中考数学(浙教版)专题训练(二):二元一次方程
浙教版初中数学解二元一次方程组(2)(含答案)

4.3 解二元一次方程组(二)索引档案【知识提要】1.加减消元法:通过将方程组中的两个方程相加或相减,•消去其中的一个未知数,转化为一元一次方程,这种解二元一次方程组的方法叫加减消元法,简称加减法(elimination method).2.用加减法解二元一次方程组.【学法指导】1.加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化为相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程;(3)解这个一元一次方程,得到这个未知数的值;(4)将求得的未知数的值代入原方程组中任何一个方程,•求得另一个未知数的值;(5)写出方程组的解.2.方程组中的某个未知数的系数绝对值相同或成整数倍,•此时用加减法比较简便.范例积累【例1】解方程组536, 52 4. x yx y+=⎧⎨-=-⎩【分析】未知数x的系数相同,可通过相减消去“x”.【解】①-②得 5y=10,∴y=2把x=2代入①得5x+3×2=6∴x=0∴方程组的解是0,2. xy=⎧⎨=⎩【注意】也可把y=2代入②求解.【例2】解方程组4339, 7415.x yx y-=⎧⎨+=-⎩【分析】通过把方程变形,使得未知数的系数的绝对值相同,再用加减法消元.【解】①×4,得16x-12y=156 ③②×③,得21x+12y=-45 ④③+④,得37x=111,∴x=3把x=3代入①,得4×3-3y=39解得y=-9∴方程组的解是3,9.x y =⎧⎨=-⎩【注意】 也可以消去x ,但比消去y 繁.基础训练1.若7x-3y=9,则21x-_______=27;若-4x-2y=5,则-8x-4y=_______; 若13x-5y=7,则_______-30y=42. 2.方程组4,2.x y x y +=⎧⎨-=⎩若两方程相加可得_______;若两方程相减可得_________,所以方程组的解是_________.3.7x -6y =8y -7x ,则x 与y 的比是_________. 4.a+b=b+c=c+a=5,则a+b+c=_________.5.解下列方程组:(1)7,35;x y x y -=⎧⎨+=⎩ (2)258,34 5.x y x y -=⎧⎨-=⎩6.解下列方程组:(1)2,52234;m n m n ⎧+=⎪⎨⎪-=⎩(2)34110, 34530. x yy x-+=⎧⎨-+=⎩提高训练7.解下列方程组:(1)22,23320;2x yyxy+⎧+=⎪⎪⎨⎪-=⎪⎩(2)31(2)1,1050.040.090.10.31.5.0.20.4xyx y+⎧--=-⎪⎪⎨+-⎪-=⎪⎩8.解方程组3, 451.45x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩9.用适当方法解下列方程组:(1)2,734;y xx y=⎧⎨-=⎩(2)357,410 3.x yx y-=⎧⎨-+=⎩10.已知5m-3n=9,且3m+n=-5,求6m-12n的值.11.已知22x y+=524x y+=1,求代数式9926784x yx y+--+的值.12.已知方程组324,418x yx ay+=⎧⎨+=⎩有正整数解,求整数a的值.13.已知│3x-2y+4│+(4x+y-13)2=0,求x3+5y的值.14.已知240,2350.x y zx y z-+=⎧⎨-+=⎩求x:y:z的值.应用拓展15.解方程组5,3,2. x yy zx z+=⎧⎪+=⎨⎪+=⎩16.已知方程组510,4212,ax y cx by d++=⎧⎨-+=⎩小王把方程①中的a抄错了,小明把方程②中的b抄错了,小王得方程组解为1,1,xy=⎧⎨=⎩,小明得方程组解为1,1,xy=-⎧⎨=-⎩,正确的解为2,2,xy=⎧⎨=⎩,你知道原题中a、b、c、d的值吗?•试试看把它求出来.答案:1.9y 10 2x 2.2x=6 2y=23,1, xy=⎧⎨=⎩3.49484.7.55.(1)3,4,xy=⎧⎨=-⎩(2)1,2xy=-⎧⎨=-⎩6.(1)5,2mn=⎧⎨=⎩(2)35,29xy=⎧⎨=⎩7.(1)16,111211xy⎧=⎪⎪⎨⎪=⎪⎩(2)4,2xy=⎧⎨=⎩8.7,3 xy=⎧⎨=-⎩9.(1)4,8xy=⎧⎨=⎩(2)17,23710xy⎧=⎪⎪⎨⎪=⎪⎩10.42(提示:可把两方程相减得2m-4n=14,从而得3(•2m-4n)=6m-12n=42)11.1 612.a=-1(提示:把方程化简为y=4243a-,由y是正整数,且a是整数,因而y只能取1,2,3,6,7,14,21,42,然后把它代入方程3x+y=24,检验此时x•是否为正整数,易得当y=6时符合要求,此时a为-1)13.33 14.2:3:115.2,3,xyz=⎧⎪=⎨⎪=⎩16.a=-3,b=•4,c=10,d=6。
浙教版初中数学七年级下册 2.1 二元一次方程课时练习题测试卷2 新人教版

次方程:__________.
