笔记本上电时序详解工厂资料
笔记本上电时序及信号讲解
Page 7
时序
在+V1.5S电压稳定之后,U9(TPS51124)会发出V1.5S_PG,这个 电是用来开启+VCCP的.从下图可以看出,只有左下角的电压都 正常,才能发出PWR_GOOD_3,图左上角显然也是调 PWR_GOOD_3和PWR_GOOD_KBC之间时序的,D1003在这 里的作用是在POW_GOOD_3关电时将它的电快速放掉,防止 U2误动作.
Page 10
时序
如下图所示,在SB_3S_VRMPWRGD(VRM Power Good)和 PM_PWROK (Power ok)电压high起来1ms后,SB才会发出 PLT_RST# (Platform reset).在这1ms内PLT_RST#为低,而正是 由于这1ms的低有效,系统才识别到PLT_RST#.该信号会对 SIO,FWH,LAN,G(MCH),IDE,TPM等进行reset的动作.也就是说 如果该信号异常,这些device都没办法被激活.该信号发出后立刻 就会发出PCI_3S_RST#,可以当做是作用相似的第二次reset.
Page 12
S0~S5~S0时序表
下图是SB的S0~S5~S0时序表,里面所有信号的特性和定义在 ICH7的Datasheet里面都有很详细的描述,这里就不多说了. 这个时序表对于“系统不能休眠”和“系统休眠后不能唤醒”的主板 非常有用(对于不能开机和系统自动开关机的主板也同样有效). 分析的时候,只需要找出哪个信号异常,就可以找到问题点,当然, 还有一种特殊的情况,就是有两个(或多个)信号时序出现了问题, 这种情况在主板设计的初期可能会遇到,实际运用中导致这种现 象的情况以SB不良居多,当然,首先应该排除BIOS的可能,因为 其中有些的信号时序在BIOS是可调的,这点在设计初期也常被 运用来解决一些问题,简单经济实用.
笔记本上电时序
SB-CLOCK
+VCC_RTC经过三个电阻输入给南桥,则输出RTC-X1,RTC_X2给晶振 X2000产生32.768KHz的频率
反馈给南桥
RTC_RST:复位C-MOS信息.
返回南桥
PM_PWRBTN#
按下SW5605,则PWR_SW# 瞬间拉低
+3VA_EC经过电阻到PWR_SW#,给 PWR_SW#一个高电平
返回
附:比较器
比较器工作原理: 正极 负极 1:当正极大于负极时,输出电 压VCC OUT就等于输入电压VCC IN 2当正极小于负极电压时,输出 电压VCC OUT就等于接地GND + > - VCC OUT=VCC IN GND + < - VCC OUT=GND 比较器一般用于电路中都是固定正 极(或负极)电压电压,利用VCC OUT 来控制负极(或正极)电压
ALL_SYSTEM_PWRGD
二极管在这里的作用:保护SUS_PWRGD,当其他PWRGD有 问题时不会拉低SUS_PWRGD,因为只有SUS_PWRGD工作 正常后南桥才能工作,来开启其他电压
这时VRM_PWRGD还没有 产生
PWR_OK_VGA 由显卡接口发出
这里是个保护电路,上面四个PWRGD为高电平,才会有ALL_SYSTEM_PWR. 发送到EC
放大点击
FORCE_OFF#
与门工作原理:只要有输 入低电平则输出为低电平, 如果PWRGD有问题输出 低电平,则FORCE_OFF# 拉低,则会关机. FOREC_OFF点击
附:High-Low Side
原理:芯片先给High Side的栅极一个高电平,使其打开电压下来,同时给Low Side的 栅极一个低电平使其关闭,产生电压经过电感给电容充电,当电压过高时,则HighLow Side相反工作使电压拉低,维持一个稳定的电压输出. 特点:提高电流,稳定电压 返回
笔记本工作时序
B)MAX1845(U30)产生2.5V 和1.25V
MAX1845 产生2.5V 和1.25V ,都是有供电电压和控制信号(由PMH4 控制) 一起作用后才产生的
C)MAX1845(U29)产生VCCCPUIO
