高中物理竞赛方法集锦 等效法
巧妙使用等效思维解答高中物理试题
巧妙使用等效思维解答高中物理试题等效思维是高中物理解题中一种非常重要的思维方式,它允许我们将复杂的物理问题简化为更易于处理的形式,或者将未知的问题转化为已知的问题来求解。
以下是一些巧妙使用等效思维解答高中物理试题的方法和示例:1. 等效替代法原理:在某些情况下,一个复杂的物理系统或过程可以被另一个更简单但效果相同的系统或过程所替代。
示例:在力学中,当分析多个力的共同作用时,可以使用力的合成与分解来等效替代。
例如,一个物体同时受到两个大小相等、方向相反的力的作用,这两个力的合力为零,可以等效为物体不受外力作用。
2. 等效电路法原理:在电路分析中,复杂的电路可以通过变换和简化,等效为简单的电路模型,从而方便求解。
示例:在求解复杂电路中的电流、电压或功率时,可以通过串并联电路的等效变换,将电路简化为简单的串并联组合,然后利用欧姆定律、基尔霍夫定律等求解。
3. 等效重力场法原理:在解决非惯性系中的物理问题时,可以引入一个等效的重力场,使得问题在惯性系中求解。
示例:在加速上升的电梯中,物体受到的支持力大于其重力,可以等效为物体在一个重力加速度更大的重力场中静止不动。
这样,就可以利用牛顿第二定律等惯性系中的规律来求解。
4. 等效过程法原理:在某些情况下,一个复杂的物理过程可以等效为一系列简单过程的组合。
示例:在求解变加速直线运动的位移时,如果加速度随时间变化,可以将其等效为多个匀变速直线运动的组合,然后分别求解每个阶段的位移并累加。
5. 等效质量法原理:在解决涉及多个物体相互作用的问题时,可以将多个物体看作一个整体,引入等效质量来简化问题。
示例:在连接体问题中,如果两个物体通过轻绳或轻杆相连,且加速度相同,可以将它们看作一个整体,引入等效质量(等于两物体质量之和),然后利用牛顿第二定律求解整体的加速度和受力情况。
应用技巧识别等效条件:在解题过程中,首先要识别出哪些条件或过程可以等效替代。
建立等效模型:根据等效条件建立等效模型,将复杂问题简化为简单问题。
高中物理解题方法之等效法
v0 cos θ t 2d 2d cos θ v0 2d θ arccos v0
如图所示,小球的质量为m,带电量为q,整个区 域加一个场强为E的水平方向的匀强电场,小球 系在长为L的绳子的一段,与竖直方向成45°角 的P点处平衡。则(1)小球所受电场力多大? (2)如果小球被拉直与O点在同一水平面的C点 自由释放,则小球到达A点的速度是多大?此时 绳上的拉力又为多大?(3)在竖直平面内,如果 小球以P点为中心做微小的摆动,其振动周期为 多少?(4)若使小球在竖直平面内恰好做圆周运 动时,最小速度为多少? (1) qE m g
高中物理解题方法之 ——等效法
等效法
• 等效法,就是在保证效果相同的前提下, 将一个复杂的物理问题转换成较简单问题 的思 维方法。其基本特征为等效替代。
物理学中等效法的应用较多: • 合力与分力; • 合运动与分运动; • 总电阻与分电阻; • 交流电的有效值等。 • 除这些等效等效概念之外,还有等效电路、 等效电源、等效模型、等效过程等。
C O P
A
(2)如果小球被拉直与O点在同一水平面的 C点自由释放,则小球到达A点的速度是多 大?此时绳上的拉力又为多大?
C O
P
A
(3)在竖直平面内,如果小球以P点为中心 做微小的摆动,其振动周期为多少?
C
O
P
A
(4)若使小球在竖直平面内恰好做圆周运动 时,最小速度为多少?