应用拓展
1 17
14.某种商品的市场需求量 E(千件)和单价 F(元/件)服从需求关系 E+F- =0,则
33
当单价为 4 元时,市场需求量为________;若出售一件商品要在原单价 4 元的基础上征
收税金 1 元,市场需求变化情况是_________.
2kx a x bk
42
8
请写出正确答案.
x 2,
11.有一组数
y
1
,请写出一个方程,使这一组数是这个方程的一个解:________.
TB:小初高题库
浙教版初中数学
12.方程 2m+5n=17 的正整数解是 __ ________.
13.请写出 x+y=5 的一个解:__________.
再根据你写的这个解,写出另一个二元一次方程,使这个解也满足你写的这个二元一
可以让他们更理性地看待人生
TB:小初高题库
a=___
_____.
8.方程 x+3y=6 中,x,y 互为相反数,则 x=_______,y=_______. 提高训练
x 3,
9.试判断
y
4
是否为方程-2x-3y=6
的解?你能写出方程-2x-3y= 6
的三个一次方程 x- y=4,用含 x 的代数式表示 y 得到 y =8+ x 对吗?如错误,
浙教版初中数学
浙教版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 浙教版初中数学 和你一起共同进步学业有成!
TB:小初高题库
浙教版初中数学
二元一次方程课时训练 2
基础训练 1.下列方程中,属于二元一次方程的是( )
2020年浙教版七年级数学下册第2章二元一次方程提高题(对标中考)测试卷解析版

2020年浙教版七年级数学下册第2章二元一次方程提高题(对标中考)测试卷一、选择题(每小题3分,共24分)1.已知关于的方程 x 2m−n−2+4y m+n+1=6 是二元一次方程,则 m,n 的值为( )A.m =1,n =−1B.m =−1,n =1C.m =13,n =−43D.m =−13,n =432.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A.4种B.3种C.2种D.1种3.甲乙两人同解方程 {ax +by =2cx −7y =8时,甲正确解得 {x =3y =−2 ,乙因为抄错c 而得 {x =−2y =2 ,则a+b+c 的值是( )A.7B.8C.9D.104.已知 {x =3y =−2 是方程组 {ax +by =2bx +ay =−3的解,则 a +b 的值是( ) A.﹣1 B.1 C.﹣5 D.55.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( )A.{x +y =7x =2yB.{x +y =7y =2xC.{x +2y =7x =2yD.{2x +y =7y =2x6.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x 元的衣服和一条标价为y 元的裤子,共节省500元,则根据题意所列方程正确的是( )A.0.6x+0.4y+100=500B.0.6x+0.4y ﹣100=500C.0.4x+0.6y+100=500D.0.4x+0.6y ﹣100=5007.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车 x 辆,37座客车 y 辆,根据题意可列出方程组( )A.{x +y =1049x +37y =466B.{x +y =1037x +49y =466C. {x +y =46649x +37y =10D.{x +y =46637x +49y =108.把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l 1 , 图③中两个阴影部分图形的周长和为l 2 , 若l 1= 54 l 2 , 则m ,n 满足( )A.m= 65 nB.m= 75 nC.m= 32 nD.m= 95 n 二、填空题(每小题4分,共24分)9.有两个有理数,其和为1,其差为5,则其积为________.10.已知关于x ,y 的二元一次方程组 {2x +y =k x +2y =−1的解互为相反数,则k 的值为________。
中考数学复习专题练2-3 二元一次方程组1

§2.3 二元一次方程组一、选择题1.(改编题)若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( ) A .-5 B .-1 C .2 D .7解析 将⎩⎨⎧x =1,y =2代入方程ax -3y =1,得a -6=1,解得a =7,故选D. 答案 D2.(原创题)已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =8,nx -my =1的解,则m +3n 的平方根为( )A .±9B .±3C .3D .-3 解析 把⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,nx -my =1得⎩⎨⎧2m +n =8,①2n -m =1,②①+②,得m +3n =9,∴m +3n 的平方根是±3.