2019届中考数学专题复习一元二次方程专题训练
2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案
北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA10. -a/b c/a11. -412. 201913. 1014. 10 -4 0 015. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m=32.∵m =32<2,∴m 的值为3218. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k=0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1(2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12(2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=a a -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=a a -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°2.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272- 3.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OC ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点 F ;③作射线 OF ,交边 BC 于点 G ,则点 G 的坐标为( )A .(4, 43 )B .( 43 ,4)C .( 53 ,4)D .(4, 53) 4.关于x 的一元二次方程240x x k -+=有两个根,则k 的取值范围是( )A.4k <-B.4k ≤-C.4k <D.4k ≤5.若点A (x 1,﹣3)、B (x 2,﹣2)、C (x 3,1)在反比例函数y =﹣的图象上,则x 1、x 2、x 3的大小关系是( )A. B. C. D.7.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.48.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.89.计算|+|2|=( )A . 1B .1﹣C .﹣1D .310.一个不透明的布袋里装有2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A.15 B.25 C.35 D.1211.下列尺规作图中,能确定圆心的是( )①如图1,在圆上任取三个点A ,B ,C ,分别作弦AB ,BC 的垂直平分线,交点O 即为圆心②如图2,在圆上任取一点B ,以B 为圆心,小于直径长为半径画弧交圆于A ,C 两点连结AB ,BC ,作∠ABC 的平分线交圆于点D ,作弦BD 的垂直平分线交BD 于点O ,点O 即为圆心③如图3,在圆上截取弦AB =CD ,连结AB ,BC ,CD ,分别作∠ABC 与∠DCB 的平分线,交点O 即为圆心A .①②B .①③C .②④D .①②③12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BCA.2 B.53C.114D.3二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。
2019年中考复习试题-九上数学一元二次方程(含解析答案)
一元二次方程一.选择题(共14小题)1.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=22.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或163.x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A.﹣2B.﹣3C.﹣1D.﹣64.一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或805.已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34B.30C.30或34D.30或366.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根7.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 8.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.210.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.011.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a的值为()A.0B.±1C.1D.﹣112.若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠2C.k≥D.k≥且k≠2 13.已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是()A.2023B.2021C.2020D.201914.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6B.5C.4D.3二.填空题(共7小题)15.一元二次方程x(x﹣2)=x﹣2的根是.16.a是方程2x2=x+4的一个根,则代数式4a2﹣2a的值是.17.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.18.关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.19.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m ﹣3)=24,则m=.20.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为.21.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=.三.解答题(共6小题)22.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.23.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.24.已知关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1﹣x2|=4,求m的值.25.已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.26.关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.27.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.一元二次方程参考答案与试题解析一.选择题(共14小题)1.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.2.【解答】解:解方程x2﹣8x+15=0,得:x=3或x=5,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,故选:A.3.【解答】解:把x=1代入方程x2+ax+2b=0得1+a+2b=0,所以a+2b=﹣1,所以2a+4b=2(a+2b)=2×(﹣1)=﹣2.故选:A.4.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.5.【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.6.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.7.【解答】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.8.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.9.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.10.【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.11.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,∴a2﹣1=0,a﹣1≠0,则a的值为:a=﹣1.故选:D.12.【解答】解:(k﹣2)x2﹣2kx+k﹣6=0,∵关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,∴,解得:k≥且k≠2.故选:D.13.【解答】解:a,b是方程x2+x﹣3=0的两个实数根,∴b=3﹣b2,a+b=﹣1,ab=3,∴a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016=1+6+2016=2023;故选:A.14.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.二.填空题(共7小题)15.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.16.【解答】解:∵a是方程2x2=x+4的一个根,∴2a2﹣a=4,∴4a2﹣2a=2(2a2﹣a)=2×4=8.故答案为:8.17.【解答】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=2,故答案为:2.18.【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;19.【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.20.【解答】解:∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,∴x1+x2=﹣(3k+1),x1x2=2k2+1.∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,∴2k2+1+3k+1+1=8k2,整理,得:2k2﹣k﹣1=0,解得:k1=﹣,k2=1.∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,∴△=(3k+1)2﹣4×1×(2k2+1)>0,解得:k<﹣3﹣2或k>﹣3+2,∴k=1.故答案为:1.21.【解答】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.三.解答题(共6小题)22.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.23.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.24.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m+1)≥0,解得:m≤2.(2)∵方程x2﹣6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=42,即32﹣16m=16,解得:m=1.25.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.26.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m=;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m的值为.27.【解答】解:(1)由题意△≥0,∴(2m﹣1)2﹣4(m2﹣3)≥0,∴m≤.(2)当m=2时,方程为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵方程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1﹣x1)(x22+3x2+x2+2)=(﹣1﹣x1)(﹣1+x2+2)=(﹣1﹣x1)(x2+1)=﹣x2﹣x1x2﹣1﹣x1=﹣x2﹣x1﹣2=3﹣2=1.。
一元二次方程拔高专题(2019中考真题)(含答案)
