全国初中数学竞赛各省市试题汇编
初中数学全国竞赛各省市试题汇编附答案
初中数学全国竞赛各省市试题汇编(附答案)2012全国初中数学竞赛各省市试题汇编重排版目录一2012广东初中数学竞赛预赛1二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)4三2012年北京市初二数学竞赛试题9四2012年全国初中数学竞赛(海南赛区)10五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案13六2012年全国初中数学竞赛试卷答案(福建赛区)14七2012年全国初中数学竞赛试题19八2012年全国初中数学竞赛天津赛区初赛试卷20九2012年全国初中数学联赛(浙江赛区)试题及参考答案26十2012年四川初中数学联赛(初二组)初赛试卷28十一2012年全国初中数学竞赛试题【安徽赛区】29十二2012届湖北省黄冈地区九年级四科联赛数学试题34 十三2012年全国初中数学竞赛试题(副题)38十四2012年全国初中数学竞赛试题(副题)参考答案40十五2012年全国初中数学竞赛试题(正题)49十六2012年全国初中数学竞赛试题(正题)参考答案54 小贴士:word目录发生下列问题ctrl+左键显示“由于本机的限制,该操作已被取消,请与系统管理员联系”请按下列步骤自行解决1.开始,运行里输入regedit,回车2.在注册表中,找到HKEY_CURRENT_USERSoftwareClasses.html项3.在默认项上点右键选择修改4.将Max2.Association.HTML改为Htmlfile,确认,然后退出注册表5.重启正在使用的Office程序,然后再次点Office里面超链接,ok了一2012广东初中数学竞赛预赛二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【】(A)2,3,1(B)2,2,1(C)1,2,1(D)2,3,2【答】A.解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数的图象经过一、二、三象限,则下列判断正确的是【】(A)(B)(C)(D)【答】C.解:一次函数的图象经过一、二、三象限,说明其图象与y轴的交点位于y轴的正半轴,且y随x的增大而增大,所以解得.3.如图,在⊙O中,,给出下列三个结论:(1)DC=AB;(2)AO⊥BD;(3)当∠BDC=30°时,∠DAB=80°.其中正确的个数是【】(A)0(B)1(C)2(D)3【答】D.解:因为,所以DC=AB;因为,AO是半径,所以AO⊥BD;设∠DAB=x度,则由△DAB的内角和为180°得:,解得.4.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【】(A)(B)(C)(D)【答】B.解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是.5.在平面直角坐标系中,点A的坐标是,点B的坐标是,点C是y轴上一动点,要使△ABC为等腰三角形,则符合要求的点C的位置共有【】(A)2个(B)3个(C)4个(D)5个【答】D.解:由题意可求出AB=5,如图,以点A为圆心AB的长为半径画弧,交y轴于C1和C2,利用勾股定理可求出OC1=OC2=,可得,以点B为圆心BA的长为半径画弧,交y轴于点C3和C4,可得,AB的中垂线交y轴于点C5,利用三角形相似或一次函数的知识可求出.6.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【】(A)(B)(C)(D)【答】A.解:的顶点坐标是,设,,由得,所以.二、填空题(共6小题,每小题6分,共36分)7.若,则的值为.【答】7.解:.8.方程的解是.【答】.解:.∴,解得.9.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段,则点的坐标是.【答】.解:分别过点A、作x轴的垂线,垂足分别为C、D.显然Rt△ABC≌Rt△BD.由于点A的坐标是,所以,,所以点的坐标是.10.如图,矩形ABCD中,AD=2,AB=3,AM=1,是以点A为圆心2为半径的圆弧,是以点M为圆心2为半径的圆弧,则图中两段弧之间的阴影部分的面积为.【答】2.解:连接MN,显然将扇形AED向右平移可与扇形MBN重合,图中阴影部分的面积等于矩形AMND的面积,等于.11.已知α、β是方程的两根,则的值为.【答】.解:∵α是方程的根,∴.∴,又∵∴=.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个.【答】36.解:利用抽屉原理分析,设最多有x个小朋友,这相当于x个抽屉,问题变为把145颗糖放进x个抽屉,至少有1个抽屉放了5颗或5颗以上,则≤145,解得≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为,个位数字为(x、y均为0~9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况:…………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为,依题意,得,整理,得x、y均为0~9的整数,∴此时∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为,依题意,得,整理,得,故x为偶数,又∴∴此时∴王亮的出生年份是1987年,今年25周岁.…………………14分综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是、,点D在线段OA上,BD=BA,点Q 是线段BD上一个动点,点P的坐标是,设直线PQ的解析式为.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.解:(1)直线经过P,∴.∵B,A,BD=BA,∴点D的坐标是,∴BD的解析式是,依题意,得,∴∴解得……………………………………………7分(2)且k为最大整数,∴.则直线PQ的解析式为.……………………………………………9分又因为抛物线的顶点坐标是,对称轴为.解方程组得即直线PQ与对称轴为的交点坐标为,∴.解得.……………………………………15分15.如图,扇形OMN的半径为1,圆心角是90°.点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)求证:四边形EPGQ是平行四边形;(2)探索当OA的长为何值时,四边形EPGQ是矩形;(3)连结PQ,试说明是定值.解:(1)证明:如图①,∵∠AOC=90°,BA⊥OM,BC⊥ON,∴四边形OABC是矩形.∴.∵E、G分别是AB、CO的中点,∴∴四边形AECG为平行四边形. ∴……………………………4分连接OB,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形.………………………………………………6分(2)如图②,当∠CED=90°时,□EPGQ是矩形.此时∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE.………………………………8分∴.设OA=x,AB=y,则∶=∶,得.…10分又,即.∴,解得.∴当OA的长为时,四边形EPGQ是矩形.………………………………12分(3)如图③,连结GE交PQ于,则.过点P作OC的平行线分别交BC、GE于点、.由△PCF∽△PEG得,∴==AB,=GE=OA,∴.在Rt△中,,即,又,∴,∴.……………………………………18分三2012年北京市初二数学竞赛试题.选择题(每小题5分,共25分).方程|2x-4|=5的所有根的和等于().A.-0.5B.4.5C.5D.4.在直角坐标系xOy中,直线y=ax+24与两个坐标轴的正半轴形成的三角形的面积等于72,则不在直线y=ax+24上的点的坐标是().A.(3,12)B.(1,20)C.(-0.5,26)D.(-2.5,32) .