故选B.答案 B3.(原创题)以方程2x -y =3和3x +4y =10的公共解为横纵坐标的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 解析 方程2x -y =3和3x +4y =10的公共解就是方程组⎩⎨⎧2x -y =3,3x +4y =10的解,解得⎩⎨⎧x =2,y =1.以⎩⎨⎧x =2,y =1为横、纵坐标的点为(2,1),在第一象限,故选A. 答案 A4.(原创题)解方程组⎩⎨⎧ax +by =2,cx -7y =8时,小虎把c 看错而得到⎩⎨⎧x =-2,y =2,而正确的解是⎩⎨⎧x =3,y =-2.那么a ,b ,c 的值应是 ( ) A .a =4,b =5,c =-2B .a =4,b =7,c =2C .a ,b 不能确定,c =-2D .不能确定解析 把c 看错而得到⎩⎨⎧x =-2,y =2,则⎩⎨⎧x =-2,y =2是ax +by =2的解;正确的解是⎩⎨⎧x =3,y =-2,则⎩⎨⎧x =3,y =-2既是ax +by =2的解也是cx -7y =8的解.∴把⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8,解得c =-2;把⎩⎨⎧x =-2,y =2和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-2a +2b =2,3a -2b =2,解得⎩⎨⎧a =4,b =5.故选A. 答案 A5.(原创题)已知|2x -y -1|+x +y -2=0,则(x -2y )2 015等于( )A .2 015B .-2 015C .1D .-1 解析 根据题意,得⎩⎨⎧2x -y -1=0,①x +y -2=0,②①-②,得x -2y =-1.∴(x -2y )2 015=(-1)2 015=-1,故选D.答案 D二、填空题6.(原创题)形如⎪⎪⎪⎪⎪⎪a c b d 的式子,定义它的运算规则为⎪⎪⎪⎪⎪⎪a c b d =ad -bc ;则方程⎪⎪⎪⎪⎪⎪2 y 4 x =0与⎪⎪⎪⎪⎪⎪ 3 y -5 x =11的公共解是________.解析 根据题意,得⎩⎨⎧2x -4y =0,3x +5y =11,解得⎩⎨⎧x =2,y =1.答案 ⎩⎨⎧x =2y =17.(原创题)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x ,y ,z 对应密文x +y +z ,x -y +z ,x -y -z .例如:明文1,2,3对应密文6,2,-4.当接收方收到密文12,4,-6时,则解密得到的明文为________.解析 根据题意,得⎩⎨⎧x +y +z =12,x -y +z =4,x -y -z =-6,解得⎩⎨⎧x =3,y =4,z =5.∴解密得到的明文为3,4,5.答案 3,4,5三、解答题8.(原创题)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).解 设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意,得⎩⎨⎧3x +2y =36,3(1+50%)x +2(1+20%)y =45,解得⎩⎨⎧x =2,y =15.∴这天萝卜的单价是(1+50%)x =(1+50%)×2=3,这天排骨的单价是(1+20%)y =(1+20%)×15=18.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.9.(改编题)某学校组织学生乘汽车去自然保护区野营,先以60 km/h 的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5 h ;原路返回时,汽车以40 km/h 的速度下坡,又以50 km/h 的速度走平路,共用了6 h .问平路和坡路各有多远?解 设平路x km ,坡路y km ,根据题意,得⎩⎪⎨⎪⎧x 60+y 30=6.5,x 50+y 40=6,即⎩⎨⎧4x +8y =1 560,4x +5y =1 200,解得⎩⎨⎧x =150,y =120. 答:平路150 km ,坡路120 km.。
浙教版年中考数学总复习《二元一次方程组》(含答案)