2019-2020一元二次方程培优专题(中考真题含答案)一、单选题1.(2019·贵州中考真题)一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2﹣2的值是( ) A .10B .9C .8D .72.(2019·内蒙古中考真题)若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A .﹣2B .6C .﹣4D .43.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14B .13C .12D .234.(2019·内蒙古中考真题)已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是( ) A .34B .30C .30或34D .30或365.(2019·湖北中考真题)若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定6.(2019·黑龙江中考真题)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4B .5C .6D .77.(2019·新疆中考真题)若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 8.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根9.(2019·广东中考真题)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .210.(2019·山东中考真题)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .201911.(2019·山东中考真题)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =12.(2019·山东中考真题)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠13.(2018·宁夏中考真题)若是方程x 2-4x+c=0的一个根,则c 的值是( )A .1B .C .D .14.(2018·内蒙古中考真题)已知关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( ) A .6 B .5 C .4 D .3二、填空题15.(2019·四川中考真题)若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第____象限.16.(2019·宁夏中考真题)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程25140x x +-=即(5)14x x +=为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是2(5)x x ++,其中它又等于四个矩形的面积加上中间小正方形的面积,即24145⨯+,据此易得2x =.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程24120x x --=的正确构图是_____.(只填序号)17.(2019·湖北中考真题)已知是关于的方程的两个不相等实数根,且满足,则的值为__________.18.(2018·四川中考真题)已知x 1,x 2是一元二次方程x 2-2x-1=0的两实数根,则12112121x x +++的值是__.19.(2015·四川中考真题)已知实数m ,n 满足,,且,则= .20.(2018·四川中考真题)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.21.(2014·内蒙古中考真题)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n=___________.三、解答题22.(2019·湖南中考真题)关于x 的一元二次方程230x x k -+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.(2019·湖北中考真题)已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.24.(2019·湖北中考真题)已知于x的元二次方程26250x x a-++=有两个不相等的实数根12,x x.(1)求a的取值范围;(2)若22121230x x x x+-…,且a为整数,求a的值.25.(2018·四川中考真题)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.26.(2019·重庆中考真题)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.参考答案1.D 【解析】 【分析】先利用一元二次方程的解的定义得到x 12=3x 1-1,则x 12+3x 2+x 1x 2-2=3(x 1+x 2)+x 1x 2-3,接着利用根与系数的关系得到x 1+x 2=3,x 1x 2=1,然后利用整体代入的方法计算. 【详解】∵x 1为一元二次方程x 2﹣3x+1=0的根, ∴x 12﹣3x 1+1=0, ∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3, 根据题意得x 1+x 2=3,x 1x 2=1, ∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7. 故选:D . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 2.A【解析】 【分析】利用根与系数的关系可得出x 1+x 2=-1、x 1•x 2=-3,211x x 3+=,将代数式2132x 4x 17+﹣进行转化后,再代入数据即可得出结论. 【详解】 解:12x x ,是一元二次方程2x x 30+﹣=的两个实数根,12x x 1∴+=﹣,12x x 3=﹣,211x x 3+=,3221x 4x 17∴+﹣ 32211418--+=x x()()2222111418=-++-+x x x x()211114418=---⨯-+x x21184418=---+x x()2118418=--++x x 10432=-⨯=-故选:A . 【点睛】本题考查了方程的解、根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则1212,b c x x x x a a+=-=. 3.C 【解析】 【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可. 【详解】由题意,△=42-4ac≥0,∴ac≤4, 画树状图如下:a 、c 的积共有12种等可能的结果,其中积不大于4的有6种结果数, 所以a 、c 的积不大于4(也就是一元二次方程有实数根)的概率为61=122, 故选C. 【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键. 4.A 【解析】【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b 时;结合韦达定理即可求解; 【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412a ∴+=, 8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 1222a b ∴==, 6a b ∴==, 236m ∴+=, 34m ∴=;故选:A . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键. 5.A 【解析】 【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】 解:一次函数y kx b =+的图象不经过第二象限,0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A . 【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键. 6.C 【解析】 【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论 【详解】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C . 【点睛】此题考查一元二次方程的应用,解题关键在于列出方程 7.D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键 8.A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键. 9.D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-,化简,得:24k =, 解得:k =±2, 因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 10.A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab=-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 11.A 【解析】 【分析】设1x ,2x 是2220x mx m m +++=的两个实数根,由根与系数的关系得122x x m +=-,212x x m m ⋅=+,再由()2221212122x x x x x x +=+-⋅代入即可.设1x ,2x 是2220x mx m m +++=的两个实数根, ∴40m ∆=-≥, ∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=,∴3m =或2m =-, ∴2m =-, 故选A . 【点睛】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键. 12.D 【解析】 【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围. 【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D . 【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键. 13.A【分析】把2代入方程x 2﹣4x +c =0就得到关于c 的方程,就可以解得c 的值.【详解】把2代入方程x 2﹣4x +c =0,得(22﹣4(2+c =0,解得:c =1.故选A . 【点睛】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 14.B 【解析】 【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可. 【详解】∵关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根, ∴△=()224120m =⨯⨯-≥,解得:3m ≤,又∵m 为正整数, ∴m=1或2或3,(1)当m=1时,原方程为x 2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求; (2)当m=2时,原方程为x 2+2x=0,此时方程的两根分别为0和-2,符合题中要求; (3)当m=3时,原方程为x 2+2x+1=0,此时方程的两根都为1,符合题中要求;∴ m=2或m=3符合题意,∴m 的所有符合题意的正整数取值的和为:2+3=5. 故选B. 【点睛】读懂题意,熟知“在一元二次方程()200ax bx c a ++=≠中,若方程有两个实数根,则△=240b ac -≥”是解答本题的关键.【解析】 【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解. 【详解】∵关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根, ∴201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩, 解得:1a >-且0a ≠. ∴10a +>,30a --<, ∴点(1,3)P a a +--在第四象限. 故答案为:四. 【点睛】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键. 16.②. 【解析】 【分析】仿造案例,构造面积是2(4)x x +-的大正方形,由它的面积为24124⨯+,可求出6x =,此题得解. 【详解】 解:24120x x --=即()412x x -=,∴构造如图②中大正方形的面积是2(4)x x +-,其中它又等于四个矩形的面积加上中间小正方形的面积,即24124⨯+, 据此易得6x =.故答案为:②.【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.17.1 .【解析】【分析】根据根与系数的关系结合,可得出关于的一元二次方程,解之即可得出的值,根据方程的系数结合根的判别式,可得出关于的一元二次不等式,把k的值代入,进而即可确定值,此题得解.【详解】是关于的方程的两个实数根,.,即,整理,得:,解得:.关于的方程的两个不相等实数根,当k=时,△=-<0,故k=不符合题意;当k=1时,△=4>0;.故答案为:1.【点睛】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合,求出值是解题的关键. 18.6 【解析】 【分析】已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可. 【详解】∵x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,∴12112121x x +++=()22212121222222212121221142 6.1x x x x x x x x x x x x +-+++==== 故答案为6. 【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.19..【解析】 试题分析:由时,得到m ,n 是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴,.∴原式===,故答案为:.考点:根与系数的关系. 20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2, ∴t 1+t 2=3, ∴x 3+x 4+2=3 故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 21.8 【解析】试题分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m 、n 即可解题.∵m 、n 是方程x 2+2x ﹣5=0的两个实数根, ∴mn=﹣5,m+n=﹣2, ∵m 2+2m ﹣5=0 ∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n=10+m+n=10﹣2=8 考点:(1)、根与系数的关系;(2)、一元二次方程的解.22.(1)94k ≤;(2)m 的值为32. 【解析】 【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.【详解】解:(1)根据题意得()2340k ∆=--≥,解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =, 而10m -≠, ∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 23.(1)2m ≤.(2)1m =. 【解析】 【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值. 【详解】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0, 解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16, 解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程. 24.