波传播

电路中的电磁场与电磁波传播

电路中的电磁场与电磁波传播电磁场和电磁波的相互作用在电路中起着关键的作用,它们是现代电子技术的基础。

本文将探讨电路中的电磁场和电磁波传播的原理及其重要性。

一、电磁场的形成与作用电磁场是由电荷在空间中产生的物理场。

在电路中,当电流通过导线时,会形成一个环绕导线的磁场。

根据安培定律,电流产生的磁场大小与电流强度成正比。

电磁场不仅存在于导线周围,还可以由电荷的运动直接产生。

例如,一个电容器中的电子在充放电过程中会产生电荷流动,从而形成电磁场。

这种电磁场的产生和作用被广泛应用于电子器件和电路的设计中。

二、电磁波的传播原理电磁波是由振荡的电磁场构成的,它沿着空间传播。

在电路中,电磁波的传播可以通过天线等装置实现。

在无线通信领域,电磁波的传播特性非常重要。

电磁波的传播是基于麦克斯韦方程组,它描述了电场和磁场之间的相互关系以及它们随时间的变化规律。

电磁波在真空中的传播速度是光速,也是一种特殊的电磁波,即光波。

在电路中,如无线电波、微波等电磁波的传播速度较慢,主要受到电磁波在导体中的衰减影响。

三、电磁场与电磁波在电路中的应用1. 电磁场在电子器件中的应用电磁场在电子器件中的应用非常广泛,例如,磁性元件如电感和变压器利用磁场的相互感应实现电能的转换和传输。

在电子芯片的设计中,电磁场的存在和作用需要被合理考虑,以减小对电子器件的干扰。

2. 电磁波传输和接收电磁波的传输和接收在通信领域起着重要作用。

通过天线发射的电磁波可以在空间中传播,接收端的天线可以接收到这些电磁波,并将其转化为电信号。

这种原理被广泛应用于广播、卫星通信和移动通信等领域。

3. 电磁波在磁共振成像中的应用磁共振成像(MRI)是基于核磁共振原理实现的成像技术,它利用强磁场和高频电磁波相互作用,通过感测被测物体所释放的信号来获取图像。

MRI已成为医学影像学的重要技术,为医生提供了非常有价值的影像信息。

四、电路中的电磁场与电磁波传播的优化与控制在电路设计中,合理利用电磁场和电磁波的传播特性可以实现电路性能的优化和控制。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是我们生活中经常接触到的物理现象。

本文将以通俗易懂的方式,详细介绍电磁场和电磁波的基本概念、特性及应用。

一、电磁场的概念与特性电磁场是由电荷所产生的力场和磁荷所产生的磁场组成的物理场。

它包括电场和磁场两个方面。

电场是由静止电荷所产生的场,具有方向和大小;磁场是由运动电荷所产生的场,同样也具有方向和大小。

电磁场具有以下特性:1. 空间的任何一点都存在电场和磁场;2. 电场和磁场相互作用,相互转换;3. 电场和磁场都遵循相应的物理规律,如库仑定律和安培定律;4. 电场和磁场的强度与产生它们的电荷和电流的大小有关。

二、电磁波的概念与特性电磁波是一种能够在真空中传播的无线电波,它是电磁场的一种表现形式。

电磁波具有电场和磁场的振荡,并且垂直于传播方向。

通常将电磁波按照频率分成不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的特性如下:1. 电磁波具有波长和频率的关系,波长和频率互为倒数;2. 不同频率的电磁波在介质中传播的速度是相同的,即为光速;3. 电磁波可以在真空中传播,不需要介质媒质;4. 电磁波的能量和强度与其频率有关。