两个正数的算术平均数等于,它们乘积的算术平方根等于,则期中的大数比小数大().A.4B.C.6D.3.在△ABC中,M是AB的中点,N是BC边上一点,且CN =2BN,连接AN与MC交于点O,四边形BMON的面积为14cm2,则△ABC的面积为().A.56cm2B.60cm2C.64cm2D.68cm2.当a=1.67,b=1.71,c=0.46时,等于().A.20B.15C.10D.5.55.填空题(每小题7分,共35分).计算:1×2-3×4+5×6-7×8+…+2009×2010-2011×2012=___..由1到10这十个正整数按某个次序写成一行,记为a1,a2,…,a10,S1=a1,S2=a1+a2,…,S10=a1+a2+…+a10,则在S1,S2,…,S10中,最多能有__个质数..△ABC中,AB=12cm,AC=9cm,BC=13cm,自A分别作∠C平分线的垂线,垂足为M,作∠B的平分线的垂线,垂足为N,连接MN,则____..实数x和y满足x2+12xy+52y2-8y+1=0,则x2-y2=___..P为等边△ABC内一点,AP=3cm,BP=4cm,CP=5cm,则四边形ABCP的面积等于__cm2.(满分10分).求证:对任意两两不等的三个数a,b,c,是常数.(满分15分).已知正整数n可以表示为2011个数字和相同的自然数之和,同时也能表示为2012个数字和相同的自然数之和,试确定n的最小值.(满分15分).如图,在△ABC中,∠ABC=∠BAC=70°,P为形内一点,∠PAB=40°,∠PBA=20°,求证:PA+PB=PC.四2012年全国初中数学竞赛(海南赛区)初赛试卷(本试卷共4页,满分120分,考试时间:3月11日8:30——10:30)一、选择题(本大题满分50分,每小题5分)1、下列运算正确的是()A.x2‧x3=x6B.2x3x=5x2C.(x2)3=x6D .x6x2=x32、有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为()A.129B.120C.108D.963、实数a=20123-2012,下列各数中不能整除a的是()A.2013B.2012C.2011D.20104、如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是()A.B.C.D.5、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()6、要使有意义,则的取值范围为A.B.C.D.7、菱形的两条对角线之和为L、面积为S,则它的边长为()A.B.C.D.8、如图2,将三角形纸片ABC沿DE折叠,使点A落在BC 边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△CEF是等腰三角形②四边形ADFE是菱形③四边形BFED是平行四边形④∠BDF+∠CEF=2∠AA.1B.2C.3D.49、如图3,直线x=1是二次函数y=ax2+bx+c的图象的对称轴,则有()A.a+b+c=0B.b>a+cC.b=2aD.abc>010、铁板甲形状为直角梯形,两底边长分别为4cm,10cm,且有一内角为60°;铁板乙形状为等腰三角形,其顶角为45°,腰长12cm.在不改变形状的前提下,试图分别把它们从一个直径为8.5cm的圆洞中穿过,结果是()A.甲板能穿过,乙板不能穿过B.甲板不能穿过,乙板能穿过C.甲、乙两板都能穿过D.甲、乙两板都不能穿过二、填空题(本大题满分40分,每小题5分)11、x与y互为相反数,且,那么的值为__________.12、一次函数y=ax+b的图象如图4所示,则化简得________.13、若x=-1是关于x的方程a2x2+2011ax-2012=0的一个根,则a的值为__________.14、一只船从A码头顺水航行到B码头用6小时,由B码头逆水航行到A码头需8小时,则一块塑料泡沫从A码头顺水漂流到B码头要用______小时(设水流速度和船在静水中的速度不变).15、如图5,边长为1的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC于E、F,则阴影部分的面积是.16、如图6,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.17、如图7,△ABC与△CDE均是等边三角形,若∠AEB=145°,则∠DBE的度数是________.18、如图8所示,矩形纸片ABCD中,AB=4cm,BC=3cm,把∠B、∠D分别沿CE、AG翻折,点B、D分别落在对角线AC的点B'和D'上,则线段EG的长度是________.三、解答题(本大题满分30分,每小题15分)19、某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天?(4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图9,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图9(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图9(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图9(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、选择题(本大题满分50分,每小题5分)题号12345678910答案CDDACBABDB7、提示:可设菱形的两条对角线长分别为a、b,利用对角线互相垂直进行解答.9、分析:由函数的图象可知:当x=1时有a+b+c<0,当x=-1时有a-b+c>0,即a+c>b,即b<a+c,函数的对称轴为,则b=-2a,因为抛物线的开口向上,所以a>0,抛物线与y轴的交点在负半轴,所以c<0,由b=-2a可得b<0.所以abc>0,因而正确答案为D10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形,AD=4cm,BC=10cm,∠C=60°,过点A过AE//CD,交BC于点E,过点B作BE⊥CD于点F,可求得AB=cm>8.5cm,BE=cm>8.5cm铁板甲不能穿过,如图B,等腰三角形ABC中,顶角∠A=45°,作腰上的高线BD,可求得BD=cm<8.5cm,所以铁板乙可以穿过;所以选择B二、填空题(本大题满分40分,每小题5分)11、12、a+113、a1=2012,a2=-114、4815、单位面积16、3个17、85°18、17、分析:易证△CEA与△CDB全等,从而有∠DBC=∠EAC,因为,∠ABE+∠BAE=180°-145°=35°所以有∠EAC+∠EBC=120°-35°=85°,所以∠EBD=∠EBC+∠DBC=85°18、分析:AB=4cm,BC=3cm,可求得AC=5cm,由题意可知CB'=BC=3cm,AB'=2cm设BE=x,则AE=4-x,则有(4-x)2-x2=22,x=1.5cm,即BE=DG=1.5cm,过点G作GF⊥AB于点F,则可求出EF=1cm,所以EG=三、解答题(本大题满分30分,每小题15分)19、本题满分15分,第(1)、(2)、(3)小题,每小题4分,第(4)小题3分.解:(1)设甲、乙两个工程队一起合作x天就可以完成此项工程,依题意得:,解得:x=20答:甲、乙两个工程队一起合作20天就可以完成此项工程.(2)设完成这项道路改造工程共需y天,依题意得:,解得y=40。
全国初中数学竞赛试题
全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。
【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。
在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。
求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。