(1)a<2;(2)-1,0,1 【解析】 【分析】(1)根据根的判别式,可得到关于a 的不等式,则可求得a 的取值范围;(2)由根与系数的关系,用a 表示出两根积、两根和,由已知条件可得到关于a 的不等式,则可求得a 的取值范围,再求其值即可. 【详解】 (1)关于x 的一元二次方程26250x x a -++=有两个不相等的实数根12,x x ,0∴∆>,即2(6)4(25)0a --+>,解得2a <;(2)由根与系数的关系知:12126,25x x x x a +==+,12,x x 满足221212x x x x 30+-…,()21212330x x x x ∴+-…, 363(25)30a ∴-+…,3,2a ∴-…a 为整数,a ∴的值为1,0,1-.【点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用. 25.(1)见解析;(2)m=﹣1或m=3. 【解析】 【分析】(1)求出∆的值,即可判断出方程根的情况;(2)根据根与系数的关系即可求出答案. 【详解】(1)由题意可知:△=(2m ﹣2)2﹣4(m 2﹣2m )=4>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2m ﹣2,x 1x 2=m 2﹣2m ,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=10, ∴(2m ﹣2)2﹣2(m 2﹣2m )=10, ∴m 2﹣2m ﹣3=0, ∴m=﹣1或m=3 【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.26.(1)该菜市场共有25个4平方米的摊位.(2)a 的值为50. 【解析】 【分析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518%a ,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位, 依题意,得:20420 2.524500x x ⨯+⨯⨯=, 解得:25x =.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25240%20⨯⨯=(个),5月份参加活动一的4平方米摊位的个数为2520%5⨯=(个). 依题意,得:320(12%)20 2.5%10a a +⨯⨯⨯()1516%204%4a a ++⨯⨯⨯[20(12%)20a =+⨯⨯2.5+5(16%)a +5204]%18a ⨯⨯⨯, 整理,得:2500a a -=,解得:10a =(舍去),250a =. 答:a 的值为50. 【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.。
初三数学中考复习 一元二次方程 专项复习训练题 含答案
2019 初三数学中考复习 一元二次方程 专项复习训练题1.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16B .(x +5)2=1C .(x +10)2=91D .(x +10)2=1092. 若关于x 的一元二次方程x 2-6x +a =0有两个不相等的实数根,则a 的取值范围是( )A .a ≤9 B.a ≥9 C .a <9 D .a >93. 已知关于x 的一元二次方程(k -2)x 2-2x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <2B .k <3C .k <2且k ≠0 D.k <3且k ≠24. 如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( )A .1B .2C .-1D .-25. 关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为( )A .1B .-1C .2D .-26. 关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为( )A .-8B .8C .16D .-167. 已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是( )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数 8. 已知x 1、x 2是方程x 2+3x -1=0的两个实数根,那么下列结论正确的是( )A.x1+x2=-1 B.x1+x2=-3 C.x1+x2=1 D.x1+x2=3 9. 方程x2+x=0的解是( )A.x±1 B.x=0 C.x1=0,x2=-1 D.x=1 10. 若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )A.0 B.-1 C.2 D.-311. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c =0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断12. 某景点的参观人数逐年增加,据统计,2019年为10.8万人次,2019年为16.8万人次.设参观人次的平均年增长率为x,则 ( )A.10.8(1+x)=16.8 B.16.8(1-x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8 13. 下列关于x的一元二次方程中,有两个相等实数根的是()A.x2+1=0 B.x2+x-1=0C.x2+2x-3=0 D.4x2-4x+1=014. 若x1,x2是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,则m 的值为()A.-1或2 B.1或-2 C.-2 D.115. 王叔叔从市场上买了一块长80 cm,宽70 cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长x cm的正方形后,剩余的部分刚好能围成一个底面积为3000 cm2的无盖长方形工具箱,根据题意列方程为( )A.(80-x)(70-x)=3000 B.80×70-4x2=3000C.(80-2x)(70-2x)=3000 D.80×70-4x2-(70+80)x=300016. 方程(x-2)2=3x(x-2)的解为____.17. 关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为____.18. 若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是____.19. 关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是____.20. 根据根的情况求字母取值范围,应注意二次项系数不为0;若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是.21. 已知关于x的方程x2-3x+m=0的一个根是1,则m=.22. 方程3x(x-1)=2(x-1)的根为.23. 解方程:2(x-3)2=x2-924. 已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1) 求证:对于任意实数t,方程都有实数根;(2) 当t为何值时,方程的两个根互为相反数?请说明理由.参考答案:1---15 ACDBA CDBCD BCDDC16. x=2或x=-117. c<118. k>-1且k≠019. 020. k≤5且k≠121. 222. x 1=23,x 2=123. 解:方程变形得:2(x -3)2-(x +3)(x -3)=0,分解因式得:(x -3)(2x -6-x -3)=0,解得:x1=3,x2=9.24. (1)证明:在方程x 2-(t -1)x +t -2=0中,b 2-4ac =[-(t -1)]2-4×1×(t -2)=t 2-6t +9=(t -3)2≥0,∴对于任意实数t ,方程都有实数根;(2)解:设方程的两根分别为m 、n ,∵方程的两个根互为相反数,∴m +n =t -1=0,解得t =1.∴当t =1时,方程的两个根互为相反数.--。
2019年中考总复习《一元二次方程及其应用》专题训练题含答案
2019 初三数学中考复习 一元二次方程及其应用 专题复习训练题1. 已知x 1,x 2是方程x 2+3x -1=0的两个实数根,那么下列结论正确的是( )A .x 1+x 2=-1B .x 1+x 2=-3C .x 1+x 2=1D .x 1+x 2=32. 若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k≠1C .k≤5,且k≠1D .k>53. 一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=64.下列一元二次方程没有实数根的是( )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=05.已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2-7x +12=0B .x 2+7x +12=0C .x 2+7x -12=0D .x 2-7x -12=06.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=07.若关于x 的方程x 2+(m +1)x +12=0的一个实数根的倒数恰是它本身,则m 的值是( ) A .-52 B.12 C .-52或12D .1 8. 用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16B .(x +5)2=1C .(x +10)2=91D .(x +10)2=1099. 关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是( )A .k≥1B .k>-1C .k<1D .k≤110. 下列方程有两个相等的实数根的是( )A .x 2+x +1=0B .4x 2+2x +1=0C .x 2+12x +36=0D .x 2+x -2=011. 若关于x 的一元二次方程(a -1)x 2-2x +2=0有实数根,则整数a 的最大值为( )A .-1B .0C .1D .212. 若关于x 的一元二次方程x 2-3x +p =0(p≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( ) A .3 B .-3 C .5 D .-513. 已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( )A.14 B .-14C .4D .-1 14. 方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为____.15.将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____.16.如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是 ____(写出一个即可).17.设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=____.18.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2019年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为____.19. 已知关于x的方程x2-3x+m=0的一个根是1,则m=____.20.解方程:2y2+4y=y+221. 用配方法解方程:2x2-4x-1=0.22. 关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.23.已知关于x的方程(x-3)(x-2)-p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x21+x22=3x1x2,求实数p的值.24.在直角墙角AOB(OA⊥OB,且OA,OB长度不限)中,要砌20 m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96 m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?25. 已知关于x的一元二次方程x2-6x+(2m+1)=0有实数根.①求m的取值范围;②如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.26. 李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.参考答案:1---13 BBBBA CCADC BDA14. -315. (x +2)2+116. k >-94且k ≠0 17. 201918. 100(1+x)2=16919. 220. 解:2y 2+4y =y +2,2y 2+3y -2=0,(2y -1)(y +2)=0,2y -1=0或y +2=0,∴y 1=12,y 2=-2 21. 解:二次项系数化为1得:x 2-2x =12, x 2-2x +1=12+1, (x -1)2=32, x -1=±62, ∴x 1=62+1,x 2=1-6222. 解:(1) ∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根,∴Δ=(2m +1)2-4×1×(m 2-1)=4m +5>0,解得:m >-54(2) m =1,此时原方程为x 2+3x =0,即x(x +3)=0,解得:x 1=0,x 2=-323. 解:(1)(x -3)(x -2)-p 2=0,x 2-5x +6-p 2=0,Δ=(-5)2-4×1×(6-p 2)=25-24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根(2)x 1+x 2=5,x 1x 2=6-p 2,∵x 21+x 22=3x 1x 2,∴(x 1+x 2)2-2x 1x 2=3x 1x 2,∴52=5(6-p 2),∴p =±124. 解:(1)设这地面矩形的长是x m ,则依题意得:x(20-x)=96,解得x 1=12,x 2=8(舍去),答:这地面矩形的长是12米(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00的地板砖所需的费用较少25. 