三、电磁场与电磁波的应用电磁场和电磁波在生活中有着广泛的应用。

以下是其中几个重要的应用领域:1. 通信技术:无线电通信、卫星通信、手机通信等都是基于电磁波传播原理进行的。

2. 电磁辐射与医学:医学影像学中的X射线和核磁共振都是利用电磁波进行的影像诊断。

3. 电磁感应:电磁感应是电动机、发电机和变压器等电器工作原理的基础。

4. 光学技术:光学仪器和光通信等利用了可见光的电磁波特性。

5. 无人驾驶和雷达系统:雷达系统利用电磁波的反射与接收原理,实现物体的探测与定位。

总结:电磁场与电磁波是我们日常生活中不可或缺的物理现象。

电磁场是由电场和磁场组成的物理场,而电磁波则是电磁场在真空中的一种传播形式。

电磁场和电磁波在通信技术、医学、电气工程、光学技术、雷达系统等方面都有广泛应用。

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用
电磁场和电磁波是电子通信技术中非常重要的组成部分。

电磁场是由电荷引起的力场,包括电场和磁场,而电磁波则是在电磁场中传播的能量。

下面我们将详细介绍在电子通信技术中电磁场和电磁波的运用。

1. 电磁场的应用
电磁场在电子通信技术中被广泛应用。

无线电通信正是利用电磁波在空间中传播的特性实现的。

在无线电通信中,电子设备通过将电信号转化为电磁波向空中发送,接收器通过天线接收空气中传播的电磁波并将其转化为电信号。

此外,电磁场还被用于电子元件的设计和制造中,例如:线圈、电感、变压器等。

2. 电磁波的应用
电磁波的应用在电子通信技术中更加广泛。

除了被用于无线电通信之外,还有以下几个方面的应用:
(1)雷达技术:雷达技术利用了电磁波向目标物体发出并返回的特性,从而实现了对目标物体的探测和跟踪。

(2)手机通信:手机通信是利用地面基站和手机之间通过无线电信号传输实现通信的技术,其中电磁波的应用主要在于通过空气中传播信号。

(3)卫星通信:卫星通信是利用人造卫星作为信号的中转站,通过向卫星发射电磁波,再被卫星接收后转发到目的地实现通信。

(4)光纤通信:光纤通信利用的是光的横向振动来进行信息传输,而光就是电磁波。

(5)医疗诊断:医疗设备中利用X射线、磁共振、超声波等电磁波来做成像诊断。

总之,电磁场和电磁波在电子通信技术中的应用非常广泛,是现代通信技术的重要基础。

电子通信技术中电磁场和电磁波的运用

电子通信技术中电磁场和电磁波的运用

3 结 语
电子 通信 技术 贯 穿着众 多领 域,人 们 的
. 2 电磁场 和 电磁 波在微 波通 讯技 术 中的运 f 电磁现象进行 了研究,但是 由于研 究方法 2
{ ,仍无法解释 电磁 场这一现象和其产生 原
1 8世 纪,著 名物 理学 家库 伦和 卡文 迪对
《 征 象 展 开 了钻 研 , 发 现 出 了 电磁 场 的定 量
世界各大国家 。 卫星通信 技术 也逐步趋 于成熟 。 二次 世 界大 战之后 ,各 国相继 开始 研发
通 信 卫 星 , 电磁 场 技 术 和 电磁 波 技 术 对 提 高卫 星 通 信 的 信 号 质 量 起 着 至 关 重 要 的作 用 。卫 星
键 词 】 电磁 场 电磁 波 电 子通 信 技 术
2电磁场和电磁波在 电子通信 中的运用
2 . 1 电磁场和 电磁波在移动通信技术 中的运用 1 9 2 0年 ,科 学家 开始 对现代 移 动通信 技 术进行研究 。1 9 2 0年 . 1 9 4 0年,移动通信技术 处于 最 初的 发展 阶段 。1 9 8 7年 ,我 国第一 代 移动 电话 ,首部模拟蜂 窝移 动电话 开始投入使 用。 第 二代 移动通信技术是以传输技术为核心,
主 要 使 用 数 字 时 分 多址 技 术 和 码 分 多 址 技 术 , 它 的 出现 有 效 提 高 了系 统 存 储 量 , 提供 了 低 速
部分 。1 9 5 8年,美 国发 射 了世界 上第 一颗用
于通 信技 术 的实验 卫星 。1 9 4 6年 , 首 次 实 现 美洲 、欧 洲、非 洲三 大 洲 的通信 。1 9 6 4年 , 成功 研 究 出了卫 星导航 系统 。1 9 6 9年 , 定 点 同步 卫 星 已送 上 大 洋 上 空 ,卫 星 地 球 站 已遍 布

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用电磁场和电磁波是电磁学的基础概念,其理论和应用在现代科技社会中起着重要作用。