C O
P
A
• 如图所示,一半径为R的光滑圆弧槽 ∠POM<5°,P为圆弧槽的最低点,且OP 在竖直方向上,以小球B从N点由静止开始 释放,另一小球A同时从O点由静止开始释 放,问哪个球先到达P点。
• 如图2所示,水平面上,有两个竖直的光滑墙壁A 和B,相距为d,一个小球以初速度 v0 从两墙之间 的O点斜向上抛出,与A和B各发生一次弹性碰撞 后,正好落回抛出点,求小球的抛射角θ。
奥林匹克物理竞赛之力学解题方法
(
s
2 2
s12 )
t (s22 s12 ) 22 12 7.5s 2s1v1 2 1 0.2
例4.如图所示,小球从长为L的光滑斜面顶端自由下滑,滑到
底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大
小为碰撞前速度大小的4/5,求小球从开始下滑到最终停止于斜
面下端时,小球总共通过的路程。
奥林匹克物理竞赛之力学解题方法
三.等效法 1.方法简介
2.赛题精讲
将一个情境等效为另一个情境 将一个过程等效为另一过程 将一个模型等效为另一个模型 将一个物理量的计算等效为另一个物理量的计算
例1.如图所示,水平面上,有两个竖直的光滑墙壁A和B,相距
为d,一个小球以初速度v0从两墙之间的O点斜向上抛出,与A和 B各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ。
六、类比法
1.方法简介:根据两个研究对象或两个系统在某些属性上类似 而推出其他属性也类似的思维方法,是一种由个别到个别的推 理形式。
2.赛题精讲 例1.如图所示,AOB是一内表面光滑的楔形槽,固定在水平 桌面(图中纸面)上,夹角α=10。现将一质点在BOA面内从A 处以速度v=5m/s射出,其方向与AO间的夹角θ=600,OA=10m。 设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的碰 撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求: (1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时 包括在A处的碰撞) (2)共用多少时间?
解析:设在一个极短的时间Δt内,猎犬 做直线运动,正三角形边长依次变为a1、 a2、a3、…、an。
a1
a
AA1
BB1
cos60
高考物理解题中的等效方法(一)
例题1
• 如图所示,弧AB为一段位于竖直面内的光滑的圆弧形 轨道并于下端A与水平面相切,弧AB所对圆心角小于 5°,C为弧AB上的一点.现将同一小球先后从B、C两 点无初速释放,则它到达A点时的速度v1、v2及所用时 间t1、t2,经比较应为 A、v1>v2,t1>t2 B、v1=v2,t1=t2 C、v1>v2,t1=t2 D、v1>v2,t1<t2 B C A
Y Y/
X/ X X
T 2T
t
偏转电极
分析与解
• 由题意可知: 2U 0 ux t U 0 T v x at / qu x l tg 2 v0 v0 mdv0
分析与解
(1)
3 E水 mga 4
1 E木 mga 2
1 W E水 E木 mga 4 (2) 1 a E 2mg( H a) 2mg 2mg( H a) 2 2 a a
H
H
例题7
• 如图所示,热阴板A受热后向右侧空间发射热电子, 初速从0到v连续分布,方向在0—1800范围内,与A相 距L处有荧光屏B,在A、B之间加上水平方向的匀强 电场(与B垂直),场强为E,已知电子的电量为e, 质量为m,求荧光屏受电子轰击后的发光面积。 B A
h
s
分析与解
设人的速度为v,做功为W
1 W mgh mv2 2
h s 2 h 2 h
h
v1 v cos
vs h2 s 2
v2Βιβλιοθήκη sθ v1v
例题6
• 面积很大的水池,水深为H,水面上浮着一正方体木块 ,木块边长为a,密度为水的一半,质量为m;开始时 木块静止,有一半没入水中,现用力F缓慢地将木块压 至池底,试求: (1)从开始到木块刚好完全没入水中,力F所做的功 (2)从木块刚好完全没入水中到到停在池底的过程中 a 池水势能的改变量。 H
物理解题方法(四)-等效法
目录
• 等效法概述 • 等效法的原理 • 等效法在解题中的应用 • 等效法的实例分析 • 等效法的总结与思考
01 等效法概述
等效法的定义
等效法是一种常用的物理解题方法,它是指根据物理现象或 过程的等价性,将复杂的物理问题转化为简单、直观或易于 处理的问题,从而简化解题过程。
在等效运动原理的应用中,需要找到一个与原系统等效的替代系统,使得替代系统 与原系统在相同的外部作用下具有相同的运动状态和性质。
等效运动原理在物理解题中常用于解决振动、波动和流体动力学等领域的问题。
03 等效法在解题中的应用
力的等效法
等效力的判断