【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。
求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。
【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。
【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。
随机抽取两个球,求两个球颜色相同的概率。
【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。
求不同的放法有多少种。
【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。
”- 乙说:“丙是说谎者。
”- 丙说:“甲和乙都是说谎者。
”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。
【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。
如果水池开始时是空的,求水池被填满的时间\( t \)。
【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。
全国初中数学竞赛试题集锦(附解答)
全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
初中数学竞赛试题汇编
中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛九年级预赛试题(本卷满分120分,考试时间120分钟) 、选择题(本大题共 6个小题,每小题5分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号 填入题后的括号里,不填、多填或错填均为零分. 1.从长度是2cm , 2cm , 成等腰三角形的概率是( 4cm , 4cm 的四条线段中任意选三条线段,这三条线段能够组 ) 1A .- 4 2 .如图,M 是厶ABC 的边BC 的中点,AN 平分/ BAC , 于 N ,且 AB=10 , BC=15 , MN=3,则△ ABC 的周长为( A . 38 已知B . 39C . 40 D. 41 xy 1,且有 5x 2 2011x9y 2 2011y AN 丄 BN )) 5 0,则-的值等于( y 5 9 4.已知直角三角形的一直角边长是 2011 5 2011 9 4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形 的面积之和是10,那么以下四个整数中,最接近图中两个弓形 (带点 (第4题图) 的阴影图形)面积之和的是( A . 6 B. 7 C . 8 D . 5.设a , b , c 是厶ABC 的三边长, 二次函数y (a ex 在x 1时取最 2 小值 -b ,则△ ABC 是( ) 5 A .等腰三角形 B .锐角三角形 6.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按 C .钝角三角形 照“先进后出”的原则,如图,堆栈( 1)中的2个连续存储单元已依次存入数 据b , a ,取出数据的顺序是 a , b ;堆栈(2)的3个连续存储单元已依次存入 数据e , d , c ,取出数据的顺序是 c , d , e ,现在要从这两个堆栈中取出 个数据(每次取出1个数据),则不同顺序的取法的种数有(A . 5种 C . 10 种 ) D . 12 种 (第6题图)二、填空题(本大题共 6个小题,每小题5分,共30分) 7 .若 x 2 2x 1 4 0,则满足该方程的所有根之和为 8.(人教版考生做 )如图A ,在 ABCD 中,过A , B , C 三点的圆交AD 于E ,且与CD相切,若AB=4, BE=5,贝U DE 的长为 8.(北师大版考生做)如图B ,等边三角形 ABC 中,D , E 分别为AB , BC 边上的两个动点,且总使 AD=BE , AE 与CD 交于点F , AG 丄CD 于点G ,则-AF”22a 4 3xa 2 2 2 血9. 已知 a 2 a 10,且2,则 x _________ •a 3 2xa 2 a 310. 元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每 件商品的单价只有 8元和9元两种.若两人购买商品一共花费了 172元,则其中单价为 9元的商品有 ______________ 件.11.如图,已知电线杆 AB 直立于地面上,它的影子恰好照在土坡的坡面 CD 和地面BC上,如果 CD 与地面成45°,/ A=600 , CD=4m , BC=(4、6 2 - 2)m ,则电线杆 AB 的长为 _________12 •实数x 与y ,使得xy , x y , xy ,-四个数中的三个有相同的数值,则所有y具有这样性质的数对 _________ (x, y)为一 B D(第8题图B )13. (本题满分20分) 已知:(x a)(x b) (x b)(x c)14. (本题满分20分)如图,将 0A = 6 , AB = 4的矩形OABC 放置在平面直角坐标系中, 动点M , N以每秒1个单位的速度分别从点 A , C 同时出发,其中点 M 沿A0向终点0运动,点N 沿CB 向终点B 运动,当两个动点运动了 t 秒时,过点N 作NP 丄BC ,交0B 于点P ,连接MP .(1) _________________________ 点 B 的坐标为 _________________________________ ;用含 t 的式子表示点 P 的坐标为 __________ ;(2) 记厶OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最 大值? (3) 试探究:当S 有最大值时,在 y 轴 上是否存在点 T ,使直线 MT 把厶ONC 分割 成三角形和四边形两部分,且三角形的面积1是厶ONC 面积的- ?若存在,求出点 T 的3坐标;若不存在,请说明理由 .(备用图)(第14题图)三、解答题(本大题共3个小题,每小题20分,共60 分)(x c)(x a)是完全平方式•求证: a be .15.(本题满分20分) 对于给定的抛物线(第8题图A )y x2ax b,使实数p , q适合于ap 2(b q). (1)证明:第3页共94页BCF1.设非零实数a 、b 、e 满足2b 3c 2a 3b 4e,则2 a ab be cab 22的值为() e1(A) -^(B) 01(C)乙(D)2.已知a 、b 、 e 是实常数,关于元二次方程 ax bx e 0有两个非零实根,则 元二次方程ax 2bxX 1X 22 2., (A) e x (b 2 22ae) x a 0(B)2 2 2e x (b 2ae)x (C)e 2x 2(b 222ae)x a 0(D) 2 2 2 e x (b 2ae)x1£为两个实根的是(a 2理数,则线段 OD 、OE 、DE , AC 的长度中,不.疋疋有理数的为( )(A) OD(B) OE(C) DE(D) AC4、如图,已知△ ABC 的面积为24,点D 在线段AC 上,点F抛物线y x 2 px q 通过定点;(2)证明:下列两个二次方程,x 2 ax b 0与x 2 px q 0中至少有一个方程有 实数根•2013年全国初中数学竞赛试题考试时间 2013年3月17日 9: 30- 11: 30 满分150分题号 -一- -二二 三 总分1~56~1011121314得分评卷人复查人答题时注意:1. 用圆珠笔或钢笔作答;2. 2•解答书写时不要超过装订线;3. 3草稿纸不上交。
全国初中数学竞赛试题及答案(完整资料).doc
【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