本文将详细介绍电磁场和电磁波的基本理论以及其在工程应用中的具体情况。

一、电磁场的基本理论1.1 电磁场的概念电磁场是一种存在于空间中的物理现象,描绘了电荷和电流的相互作用过程。

它由电场和磁场两部分组成,具有方向强度和传播速度等特性。

1.2 电磁场的数学表达电磁场的数学表达主要是通过麦克斯韦方程组来描述。

麦克斯韦方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应第二定律。

1.3 电磁场的特性电磁场有许多特性,其中包括:- 有源性:电磁场的产生需要带电粒子或电流作为能量源。

- 传播性:电磁场可以在空间中传播,并以光速的速度传递信息。

- 叠加性:多个电磁场可以叠加形成新的电磁场。

- 势能性:电磁场可以与电荷相互转化,从而进行能量的传递。

二、电磁波的基本理论2.1 电磁波的概念电磁波是由电磁场在空间中传播形成的一种波动现象。

它由电场和磁场的相互作用引起,具有电磁场的传播速度和特性。

2.2 电磁波的产生和传播电磁波的产生主要是通过加速带电粒子或振荡电流来实现的。

一旦电磁波产生后,它会以电磁场的形式在空间中传播,直到被吸收或衰减。

2.3 电磁波的分类根据波长和频率的不同,电磁波可以分为不同的分类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

三、电磁场和电磁波的工程应用3.1 通信技术电磁场和电磁波在通信技术中起着关键作用。

无线电波和微波被广泛应用于无线通信和卫星通讯领域,可实现远距离的信息传输。

3.2 雷达技术雷达技术利用电磁波进行探测和测距,广泛应用于航空、军事等领域。

雷达可实现对目标的探测、定位和跟踪,具有重要意义。

3.3 高频加热技术高频加热技术是利用电磁场的能量将物体加热到所需温度。

它在工业生产中广泛应用于熔融金属、加热塑料等领域。

3.4 医学诊断技术电磁波在医学诊断技术中也有重要应用。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活和科学研究中扮演着重要角色。

本文将介绍电磁场和电磁波的概念、性质以及它们在现代科技中的应用。

一、电磁场的概念和性质电磁场是指由电荷产生的力场和磁场所组成的物理场。

根据麦克斯韦方程组,电荷的运动会产生电场,而变化的电流则会产生磁场。

这两个场之间相互作用,共同构成了电磁场。

电磁场具有以下几个重要的性质:1. 电磁场是无线的:电磁场的传播速度是光速,约为300,000公里/秒,具有较快的传播速度。

2. 电场和磁场的相互作用:根据法拉第电磁感应定律,变化的磁场可以产生感应电场,而变化的电场则会产生感应磁场。

这种相互作用是电磁波传播的基础。

3. 电磁场的能量传递:电磁场携带能量,能量的传递通过电磁波进行。

电磁波是由电场和磁场相互耦合形成的波动现象。

二、电磁波的概念和性质电磁波是由电场和磁场相互耦合形成的一种波动现象。

它以光速传播,并在真空中可以自由传播。

电磁波具有以下几个重要的性质:1. 频率和波长:电磁波的频率和波长之间存在确定的关系,即频率乘以波长等于光速。

不同频率和波长的电磁波表现出不同的特性,如可见光、射线和无线电波等。

2. 偏振性质:电磁波可以是无偏振的,也可以是偏振的。

偏振电磁波只在一个特定的方向上振动,有利于某些应用,如偏振镜和3D眼镜等。

3. 干涉和衍射:电磁波在遇到障碍物或孔径时会产生干涉和衍射现象。

这些现象可以用来解释光的折射、多普勒效应等现象,对科学研究和技术应用具有重要意义。

三、电磁场和电磁波的应用电磁场和电磁波在现代科技中运用广泛。

以下列举几个例子:1. 通信技术:无线通信离不开电磁波传播,无线电、微波和红外线等电磁波被广泛用于手机、无线网络、卫星通信等领域。

2. 医学影像:射线和磁共振成像等技术利用电磁波对人体进行成像,对医学诊断和治疗起到重要作用。

3. 光学器件:电磁波在光学器件中被广泛应用,如透镜、光电二极管和激光器等。

电磁场与电磁波论文

电磁场与电磁波论文

《电磁场与电磁波论文》学院:信息科学与工程学院专业:电子信息工程班级:电子xx班学号:XXXX姓名:++++++++电磁场与电磁波的实际应用电磁波是电磁场的一种运动形态。