之前MAX1845 已经产生了1.2V。现在在PMH4 的控制下将产生另外一个电 压VCCCPUIO,MAX1845 的第12 脚受控于PMH4。
需要得到它的最终确认。
3)南桥芯片接收到有效的DNBSWON#信号后,会将先前在关机状态下处 于低电平有效状态的SUSB#和SUSC#这两个电源控制信号置为高电平无
效,发送给电源管理芯片,以示审核通过。SUSB#和SUSC#这两个信号
分别对应了系统两种不同的工作状态,即运行(S0)和待机(S3)。在 主板运行的状态下,SUSB#和SUSC#都被置为高电平无效状态,在待机
DOCK-PWR16_F 电压为前段16V 电压,而VINT16是后段的16V 电 压,它是供给所有电源芯片(包括MAX1631,MAX1845,ADP3205)
的供电电压,它的产生是由TB62501来控制的。
DOCK-PWR16_F 由D10 转化成VREGINT16 后给TB62501的34脚 和57脚供电使其工作,TB62501的59脚产生VCC3SW 电压以及来控制 Q34 和Q36 导通产生VINT16。VCC3SW 给PMH4 供电,后PMH4 的43 脚送出VCC5M—ON控制MAX1631 产生+3.3V、+5V,送出VCC1R8M— ON控制MAX1845 产生+1.8V,另外一组MAX1845 在VCC5M 的控制下产 生+1.2V。
按开关,VCCCPUIO也出来了。电流跳变正常接屏亮机。
atx3.0标准下,上电放电时序
一、引言ATX3.0标准是一种电源管理规范,它规定了计算机的上电放电时序,以保证计算机硬件的正常运转和保护。
本文将详细介绍ATX3.0标准下的上电放电时序,以便读者更好地了解计算机硬件的工作原理。
二、ATX3.0标准概述1. ATX3.0标准是由英特尔公司制定的,它取代了旧版的ATX2.0标准,为计算机硬件的电源管理提供了更加严谨的规定。
2. ATX3.0标准规定了计算机电源的输出电压范围、稳定性要求、上电放电时序等重要参数。
3. 上电放电时序是指计算机电源上电和断电的时间顺序,它对于计算机硬件的正常运转和保护至关重要。
三、上电时序1. 上电时序是指计算机电源在接通电源后,各种电压输出的时间顺序。
2. 根据ATX3.0标准,上电时序应包括以下几个关键步骤:(1) 5VSB上电:在主电源接通后,计算机电源的5VSB线路应首先提供稳定的待机电压,以供主板和其他设备的待机模式使用。
(2) PW_ON信号响应:计算机主板上的PW_ON信号由主机电源按键触发,触发后,主板应向电源发送启动信号。
(3) 主电压输出:在接收到启动信号后,计算机电源应输出各种主要电压(如+12V、+5V等),以供主板和其他设备正常工作。
四、放电时序1. 放电时序是指计算机电源在断开电源后,各种电压输出的时间顺序。
2. 根据ATX3.0标准,放电时序应包括以下几个关键步骤:(1) 主电压输出关闭:在主电源断开后,计算机电源应先关闭各种主要电压的输出。
(2) 5VSB放电:在主电源断开后,计算机电源应在一定时间内将5VSB线路的电压降至安全范围内,以避免对主板和其他设备的损害。
(3) 所有输出关闭:在放电完毕后,计算机电源应确保所有电压输出均已关闭,以保证计算机设备的安全。
五、ATX3.0标准的改进1. 相较于旧版的ATX2.0标准,ATX3.0标准在上电放电时序方面做出了以下改进:(1) 5VSB线路的待机电压更加稳定,能够更好地支持待机模式。
笔记本上电时序(X86平台)
用户名密码注册xiaoZ青春有梦,勇敢去追主页博客相册|个人档案 |好友查看文章笔记本上电时序(X86平台)2010-09-08 17:39我们假设没有任何的电力设备在供电(没电池和电源),这时候,机器内部只有RTC电路在运作,内部时间的运行和CMOS信息。
在插上电池或者电源的时候,机器内部的单片机EC就Reset并开始电开启以后,EC Reset并开始运行,随后发给南桥一个称为‘RSMRST#’的信号。
这时候南桥的部南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#信号。