解:①根据题意得Δ=(-6)2-4(2m+1)≥0,解得m≤4②根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的取值范围为3≤m≤426. 解:(1)设剪成的较短的一段为x cm,较长的一段就为(40-x)cm,由题意,得(x4)2+(40-x4)2=58,解得:x1=12,x2=28,当x=12时,较长的为40-12=28 cm,当x=28时,较长的为40-28=12<28(舍去).答:李明应该把铁丝剪成12 cm和28 cm的两段(2)李明的说法正确.理由如下:设剪成的较短的一段为m cm,较长的一段就为(40-m)cm,由题意,得(m4)2+(40-m4)2=48,变形为:m2-40m+416=0,∵Δ=(-40)2-4×416=-64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48 cm22019-2020学年数学中考模拟试卷一、选择题1.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90° 2.2cos30 的值等于( )A B C D .13.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°4.如图,正方形ABCD 边长为6,E 是BC 的中点,连接AE ,以AE 为边在正方形内部作∠EAF=45°,边交于点,连接,则下列说法中:①;②;③tan ∠AFE=3;④.正确的有( )A.①②③B.②④C.①④D.②③④5.如图,⊙O 与正方形ABCD 是两边AB 、AD 相切,DE 与⊙O 相切于点E ,若正方形ABCD 的边长为5,DE =3,则tan ∠ODE 为( )A .32B .23C .25D . 6.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB上,反比例函数8yx,在第二象限的图像经过点E,则正方形AOBC与正方形CDEF的面积之差为()A.6B.8C.10D.127.如图,□ABCD中,对角线AC和BD相交于点O,如果AC=26,BD=18,AB=x,那么x的取值范围是()A.4< m <13 B.4< m <22C.9< m <13 D.4< m <98.下列图形中,可以看作是中心对称图形的是( )A.B.C.D.9.方程x2=4x的解是()A.x=0 B.x1=4,x2=0 C.x=4 D.x=210.下列运算中,不正确的是()A.(x+1)2=x2+2x+1 B.(x2)3=x5C.2x4⋅3x2=6x6D.x2÷x﹣1=x3(x≠0)11的正方形ABCD中,点E是边AD上的一点,连结BE,将△ABE绕着点B顺时针旋转一定的角度,使得点A落在线段BE上,记为点F,此时点E恰好落在边CD上记为点G,则AE的长为()A.5B C D.112.如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD,BC分别与x轴交于E,F,连接BE,DF,若正方形ABCD的顶点B,D在双曲线y=ax上,实数a满足a1﹣a=1,则四边形DEBF的面积是( )A .12B .32C .1D .2二、填空题13.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是线段AB 、AD 上的动点(不与端点重合),且AE =DF ,BF 与DE 相交于点G .给出如下几个结论:①△AED ≌△DFB ;②∠BGE 大小会发生变化;③CG 平分∠BGD ;④若AF =2DF ,则BG =6GF ;2BCDG S =四边形⑤.其中正确的结论有_____(填序号).14.如图所示,某班上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距________米.15.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则 朝上一面的数字是5的概率为__.16.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E.当△A′EF 为直角三角形时,AB 的长为_____.17.若多项式A 满足,2(1)1A a a ⋅-+=-,则A=________________.18.据统计,2018年哈尔滨冰雪大世界接待中外游客突破45000000人次,请将45000000人用科学记数法表示为__________人.三、解答题19.先化简,再求值:211(1)224m m m -+÷-- ,其中m 2.20.计算:()1013cos3012π-︒⎛⎫-+- ⎪⎝⎭.21.计算:20(2)20183---.22.图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB 的顶点都在格点上.(1)利用图①以AB 为边画一个面积最大的平行四边形,且这个平行四边形的其他两个顶点在格点上;(2)利用图②以AB 为边画一个面积为4的平行四边形,且这个平行四边形的其他两个顶点在格点上;(3)利用图③以AB 为边画一个面积为4的菱形,且这个菱形的其他两个顶点在格点上。
2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案
北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA 10. -a/b c/a 11. -4 12. 2019 13. 1014. 10 -4 0 0 15. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m =32.∵m =32<2,∴m 的值为32 18. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k =0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1 (2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12 (2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=aa -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a 为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°2.下列计算正确的是()3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.164.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=5.如图,在平面直角坐标系中,矩形ABCD的面积为定值,它的对称中心恰与原点重合,且AB∥y轴,CD 交x轴于点M,过原点的直线EF分别交AD、BC边于点E、F,以EF为一边作矩形EFGH,并使EF的对边GH所在直线过点M,若点A的横坐标逐渐增大,图中矩形EFGH的面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()724a =5===;④= )A .①B .②C .③D .④8.如图所示物体的俯视图是( )A .B .C .D .9.如图是二次函数2y ax bx c =++(a 、b 、c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①当13x -<<时,0y >;②0ab <;③20a b +=;④3a+c>0,其中正确的是( )A .①③B .①④C .②③D .②④10.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°11.如图,半径为3的⊙A 的ED 与▱ABCD 的边BC 相切于点C ,交AB 于点E ,则ED 的长为( )A.94πB.98πC.274πD.278π12.已知,四边形ABCD和四边形AEFG均为正方形,,连接BE与DG,则BEDG=()A B.1 C D.二、填空题13.如图,将矩形ABCD绕点C沿逆时针方向旋转,使点B的对应点刚好落在DC延长线上,形成矩形A'B'CD',AB=4,AD=8,则阴影部分的面积为____.14.若关于x的一元二次方程240x x a++=有两个相等的实数根,则a的值是______.15.如图,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分线,与BC相交于点E,点G是BC上一点,E为线段BG的中点,DG⊥BC于点G,交AC于点F,则FG的长为_____.16.计算:30=_____;=_____.17.分解因式:2a2b-8b=______.18.扬州2月份某日的最高气温是6℃,最低气温是-3℃,则该日扬州的温差(最高气温-最低气温)是______℃.三、解答题19.已知:如图,△ABC中,∠ACB=90°,以AC为直径作⊙O,D为⊙O上一点,BD=CB,DO的延长线交20.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)本次调查的学生共有人,扇形统计图中喜欢乒乓球的学生所占的百分比为;(2)请补全条形统计图(图2),并估计全校500名学生中最喜欢“足球”项目的有多少人?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.21.已知直线y1=﹣x+2和抛物线222y kx kx=-相交于点A,B.(1)当k=32时,求两函数图象的交点坐标;(2)二次函数y2的顶点为P,PA或PB与直线y1=﹣x+2垂直时,求k的值.(3)当﹣4<x<2时,y1>y2,试直接写出k的取值范围.22.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.23﹣2019024.如图,已知在平面直角坐标系内,点A(1,﹣4),点B(3,3),点C(5,1)(1)画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形ABB1A1的面积.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题14.1516.17.2b(a+2)(a-2)18.9三、解答题19.(1)证明见解析;(2)AB=.【解析】【分析】(1)连接OB,只要证明OD⊥BD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OCE中,根据OE2=EC2+OC2,可得(8−r)2=r2+42,推出r=3,由tan∠E=OC BDCE DE=,可得BD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)连接OB.∵CB=BD,BO=BO,OC=OD,∴△OCB≌△OCD(SSS),∴∠OCB=∠ODB,∵∠ACB=90°,∴∠ODB=90°,∴OD⊥BD,又∵OD是⊙O的半径,∴BD是⊙O的切线.(2)设⊙O的半径为r.在Rt△OCE中,∵OE2=EC2+OC2,∴(8﹣r)2=r2+42,∴r=3,∴AC=6,∵∠ODB=∠OCE=90°,∴tan∠E=OC BD CE DE=,∴348BD =,∴BD=6,∴BC=6,在Rt△ABC中,AB==【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线.20.(1)50,28%;(2)见解析,全校500名学生中最喜欢“足球”项目的约有80人;(3)见解析,16.【解析】【分析】(1)利用参加篮球活动的人数÷所占百分比,可得被调查的学生总数;先计算出其他所占的百分比,然后用总体减去除乒乓球外所有活动的百分比即可得出答案;(2)根据乒乓球所占的百分比求出人数即可补全条形统计图;用360°乘以喜欢足球项目人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】解:(1)学生总数=2040%=50,∵其他所占的百分比=2=450%,∴乒乓球所占的百分比=1-4%-12%-16%-40%=28%;(2)补全条形统计图如下:乒乓球项目人数=50×28%=14(人),500×16%=80,答:全校500名学生中最喜欢“足球”项目的约有80人. (3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2, 所以抽取的两人恰好是甲和乙的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 21.(1)A(2,0),B(﹣23,83);(2)1或-133;(3) 1-2<k <14且k≠0. 【解析】 【分析】(1)联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩即可求交点; (2)当PA 与y 1=-x+2垂直时,k=1;当PB 与y 1=-x+2垂直时,k=-133; (3)当x=-4时,y 1>y 2,6>24k ;只有开口向上时成立,所以k >0; 【详解】 (1)当k =32时,22332y x x =-, 联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩, ∴20x y =⎧⎨=⎩或2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴A(2,0),B(﹣23,83); (2)222y kx kx =-的顶点P(1,﹣k),当PA 与y 1=﹣x+2垂直时,k =1; 当PB 与y 1=﹣x+2垂直时,k =﹣133; (3)当x =2时,y 1=y 2=0, 当x =﹣4时,y 1>y 2, 当k >0时, ∴6>24k ,∴k <14, ∴0<k <14;当k <0时,直线与抛物线有一个交点时:-x+2=kx 2-2kx , ∵△=(1+2k )2=0,∴k=1 -2,∴1-2<k<0;综上所述;1-2<k<14且k≠0;【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握函数交点的求法,数形结合解不等式是解题的关键.22.(1)本次参加抽样调查的居民有600人;(2)见解析;(3)16.【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为180600×100%=30%;喜欢C类的人数的百分比为120600×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.23.