浙教版中考数学总复习?二元一次方程组?一、选择题1.方程组的解是( )A. B. C. D.2.把方程写成用含x的代数式表示y的形式,以下各式正确的选项是〔〕3.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,那么可列方程组为〔〕4.买甲、乙两种纯洁水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%.设买甲种水x桶,乙种水y桶,那么所列方程组中正确的选项是( ).A. B. C. D.5.假设是方程组的解,那么(a+b)·(a-b)的值为( )A.-B.C.-166.我国古代数学名著?孙子算经?中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,缺乏一尺,木长几何?〞意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )A. B. C. D.7.方程组的解满足x+y=2,那么k的算术平方根为〔〕A.4B.﹣2C.﹣8.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1.小红看见了,说:“我也来试一试.〞结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是边长为3的小正方形,那么每个小长方形的面积为( )B.135C.108二、填空题9.是方程x-ky=1的解,那么k=_______.10.假设2a﹣b=5,a﹣2b=4,那么a﹣b的值为.11.方程组的解满足方程x+2y=k,那么k的值是__________.12.二元一次方程x+y=5的正整数解有______________.三、解答题13.解方程组:14.解方程组:15.实数a,b满足等式(a-b-1)2+|a+b-3|=0,求a,b的值.16.某数学兴趣小组研究我国古代?算法统宗?里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.〔1〕求该店有客房多少间?房客多少人?〔2〕假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上〔含18间〕,房费按8折优惠.假设诗中“众客〞再次一起入住,他们如何订房更合算?参考答案1.B.2.B3.A4.A5.C.6.答案为:A.7.D.8.B9.答案为:-1.10.答案为:3.11.答案为:-312.答案为:13.答案为:x=30/11,y=12/11.14.答案为:x=7,y=1;15.解:根据等式,得即①+②得2a=4,即a=2,把a=2代入①16.解:〔1〕设该店有客房x间,房客y人;根据题意得:7x+y=y,9(x-1)=y解得:x=8,y=63.答:该店有客房8间,房客63人;〔2〕假设每间客房住4人,那么63名客人至少需客房16间,需付费20×16=320钱;假设一次性定客房18间,那么需付费20×18×0.8=288千<320钱;答:诗中“众客〞再次一起入住,他们应选择一次性订房18间更合算.。
浙教版七年级数学下册试题二元一次方程归类讲解及练习

二元一次方程归类讲解及练习知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。
2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。
3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。
4、二元一次方程组的解:二元一次方程组中各个方程的公共解。
(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成⎩⎨⎧==y x 的形式。
5、二元一次方程组的解法:基本思路是消元。
(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。
主要步骤:变形——用一个未知数的代数式表示另一个未知数。
代入——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
变形——同一个未知数的系数相同或互为相反数。
加减——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: ① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。
② 找:找出能够表示题意两个相等关系。
③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。
④ 解:解这个方程组,求出两个未知数的值。
⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
6、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。
中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。
解二元一次方程--浙教版

2 m 1
3 n 2 y
|n|1
7
是二元一次方程,则m=_______ 2、如果方程 mx n 1 y 2 0 是关 于x,y的二元一次方程。则有理数m,n 的取值范围是_____________
3、写出一个解为
x2 y 1
例2 解方程组:
2x 7 y 8 (1) 3 x 8 y 10 0
2 x 3 y 7 2 4 x 5 y 3
① ②
例3 解方程组:
2( x y) ( x y) 3 (1) ( x y) 2( x y) 1
方程组______
4、尝试利用列表法解方程组 x y 3 2 x 3 y 8
x y 2 x+ 3y 1
2 8
2
1 7
3
0 6
4.3
y
x ??