判断等效力时,应从力的三要素(大小、方向、作用点) 上考虑,只有当两力在作用效果上相同,才可认为这两力 是等效的。
等效法的优点与局限性
• 增强理解:通过等效法,学生可以更深入地理解物理概念 和规律,加深对物理本质的认识。
等效法的优点与局限性
01
02
03
适用范围有限
等效法并非适用于所有类 型的物理问题,主要适用 于具有对称性或等效条件 的问题。
对学生能力要求高
运用等效法需要学生具备 扎实的物理基础、较强的 思维能力和分析能力。
等效场的合成与分解
在分析复合场问题时,常采用等效场替代的方法,将复合场问题转化为单一场问题。
等效场在解题中的应用
等效场常用于解决涉及复合场的问题,通过等效替代,简化问题。
04 等效法的实例分析
力的等效法实例
两个力等效
在分析物体受力情况时,如果两个力的大小、方向和作用点都相同,则这两个力 是等效的。例如,在分析滑轮组的机械效率时,可以将滑轮组简化成等效的简单 机械,从而简化问题。
物理竞赛解题方法
高中奥林匹克物理竞赛解题方法一、整体法整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。
整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。
因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。
灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。
例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。
板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。
二、隔离法隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。
隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。
例9 如图2—9所示,四个相等质量的质点由三根不可伸长的绳子依次连接,置于光滑水平面上,三根绳子形成半个正六边形保持静止。
今有一冲量作用在质点A ,并使这个质点速度变为u ,方向沿绳向外,试求此瞬间质点D 的速度.解析 要想求此瞬间质点D 的速度,由已知条件可知得用动量定理,由于A 、B 、C 、D 相关联,所以用隔离法,对B 、C 、D 分别应用动量定理,即可求解.以B 、C 、D 分别为研究对象,根据动量定理:对B 有:I A —I B cos60°=m B u …………①I A cos60°—I B =m B u 1…………②对C 有:I B —I D cos60°=m C u 1……③I B cos60°—I D =m c u 2…………④对D 有:I D =m D u 2……⑤由①~⑤式解得D 的速度u u 1312三、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
高中物理竞赛—曲线运动科学方法计划
.高中物理比赛—办理曲线运动的科学方法一、微元法例 1:一质量为 M 、平均散布的圆环,其半径为 r ,几何轴与水平面垂直,若它能经受的最鼎力为 T ,求此圆环能够绕几何轴旋转的最大角速度。
分析 :因为向心力 F = mr ω 2 ,当ω一准时, r 越大,向心力越大, 所以要想求最鼎力 T 所对应的角速度ω,r 应取最大值。
如图 3— 6 所示,在圆环上取一小段L ,对应的圆心角为Δθ ,其质量可表示为m =M ,受圆环对它的力为 T ,2则同上例剖析可得:2Tsin=mr ω 22因为Δθ很小,所以: sin≈,即: 2T2=M r ω 2222解得最大角速度:ω=2 TMr例 2:如图 3— 11 所示,小环 O 和 O ′分别套在不动的竖直杆AB 和 A ′B ′上,一根不可伸长的绳索穿过环O ′,绳的两头分别系在A ′点和 O 环上,设环 O ′以恒定速度v 向下运动,求当∠ AOO ′ = α时,环 O 的速度。
分析 :O 、 O ′之间的速度关系与O 、 O ′的地点相关,即与α角相关,所以要用微元法找它们之间的速度关系。
设经历一段极短时间t , O ′环移到 C ′, O 环移到 C ,自 C ′与 C 分别作为 O ′ O 的垂线 C ′ D ′和 CD ,从图中看出。