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.24.(1)见解析;(2)见解析;(3)28. 【解析】 【分析】(1)根据A ,B ,C 三点坐标画出三角形即可. (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可. (3)四边形是梯形,利用梯形的面积公式计算即可. 【详解】解:(1)△ABC 如图所示.(2)△A 1B 1C 1如图所示. (3)1112ABB A S =四边形×(2+6)×7=28. 【点睛】本题考查作图﹣轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)94;(2)94,92,94;八;(3)2 3【解析】【分析】(1)根据中位数、众数和平均数的定义求解;(2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.5B.﹣5C.3D.﹣32.如图,在Rt△ABC中,∠C=90°,∠CBA=30°,AE平分∠CAB交BC于D,BE⊥AE于E,给出下列结论:①BD=2CD;②AE=3DE;③AB=AC+BE;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有()A.1个B.2个C.3个D.4个3.下列命题是真命题的是()A.一元二次方程一定有两个实数根B.对于反比例函数y=2x,y随x的增大而减小C.有一个角是直角的四边形是矩形D.对角线互相平分的四边形是平行四边形4.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A. B.13 C. D.185.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=426.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A. B.C. D.7④)A.①②B.③④C.①③D.①④8.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°9.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.22.4m B.23.2m C.24.8m D.27.2m10.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1411.一艘轮船从A港出发,沿着北偏东63︒的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27︒方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63︒B.27︒C.90︒D.50︒12.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形二、填空题13.如图,,,,,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,则线段的长为______.14.在矩形ABCD中,AB=3cm,BC=4cm,则点A到对角线BD的距离为___________15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____16.4与9的比例中项是_____.17在实数范围内有意义,则x的取值范围是_____.18.﹣95的绝对值是_____.三、解答题19.在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.20.解方程:1112x xx x-+-=.21.如图,A、B两点在反比例函数kyx=(k>0,x>0)的图象上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.(1)若△AOC的面积为4,求k值;(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;(3)若OA=OB,证明:OC=OD.22.先化简,再求值:(a+22ab ba+)÷222a ba ab--,其中a=﹣2,b=3.23.如图,AB⊥EF,DC⊥EF,垂足分别为B、C,且AB=CD,BE=CF.AF、DE相交于点O,AF、DC相交于点N,DE、AB相交于点M.(1)请直接写出图中所有的等腰三角形;(2)求证:△ABF≌△DCE.24.如图,在△ABC中,∠BAC=90°,以AC为直径的⊙O交BC于点D,点E在AB上,连接DE并延长交CA的延长线于点F,且∠AEF=2∠C.(1)判断直线FD与⊙O的位置关系,并说明理由;(2)若AE=2,EF=4,求⊙O的半径.25.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【参考答案】***一、选择题二、填空题13.14.125cm15.16.±6 17.x≥﹣118.9 5三、解答题19.(1)(a,2);(2)EF=;(3)2<t≤11.【解析】【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,进而可得出顶点C 的坐标;(2)由抛物线的开口方向及点C 到直线l 的距离为2,可得出直线l 的解析式为直线y=4,再利用二次函数图象上点的坐标特征可求出点E ,F 的坐标,进而可得出线段EF 的长;(3)代入y=t 可求出点E ,F 的坐标,进而可得出线段EF 的长,结合存在实数m ,使得x 1≥m -1且x 2≤m+5成立,可得出关于t 的不等式组,解之即可得出t 的取值范围.【详解】(1)∵y =x 2﹣2ax+a 2+2=(x ﹣a)2+2,∴抛物线顶点C 的坐标为(a ,2);(2)如图:∵1>0,∴抛物线开口向上,又∵点C(a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点,∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax+a 2+2=4,解得:x 1=a,x 2=,∴点E 的坐标为(a,4),点F 的坐标为,4),∴EF =﹣(a)=;(3)当y =t 时,x 2﹣2ax+a 2+2=t ,解得:x 1=ax 2=∴EF =又∵存在实数m ,使得x 1≥m﹣1且x 2≤m+5成立,∴206t ->⎧⎪⎨⎪⎩, 解得:2<t≤11.【点睛】本题考查了二次函数的三种性质、二次函数图象上点的坐标特征、两点间的距离公式以及解不等式组,解题的关键是:(1)利用配方法将二次函数解析式由一般式变形为顶点式;(2)利用二次函数图象上点的坐标特征,求出点E ,F 的坐标;(3)由线段EF 长度的范围,找出关于t 的不等式组.20.x =﹣3【解析】【分析】两边都乘以2x 化分式方程为整式方程,解整式方程求得x 的值,最后代入最简公分母检验即可得;【详解】解:方程两边都乘以2x ,得2(x ﹣1)﹣(x+1)=2x2x ﹣2﹣x ﹣1=2x﹣x =3x =﹣3检验:把x =﹣3代入2x =﹣6≠0,∴原方程的解为:x =﹣3.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.21.(1)8(2)△AOB 是等边三角形(3)见解析【解析】【分析】(1)由反比例函数系数k 的几何意义解答;(2)根据全等三角形△ACO ≌△BDO (SAS )的性质推知AO =BO ,结合已知条件AO =AB 得到:AO =BO =AB ,故△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,结合已知条件OA =OB ,得到:AC 2+OC 2=BD 2+OD 2,由坐标与图形性质知:2222()()kka b a b +=+,整理得到:2222()()k k a b b a -=- ,2222222(k a b a b a b --=),易得k b a =,故OC =OD . 【详解】解:(1)∵AC ⊥y 轴于点C ,点A 在反比例函数k y x=(k >0,x >0)的图象上,且△AOC 的面积为4, ∴12|k|=4, ∴k =8;(2)由a =1,b =k ,可得A (1,k ),B (k ,1),∴AC =1,OC =k ,OD =k ,BD =1,∴AC =BD ,OC =OD .又∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,∴∠ACO =∠BDO =90°,∴△ACO ≌△BDO (SAS ).∴AO =BO .又AO =AB ,∴AO =BO =AB ,∴△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,∵OA =OB ,∴AC 2+OC 2=BD 2+OD 2, 即有:2222()()kka b a b +=+, ∴2222()()k k a b b a -=-,2222222(k a b a b a b --=), 因为0<a <b ,所以a 2﹣b 2≠0, ∴2221=k a b, ∴1k ab =±,负值舍去,得:1k ab=, ∴k b a =, ∴OC =OD .【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义以及全等三角形的判定与性质,利用数形结合解决此类问题,是非常有效的方法.22.a+b ,1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值.【详解】 原式=2222()()()()()()()a ab b a a b a b a a b a a b a b a a b a b ++-+-⋅=⋅+-+-=a+b , 当a =﹣2,b =3时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)△EOF ,△AOM ,△DON ;(2)证明见解析【解析】【分析】(1)可以证明△ABF ≌△DCE ,根据全等三角形对应角相等可得∠A =∠D ,∠DEC =∠AFB ,所以△EOF 是等腰三角形,再根据等角的余角相等可得∠A =∠AMO ,∠D =∠DNO ,从而得到△AOM 与△DON 也都是等腰三角形;(2)由BE =CF ,可以证明EC =BF ,然后根据方法“边角边”即可证明△ABF 与△DCE 全等.【详解】(1)解:△EOF ,△AOM ,△DON ;(2)证明:∵AB ⊥EF 于点B ,DC ⊥EF 于点C ,∴∠ABC =∠DCB =90°,∵CF =BE ,∴CF+BC =BE+BC ,即BF =CE…在△ABF 和△DCE 中,AB DC DCB BF CE =⎧⎪⎨⎪=⎩∠ABC=∠, ∴△ABF ≌△DCE ,【点睛】本题主要考查了全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到BF =CE 是解题的关键.24.(1)直线FD 与⊙O 相切,理由详见解析;(2)⊙O 的半径为【解析】【分析】(1)连接OD ,根据已知条件得到∠AEF =∠AOD ,等量代换得到∠AOD +∠AED =180°,求得∠ODF =90°,于是得到结论;(2)解直角三角形得到∠F =30°,AF=OF =2OD ,于是得到OD =FA ,即可得到结论.【详解】解:(1)直线FD 与⊙O 相切;理由:连接OD ,∵∠AEF =2∠C ,∠AOD =2∠C ,∴∠AEF =∠AOD ,∵∠AEF+∠AED =180°,∴∠AOD+∠AED =180°,∵∠BAC =90°,∴∠ODF=90°,∴直线FD与⊙O相切;(2)∵∠BAC=90°,AE=2,EF=4,∴∠F=30°,AF=,∵∠ODF=90°,∴OF=2OD,∴OD=FA,∴⊙O的半径为【点睛】本题利用了切线的判定和性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(1)40、12、=0.40;(2)90;(3)13.【解析】【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.【详解】(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率21 ()63P A==;【点睛】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.。
中考数学专题练习直接开平方法解一元二次方程(含解析)
2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。
3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。
2019年苏州市中考专题《一元二次方程》复习学案(含答案)