10g 10g
? ?
100g 100g
y x 10 代入 x y 200
(二元)
消元
x x 10 200
y 6
美女视频写真 / yrk352qox 视频编辑软件 视频转换器 视频剪辑软件 幸好今晚天色非常好,拍照需要合适的时间、光线、角度和足够的耐心以及对画面捕捉的敏感度。
我曾经拍过一组夜晚的花朵的照片,选择了二十四种常见的花卉,代表了二十四个节气。夏天要忍受蚊子,冬天则要忍受寒风。那时候, 想法会比较多,也不怕吃苦,兴致勃勃。
鸡兔同笼
公元1世纪,世界科学名著、我国的《九章算术》 成书之后,大约过了100多年,我国古代的数学家又向 世界文化宝库奉献了一块瑰丽的珍宝—《孙子算经》。 孙子就是孙武,他是我国春秋时期的杰出军事家,他 著的《孙子兵法》被人们誉为“世界古代第一兵书”。 但我们这里提到的《孙子算经》只是借用他流传于世的 英名,此书并非孙武所著。《孙子算经》的著述年代和 作者还有待考证。《孙子算经》共3卷,其中有许多有 趣的数学题。下卷第三十一题是:“今有鸡、兔同笼, 上有三十五头,下有九十四足。问鸡、兔各几何?”意 思是说,把鸡兔关在同一个笼子中,从上面数,共有35 个头,从下面数共有94只爪,问鸡兔各有多少只? 你能算出鸡、兔各有多少只吗?想一想,试一试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学(浙教版)专题训练(二):二元一次方程一、选择题(共8小题)1.(广安)如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.2.(凉山州)已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.33.(抚州)已知a、b满足方程组,则3a+b的值为()A.8 B.4 C.﹣4 D.﹣84.(崇左)方程组的解是()A.B.C.D.5.(永州)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.56.(娄底)方程组的解是()A. B. C. D.7.(莆田)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.38.(黔南州)二元一次方程组的解是()A. B. C. D.二、填空题(共8小题)9.(毕节地区)二元一次方程组的解是.10.(重庆)方程组的解是.11.(百色)方程组的解为.12.(杭州)设实数x、y满足方程组,则x+y=.13.(泉州)方程组的解是.14.(大庆)二元一次方程组的解为.15.(攀枝花)已知x,y满足方程组,则x﹣y的值是.16.(宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.三、解答题(共14小题)17.(滨州)(请在下列两个小题中,任选其一完成即可)(1)解方程组:(2)解方程:.18.(桂林)解二元一次方程组:.19.(东莞市)解方程组.20.(湘西州)解方程组:.21.(遵义)解方程组.22.(荆州)用代入消元法解方程组.23.(威海)解方程组:.24.(淮安)解方程组:.25.(滨州)(1)解方程:2﹣=(2)解方程组:.26.(湖州)解方程组.27.(北海)解方程组.28.(永州)解方程组:.29.(厦门)解方程组.30.(珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.浙江省衢州市xx年中考数学(浙教版)专题训练(二):二元一次方程参考答案与试题解析一、选择题(共8小题)1.(广安)如果a3x b y与﹣a2y b x+1是同类项,则()A. B. C. D.【解答】解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.2.(凉山州)已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.3【解答】解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.3.(抚州)已知a、b满足方程组,则3a+b的值为()A.8 B.4 C.﹣4 D.﹣8【解答】解:,①×2+②得:5a=10,即a=2,将a=2代入①得:b=2,则3a+b=6+2=8.故选A4.(崇左)方程组的解是()A. B. C. D.【解答】解:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选:C.5.(永州)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.5【解答】解:∵(x﹣y+3)2+=0,∴,解得,∴x+y=﹣1+2=1.故选C.6.(娄底)方程组的解是()A. B. C. D.【解答】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选:D.7.(莆田)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.8.