在用户按下Power键的时候,EC(开机芯片)检测到一个电平变化(一般时序是:高-低-高),PWRBTN#信号后依次拉高SLP_S5#,SLP_S4#,SLP_S3#信号(他们的作用参看上页的图),开启了所PWROK信号,这信号表明外围电源正常开启。
PM PWROK将作为一个使能信号发送到CPU外围VCCP的电压Generator,并开启VCCP。
在此之后,的核心电压)。
至此,整机的电压已经全部开启。
在用VR_PWRGD_ICH这个信号通知南桥CORE VR成功开启后,南桥会发出PCI RST#信号到PCI 发出H_PWRGD来通知CPU它的核心电压已经成功开启。
然后北桥发H_CPURST#信号给CPU,CPU被在用户需要进入待机模式(S3)的时候,系统的ACPI和windows同时运作,拉低SLP_S3#,并保入待机模式而在需要进入休眠或者关机模式时,同时拉低SLP_S3#、SLP_S4#和SLP_S5#,关闭除了RTC以BIOS的共同协作,对硬件工程师来说,只需要保证在特定的状态保证特定的电压供给即可。
当机器要要从S0进入S5,即关机的时候,也会有一定的时序进行,基本上就是前面时序的逆下面是一张典型的主板上电的时序图,参考下。
论 (0)最近读者:网友评论:发表评论:内容:©2010 Baidu。
笔记本上电时序概述
给EC,通知EC开启内存供电。 有效电压:3.3V
9
SLP_S3#
南桥收到PWRBTN#信号后,拉高 SLP_S3#信号, 通知EC开启桥供电,显卡供电,VCCP等其他供 电,但不包含CPU供电和内存供电。
有效电压:3.3V
6
BATLOW#
电池电量低指示信号,笔记本平台专用信号,在 南桥开机触发前,此信号一定要为高电平,否则 低电平的话,南桥会认为,当前电池电量不足, 不能维持系统的正常运行。从而拒绝触发。
7
开机触发电路与PWRBTN#
PWRBTN#:power button,电源开关,此信号为南 桥接收到EC发来的开机触发信号。
上电时序概述
1
什么是上电时序
Power on Sequence:主板上的供电, 从最开始的电压适配器电压输入,到 最后CPU供电的产生,都有严格的开 启顺序控制,这个先后顺序,就是上 电时序。
2
上电时序示意图
3
保护隔离电路
对适配电压进行检测,符合要求后, 向主板供电单元提供供电,常见功能:
14
CPURST#
北桥得到PLTRST#信号后,在时钟正常的情况下, 拉高CPURST#,通知CPU开始工作。
有效电压:1.05V
15
CPU工作
CPU在得到供电后,等待复位信号RESET#信号变 高与PWRGODD信号变高,两个信号正常后, CPU开始工作。
16
1.充放电管理 2.适配器电压检测 3.输入电流监测 4.RTC电路供电,常见元件:
1.LDO电压 2.EC 3.BIOS 4.RTC电路 5. 系统供电3.3V和5V
笔记本上电时序.
笔记本 INTEL 标准时序(SEQUENCE)NTEL 芯片组的笔记本一般开机过程(红色部分为电路图查图用)1、在没有任何的电力设备在供电时(没电池和电源),通过3V 的纽扣电池来产生VCCRTC 供给南桥的RTC 电路,以保持内部时间的运行和保持CMOS 信息32D768RTC 电路测量点:VCCRTC-DCPRTC/RTCRST#/SRTCRST#/32.768KHz BATLOW# 3.3V EC 到南桥2、在插上电池或适配器后,产生公共点,接着产生EC 的待机供电(一般是线性供电3.3V 电流0.08A)保护隔离电路公共点有小阻值的电阻3、得到待机供电EC(AVCC/VCC0)且获得待机时钟,(32.768KHZ 3.3V)和复位(3.3V EC_RST#/ ECRST# WRST# VCC_POR#VCC1_RST#)后,读取(BIOS)程序配置自身脚位(示波器可以测到波形)4、如果EC 检测到电源适配器(一般来自充电芯片好信号ACOK 转换ACIN/AD_IN/ AC_IN / RI2/WUI1/GPD1 /ACAV_IN),会自动发出信号开启南桥的待机电压(VCCSUS3_3,V5REF_SUS),然后发给南桥一个叫“RSMRST#“(3.3V)的待机电压好信号通知南桥待机电压正常;如果EC 检测不到适配器(电池模式),EC 需要收到开关触发信号后,才会去开启南桥待机供电,以节省电力0.02-0.03 电流5 、按下开关,EC 收到开关信号后(连接到EC 上名字GPIO03/GPIO06 PWUREQ#/GPC7/ PWR_SW#- 华硕TMRI0/WUI2/GPC4/ EC_GPXIOD3/ KBC_PWRBTN#)延时发送一个高-低-高的PWRBTN#开机信号给南桥不上电还受,盒盖开关控制(COVER_SW#/LID_SW#)6、南桥收到PWRBTN#信号后依次拉高SLP_S5#、SLP_S4#、SLP_S3#信号,SLP_S5/S4#控制产生+3.3VSUS 和内存供电(VDIMM)(可以直接控制,也可以通过EC 去控制)(0.05A DDR1 2.5V DDR2 1.8V DDR3 1.5V),SLP_S3#控制产生+3.3V_RUN 、+5_RUN、桥供电(1.*V)总线供电、(VCCP)0.2A-0.3A 1.05V)独立显卡供电(、(0.5-0.7A 1.*V)VGPU_CORE)(等(可以直接控制,也可以通过EC 去控制)7、发出信号EC(1.*V)或者其他电路转换来开启CPU 的核心电压(VCORE)无独显电流0.6A,(有独显电流增加0.3-0.5A)。
笔记本维修思路及上电时序
笔记本维修思路及上电时序笔记本维修思路及上电时序笔记本电脑维修思路1、首先查一下,电源适配器有无电压输出,如有,再查生成12V,5V,3.3V的电源供电芯片有没有基准电压和待机电压5V,还有电池充电器有没有供电,CPU供电电路有没有3.3V的供电,有没有基准电压,电源管理芯片这边通过场效应管的高低门驱动器有无供电,具不具备待机,查一下没有有保险电阻有没有坏,还有滤波电容,,有没有坏!2、你这种情况,电池充不满电,但电池又确定是好的,很有可能是以下几种情况,供参考:1.电路提早终止了充电2.场效应管及升压电容损坏3.芯片内部控制参数坏造成,只能是换芯片了如果能放电不能充电,升压电容和场效应管都没坏,也只有换芯片了。
一般芯片是不容易坏的。
3不开机的故障,一看二听三检测。
一、看有没有明显的可见的故障。
如有没有地方烧焦、变形、崩裂等。
闻闻有没有地方有烧焦的糊味。
二、开机听听有没有正常或不正常的声响,从那里发出的。
三、检测在没有专门工具的情况下只能由万用表测测保险电阻是否烧断,有没有明显的短路等。
CPU、内存条是不是接触良好等都可以测测。
注意通电时不能人为短路而造成破坏。
4.显示屏显示不正常,从故障看来有可能是屏或屏线问题:一,检查主板供电上屏是否正常,电压一般为1点几伏,2点几伏,3点几伏。
IBM机因为高压板的供电都是和上液晶屏同一条数据线,所以还有几组为5点几伏,10点伏左右的电压,当然还有0伏则是地线!二,如果有供电,检查屏接囗处,用万用表继续量电压。
电压值如上!如果现在没有电压了就肯定是屏线故障。
换一条屏线或用同一耐压的线挑线一条屏线即可,倘若可以就可以排除故障。
如果还是故障存在的话,屏也有可能有故障了,这样的情况很少,很少同时存在确定到屏的电压正常,现在女生所谓的“男朋友”,则要修屏了。
在屏上有块微处理信号芯片,因为没有电路图,所以不能确定每一个脚的工作电压。
只能用示波器看这块芯片处理之后的波形是否正确,分两部走(一)如果不合,就换块同型号芯片即可。
广达新型笔记本上电时序
新型笔记本上电时序3VPCU待机电压先供给EC,当EC有电压以后,外接的32.768KHZ晶振开始起振,【是3VPCU待机电压正常后,EC发出电压给晶振】,晶振起振后,给EC待机时提供一个时钟,复位是有一个电阻和一个充电电容延迟以后产生复位【LREST】,当EC的待机、时钟、复位满足以后,EC发出CS#片选信号选中BIOS,从BIOS芯片中读取程序,去配置EC中的GPIO(可编程引脚)引脚定义,当EC待机条件满足后,程序的代码也读取出来了,EC就可以正常上电工作了。