2019年中考数学专题练习7《一元二次方程》【知识归纳】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如 或 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:① ;② ,③ ,④ ,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .(4)因式分解法:因式分解法的一般步骤是:① ;② ;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .【基础检测】1.(2019•枣庄)已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( ) A .5 B .﹣1 C .2 D .﹣52.(2019•雅安)已知关于x 的一元二次方程x 2+mx ﹣8=0的一个实数根为2,则另一实数根及m 的值分别为( )A .4,﹣2B .﹣4,﹣2C .4,2D .﹣4,23.(2019•威海)已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a的值是( )A.B.﹣C.4 D.﹣14.(2019•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=455.(2019•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2019年约为20万人次,2019年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.86.(2019•衡阳)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥47. (2019·辽宁丹东·3分)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.8.(2019·四川南充)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.9.(2019·四川内江12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.图14【达标检测】 一、选择题1.方程23x x =的解是 ( )A .3x =B .3x =-C .0x =D .3x =或0x =2.(2019·内蒙古包头·3分)若关于x 的方程x 2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m 的值是( )A .﹣B .C .﹣或D .13.(2019·四川泸州)若关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有实数根,则k 的取值范围是( )A .k≥1B .k >1C .k <1D .k≤14.(2019·湖北荆门·3分)已知3是关于x 的方程x 2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7 B .10 C .11 D .10或115.若关于x 的一元二次方程2450x x a -+-=有实数根,则a 的取值范围是( ) A .1a ≥ B .1a > C .1a ≤ D .1a <6.(2019•广州)定义运算:a ⋆b=a (1﹣b ).若a ,b 是方程x 2﹣x+m=0(m <0)的两根,则b ⋆b ﹣a ⋆a 的值为( )A .0B .1C .2D .与m 有关7.(2019·湖北荆门)若二次函数y=x 2+mx 的对称轴是x=3,则关于x 的方程x 2+mx=7的解为( ) A .x 1=0,x 2=6 B .x 1=1,x 2=7 C .x 1=1,x 2=﹣7 D .x 1=﹣1,x 2=78. (2019·山东潍坊)关于x 的一元二次方程x 2﹣x+sin α=0有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60° 二、填空题9. (2019•丹东)若x=1是一元二次方程x 2+2x+a=0的一个根,那么a= .10.(2019·山东省德州市·4分)方程2x 2﹣3x ﹣1=0的两根为x 1,x 2,则x 12+x 22= .11.(2019·四川宜宾)已知一元二次方程x 2+3x ﹣4=0的两根为x 1、x 2,则x 12+x 1x 2+x 22= .12.(2019·四川攀枝花)设x 1、x 2是方程5x 2﹣3x ﹣2=0的两个实数根,则+的值为 .13.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程)。
2019届初三中考数学复习 一元二次方程 专项练习题 含答案
2019届初三中考数学复习一元二次方程专项练习题1.若关于x的方程(a-2)x2-2ax+a+2=0是一元二次方程,则a( ) A.等于2 B.等于-2 C.等于0 D.不等于22.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是( )A.4 B.0或2 C.1 D.-13.一元二次方程x2-4x+4=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定4.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第______象限( )A.四 B.三 C.二 D.一5. 方程(x+1)(x-2)=x+1的解是( )A.x=2 B.x=3 C.x1=-1,x2=2 D.x1=-1,x2=36. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6 C.x(10-x)=6 D.x(10-2x)=67. 用直接开平方法解下列方程,其中无实数解的方程是( )A.x2-3=0 B.-2x2=0 C.x2+9=0 D.-x2+9=08. 下列配方有错误的是( )A.x2-4x-1=0,化为(x-2)2=5B.x2+6x+8=0,化为(x+3)2=1C .2x 2-7x -6=0,化为(x -74)2=9716D .3x 2-4x -2=0,化为(3x +2)2=69. 若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5且k≠1C .k ≤5且k≠1D .k >5 10. 下列方程能用因式分解法求解的有( )①x 2=x ;②x 2-x +14=0;③x-x 2-3=0;④(3x +2)2=16.A .1个B .2个C .3个D .4个11. 下列一元二次方程两实数根和为-4的是( ) A .x 2+2x -4=0 B .x 2-4x +4=0 C .x 2+4x +10=0 D .x 2+4x -5=012.一元二次方程2x 2+7x =8的两根之积为________.13. 小华在解一元二次方程x 2=4x 时,只得出一个根是x =4,则被他漏掉的一个根是x =________.14. 已知一元二次方程x 2+6x +9=0,则b 2-4ac =________,原方程根的情况是__________.15. 代数式x 2-x -2x 2-1的值为0,则x 的值为________.16. 若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为________. 17. 下列数值是一元二次方程x 2-x -2=0的根的是________. ①-1;②0;③1;④2.18. 若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为________.x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得________________________________.20.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,则这个两位数是________.21.如图,将矩形沿图中虚线(其中x>y)剪成①②③④四块图形,用这四块图形恰能拼成一个正方形,若y=2,则x的值等于________.21. 解方程:(1)x(x-2)+x-2=0;(2)2x2-5x-1=0;(公式法)(3)(x-3)2=2x(x-3);(因式分解法)(4)x2+2x-399=0.(配方法)22. 若关于x的方程(2m2+m-3)x|m+1|+7x-3=0是一元二次方程,求m的值.23. 一元二次方程ax 2+bx +c =0的一个根是1,a ,b 满足b =a -2+2-a -1,求a ,b ,c 的值.24. 如果关于x 的一元二次方程k 2x 2+2(k -1)x +1=0有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的一个实数根是1,求k 的值.25. 从飞机上空投下的炸弹,速度会越来越快,其下落的高度h(m )与时间t(s )间的公式为h =12at 2,若a 取近似值为10 m /s 2,那么从2 000 m 的空中投下的炸弹落至地面目标,大约需要多长时间?26. 已知k 是方程x 2-2 017x +1=0的一个不为0的根,不解方程,你能求出k 2-2 016k +2 017k 2+1的值吗?如果能,请写出解答过程;如果不能,请说明理由.27. 随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯2016年的年销售量为5万只,预计2018年将达到7.2万只.求该商场2016年到2018年高效节能灯年销售量的平均增长率.28. 如图,若要建一个矩形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)围成鸡场的面积能达到200平方米吗?29. 某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b,当x=7时,y=2000;当x=5时,y=4000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)30. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.参考答案:1---11 DCBDD BCDBC D 12. -4 13. 014. 0 有两个相等的实数根 15. 2 16.17. ①④18. x 2-70x +825=0 19. 24 20. 5+121. (1) x 1=2,x 2=-1 (2) x 1=5+334,x 2=5-334(3) x 1=3,x 2=-3 (4) x 1=-21,x 2=1922. 解:|m +1|=2,∴m =1或-3,又2m 2+m -3≠0,当m =1时, 2m 2+m -3=0,不合题意;当m =-3时,2m 2+m -3=12≠0,∴m =-323. 解:由题意可得⎩⎪⎨⎪⎧a -2≥0,2-a≥0,解得a =2,则b =-1,又a +b +c =0,所以c =-124. 解:(1)∵Δ=4(k -1)2-4k 2=4-8k >0,∴k <12,又∵方程是一元二次方程,∴k 2≠0,即k≠0,∴k <12且k≠0(2) 将x =1代入方程得k 2+2k -2+1=0,整理得k 2+2k -1=0,解得k 1=-1+2,k 2=-1- 2 25. 20 s26. 解:k 2-2 017k +1=0,∴k 2+1=2 017k ,k +1k=2 017,∴原式=k -1+1k =k +1k-1=2 017-1=2 01627. 解:设年销售量的平均增长率为x ,则5(1+x)2=7.2,解得x 1=0.2,x 2=-2.2,∵x >0,∴x =0.2=20%28. 解:(1)设宽为x 米,则:x(33-2x +2)=150,解得:x 1=10,x 2=152(不合题意舍去),∴长为15米,宽为10米(2)设面积为W 平方米,W =x(33-2x +2),变形为W =-2(x -354)2+15318,故鸡场面积最大值为15318<200,所以不可能达到200平方米29. 解:(1)y =-1000x +9000(2)由题意可得1000(10-5)(1+20%)=(-1000x +9000)(x -4),整理得x 2-13x +42=0,解得x 1=6,x 2=7(舍去),所以该种水果价格每千克应调低至6元 30. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=aa -6,解得a =24.经检验,a =24是方程-2a a -6+4=aa -6的解.∴a=242a a 6-2,-3,-6,解得a=7,8,9,12。
中考数学专题练习直接开平方法解一元二次方程(含解析)
2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。
3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。
中考数学专项训练: 一元二次方程(含解析)
一、选择题3.(2019·泰州) 方程2x 2+6x -1=0的两根为x 1、x 2,则x 1+x 2等于( )A.-6B.6C.-3D.3 【答案】C【解析】根据一元二次方程根与系数的关系,x 1+x 2=62-=-3,故选C.6. (2019·烟台)当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( ). A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定 【答案】A【解析】因为5b c +=,所以5c b =-,因为()2224343(5)6240b c b b b ∆=-⨯⨯=-⨯⨯-=-+>,所以该一元二次方程有两个不相等的实数根.10.(2019·威海)已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b+2019的值是( ) A,2023 B,2021 C.2020 D.2019【答案】A【解析】由题得a 2+a -3=0,a+b =-1,所以a 2=-a +3,所以a 2-b+2019=-a +3-b +2019=-(a +b )+3+ 2019=-(-1)+3+2019=2023,故选A. 8.(2019·盐城)关于 x 的一元二次方程 x 2 +kx-2=0(k 为实数)根的情况是( )A. 有两个不相等的实数根 C. 没有实数根B. 有两个相等的实数根 D. 不能确定 【答案】A【解析】∵a =1,b =k ,c=-2,∴△=b 2-4ac =k 2-4×1×(-2)=k 2+8>0,∴方程有两个不相等的实数根.故选A .8.(2019·山西)一元二次方程x 2-4x -1=0配方后可化为( )A.(x+2)2=3B.(x+2)2=5C.(x -2)2=3D.(x -2)2=5【答案】D【解析】原方程可化为:x 2-4x =1,x 2-4x+4=1+4,(x -2)2=5,故选D.7.(2019·淮安)若关于x 的一元二次方程022=-+k x x 有两个不相等的实数根,则k 的取值范围是( ) A.k<-1 B.k>-1 C.k<1 D.k>1 【答案】B【解析】∵关于x 的一元二次方程022=-+k x x 有两个不相等的实数根, ∴△=k k 44)(1422+=-⨯⨯->0, ∴k >-1.4.(2019·黄冈)若x 1,x 2是一元一次方程x 2-4x -5=0的两根,则x 1·x 2的值为 ( )A.-5B.5C.-4D.4【答案】A【解析】由根与系数的关系可知x 1·x 2=-5.1. (2019·怀化)一元二次方程x 2+2x +1=0的解是( ) A.x 1=1,x 2=-1 B.x 1=x 2=1 C.x 1=x 2=-1 D.x 1=-1,x 2=2 【答案】C.【解析】方程x 2+2x +1=0, 配方可得(x +1)2=0, 解得x 1=x 2=-1.故选C.2. (2019·滨州)用配方法解一元二次方程x 2-4x +1=0时,下列变形正确的是( ) A .(x -2)2=1 B .(x -2)2=5 C .(x +2)2=3 D .(x -2)2=3【答案】D【解析】x 2-4x+1=0,移项得x 2-4x=-1,两边配方得x 2-4x+4=-1+4,即(x -2)2=3.