全国初中数学联合竞赛试题分类汇编及详细解析 专题07 实数
实数一、选择题1、(2000一试1)设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。
(A)M=P;(B)M>P;(C)M<P;(D)不确定。
2.(2000一试3)甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。
(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。
3.(2000一试7)已知:,那么=________。
【答案】 14.(2002一试1)已知,,,那么a,b,c的大小关系是()A .a<b<c B.b<a<c C.c<b<a D.c<a<b5.(2002一试6)如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k 的最小值为()A.1 B.2 C.3D.46.(2003一试1)计算:232217122--( )(A)5-42 (B)42-1 (C)5 (D)17.(2005一试1)化简:11459+302366402++--的结果是__。
A 、无理数B 、真分数C 、奇数D 、偶数8.(2006一试4)设.,02,0222a bc c ab a b >=+->则实数c b a 、、的大小关系是【 】(A)a c b >> (B)b a c >>(C)c b a >>(D)c a b >>9.(2012一试1)已知21a =-,32b =-,62c =-,那么,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<二、填空题1.(2003一试10)已知正整数a、b之差为120,它们的最小公倍数是其最大公约数的105倍,那么a、b中较大的数是__ __.2.(2004一试10)设m是不能表示为三个合数之和的最大整数,则m= .3.(2005一试7)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为__。
全国初中数学竞赛试题及答案
全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。
如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。
A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。
而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。
2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。
现在以D为圆心,DE为半径画圆弧,交AB于G。
则△DFE的面积是阴影部分面积的()。
A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。
而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。
所以,△DFE的高是DE的一半,即1/4AB。
因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。
而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。
所以,△DFE的面积是阴影部分面积的4倍。
3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。
现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。
A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。
其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。
全国初二数学竞赛试题及答案大全
全国初二数学竞赛试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于这个数本身,那么这个数可能是:A. 0B. 1C. -1D. 2答案:A、B3. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是:A. 1B. 3C. 4D. 7答案:C4. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 8答案:A、B、C5. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:B6. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 所有数答案:A、C7. 一个直角三角形,两直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A8. 一个数的倒数是它本身,这个数可能是:A. 1B. -1C. 2D. 0答案:A、B9. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 2答案:A、B10. 一个数的对数是它本身,这个数可能是:A. eB. 10C. 2D. 1答案:A、B二、填空题(每题3分,共15分)11. 一个数的平方是25,这个数可能是_________。
答案:±512. 一个数的立方是-8,这个数是_________。
答案:-213. 一个数的对数以10为底是2,这个数是_________。
答案:10014. 一个正数的倒数是1/4,这个数是_________。
答案:415. 如果一个三角形的内角和为180°,那么一个四边形的内角和是_________。
答案:360°三、解答题(每题5分,共55分)16. 证明:等腰三角形的底角相等。
答案:略17. 已知一个直角三角形的两直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = √(9 + 16) = √25 = 5。
全国初中数学竞赛试题(含答案)-20220207144625
全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
初中数学全国竞赛试题及答案
初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。
7. 如果一个数的绝对值等于5,那么这个数可以是______。
8. 一个数的倒数是1/4,那么这个数是______。
9. 一个数的平方是25,这个数可以是______。
10. 一个数的立方根是2,那么这个数是______。
三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。
12. 一个圆的半径是r,求圆的面积。
13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。
四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。
15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。
五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。
如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。
2024年全国初中数学竞赛试卷