在EC上电之前,还有三个信号条件:A:EC第一个信号:LID—EC#这个信号是S3的休眠开关检测信号说明:LID—EC#在正常的情况下,是被上拉的一个信号,如果被强制拉低到一个低电位的话,机器是上不了电的,不能实现通电。
B:EC第二个信号:适配器检测信号(ACIN)说明:当适配器插入时,在ACIN处也是有一个电压值的,如果此电压值没有起来,EC就认为适配器没有检测到,那么也是上不了电的。
C:EC第三个信号:电池电量低的检测信号(BAT—LOW)说明:如果电池电量低,EC也会停止上电,此脚必须有一个高电平,上拉电压,才正常时序步骤:1:NBSWON#:开机触发信号,未按开机键之前,此信号有3VPCU上拉电压,按下电源键,此信号被拉至地,形成低电位有效触发至EC,NBSWON#是一个高—低—高的低电位有效触发信号2:当EC收到有效触发以后,EC就发出一个S5—ON高电位信号,S5—ON一出来就控制将3VPCU电压转换成3V—S5供至南桥:VCCSUS3.3(3.3V待机),将5VPCU电压转换成5V—S5供至南桥的V5REFSUS(5V待机),此时南桥有了待机电压3:(1):EC发出RSMRST#信号(从低到迟续高电位)至南桥中的RSMRST#脚位,其目的是:清零南桥里面的ACPI控制器的逻辑关系(2):EC收到NBSWON#后,延时发出DNBSWON#低电位有效触发至南桥中的PWRBIN#脚位,告知南桥用户已按下电源键4:当南桥供电、时钟、复位条件满足以后以及收到PWRBIN#有效触发后,依次发出高电平的SLP—S3#、SLP—S4#(或S5#)的信号,SLP—S4#更名为:SUSC#,SLP—S3#更名为:SUSB#信号发至EC5:EC收到这两个高电位信号以后,分别将:SUSC#转换成SUSON(SUSON是用于开启各种SUS电压),将SUSB#转换成MAINON(MAINON是用于开启各种MAIN电压或是正电压开启信号,比如:+3V、+5V),EC将SUSB#信号延时99ms后,发出VRON,用于开启CPU的VCORE电压6:在各路电压产生正常以后,各路电压的PWRGOOD信号经逻辑相与后产生HWPG信号供至EC,HWPG给到EC后,EC就发出PWROK至南桥里面的PWROK信号脚位上(PWROK代表所有系统电压都正常)备注:在广达笔记本中,只要其中任意一个PWRGD没有起来,HWPG就会被拉低,EC检查不到HWPG信号,就会停止发出MAINON和SUSON,故障表现为:掉电。
笔记本上电时序及信号讲解
Page 7
时序
在+V1.5S电压稳定之后,U9(TPS51124)会发出V1.5S_PG,这个 电是用来开启+VCCP的.从下图可以看出,只有左下角的电压都 正常,才能发出PWR_GOOD_3,图左上角显然也是调 PWR_GOOD_3和PWR_GOOD_KBC之间时序的,D1003在这 里的作用是在POW_GOOD_3关电时将它的电快速放掉,防止 U2误动作.
Page 12
S0~S5~S0时序表
下图是SB的S0~S5~S0时序表,里面所有信号的特性和定义在 ICH7的Datasheet里面都有很详细的描述,这里就不多说了. 这个时序表对于“系统不能休眠”和“系统休眠后不能唤醒”的主板 非常有用(对于不能开机和系统自动开关机的主板也同样有效). 分析的时候,只需要找出哪个信号异常,就可以找到问题点,当然, 还有一种特殊的情况,就是有两个(或多个)信号时序出现了问题, 这种情况在主板设计的初期可能会遇到,实际运用中导致这种现 象的情况以SB不良居多,当然,首先应该排除BIOS的可能,因为 其中有些的信号时序在BIOS是可调的,这点在设计初期也常被 运用来解决一些问题,简单经济实用.
如下图所示, SB_3S_VRMPWRGD和PM_PWROK通过SB内部 一个相当于与门的关系,生成H_PWRGD(CPUPWRGD).这点对 于分析主板非常有用.当然, 大前提电压和clock必须正常.