电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。

变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。

如果没有发现电磁波,现在的社会生活将是无法想象的。

(一)在生产、生活上的应用静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。

很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。

阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。

在所有的例子中带电粒子的偏转都是通过两个平行板之间的电位差来实现的。

1.磁悬浮列车列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。

列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。

循环交替,列车就向前奔驰。

稳定性由导向系统来控制。

“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。

列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。

列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。

“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。

“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。

只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。

通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。

高中物理必修三第六章 第四节 电磁波及其应用

高中物理必修三第六章 第四节 电磁波及其应用
1.麦克斯韦电磁场理论 (1) 变化 的电场产生磁场. (2) 变化 的磁场产生电场 2.电磁场:变化的 电场 和变化的 磁场 构成了一个不可分离的统一的场. 3.电磁波 变化的电磁场在空间中的传播形成电磁波.
二、电磁场的物质性
1.微波炉利用电磁波加热食物,说明电磁场具有 能量 . 2.彗星尾是太阳光的光压压迫彗星尘埃物质形成的,表明电磁场具有与 其他物质 相互作用 的属性. 3.电磁场具有能量、具有运动 质量 .光压现象说明电磁场具有质量. 4.电磁场和电荷系统相互作用时遵守 动量 守恒定律和 能量 守恒定律. 5.电磁场具有质量、能量,物质间可以相互作用,遵守动量守恒定律和 能量守恒定律,所以电磁场是一种 物质 .
例4 电磁波在真空中传播的速度c=3×108 m/s,有一个广播电台的频率f=
90.0 MHz,这个电台发射的电磁波的波长λ为
A.2.70 m C.3.00 m
B.270 m
√D.3.33 m
根据 c=λf 可得,λ=903.×0×101806 m≈3.33 m.
三、电视广播、雷达、移动电话、电磁波谱
(2)不同频率的电磁波的比较
名称 特性
主要应用
无线 电波
红外线 可见光 紫外线 X射线 γ射线
灭菌、
通信、 红外探测器、 引起
医学透 治疗疾病、
消毒、
广播 红外体温计 视觉
视、安检 金属探伤
防伪
真空中的速度
c=3×108 m/s
频率
小→大
例5 雷达向远处发射无线电波,每次发射的时间是1 μs,两次发射的时间 间隔为100 μs,在指示器的荧光屏上呈现出的尖形波如图所示,已知图 中ab=bc,则障碍物与雷达之间的距离是多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


对称振子天线的远区 辐射场为
(8.2.1)

从式(8.1)可知,H 只有eφ分量,如果磁 棒垂直放置,那么电 感线圈的方向和磁场 方向平行,不会切割 磁力线,如图8.7所示。 所以磁性天线不能垂 直放置。

那么磁性天线应水平放置在收音机内,当磁 棒轴线与电波的传播方向(er)平行时,如 图8.8(a)所示,线圈内感应电动势很小, 收音机的声音也很小; 当磁棒轴线与电波的 传播方向垂直时,如图8.8(b)所示,线圈内感 应电动势最大,收音机的声音也最大。绕垂 直轴旋转收音机时,声音会发生变化。
4. 外层空间传播 外层空间传播是通过卫星 来实现的,如图8.5所示。 外层空间传播,电磁波主 要受到大气层的影响,大 气层对流层中的氧和水蒸 气会对电磁波有吸收作用, 雨雾以及雪也会对电波产 生吸收和散射损耗,电离 层对短波还会有反射作用。 综合上述影响,无线电波 在0.3~10GHz频段,大气 吸收损耗最小,称为“无 线电窗口”。因此通常选 择在这个窗口附近。
2. 空间波传播 空间波的传播有两种: 一种是当发射天线和 接收天线均高出地面一个波长以上时,直接 在空中传播,如图8.2所示。 另一种空间波由直射波及入射波、反射波组 成,具有多径效应,如图8.3所示。 超短波和微波可采用空间波传播。
3. 电离层波传播 无线电波从发射天线发出, 经电离层反射而到达接收 天线称为电离层波传播, 如图8.4所示。 短波沿地面绕射传播能力 差,但利用电离层波传播 是最适宜的。但频率太高 的无线电波、超短波或微 波,一般要穿过电离层, 不能被电离层反射回来, 所以频率不能很大,此外 还存在一个寂静区,如图 8.4所示,在这个区域既 接收不到地波信号,也接 收不到电离层波信号
8.2广播电视系统