OC=OD,O ′C ′=OD,所以:coscosOC + O ′C ′=OD O D①cos因Δα极小,所以 EC ′≈ ED ′, EC ≈ ED ,进而:OD + O ′ D ′ ≈OO ′- CC ′②因为绳索总长度不变,故:OO ′- CC ′ = O ′ C ′ ③由以上三式可得: OC+O ′C ′=OC,cos即: OC = O ′ C ′(1 -1)cos等式两边同除以t 得环 O 的速度为: v 0 = v(1 - 1)cos等效法.在一些物理问题中,一个过程的发展、一个状态确实定, 常常是由多个要素决定的, 在这一决定中,若某些要素所起的作用和另一些要素所起的作用同样,则前一些要素与后一些要素是等效的,它们便能够相互取代,而对过程的发展或状态确实定,最后结果其实不影响,这类以等效为前提而使某些要素相互取代来研究问题的方法就是等效法。
竞赛电阻等效方法
社团讲义电阻等效方法一■对稗法这种方法适用于具有一定对称性的电路,通过对等势点 拆、台和对称电路的“折叠”,使电路简化为基本的串、并联形 式.例1如图19-1所示J2个阻值都是R 的电阻,组成一立 方体框架,试求A£间的电阻Rw 和A 、B 间的电阻与 G 间的电阻R 的.图 19-2例2如图19-6所示的正方形网格由24个电阻力 =8 0 的电阻丝构成,电池电动势E-fi. 0 U,内电阻不计*求通过电 池的电流.图 19-6S 19-1 图 19-5甲乙例3波兰数学家谢尔宾斯基在1916年研究了一个有触的几何图形.他格如图19飞甲所示的一块黑色的等边r角形ABC的每一个边长平分为二,再把平分点联起来,此三角形被分成四个相等的等边三角形,然后将中间的等边三角形挖掉*得到如图19*乙的图形「接着再将剩下的黑色的三个等边三角形按相同的方法处理,经过第二次分割就得到图19-8丙的图形,经三次分割后,又蹲到图19-3 T 的图形.这是带有自相似特征的图形.这样的图形又称为谢尔宾斯基楼垫.它的自相似性就是将其中一个小单元(例如图19 8 丁中的△8JK)适当放大后,就得到图19 8乙的图形.如果这个分割过程继续下去,直至无穷,谢尔宾斯基楼垫中的民色部分将被不断地镂空,a 19-8数学家对这类几何图形的自相似性进行了研究,创造和发展出了一门称为“分形几何学”的新学科,近三十多年来,物理学家将分形几何学的研究成果和方法用于有关的物理领域,取得了有意义的进展.我们现在就在这个背景下研究按谢尔宾斯基镂壁图形的各边构成的电阳网结的等效电阻问题工设如图19-8中所示的三角形ABC边长八的电阻均为门经一次分割得到如图19-8 乙所示的图形,其中每个小三角形边长的电阻是原三角形ABC的边长的电阻厂的二分之一।经二次分割得到如图19-8 丙所示的图形,其中每个小二角形边长的电阻是原三角形月BC的边长的电阻r的四分之一.三次分割得到如图19-8 T 所示的图形,其中每个小三角形边长的电阻是原三角形ABC 的边长的电阻r的八分之一.(1)试求睡三次分割后,三角形ABC任意两个顶点间的等效电阻.(2)试求按此期律作了n次分割后•三角形ABC任意两个顶点间的等效电阻二.电流鬓加法对于一些并不具备直观的对称性的电路,可根据电流的可叠加性,重新设W电流的分布方式,将原本不对称问题转化成具有对林性的问题加以解决.电场具有可♦加性是众所周知的I几个点电荷引起的电场叠加,其场强施可蚪结为某一个点电荷引起的电场场强I同样. 直流电路中也存在这样的叠加关系:各电源单独存在时的电路电流代数更加后与所有电源同时存在的电路电流分布是一样的,任一直流电路电流分布,总可归纳为只含某一个宜流电源的电路电流分布.这就是电流的可叠加性.下面的例子展示通过电流叠加法寻求等效电阻.例4 "阳”宇形电阻理网络如图19 11所示•每小段电阻丝的电阻均为凡试求网络中A W阚点间的等效电阻尺用1911 图19-12例5如图19T4所示的一个无限的平面方格导线网,豆接两个结点的导战的电阻为物,如果将A和B接入电路,求此导线网的等效电二二二二二二二限克AH, ---- ——।力一物例6有一无限大平面导悻网络,它由大小相同的正六边形网眼组成,如图19 i5所示,所有六边形每边的电阻均为R D求间位结点4、白间的等效电阻.图1915三.Y—△变换法这是利用Y型连接电阻与△型连接电阻间等价关系的结论,通过电阻Y型连接与△型连接方式的互换,达到蔺化电路成单饨串联或并联的目的.我们先推导电阻Y一△连接的等价关系.如图19T7甲、乙所示的两个三端电路ABC与刈一用电路叫做△型连接电路,乙电路叫做¥型连接阻路,每端流入电流及答电阻阻值已标示在图上,两个电路完全等效.即对底端电流相等11勇=11(1丹=1*.1(:=[「),对应两端电压相等 1 口栖=Ug 《U M=U W.Uw=UG,因而区分不出虚线框内电阻的连接方式.fl 19 17当△一Y变换时,Y型连接每两端间等效电阻为r> _R A^R A C T>_R A J]R B C n _ RjI?R HCR尸F—四--------- 「国---------其中A=R AB + Rae + R E.倒了用变换法求例1网络中A、G间的电阻氏腐.例8如图19-19所示,个立方体原来用12根相同的电阻丝构成的立方体椎架,每根电阻丝的电阻均为「,现将其中一根拆去. 求A,B两点间的电阻.分析与解先将框架“压扁”成图19-C 20所示的平面图形,每边电阻不变.而后对明心、「三点间作Y变换,替换电阻依次为F全?电路连图"191、如图可二'K叶米,图甲中二端也容网络为△型网稿儿.图乙中三端电容网络为Y型网络元,试导出其间的等效变换公式.图.19 262、如图19-36所示是由电阻丝连接成的无限电阻网络, 已知每一段电阻丝的电阻均为n成求A,B两点之间的总电阻.3、三个相同的均匀金属圆圈网两相交地连接成如图19-37所示的网络.已知短一个金属圆圜的电阻都是R,显求图中A、E两点间的等效电阻R..图19-36图19-37。