Page 11
时序
如下图所示,在PLT_RST#(RSTIN#)起来并停止动作后大概1ms的时间,NB会 发出H_CPURST#(HCPURST#),前提是SB和NB电压和clock正常,且SB和 NB联络良好. 最后是H_ADS# (Address Strobe),这个strobe是NB和CPU通讯最初始的两 个周期,所以如果要判断NB和CPU之间是否已开始联络并交换初始数据(NB 和CPU的型号等等),可以用示波器测量该信号是否正常(该信号可以作为 debug card “00”的分水领).测量到联系不断的数据传输是正确的(如下图所 示).如果一个drop下脉冲都抓不到,可以检查H_CPURST#和NB;如果只抓到 一两个drop下脉冲之后就停止动作,可以先检查SB和NB之间联络是否正常, 然后看LPC_3S_FRAME#有没有动作(正常信号如下图),再就是BIOS.如果上 述的信号都正常,而debug card仍然不跑,那么,应该就是BIOS里面内容错误 或者丢失,道理很简单, 连debug card跑的代码都是储存在BIOS里的,所以不 跑是很正常的.
HP笔记本上电时序
HP笔记本上电时序:1,上电时序当我们插上Adapter19VIN时,电源流入就有一个5VPCU,3VPCU电压,它是由PU10(MAX1999)自动产生,此时机器处于待机状态。
当我们按下Power Button时,NBSWON# 瞬间有一个低电平,这低电平送给97551,97551收到这信号时,产生信号DNBSWON#, DNBSWON发给南桥,同时发出S5-ON到1845产生1.5V_S5。
S5-ON输入PQ128经过PQ132产生S5-OND。
S5-OND通过PQ127和PQ141分别产生5V_S5和3V_S5。
3V_S5,5V_S5,1.5V_S5此时供电给南桥。
南桥收到DNBSWON低电平时,便发生SUSB#,SUSC# 两个高电平送给以97551,97551收到SUSB#,SUSC# 后便相继产生了SUSON,MAINON#,VRON。
SUSON信号转换成SUSD信号送PQ143,PQ145管便产生3VSUS,5VSUS,及SUSON送到MAX1845 产生2.5VSUS。
MAINON#经PU7产生SMDDR—VTERM。
同时经PQ119和PQ125转换成MAIND送PQ143,PQ145,PQ148,PQ153产生+3V, +5V,+2.5V,+ 1.5V电压。
VRON送给PU3(MAX1907),PU5(1992E)产生VCC-CORE 和VCCP电压。
PU6,PU4产生HWPG信号给97551,此时PU3,PU5也各产生一个HWPG信号反馈97551。
此时整个M/B的主电压都已OK各组电压反馈回来的HWPG信号相汇合,为一个HWPG相当于“与”的关系如其中有任何一组反馈的HWPG的为低电平此时97551会发生POWER OK指令,关掉开启的电压,如OK则HWPG恒为高电平当97551收到HWPG后产生PWROK信号送给 SB南桥,后由SB南桥产生PCI RST#经U42产生PCIRST#传给北桥。
笔记本上电时序详解 工厂资料
19 GTL_ADS# 20 LPC_FRAME#
S Note Power Sequence Presentation
30-Sep , 2003 Charles YM Chen NB Product Engineering
S Note Block Diagram
Aug 08 '26
Clock Generator ICS950813 3
Intel Mobile CPU
USB 2.0
KBC H 8S /2 161 B
41
Secondary IDE
USB Hub
SMSC
US B2 0 H 0 4
Line In Line Out Stereo Speaker x 2
UltraBay
HDD, Optical Drives 2nd Battery
USB x 3
2
S Note VCCACPU VCCGMCHCORE MICVCC VCCCPUIO VCC1R5B_DRV VCC1R5B
12 MPWRG APWRG BPWRG(PWROK)
13 VTT_PWRG 14 VCORE_ON
VCCCPUCORE 15 VR_PWRGD
16 PCIRST#
17 CC_CPUPWRGD