1. 一个长方体的长、宽、高分别为10 cm、5 cm和3 cm,求它的体积是多少?- A. 150 cm³- B. 100 cm³- C. 200 cm³- D. 1500 cm³(答案)2. 如果一个数的三倍加上5等于20,那么这个数是?- A. 5- B. 10- C. 15- D. 7.5 (答案)3. 在一次考试中,班级的平均分是80分,如果有5名同学的分数分别是70、75、85、90和100,其他同学的平均分是多少?- A. 77- B. 82- C. 80- D. 85 (答案)4. 一个等腰三角形的底边长为8 cm,两个底角均为45度,求这个三角形的面积是多少?- A. 16 cm²- B. 32 cm²- C. 24 cm²- D. 40 cm²(答案)5. 计算\( 3^2 + 4^2 \) 的值为多少?- A. 25- B. 29- C. 35- D. 20 (答案)6. 方程\( x + 5 = 12 \) 的解为:- A. 8- B. 7- C. 6- D. 5 (答案)7. 有一个圆的半径是7 cm,求这个圆的周长是多少?(取π≈3.14)- A. 43.96 cm- B. 44 cm- C. 42 cm- D. 39.24 cm (答案)8. 设\( f(x) = 2x + 3 \),则\( f(2) \) 的值是:- A. 4- B. 5- C. 7- D. 10 (答案)9. 在数列3, 6, 12, 24 中,下一个数字是什么?- A. 40- B. 48- C. 36- D. 60 (答案)10. 一个正方形的周长是40 cm,求它的面积是多少?- A. 100 cm²- B. 160 cm²- C. 200 cm²- D. 256 cm²(答案)。
全国初中数学竞赛考题数与式
全国初中数学竞赛考题分类汇编(一)数与式例题2、设a,b 是不相等的任意正数,又21b x a +=,21a y b +=,则有x,y 这两个数一定( )A.都不大于2 B .都小于2C.至少有一个大于2D.至少有一个小于2 例题4、a 、b 、c 为正整数,且432c b a =+,求c 的最小值。
例题5、已知333124++=a ,那么32133aa a ++=_______ 解:∵112)12(3=-=-a ,即1213-=a∴32133a a a ++=11)11(1)1(11331333332332=-+=-+=-+++=++a a a aa a a a a a 例题6、已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a <b ,则a +b +c 的最大值为 .例题7、设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ①542--=a a bc ②求a 的取值范围.解法一:由①-2×②得01242>+=-)()(a c b ,所以a >-1. 当a >-1时, 14162222++=+a a c b =0712>++))((a a . 又当b a =时,由①,②得 141622++=a a c , ③542--=a a ac ④ 将④两边平方,结合③得2222541416)()(--=++a a a a a化简得 025*******=--+a a a , 故 0524562=--+))((a a a , 解得65-=a ,或4211±=a .所以,a 的取值范围为a >-1且65-≠a ,4211±≠a .解法二:因为14162222++=+a a c b ,542--=a a bc ,所以222221448454214162)()()(+=++=--+++=+a a a a a a a c b ,所以 )(12+±=+a c b . 又542--=a a bc ,所以b ,c 为一元二次方程0541222=--++±a a x a x )( ⑤的两个不相等实数根,故05441422>---+=∆)()(a a a ,所以a >-1.当a >-1时, 14162222++=+a a c b =0712>++))((a a .另外,当b a =时,由⑤式有 0541222=--++±a a a a a )(, 即 05242=--a a 或 056=--a ,解得,4211±=a 或65-=a .当c a =时,同理可得65-=a 或4211±=a .所以,a 的取值范围为a >-1且65-≠a ,4211±≠a .例题8、已知abc ≠0,且a+b+c =0, 则代数式222a b c bc ca ab ++的值是( )(A) 3 (B) 2 (C) 1 (D) 0例题9、设22211148()34441004A =⨯++--- ,则与A 最接近的正整数是() A.18 B.20 C.24 D.25练习题1、实数a,b 满足1333=++ab b a ,则a+b= .2、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定3、已知______0))(()412=+≠--=-a cb a ac b a c b ,则且(4、a ,b ,c 均为正数,且a (b+c )=152,b (c+a )=162,c (a+b )=170,那么abc 的值是( ).(A )672 (B )688 (C )720 (D )7505若实数x ,y ,z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 .6、知实数a ,b ,c 满足:a +b +c =2,abc =4.(1)求a ,b ,c 中的最大者的最小值;(2)求c b a ++的最小值.。
全国初中数学竞赛试卷真题
一、选择题(每题5分,共50分)1. 已知方程x^2 - 4x + 3 = 0的两个根为a和b,则a+b的值为()A. 2B. 4C. 3D. 12. 下列函数中,在实数域R上为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 1/x3. 在△ABC中,∠A=30°,∠B=60°,则△ABC的外接圆半径R等于()A. 1/2B. 1C. √3/2D. √34. 若等差数列{an}的首项为2,公差为3,则第10项a10的值为()A. 29B. 31C. 33D. 355. 在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)6. 已知一元二次方程x^2 - 4x + 3 = 0的两个根为a和b,则a^2 + b^2的值为()A. 10B. 12C. 14D. 167. 在△ABC中,∠A=90°,∠B=30°,则△ABC的周长为()A. 2√3B. 3√3C. 4√3D. 5√38. 若等比数列{an}的首项为2,公比为3,则第5项a5的值为()A. 162B. 243C. 729D. 12969. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)10. 若等差数列{an}的首项为-2,公差为3,则第10项a10的值为()A. 22B. 25C. 28D. 31二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 3x + 2 = 0的两个根为a和b,则a^2 + b^2 - ab的值为______。
12. 在△ABC中,∠A=90°,∠B=30°,则△ABC的面积S为______。
13. 若等差数列{an}的首项为2,公差为3,则第5项a5与第10项a10的差为______。
初中数学竞赛试题汇编(同名1469)
初中数学竞赛试题汇编(同名1469)2012年全国初中数学竞赛预赛试题江西省吉安市一、 选择题:(每题7分,共42分) 1、化简38194233122172+---+的结果是( )A 、2B 、 -2C 、-33D 、33 2、一次考试共有5道题,考后统计如下,有81%的同学做对第1题,91%的同学做对第2题,85%的同学做对第3题,79%的同学做对第4题,74%的同学做对第5题,如果做对3题以上的(含3题)题目的同学考试合格,那么这次考试合格率的同学至少( )。