故选D .3. (2019·聊城)若关于x 的一元二次方程(k -2)x 2-2kx+k =6有实数根,则k 的取值范围为 ( )A.k ≥0B.k ≥0且k ≠2C.k ≥32D.k ≥32且k ≠2 【答案】D【解析】∵原方程是一元二次方程,∴k -2≠0,∴k ≠2,∵其有实数根,∴(-2k)2-4(k -2)k ≥0,解之得,k ≥32,∴k 的取值范围为k ≥32且k ≠2,故选D.4. (2019·潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .m =-2 B .m =3 C .m =3或m =-2 D .m =3或m =2 【答案】A【解析】由题意可得:222121212()212x x x x x x +=+-=,因为:122122,x x m x x m m+=-⎧⎨=+⎩ 所以:22(2)2()12m m m --+=,解得:m 1=3,m 2=-2;当m =3时Δ=62-4×1×12<0,所以m =3应舍去; 当m =-2时Δ=(-4)2-4×1×2>0,符合题意. 所以m =-2,故选择A .5. (2019·淄博) 若2212123,5,x x x x +=+=则以12,x x 为根的一元二次方程是( ) A.2320x x -+= B.2320x x +-=C.2320x x ++=D.2320x x --=【答案】A.【解析】222121212()2,x x x x x x +=++⋅ 又∵2212123,5,x x x x +=+=∴2221212122()()954,x x x x x x ⋅=+-+=-= ∴12,2x x =,∴以12,x x 为根的一元二次方程是2320x x -+=.故选A.6.(2019·自贡)关于x 的一元二次方程x 2-2x +m =0无实数根,则实数m 的取值范围是( ) A.m <1 B.m ≥1 C.m ≤1 D.m >1 【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.7. (2019·金华)用配方法解方程x 2-6x -8=0时,配方结果正确的是( ) A. 2(3)17x -= B. 2(3)14x -= C. 2(6)44x -= D. 2(3)1x -=【答案】A .【解析】解方程x 2-6x -8=0,配方,得(x -3)2=17,故选A .8. (2019·宁波) 能说明命题”关于x 的方程x 2-4x+m =0一定有实数根”是假命题的反例为A.m =-1B.m =0C.m =4D.m =5 【答案】D【解析】方程的根的判别式∆=(-4)2-4m =16-4m,当∆<0时,方程无实数根,∴应使16-4m<0,即m>4,可得原方程无实数根,四个选项中,只有m =5符合条件,故选D.二、填空题15.(2019·嘉兴)在x 2+ +4=0的括号中添加一个关于x 的一次项,使方程有两个相等的实数根. 【答案】4x ±【解析】根据一元二次方程有两个相等的实数根的条件可知,则△=b 2﹣4ac =b 2﹣16=0,得b =±4, 故一次项为±4x ,故答案为4x ±.14.(2019·泰州)若关于x 的方程x 2+2x+m =0有两个不相等的实数根,则m 的取值范围是________. 【答案】m<1【解析】该方程的根的判别式∆=22-4m =4-4m,因为有两个不相等的实数根,∴4-4m>0,所以m<1. 16.(2019·威海) 一元二次方程3x 2=4-2x 的解是【答案】1x =,2x = 【解析】直接利用公式法解一元二次方程得出答案.3x 2=4-2x 即3x 2+2x-4=0,则△b 2-4ac =4-4×3×13.(2019·盐城)设1x 、2x 是方程2320x x +-=的两个根,则1212x x x x +-⋅= . 【答案】1【解析】根据一元二次方程中根与系数的关系,由韦达定理可知121232b cx x x x a a+==⋅==-,,得12121x x x x +-⋅=.10.(2019·青岛)若关于x 的一元二欠方程2x 2-x +m =0有两个相等的实数根,则m 的值为 . 【答案】18【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以△=(-1)2-4×2m =1-8m =0,解得m =18. 9.(2019·江西)设1x ,2x 是一元二次方程012=--x x 的两根,则2121x x x x ++= . 【答案】0【解析】∵1x ,2x 是一元二次方程012=--x x 的两根, ∴=+21x x 1,=21x x -1, ∴2121x x x x ++=1+(-1)=0.15.(2019·武汉) 抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,则关于x 的一元二次方程 a (x -1)2+c =b -bx 的解是___________.【答案】x =-2或5 【解析】∵抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,∴y =a (x +3)(x -4)=ax 2-2ax -12a .∴b =-2a ,c =-12a .∴一元二次方程为 a (x -1)2-12a =-2a +2ax ,整理,得ax 2-3ax -10a =0,∵a ≠0,∴x 2-3x -10=0,解得x 1=-2,x 2=5.9.(2019·济宁) 已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是 .【答案】-2【解析】方法1:把x =1代入得1+b -2=0,解得b =1,所以方程是x 2 +x -2=0,解得x 1=1,x 2=-2. 方法2:设方程另一个根为x 1,由根与系数的关系知1×x 1=-2.∴x 1=-2. 14.(2019·陇南)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 . 【答案】4.【解析】∵关于x 的一元二次方程x 2+x+1=0有两个相等的实数根,∴2411-⨯⨯=0,解得,m=4, 故答案为:4. 1. (2019·泰安)已知关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,则实数k 的取值范围是________.【答案】k<114-【解析】∵关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,∴∆=(2k -1)2-4(k 2+3)>0,解之,得k<114-.2. (2019·枣庄)已知关于x 的方程ax 2+2x -3=0有两个不相等的实数根,则a 的取值范围是________.【答案】a>13-且a ≠0【解析】因为关于x 的方程ax 2+2x -3=0有两个不相等的实数根,∴a ≠0,且22-4a(-3)>0,解之得,a>13-且a ≠0.17.(2019·娄底)已知方程230x bx ++=___________.【解析】设原方程的另一个根为1x ,则由一元二次方程根与系数的关系12c x x a=得13x ⨯=∴13x ===3. (2019·眉山) 设a 、b 是方程x 2+x -2019=0的两个实数,根则(a -1)(b -1)的值为 . 【答案】-2017【解析】解:根据题意,得:a+b=-1,ab=-2019,∴(a-1)(b-1)=ab-(a+b )+1=-2019+1+1=-2017,故答案为:-2017.4. (2019·攀枝花)已知x 1、x 2是方程x 2-2x -1=0的两根,则2212x x += 。
初三中考数学复习一元二次方程专项复习训练含答案
2019 初三中考数学复习一元二次方程专项复习训练.已知,,为常数,点,在第二象限,则对于x 的方程2+bx+c1a b c P(a c)ax=0 的根的状况是 ( B )A .有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.没法判断2.用配方法解方程x2+2x-1=0 时,配方结果正确的选项是( B )A .(x+2)2=2B.(x+1)2=2C.(x +2)2=3D. (x+1)2=3 3.假如 2 是方程 x2-3x+k=0 的一个根,则常数k 的值为 (B )A .1B.2C.- 1D.- 24.对于 x 的一元二次方程x2+(a2-2a)x+a-1=0 的两个实数根互为相反数,则 a 的值为 ( B )A .2B.0C.1D.2 或 0.已知是一元二次方程x 2-x-1=0 较大的根,则下边对 a的预计正确的选项是( C )5aA .0<a<1B.1<a<1.5C.1.5<a<2D.2<a<36.有 x 支球队参加篮球竞赛,共竞赛了45 场,每两队之间都竞赛一场,则下列方程中符合题意的是( A )11A. 2x(x-1)=45B. 2x(x+1)=45C.x(x-1)=45D.x(x+1)=45 7.我们知道方程x2+2x-3=0 的解是 x1=1,x2=- 3,现给出另一个方程 (2x +3)2+2(2x+3)-3=0,它的解是 ( D )A .x1=1,x2=3B.x1=1,x2=- 3C.x1=- 1,x2=3D.x1=- 1,x2=- 3第1页/共5页9.给出一种运算:对于函数 y=x n,规定 y′=nx n-1.比方:若函数 y=x4,则有 y′=4x3.已知函数 y=x3,则方程 y′=12 的解是 ( B )A .x1=4,x2=- 4B.x1=2,x2=- 2C.x1=x2=0D.x1=2 3,x2=- 2 3.三角形的两边,b 的夹角为°,且知足方程x2-3 2x+4=0,则第三10a60边的长是(A)A. 6B.2 2C.2 3D.3 211.定义 [x] 表示不超出实数x 的最大整数,如 [1.8] =1,[-1.4]=- 2,[ -3]=1-3,函数 y=[x] 的图象以以下图,则方程[x] =2x2的解为 ( A )A.0或 2B.0或2C.1 或- 2 D. 2或- 2.对于x 的一元二次方程(k-1)x2+6x+k2-k=0 的一个根是 0,则 k 的值是12__0__.13.假如对于 x 的一元二次方程kx2-3x-1=0 有两个不相等的实数根,那么k9的取值范围是 __k>-4且 k≠0 .14.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,则m2+3m +n=__2_016__.15.经过两次连续降价,某药品销售单价由本来的50 元降到 32 元,设该药品均匀每次降价的百分率为x,依据题意可列方程 __50(1-x)2=32__.16.经过学习,喜好思虑的小明发现,一元二次方程的根完满由它的系数确立,即一元二次方程ax2+bx+ c= 0(a ≠,0)当 b2- 4ac ≥0时有两个实数根:x1=-b+ b2-4ac-b- b2-4ac=c,这就是2a ,x2=2a,于是: x1+x2=-b,x1·x2a a第2页/共5页有名的韦达定理.请你运用上述结论解决以下问题:对于x 的一元二次方程 x2+kx+k+1=0 的两个实数根分别为 x1,x2,且 x12+x22=1,则 k 的值为 __-1__.17.选择适合的方法解以下方程:(1)x2-2x=5;(2)(x -2)(x +3)=- 6;(3)x2- 3x-1=0;(4)(x +3)2-5(x+3)+6=0.解: (1)配方法, x1=1+6,x2=1- 6.(2)因式分解法, x1=0,x2=- 1.(3)公式法, x1=3+ 73- 7 2,x2=2.(4)换元法,因式分解法,设+=,解得y1=2,y2=3,因此 x1=- 1, x2=x 3y0.18.已知对于 x 的方程 x2-(k+1)x+14k2+1=0 有两个实数根.(1)求 k 的取值范围;(2)若方程的两实数根分别为x1,x2,且知足 |x1|+|x2|=4x1x2-5,求 k 的值.解: (1)k 3≥2 .31k2+k>0,∴x1>0,x2>0,∴|x1|+|x2| (2)∵k≥,∴x1+x2=k+1>0.又∵x1x2=24=x1+x2= k+1.∵|x1|+|x2|=4x1x2-5,∴ k+1=4(14k2+1)-5,∴ k1=- 1,k23=2.∵k≥,∴ k=2.219.一个矩形周长为56 厘米.第3页/共5页(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方厘米的矩形吗?请说明原因.解:(1)设矩形的长为x 厘米,则宽为 (28-x)厘米,依题意有 x(28-x) =180,解得 x1=10(舍去 ),x2=18,28-x=28-18=10.故长为 18 厘米,宽为 10 厘米.(2)设矩形的长为x 厘米,则宽为 (28-x) 厘米,依题意有x(28-x)=200,即 x2-28x+200=0,则=282-4×200=784-800<0,原方程无解,故不可以围成一个面积为 200 平方厘米的矩形..已知对于x 的一元二次方程x2+(2m+1)x+m2-4=0.20(1)当 m 为什么值时,方程有两个不相等的实数根?(2)若边长为 5 的菱形的两条对角线的长分别为方程两根的 2 倍,求 m 的值.解:(1)∵方程 x2+(2m+1)x+m2-4=0 有两个不相等的实数根,∴Δ=(2m+1)2-4(m2-4)=4m+17>0,解得 m>-17174 .∴当 m>-4 时,方程有两个不相等的实数根.(2)设方程的两根分别为a,b,依据题意,得 a+b=- 2m-1,ab=m2-4.∵2a,2b 为边长为 5 的菱形两条对角线的长,∴ a2+b2=(a+b)2-2ab= (-2m-1)2-2(m2-4)=2m2+4m+9=52=25,解得 m=- 4 或 m=2.∵a>0,b>0,∴ a+b=- 2m-1>0,∴m=- 4,若边长为 5 的菱形的两条对角线的长分别为方程两根的 2 倍,则 m 的值为- 4.21.依据要求,解答以下问题:(1)解以下方程 (直接写出方程的解即可 );①方程 x2-2x+1=0 的解为 __x1=x2=1__;②方程 x2-3x+2=0 的解为 __x1=1,x2=2__;第4页/共5页③方程 x2-4x+3=0 的解为 __x1=1,x2=3__;(2)依据以上方程特点及其解的特点,请猜想:①方程 x2-9x+8=0 的解为 __x1=1,x2=8__;②对于 x 的方程 __x2-(1+n)x+n=0__的解为 x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以考证猜想结论的正确性.解: x2-9x=- 8,x2-9x+81819=49974=- 8+4,(x- )24,∴ x-=± ,∴x1=1,222x2=8.∴猜想正确.第5页/共5页。
2019年中考复习试题-九年级上数学一元二次方程与实际问题(含解析答案)
15.某种药品经过两次降价,由每盒 50 元调至 36 元,若第二次降价的百分率是第一次的
2 倍.设第一次降价的百分率为 x,由题意可列得方程: . 三.解答题(共 21 小题) 16.如图,有一块矩形硬纸板,长 30cm,宽 20cm.在其四角各剪去一个同样的正方形,
然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时, 所得长方体盒子的侧面积为 200cm2?