U36 Pin 73
VCC3M_ON
MAXIM1845 ON2, TSURUMAI 3M_ON, MAXIM1935 SHDN#
R696 Pin2
VCC5M_ON
MAXIM 1977 ON3&ON5, TSURUMAI 5M_ON
R329 Pin2
VCC3M
OUT3 of MAXIM 1977
笔记本上电时序
笔记本上电时序笔记本英特尔标准序列NTEL芯片组笔记本通用启动过程(红色部分用于电路图检查)1。
当无电源设备供电(无电池和电源)时,由3V钮扣电池产生VCCRTC给南桥的RTC电路供电。
为了保持内部时间操作和互补金属氧化物半导体信息32D768 RTC电路测量点:VCC RTC-DCP RTC/RTC rst #/SRT rst #/32.768 khz bat low # 3.3 veec至南桥2,在插入电池或适配器后产生公共点。
然后产生备用电源EC(一般为线性电源3.3V,电流0.08A),在隔离电路的公共点用小电阻保护电阻3,从而得到备用电源EC(A VCC/VCC0)和备用时钟。
(32.768KHZ 3.3V)并复位(3.3V EC _ rst #/ecrst # wrst # VCC _ por #VCC 1 _ rst #)。
读取(基本输入输出系统)程序配置自己的引脚位置(示波器可以检测波形)4。
如果电子控制器检测到电源适配器(通常是来自充电芯片的良好信号ACOK转换ACIN/ad _ in/交流_ in/ri2/wui1/gpd1/acav _ in),将自动发出信号以开启南桥的待机电压(VCCSUS3_3,V5REF_SUS),然后向南桥发送称为“RSM RST #”(3.3V)的待机机电,以发出南桥的待机电压正常的信号;如果欧共体不能检测到适配器(电池模式),欧共体将只在收到开关触发信号后打开南桥备用电源,以节省0.02-0.03电流5,并按下开关。
在欧共体收到开关信号(连接到欧共体GPIO 03/GPIO 06 PWUREQ #/GPC7/PWR _ SW #-ASUSTMRi 0/WUI 2/GP C4/欧共体_ GPIO D3/KBC _ PWRBTN#)后,它会延迟发送高-低-高PWRBTN#当通电信号未施加到南桥时,它也由箱盖开关(COVE _ SW #/LID _ SW #)|控制在南桥接收到PWRBTN#信号后,它依次上拉SLP_S5#、SLP_S4#、SLP_S3#信号。
笔记本上电时序
④LDO线性电压是否产生、REF参考电压是否有
⑤外围电路元器件和反馈电路、补偿电路中的电阻电容
⑥ 查CPU管理芯片开启CPUCORE的VR-ON信号是否有到,若VR-ON信号有,(即只缺CPU供电):(因为所有DC-DC电
匀在南桥芯片上方吹5秒左右,看会不会正常,重点测南桥的工作条件和背后的小电容。
*若复位信号正常,电流跑到1点多安,但没过内存且不会掉电。
因为复位正常后,CPU要开始寻址,寻址完成后CPU调用BIOS程序开始自检且自检时电流会跳变。所以我们根据电流有没有跳
寻址过程跳变一 次,南桥-北桥-CPU的数据传输跳变一次)。
2.第二脚和第五脚有没有数据输入输出(示波器测)有输入无输出,编程器刷BIOS
若无输入,可以尝试用热风枪温度大概220度左右均匀在北桥芯片上方吹5秒左右,看会不会正常,重点测北桥的工作条件和
2.上电测各电感的电压是否全有开启,若缺电压,查缺电压电路。
3.重点查缺电压的DC变DC电路的电源管理芯片的工作条件
工作条件:
①电源管理芯片的供电(VIN、VDD)
②上管D极是否有主供电到
2.查显卡芯片的工作条件及显卡辅助元器件,
3.可以尝试用热风枪温度大概220度左右均匀在显卡芯片上方吹5秒左右,看会不会正常,重点测显卡的工作条件和背后的
小电容
4.更换显卡桥
பைடு நூலகம்
*若无复位,查时钟是否有波形输出,若无波形输出,查时钟芯片的工作条件(供电;使能信号、晶振起振频率;时钟芯片使能信号的来源:有的板子是CPU核心供电的电源管理芯片直接提供,有的板子是CPU核心供电芯片发出使能信号给IO,IO再传给南桥,南桥再给时钟芯片。使能信号脚的名称一般为:Vtt/PD#/SD。);如有波形输出,查IO给南桥的ICH-PWROK信号是否有高电平,此信号是南桥发出复位信号的前身,也是南桥复位电路的工作条件之一。.南桥收到PWROK信号后先发出PLT_RST、PCI RST#去复位北桥、PCI等设备