A 、70%B 、 79%C 、74%D 、81%3、如图:在△ABC 中,,31,31,31CA CF BC BE AB AD ===则AN:NL:LE等于( )A 、2:1:1B 、3:2:1C 、3:3:1D 、2:3:1 4、满足方程xyy x y x++=+)(222的所有非负整数解的组数有( )A 、1B 、2C 、3D 、412、如图:在矩形ABCD中,点P在AB上,且△ACP是等腰三角形,O是AC的中点,OE ⊥AB于有,点Q是OE的中点,求证:PQ⊥CE(25分).13、已知二次函数4)3(2++--=m x m xy 图像与轴交于)点点0,(),0,(21x B x A (x 1<x 2), 与y 轴交于点C,若∠CAB与∠CBA 是锐角。
(1)求m 的值;(2)是否可能出现∠CAB =∠CBA ? 若可能,求出m 的值;若不可能,比较∠CAB 与∠CBA 的大小;(3)当∠CAB 与∠CBA 互余时,△ABC 的面积是多少?(25分)2011年全国初中数学竞赛试题(考试时间:2011年3月20日9:30——11:30 满分:150分)一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设32x =,则代数式(1)(2)(3)x x x x +++的值为( )A 、0B 、1C 、﹣1D 、2 2、对于任意实数a, b, c, d, 定义有序实数对(a, b )与(c, d)之间的运算“△”为:(a, b )△(c, d )=(ac+bd, ad+bc )。
初中数学全国竞赛真题试卷
初中数学全国竞赛真题试卷一、选择题(每题4分,共40分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个圆的半径是5厘米,那么它的周长是多少?A. 10π cmB. 20π cmC. 30π cmD. 40π cm3. 一个数的平方根等于它本身,这个数是?A. 0B. 1C. -1D. 24. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 23B. 21C. 19D. 175. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 86. 一个数的立方根等于它本身,这个数可以是?A. 0B. 1C. -1D. 87. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 一个正数的倒数是1/8,这个数是多少?A. 8B. 1/8C. 1/7D. 79. 下列哪个是完全平方数?A. 23B. 25C. 27D. 2910. 一个数的1/4加上这个数的1/2等于1,这个数是多少?A. 4/3B. 2C. 1D. 3/2二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可以是_________。
12. 如果一个直角三角形的斜边长是13,一条直角边长是5,另一条直角边长是_________。
13. 一个数的立方是-27,这个数是_________。
14. 一个等差数列的第5项是10,第15项是30,这个数列的公差是_________。
15. 如果一个分数的分子是8,分母是16,那么这个分数化简后的结果是_________。
三、简答题(每题10分,共30分)16. 给定一个直角三角形,已知两个直角边的长度分别为6和8,求这个三角形的面积。
17. 一个数列的前5项是1,3,5,7,9,这个数列是一个等差数列,求第20项的值。
18. 解方程:2x + 5 = 17。
四、解答题(每题15分,共30分)19. 一个圆的直径是14厘米,求这个圆的面积。
全国初中数学竞赛试题及答案大全
全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。
解答:根据已知条件,我们可以使用配方法来求解。
首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。
将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。
简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。
试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。
解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。
代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,\( BC = \sqrt{100} = 10 \)。
试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。
解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。
将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。
试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。
然后计算取出两个红球或两个蓝球的情况。
两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。
全国竞赛数学试卷初中
一、选择题(每题5分,共50分)1. 下列各数中,是整数的有()A. 2.5B. -3.14C. 0.01D. -32. 下列各式中,正确的是()A. -5 > -3B. -5 < -3C. -5 ≥ -3D. -5 ≤ -33. 下列各数中,是正数的是()A. -2B. 0C. 2D. -1/24. 下列各式中,正确的是()A. 2 + 3 = 5B. 2 × 3 = 5C. 2 ÷ 3 = 5D. 2 - 3 = 55. 下列各式中,正确的是()A. 2^3 = 8B. 2^3 = 6C. 2^3 = 4D. 2^3 = 26. 下列各数中,是质数的是()A. 4B. 6C. 7D. 87. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 68. 下列各式中,正确的是()A. a + b = b + aB. a - b = b - aC. a × b = b × aD. a ÷ b = b ÷ a9. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 下列各数中,是平方数的是()A. 4B. 5C. 6D. 7二、填空题(每题5分,共50分)11. 3的平方根是______,-3的平方根是______。
12. 如果a > b,那么a - b的符号是______。
13. 下列各数中,最小的数是______。
14. 下列各数中,最大的数是______。
15. 下列各数中,是正数的是______。
16. 下列各数中,是质数的是______。
17. 下列各数中,是偶数的是______。
18. 下列各式中,正确的是______。
全国各地初中数学竞赛试卷
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是:A. -3B. 2C. 0D. -52. 已知a > 0,b < 0,则下列不等式中一定成立的是:A. a + b > 0B. a - b > 0C. -a + b > 0D. -a - b > 03. 若x² + 2x + 1 = 0,则x的值为:A. 1B. -1C. 0D. 无法确定4. 在直角坐标系中,点A(2, 3)关于y轴的对称点是:A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)5. 下列函数中,y是x的一次函数的是:A. y = x² - 1B. y = 2x + 3C. y = √xD. y = log₂x6. 若a, b, c成等差数列,且a + b + c = 12,则b的值为:A. 3B. 4C. 5D. 67. 在等腰三角形ABC中,AB = AC,若∠B = 40°,则∠C的度数为:A. 40°B. 50°C. 60°D. 70°8. 若x² - 5x + 6 = 0,则x的值为:A. 2B. 3C. 4D. 59. 下列图形中,对称轴最多的是:A. 正方形B. 矩形C. 菱形D. 梯形10. 若a² + b² = 100,a - b = 10,则ab的值为:A. 80B. 90C. 100D. 110二、填空题(每题5分,共25分)11. 若x + y = 5,xy = 6,则x² + y²的值为______。