高考物理解题方法:等效法
高考物理解题方法:等效法1500字高考物理解题方法:等效法物理是高考中的重要科目之一,也是许多考生难以攻克的一门科目。
在高考中,物理题目的解答方式多种多样,但其中一种常用且有效的方法是等效法。
等效法是将一个物理问题转化为一个相对简单且容易解答的等效问题,通过解答等效问题来得出原问题的答案。
本文将从原理、基本步骤以及实例解析三个方面对等效法进行详细介绍。
一、原理物理问题的等效法的原理基于以下两个假设:1. 物理定律和规律是普适的,不受具体条件的影响。
这意味着,相同的物理定律可以适用于不同的物理情境。
2. 物理现象可以用数学模型来描述和解析。
等效法通过建立适当的数学模型,将实际问题抽象成数学问题,从而简化问题的求解过程。
基于以上原理,等效法的核心思想是,通过将复杂的问题转化为简化的等效问题,利用数学方法解答等效问题,从而得出原问题的答案。
二、基本步骤等效法的解题过程可以分为以下几个基本步骤:1. 抽象:将实际问题抽象成数学模型,即将问题中的实际物理量用符号表示,并确定问题中所牵涉到的物理定律和规律。
2. 变换:通过适当的等效变换,将原始问题转化为一个等效问题。
在变换过程中,可以利用一些已知条件或者性质来简化问题。
3. 求解:通过求解等效问题,得出等效问题的答案。
4. 反变换:将等效问题的答案通过逆变换转化为原问题的答案。
三、实例解析下面通过一个具体的例子来说明等效法的解题过程。
例题:一个边长为L的正方形绕其对角线转动,求转动过程中动能的最大值。
解析:1. 抽象:设正方形的质量为m,角速度为ω,根据角动量守恒定律,可以得到Lω=const。
2. 变换:将问题转化为一个等效问题,即将正方形的转动转化为质点的移动。
考虑到正方形绕对角线转动时,质心沿着对角线方向运动。
因此,可以将问题等效为质点在对角线方向上的匀速直线运动。
3. 求解:根据匀速直线运动的动能公式,动能K=1/2mv²,其中v是质点的速度。
《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法
《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法高中物理解题常用的几种思维方法中学物理解题中涉及到许多科学思维方法,由此而产生的解题方法和解题技巧很多,这里将高中物理解题中经常要用到的几种科学思维方法作一些介绍。
1.等效法等效法是从效果的等同的角度出发把复杂的物理现象、物理过程转化为理想的、简单的、等效的物理现象和过程来研究和处理问题的一种科学思维方法。
中学物理中,等效的思想应用很广泛,如力的合成与分解、运动的合成与分解、单摆的等效摆长和等效重力加速度等都是等效法的具体应用。
在学习物理的过程中,若能将等效法渗透到对物理过程的分析中去,不仅可以使我们对物理问题的分析和解答变得简捷,而且对灵活运用知识,促进知识、技能和能力的迁移,都会有很大的帮助。
①力的等效。
合力与分力具有等效性,利用这种等效性,可将物体所受的多个恒力等效为一个力,也可将一个力按力的效果等效分解为多个力,从而降低解题的复杂性和难度,使问题得到快速、简捷的解答。
②运动的等效。
建立等效运动的方法是多样的。
利用合运动与分运动的等效性,可将一个复杂的运动分解为几个简单的、熟知的运动。
通过发散思维将间断的匀加速运动等效为一个完整的、连续的匀加速运动。
通过逆向思维将匀减速运动等效为一个相反方向的匀加速运动等。
③电路的等效。
有关电路分析和计算的题目,虽然涉及到的物理过程和能量的转化情况较为单一,但是在元器件确定的情况下,线路的连接方式却是千变万化的。
多数电路中电子元件的串并联关系一目了然,不需要对电路进行等效转换,但有些电路图中的元件的连接方式并非一下就能看明白,这就需要在计算之前对电路的连接方式进行分析,并进一步画出其等效电路图。
学会画等效电路图是中学阶段必须具备的能力之一。
④物理模型的等效。
物理模型的等效就是对不熟悉的物理模型与熟悉的物理模型作分析比较,找出二者在某方面的等效性,从而将熟悉模型的已知结论应用到不熟悉的物理模型上去的过程。
高中物理竞赛-电阻等效方法ABC
x
RAB
2 21 21
r
3
田字形电阻丝网络如图所示,每小段电阻丝的电
解: 阻均为R,试求网络中A、B两点间的等效电阻RAB.