笔记本主板开机时序
笔记本主板开机时序当没有任何设备供电时(也就是说没有接上电源适配器或着电池的时候)主板RTC电路由CMOS电池提供3.3V电压来供电,它主要是保障时间的正常运行和CMOS信息。
当我们插上电源的时候19V电压会经过两个MOS管给主板输入一个PWR_SRC(也就是19V电压)和一组待机的3/5V电压(我们就叫他3/5V ALW电压当然各品牌的主板给电压的命名也不一样比如像ASUS的叫它3/5V PCU),在这同时KBC里面的EC也复位了,随后KBC会发一个RSMRST#信号给南桥,南桥内部一部分功能开始初始化等待着开机命令(也就是PWRBTN#信号你今天跟我说的应该就是这个信号吧)同时KBC会发出一个也就是开关PWR_SW#信号(#号代表电压是由高到低再到高才有效的),当我们按下开关键的时候KBC里面的EC检测到一个电平的变化(就是PWR_SW#由高到低再到高这样一个变化),然后送出一个PWRBTN#(开机信号)给南桥,南桥收到这个信号后会先后拉高SLP_S5#, SLP_S4#, SLP_S3#信号给KBC,KBC会相继发出SUSON DIMMON 1.2VSUSON RUNON等等,给各电压芯片(这些都是外围设备电压的开启电压信号),各组电压芯片相继收到这些开启电压信号后会送出相应的电压例如3/5VSUS 1.2VSUS 1.5VSUS 1.8VDIMM 3/5VRUN VTT等这一系列电压,(注意这些电压是有先后顺序的),我上述排列的这些电压顺序是不对的在这里只是给你做一个参考,你只有在以后的实践中慢慢去摸索,(当然想要后一个电压正常发出得有一个条件那就是上一组电压发出了以后该电压芯片会发出一个PWR_OK给KBC,KBC才会发出下一组电压的开启信号给下一组电压芯片),当这些电压都有了的时候他们的PWR_OK信号会聚集到一起汇组成一个PM_PWROK 或者是ALLSYSPWROK信号这表示外围设备电压和南北桥供电电压均已正常开启,这个信号是发给KBC的,KBC接收到这个信号的时候会送出最后一个电压的开机信号也就是CPU电压的开启信号VR_ON给CPU电压芯片同时CPU电压芯片送出CPU电压(到这时整板的电压都以开启),CPU电压正常输出后CPU电压芯片会送出时钟的开启信号VR_PERGD_CLKEN#信号给时钟芯片,时钟芯片收到这个开启信号后会向整板送出时钟包括南桥,南桥收到时钟信号了这时南桥会发出PCI_RST#给PCI总线,于是总线上的所有设备开始初始化等待复位(包括北桥),并同时发出H_PWRGD来通知CPU告诉CPU自己的核心电压已被开启,然后北桥会发出H_CPURST#给CPU, CPU开始复位这时主板才正式开机跑码了。
笔记本上电时序概述
16
1.充放电管理 2.适配器电压检测 3.输入电流监测 4. 充电电流监测
PPT课件整理
4
待机电路
负责为EC,BIOS芯片,RTC电路供电,常见元件:
1.LDO电压 2.EC 3.BIOS 4.RTC电路 5. 系统供电3.3V和5V
PPT课件整理
5
RSMRST#
返回挂起模块复位信号,在系统供电正常好,从 信号高电平发给南桥,指示当前系统供电已经准 备好了,可以进行开机触发动作。
PPT课件整理
14
CPURST#
北桥得到PLTRST#信号后,在时钟正常的情况下, 拉高CPURST#,通知CPU开始工作。
有效电压:1.05V
PPT课件整理
15
CPU工作
CPU在得到供电后,等待复位信号RESET#信号变 高与PWRGODD信号变高,两个信号正常后, CPU开始工作。
PPT课件整理
上电时序概述
PPT课件整理
1
什么是上电时序
Power on Sequence:主板上的供电, 从最开始的电压适配器电压输入,到 最后CPU供电的产生,都有严格的开 启顺序控制,这个先后顺序,就是上 电时序。
PPT课件整理
2
上电时序示意图
PPT课件整理
3
保护隔离电路
对适配电压进行检测,符合要求后, 向主板供电单元提供供电,常见功能:
PPT课件整理
12
PWROK
由EC发出的电源好指示信号给南桥,表示EC已检 测到当前系统电源已准备完毕。
在南桥内部与VRMPWRGD相与后,发出PLTRST# 信号。
在PCH架构中,VRMPWRGD信号变为: SYS_PWROK
PPT课件整理