12. 在直角三角形ABC中,∠C = 90°,AB = 10,BC = 6,则AC的长度为______。
13. 若函数y = 3x - 2是关于x的一次函数,则其图像是一条______。
14. 在等边三角形ABC中,若AB = AC = BC = 6,则∠A的度数为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛题汇编省市2013年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2013•)下列各数中,小于﹣3的数是()2.(3分)(2013•)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2013•)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、本选项不能合并,错误;B、利用同底数幂的除法法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选C.点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(3分)(2013•)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.解答:解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选B.点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2013•)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.(3分)(2013•)函数中,自变量x的取值围是()A.x>1 B.x≥1C.x>﹣2 D.x≥﹣2考点:函数自变量的取值围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的围.解答:解:根据题意得:x﹣1>0,解得:x>1.故选A.点评:考查了函数自变量的取值围,函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)(2013•)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.(3分)(2013•)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm考点:圆锥的计算分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.解答:解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5∴扇形的半径为5cm,故选B.点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.9.(3分)(2013•)小与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小与小陆相遇后,小的速度小于小陆的速度;(4)小在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个考点:一次函数的应用专题:压轴题.分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小到达目的地所用时间,根据速度=路程÷时间可得小的速度小于小陆的速度;小出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说确;(3)根据图象可得:小与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小用1.5个小时到B地,所以小的速度小于小陆的速度,故原说确;(4)根据图象可得:表示小的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说确.故选A.点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.(3分)(2013•)如图.Rt△ABC接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5 C.3D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF ∽△CEA是解题关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(2013•)若反比例函数y=的图象经过点A(1,2),则k=2.考点:反比例函数图象上点的坐标特征专题:压轴题.分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.解答:解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(3分)(2013•)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.考点:垂线;对顶角、邻补角分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.解答:解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.13.(3分)(2013•)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.(3分)(2013•)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AC=2CD=4,则sinB==.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.15.(3分)(2013•)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 2.8.考点:方差;众数分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.解答:解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)(2013•)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(3分)(2013•)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.(3分)(2013•)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.考点:二次函数的性质专题:压轴题.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n 时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6=(﹣3)2+4×(﹣3)+6=3.故答案为3.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(2013•)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.考点:分式的化简求值;零指数幂;二次根式的混合运算分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先通分,然后进行四则运算,最后将m=1代入.