I RAB
R
O
I 2
I 24
R
I 8
5I 24
2R
B
I I 5I I 2 24 24 8
A
RAB
29 24
R
O B
R
O
B
2A
R3
5 6
3
r
2 3
125 234
r
递推到分割n次后的图形
Rn
2 3
5 6
n
r
A r
B
r 5r 2 6
5r
5 6
21r2
读题 C
如图所示的平面电阻丝网络中,每一直
线段和每一弧线段电阻丝的电阻均为r.试求A、B两点间
的等效电阻.
解:
B
B
A
B
B就在这个背景下研究按谢尔宾斯基镂垫图形的各边构成的电阻网络的 等如效图2电所阻示问的题图:形设,如其图中1所每示个的 小三 三角 角形形A边B长C边的长电L阻0的是电原阻三均角为形rA;B经C的一边次长分的割电得阻到r 的二分之一;经二次分割得到如图3所示的图形,其中每个小三角形边长的电阻 是原三角形ABC的边长的电阻r的四分之一;三次分割得到如图4所示的图形,其 中每个小三角形边长的电阻是原三角形ABC的边长的电阻r的八分之一.
RAB
452R54c
高中奥林匹克高三物理竞赛解题方法——隔离法、等效法
《高中奥林匹克物理竞赛解题方法》一、隔离法方法简介隔离法就是从整个系统中将某一局部物体隔离出来,然后单独分析被隔离局部的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。
隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。
赛题精讲例1:两个质量一样的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2, 如此物体1施于物体2的作用力的大小为〔 〕A .F 1B .F 2C .12F F 2+D .12F F 2- 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。
先以整体为研究对象,根据牛顿第二定律:F 1-F 2=2ma ①再以物体2为研究对象,有N -F 2=ma ②解①、②两式可得N =12F F 2+,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。
施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面〔 〕A .向左动B .向右动C .不动D .运动,但运动方向不能判断解析:A 的运动有两种可能,可根据隔离法分析设AB 一起运动,如此:a =A BF m m + AB 之间的最大静摩擦力:f m = μm B g以A 为研究对象:假设f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。
假设μ<A B B A m m (m m )g+ F ,如此A 向右运动,但比B 要慢,所以应选B例3:如图2—3所示,物块A 、B 的质量分别为m 1、m 2,A 、B 间的摩擦因数为μ1,A 与地面之间的摩擦因数为μ2,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大?解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N=m 2g 。
04高中物理竞赛解题方法:等效法
四、等效法方法简介在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法.等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解.赛题精讲例1:如图4—1所示,水平面上,有两个竖直的光滑墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙之间的O 点斜向上抛出,与A 和B 各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ.解析:将弹性小球在两墙之间的反弹运动,可等效为一个完整的斜抛运动(见图).所以可用解斜抛运动的方法求解. 由题意得:gv v tv dsin2coscos2000可解得抛射角202arcsin21vgd 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B时的速度.解析从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解.