B.20(1+x)2=95 C.20(1+x)+20(1+x)2=95 D.20+20(1+x)+20(1+x)2=95 6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场.设有 x 个队参 赛,根据题意,可列方程为( )
A. x(x﹣1)=36
B. x(x+1)=36
C.x(x﹣1)=36
种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm,则可列方程
为( )
A.(30﹣x)(20﹣x)= ×20×30
B.(30﹣2x)(20﹣x)= ×20×30
C.30x+2×20x= ×20×30
D.(30﹣2x)(20﹣x)= ×20×30
4.某商品经过连续两次降价,售价由原来的每件 25 元降到每件 16 元,则平均每次降价的
2019年中考数学《一元二次方程》专题复习试卷(含答案)
2018-2019学年初三数学专题复习一元二次方程一、单选题1. 已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A. ﹣3B. ﹣2C. 3D. 62.一元二次方程(x﹣2)2=3(x﹣2)的根是()A. 2B. 5C. 2和5D. 2和33.方程x(x+1)=0的解是()A. x=0B. x=﹣1C. x1=0,x2=﹣1D. x1=0,x2=14.下列方程中,是关于x的一元二次方程的是()A. B. C. D.5.一元二次方程根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A. k≥-1且k≠0B. k≥-1C. k≤1D. k≤1且k≠07.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A. 560(1+x)2=315B. 560(1-x)2=315C. 560(1-2x)2=315D. 560(1-x2)=3158.某商店将进价为8元的商品按每件10元出售,每天可销售200件,现商家采用提高售价,减少进货量的方法增加利润,如果这种商品每件涨0.5元,其销量就会减少10件,那么要使利润为640元,需将售价定为()A. 16元B. 12元C. 16元或12元D. 14元9. 一元二次方程x2﹣x﹣1=0的根的情况为()A. 有两个不相等的实数根;B. 有两个相等的实数根;C. 只有一个实数根D. 没有实数根10.已知x1,x2是方程x2﹣3x﹣1=0的两根,则x1+x2的值是()A. 3B. -3C. 1D. -111.用配方法解方程x2+4x=﹣2下列配方正确的是()A. (x+4)2=14B. (x+2)2=6C. (x+2)2=2D. (x﹣2)2=212.下列方程中两个实数根的和等于2的方程是()A. 2x2﹣4x+3=0B. 2x2﹣2x﹣3=0C. 2y2+4y﹣3=0D. 2t2﹣4t﹣3=013.关于x的一元二次方程有两个不相等的实数根,k的取值为()A. B. C. D.14.若关于的方程没有实数根,则的取值范围是A. B. C. D.15.已知一个直角三角形的两条直角边恰好是方程2x2﹣9x+8=0的两根,则此三角形的面积为()A. 1B. 2C. 3D. 416.已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A. ﹣402B.C.D.17.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A. 2007B. 2005C. ﹣2007D. 4010二、填空题18.若m是方程的一个根,则代数式=________.19.若方程x2﹣3x﹣3=0的两根为x1,x2,则x12+3x2═________.20.n是方程x2﹣2x﹣1=0的一个根,则代数式2n﹣n2的值是________21.已知x=2是关于x的方程x2﹣6x+m=0的一个根,则m=________.22.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则+ =________.三、计算题23.2x2+3x+1=0.24.用适当的方法解下列方程:(2x﹣1)(x+3)=4.25.解下列一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
A级基础题
1.一元二次方程x2-3x=0的根是( )
A.x1=0,x2=-3 B.x1=1,x2=3 C.x1=1,x2=-3 D.x1=0,x2=3
2.(xx浙江舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是( )
A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3
3.(xx年江苏南京改编)解方程(x-5)2=19,用以下哪种方法最恰当( )
A.配方法 B.直接开平方法 C.因式分解法 D.公式法
4.(xx年湖南娄底)关于x的一元二次方程x2-(k+3)x+k=0的根的情况是( ) A.有两不相等实数根 B.有两相等实数根 C.无实数根 D.不能确定
5.(xx年湖南湘潭)若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
6.如图214,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )
图214
A.7 m B.8 m
C.9 m D.10 m
7.(xx年吉林)若关于x的一元二次方程x2+2x-m=0有两个相等的实数根,则m的值为________.
8.一元二次方程x2-2x=0的解是____________.
9.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为____________.
10.已知关于x的方程x2+2x+a-2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.
11.(xx 年沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2.3.4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
12.先化简,再求值:(x -1)÷⎝
⎛⎭
⎪⎫2x +1-1,其中x 为方程x2+3x +2=0的根.
B 级 中等题
13.已知2是关于x 的方程x2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )
A .10
B .14
C .10或14
D .8或10
14.(xx 年四川南充)若2n(n≠0)是关于x 的方程x2-2mx +2n =0的根,则m -n 的值为________.
15.(xx 年四川绵阳)已知a >b >0,且2a +1b +3b -a =0,则b a
=________. 16.(xx 年黑龙江绥化)已知关于x 的一元二次方程x2+(2m +1)x +m2-4=0.
(1)当m 为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m 的值.
C 级 拔尖题
17.(xx 年江苏盐城)某商店在xx 年至xx 年期间销售一种礼盒.xx 年,该商店用3500元购进了这种礼盒并且全部售完;xx 年,这种礼盒的进价比xx 年下降了11元/盒,该商店用2400元购进了与xx 年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
(1)xx 年这种礼盒的进价是多少元每盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
参考答案
1.D 2.B 3.B 4.A 5.D 6.A
7.-1 8.x1=0,x2=2 9.-4,2
10.解:(1)∵关于x 的方程有两个不相等的实数根,
∴Δ=22-4()a -2>0.解得a<3.
(2)∵该方程的一个根为1,
∴1+2+a -2=0.解得a =-1.
∴原方程为x2+2x -3=0.解得x1=1,x2=-3.
∴a =-1,方程的另一根为-3.
11.解:(1)设每个月生产成本的下降率为x.
根据题意,得400(1-x)2=361.
解得x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%.
(2)361×(1-5%)=342.95(万元).
答:预测4月份该公司的生产成本为342.95万元.
12.解:原式=(x -1)÷2-x -1x +1=(x -1)÷1-x x +1
=(x -1)×x +11-x
=-x -1. 由x 为方程x2+3x +2=0的根,解得x =-1,或x =-2.
当x =-1时,原式无意义,所以x =-1舍去;
当x =-2时,原式=-(-2)-1=2-1=1.
13.B 14.12 15.-1+32
16.解:(1)∵方程x2+(2m +1)x +m2-4=0有两个不相等的实数根,
∴Δ=(2m +1)2-4(m2-4)=4m +17>0,解得m >-
174
. ∴当m >-174
时,方程有两个不相等的实数根. (2)设方程的两根分别为a ,b ,
根据题意,得a +b =-2m -1,ab =m2-4.
∵2a,2b 为边长为5的菱形的两条对角线的长,
∴a2+b2=(a +b)2-2ab =(-2m -1)2-2(m2-4)=25.
解得m =-4或m =2.
∵a >0,b >0,∴a +b =-2m -1>0.
∴m =-4.
17.解:(1)设xx 年这种礼盒的进价为x 元/盒,则xx 年这种礼盒的进价为(x -11)元/盒.根据题意,得 3500x =2400x -11
. 解得x =35.
经检验:x =35是原方程的解.
答:xx 年这种礼盒的进价是35元/盒.
(2)设年增长率为a ,
xx 年的销售数量为3500÷35=100(盒).
根据题意,得
(60-35)×100(1+a)2=(60-35+11)×100.
解得a =0.2=20%或a =-2.2(不合题意,舍去).
答:年增长率为20%. 欢迎您的下载,资料仅供参考!。