(黔南州)二元一次方程组的解是()A. B. C. D.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为.故选:B二、填空题(共8小题)9.(毕节地区)二元一次方程组的解是.【解答】解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.10.(重庆)方程组的解是.【解答】解:,将①代入②得:y=2,则方程组的解为,故答案为:.11.(百色)方程组的解为.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则方程组的解为.故答案为:.12.(杭州)设实数x、y满足方程组,则x+y=8.【解答】解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8.13.(泉州)方程组的解是.【解答】解:,①+②得:3x=6,即x=2,将x=2代入①得:y=2,则方程组的解为.故答案为:.14.(大庆)二元一次方程组的解为.【解答】解:,①×3﹣②×2得:11x=33,即x=3,将x=3代入②得:y=2,则方程组的解为.故答案为:.15.(攀枝花)已知x,y满足方程组,则x﹣y的值是﹣1.【解答】解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.16.(宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.三、解答题(共14小题)17.(滨州)(请在下列两个小题中,任选其一完成即可)(1)解方程组:(2)解方程:.【解答】解:(1),①+②×4得:7x=35,解得:x=5,将x=5代入②得:5﹣y=4,解得:y=1,则方程组的解为;(2)去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,解得:x=﹣.18.(桂林)解二元一次方程组:.【解答】解:,由②得:y=2x﹣1③把③代入①得:3x+4x﹣2=19,解得:x=3,把x=3代入③得:y=2×3﹣1,即y=5故此方程组的解为.19.(东莞市)解方程组.【解答】解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.20.(湘西州)解方程组:.【解答】解:,由①得:x=1﹣2y ③,把③代入②得:y=﹣1,则原方程组的解为:.21.(遵义)解方程组.【解答】解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.22.(荆州)用代入消元法解方程组.【解答】解:,由①得,y=x﹣2③,③代入②得,3x+5(x﹣2)=14,解得x=3,把x=3代入③得,y=3﹣2=1,所以,方程组的解是.23.(威海)解方程组:.【解答】解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.24.(淮安)解方程组:.【解答】解:,①+②得:3x=9,即x=3,则方程组的解为.25.(滨州)(1)解方程:2﹣=(2)解方程组:.【解答】解:(1)去分母得:12﹣2(2x+1)=3(1+x),去括号得:12﹣4x﹣2=3+3x,移项合并得:﹣7x=﹣7,解得:x=1;(2),①×3+②得:10x=20,解得:x=2,将x=2代入①得:y=﹣1,则方程组的解为.26.(湖州)解方程组.【解答】解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.27.(北海)解方程组.【解答】解:,①+②得:7x=14,解得:x=2,把x=2代入①得6+y=3,解得:y=﹣3,则原方程组的解是.28.(永州)解方程组:.【解答】解:将①代入②得:5x+2x﹣3=11,解得:x=2,将x=2代入①得:y=1,故方程组的解为:.29.(厦门)解方程组.【解答】解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.30.(珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.【解答】解:(1)把方程②变形:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,即y=2,把y=2代入①得:x=3,则方程组的解为;(2)(i)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③,把③代入②得:2×=36﹣xy,解得:xy=2,则x2+4y2=17;(ii)∵x2+4y2=17,∴(x+2y)2=x2+4y2+4xy=17+8=25,∴x+2y=5或x+2y=﹣5,则+==±.#33329 8231 舱x36008 8CA8 貨23096 5A38 娸It35067 88FB 裻31580 7B5C 筜G40341 9D95 鶕26137 6619 昙29263 724F 牏。