因加速度随通过的距离均匀增加,则此运动中的平均加速度为na n n a an n a n aa a a a 2)13(232)1(2末初平由匀变速运动的导出公式得2022vvLa B平解得naLn vv B )13(20例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s 1=1m 的A 点时,速度大小为s cm v /201,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小?2v 老鼠从A 点到达B 点所用的时间t=?解析我们知道当汽车以恒定功率行驶时,其速度v 与牵引力F 成反比,即,v =P/F ,由此可把老鼠的运动等效为在外力以恒定的功率牵引下的弹簧的运动.由此分析,可写出kxP FP v当11,v v s x 时将其代入上式求解,得2211s v P s v P k所以老鼠到达B 点时的速度scm v s s v /1020211212再根据外力做的功等于此等效弹簧弹性势能的增加,21222121ksksPt 代入有关量可得)(21212211s s s v PPt由此可解得sv s s s t5.72.012122)(22112122此题也可以用图像法、类比法求解.例4 如图4—2所示,半径为r 的铅球内有一半径为2r 的球形空腔,其表面与球面相切,铅球的质量为M.在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球(可以看成质点),求铅球对小球的引力.解析因为铅球内部有一空腔,不能把它等效成位于球心的质点. 我们设想在铅球的空腔内填充一个密度与铅球相同的小铅球△M ,然后在对于小球m 对称的另一侧位置放另一个相同的小铅球△M ,这样加入的两个小铅球对小球m 的引力可以抵消,就这样将空腔铅球变成实心铅球,而结果是等效的.带空腔的铅球对m 的引力等效于实心铅球与另一侧△M 对m 的引力之和. 设空腔铅球对m 的引力为F ,实心铅球与△M 对m 的引力分别为F 1、F 2. 则F=F 1-F 2 ①经计算可知:M M 71,所以22178)(LGmM LM Mm GF ②222)2(7)2(r L GmMr L Mm GF ③将②、③代入①式,解得空腔铅球对小球的引力为图4—2])2(7178[2221r LLGmM F F F例5 如图4-3所示,小球长为L 的光滑斜面顶端自由下滑,滑到底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大小为碰撞前速度大小的54,求小球从开始下滑到最终停止于斜面下端时,小球总共通过的路程.解析小球与挡板碰撞后的速度小于碰撞前的速度,说明碰撞过程中损失能量,每次反弹距离都不及上次大,小球一步一步接近挡板,最终停在挡板处. 我们可以分别计算每次碰撞垢上升的距离L 1、L 2、……、L n ,则小球总共通过的路程为L L L L sn )(221,然后用等比数列求和公式求出结果,但是这种解法很麻烦.我们假设小球与挡板碰撞不损失能量,其原来损失的能量看做小球运动过程中克服阻力做功而消耗掉,最终结果是相同的,而阻力在整个运动过程中都有,就可以利用摩擦力做功求出路程.设第一次碰撞前后小球的速度分别为v 、1v ,碰撞后反弹的距离为L 1,则sin21sin 211212mgL mvmgL mv其中222111)54(,54vv L L v v 所以碰撞中损失的动能为)25161(2121212212mv mvmvE k根据等效性有kE L L f )(1解得等效摩擦力sin419mg f通过这个结果可以看出等效摩擦力与下滑的长度无关,所以在以后的运动过程中,等效摩擦力都相同. 以整个运动为研究过程,有sinmgL s f 解出小球总共通过的总路程为.941L s此题也可以通过递推法求解,读者可试试.例6 如图4—4所示,用两根等长的轻质细线悬挂一个小球,设L 和已知,当小球垂直于纸面做简谐运动时,其周期为.解析此题是一个双线摆,而我们知道单摆的周期,若将又线摆摆长等效为单摆摆长,则双线摆的周期就可以求出来了.图4—3图4—4将双线摆摆长等效为单摆摆长sinL L ,则此双线摆的周期为gl g L T /sin 2/2例8 如图4—5所示,由一根长为L 的刚性轻杆和杆端的小球组成的单摆做振幅很小的自由振动. 如果杆上的中点固定另一个相同的小球,使单摆变成一个异形复摆,求该复摆的振动周期.解析复摆这一物理模型属于大学普通物理学的内容,中学阶段限于知识的局限,不能直接求解. 如能进行等效操作,将其转化成中学生熟悉的单摆模型,则求解周期将变得简捷易行.设想有一摆长为L 0的辅助单摆,与原复摆等周期,两摆分别从摆角处从静止开始摆动,摆动到与竖直方向夹角为时,具有相同的角速度,对两摆分别应用机械能守恒定律,于是得22)2(21)(21)cos (cos21)cos (cos lm l m mgmgl 对单摆,得200)(21)cos (cosl m mgl 联立两式求解,得ll 650故原复摆的周期为.65220gl gl T 例9 粗细均匀的U 形管内装有某种液体,开始静止在水平面上,如图4—6所示,已知:L=10cm ,当此U 形管以4m/s 2的加速度水平向右运动时,求两竖直管内液面的高度差.