解答:解:(1)=÷÷1﹣3=﹣3;(2)=•=,当m=1时,原式=﹣.点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;(2)解答此题的关键是把分式化到最简,然后代值计算.20.(9分)(2013•)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.21.(8分)(2013•)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.考点:条形统计图;扇形统计图分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;(2)求得C等级苹果的重量,补全统计图;(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.解答:解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg),将条形图补充为:(3)×360°=90°.故C等级苹果所对应扇形的圆心角为90度.故答案为:4000,90.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(2013•)在不透明的袋子中有四标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)①(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一卡片后不放回(填“放回”或“不放回”),再随机抽出一卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?考点:列表法与树状图法分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为不放回;(3,2).点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.23.(8分)(2013•)若关于x的不等式组恰有三个整数解,数a的取值围.考点:一元一次不等式组的整数解分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:解:解+>0,得x>﹣;解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.∵关于x的不等式组恰有三个整数解,∴2<2a≤3,解得1<a≤.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(8分)(2013•)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=BC,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.25.(8分)(2013•)如图,△ABC接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若P A=cm,求AC的长.考点:切线的性质分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,在Rt△OAP中,求出OA,即可求出答案.解答:解:∵AB是⊙O直径,∴∠ACB=90°,∵∠BAC=2∠B,∴∠B=30°,∠BAC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,AC=OA,∵P A是⊙O切线,∴∠OAP=90°,在Rt△OAP中,P A=6cm,∠AOP=60°,∴OA===6,∴AC=OA=6.点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.26.(8分)(2013•)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(13分)(2013•)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.考点:相似形综合题分析:(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤,△DEF在△ABC部,如答图3所示;②若<a≤,点E在△ABC部,点F在△ABC外部,在如答图4所示;③若<a<3,点E、F均在△ABC外部,如答图5所示.解答:解:(1)由题意得:tanA===,∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.如答图1所示,过点E作EH⊥AC于点H,则EH=DE•sin∠CDE=a•=a.∴点E到AC的距离为一个常数.(2)若AD=,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=.∴GE=DE﹣DG=2﹣=.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=,MN=GE=.∴T=DE+DM+MN+NE=2+++=.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤,△DEF在△ABC部,如答图3所示:∴T=3a;②若<a≤,点E在△ABC部,点F在△ABC外部,在如答图4所示:设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;③若<a<3,点E、F均在△ABC外部,如答图5所示:设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,∴PC=CD•tan60°=×=.∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.由(1)知,点E到AC的距离为a,∴PQ=a﹣.∴QE=PQ•tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.由②可知,四边形MDEN的周长为2a+.∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a﹣)=a+﹣.综上所述,若点D运动到AC的中点处,T的关系式为:T=.点评:本题考查了运动型综合题,新颖之处在于所重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.28.(13分)(2013•)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B (x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.2012年全国初中数学竞赛预赛试题及参考答案(赛区) 一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】(A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m <【答】C .解:一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩ 解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论:(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3【答】D .解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的角和为180°得:2(30)180x x -︒+=︒,解得80x =︒. 4. 有4全新的扑克牌,其中黑桃、红桃各2,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2牌,摸出的花色不一样的概率是【 】第3题图O DC BA。