无线电广播中波波段一般采用525~1605kHz,短波波 段采用2~24MHz,调频广播波段为88~108MHz。广 播是人类在社会实践中对信息的需求与现代科学技术 相结合的产物,是电磁场与电磁波的最早的应用之一。 传输电视信号需要相当宽的频带,因此需要采用超短 波或更高频段的无线电波。最早分配给电视广播的 VHF有12个频道,频率为49.75~216.25MHz,后来又 分配UHF频段,共有56个频道,频率范围为 471.25~951.25MHz。 电视信号可以利用同轴电缆传输,称为有线电视。有 线电视已经发展为频率从49.75~878.25MHz,有99个 频道的强大网络。
8.1电磁波谱及应用概述


电磁波谱范围极大,习惯上把频率在3kHz~3000GHz 的电磁波称为无线电波,相应的波长范围为10-4 ~105m。通常所说的可见光是一种电磁波,波长为 0.4~0.76μm,比可见光的波长更长的区域即是红外 区,常用的光纤通信就工作在近红外区,波长范围为 0.8~1.8μm,相应的频率为1.67×1014 ~ 3.75×104Hz。比可见光的波长更短的区域有紫外区、 X射线、γ射线,它们都有很多的应用。 为了更好地使用频率资源,减少相互间的干扰,国际 无线电咨询委员会(CCIR)为不同行业指定使用不 同的频段。无线电波一般可按波段划分,划分后的波 段名称、波长、频率范围见表8.1。


如果是金属拉杆天线,应如何放置呢?显然应 该垂直放置。 这是因为对称振子天线的辐射场为
Байду номын сангаас
(8.2.2)

拉杆天线垂直放置时与eθ主方向一致,产生的 感应电流最大。
8.3移 动 通 信



20世纪20年代,现代移动通信技术的发展宣告开始。 从20世纪20年代至40年代是现代移动通信的起步阶 段。 1987年11月18日,中国第一个TACS模拟蜂窝移动电 话系统在广东省建成并投入商用。这一时期的系统主 要是依赖第一代移动通信技术(1G),采用的是模 拟技术和频分多址(FDMA)技术。 第二代移动通信(2G)主要采用的是数字的时分多 址(TDMA)技术和码分多址(COMA)技术,频谱 利用率高,可大大提高系统容量,能提供数字化的语 言业务及低速数据业务。


广播电视系统本身就是电磁场与电磁波的重要应用, 前面所讲的很多理论性的问题都可以具体应用到系统 中去。举一个最简单的例子来说明,收音机的天线是 什么样子?从理论上分析为什么要这样放置?收音机天 线之一如图8.6所示。 磁性天线由铁氧体棒上平绕多匝漆包线而成,可直接 放在收音机内。它又可作为收音机输入回路的电感线 圈。那么磁性天线如何放置在收音机内呢?


电磁场与电磁波的应用贯穿于整个移动通信技 术,下面的例子是从电磁场与电磁波应用的角 度来探讨移动定位技术。 蜂窝网无线定位是通过检测移动台和多个固定 位置收、发信机之间传播信号的特性参数(如 电波场强、传播时间或时间差、入射角等)来 估算出目标移动台的位置。移动定位技术有多 种,其中之一是基于三角关系和运算的定位技 术,可细分为两种,即基于距离测量定位技术 和基于角度测量的定位技术。


目前正在迅速发展的是第三代移动通信技术(3G), 它是将高速移动接入和基于互联网协议的服务结合起 来,提高无线频率的利用效率,实现高速数据传输和 宽带多媒体服务,传输速率最低为384KB/s,最高为 2MB/s,带宽可达5MHz以上,使用频率 1.885~2.025GHz和2.110~2.200GHz,提供全球覆盖, 实现有线和无线以及不同无线网络之间业务的无缝连 接,满足多媒体业务的要求。主要技术有WCDMA、 CDMA2000、TD-SCDMA。 3G系统仍然无法满足未来的多媒体通信的需求,未 来的移动通信系统是第四代移动通信系统(4G)。 它是宽带(broadband)接入和分布网络,具有更高 的无线频率使用效率,且具有更好的抗信号衰落性能, 上网速度可提高到100MB/s,具有不同频率间的自动 切换能力。
无线电在空间的传播途径有四种。
1. 地波传播 地波传播是无线电波沿地球 表面传播,如图8.1所示。 通常波长越长,绕射距离越 远,这是因为无线电波具有 与其波长相比拟的障碍物尺 寸时才能发生绕射,即进行 地波传播。那么利用地波传 播,短波不超过100km,中 波可达几百公里。长波、甚 长波、特长波可达几千公里 甚至上万公里。
相关文档
最新文档