(g=10m/s 2)解析当U 形管向右加速运动时,可把液体当做放在等效重力场中,g 的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与g 方向垂直.设g 的方向与g 的方向之间夹角为,则4.0tanga 由图4—6可知液面与水平方向的夹角为,所以,.04.044.010tan m cm L h 例10 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为m g 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v .解析小球同时受到重力和电场力作用,这时也可以认为小球处在等效重力场中.图4—5图4—6小球受到的等效重力为mg mg mg G332)33()(22等效重力加速度gmG g332与竖直方向的夹角30,如图4—7甲所示.所以B 点为等效重力场中轨道的最高点,如图4—7,由题意,小球刚好能做完整的圆周运动,小球运动到B 点时的速度Rg v B在等效重力场中应用机械能守恒定律22021)cos (21BmvR R g m mv将g 、B v 分别代入上式,解得给小球的初速度为gRv )13(20例11 空间某一体积为V 的区域内的平均电场强度(E )的定义为ni ini ii nn n V V E V V V V E V E V E E11212211如图4—8所示,今有一半径为a 原来不带电的金属球,现使它处于电量为q 的点电荷的电场中,点电荷位于金属球外,与球心的距离为R ,试计算金属球表面的感应电荷所产生的电场在此球内的平均电场强度.解析金属球表面的感应电荷产生的球内电场,由静电平衡知识可知等于电量为q 的点电荷在金属球内产生的电场,其大小相等,方向相反,因此求金属球表面的感应电荷产生的电场,相当于求点电荷q 在金属球内产生的电场.由平均电场强度公式得n i ni i ii ni iii ni ini ii VV r kq VV E V E VV V E E1121111设金属球均匀带电,带电量为q ,其密度为Vq ,则有ni ni ii iir q k r V k E11221图4—7图4—7甲图4—8ni ii r q k 12为带电球体在q 所在点产生的场强,因而有2Rkq E,方向从O 指向q.例11 质量为m 的小球带电量为Q ,在场强为E 的水平匀强电场中获得竖直向上的初速度为0v . 若忽略空气阻力和重力加速度g 随高度的变化,求小球在运动过程中的最小速度.解析若把电场力E q 和重力mg 合成一个力,则小球相当于只受一个力的作用,由于小球运动的初速度与其所受的合外力之间成一钝角,因此可以把小球的运动看成在等效重力G (即为合外力)作用下的斜抛运动,而做斜抛运动的物体在其速度方向与G 垂直时的速度为最小,也就是斜抛运动的最高点,由此可见用这种等效法可以较快求得结果.电场力和重力的合力方向如图4—9所示,由图所示的几何关系可知Eqmg tan小球从O 点抛出时,在y 方向上做匀减速直线运动,在x 轴方向上做匀速直线运动. 当在y 轴方向上的速度为零时,小球只具有x 轴方向上的速度,此时小球的速度为最小值,所以220min )()(cosEq mg Eqv v v 此题也可以用矢量三角形求极值的方法求解,读者可自行解决.例12 如图4—10所示,R 1、R 2、R 3为定值电阻,但阻值未知,R x 为电阻箱.当R x 为101x R 时,通过它的电流18;121x x x R R A I 为当时,通过它的电流.6.02A I x 则当A I x 1.03时,求电阻.3x R 解析电源电动势、内电阻r 、电阻R 1、R 2、R 3均未知,按题目给的电路模型列式求解,显然方程数少于未知量数,于是可采取变换电路结构的方法.将图4—10所示的虚线框内电路看成新的电源,则等效电路如图4—10甲所示,电源的电动势为,内电阻为r . 根据电学知识,新电路不改变R x 和I x 的对应关系,有),(11r R I x x ①),(22r R I x x ②图4—9 图4—10图4—10甲)(33r R I x x ③由①、②两式,得2,12rV ,代入③式,可得1183x R 例13 如图4—11所示的甲、乙两个电阻电路具有这样的特性:对于任意阻值的R AB 、R BC 和R CA ,相应的电阻R a 、R b 和R c 可确定. 因此在对应点A 和a ,B 和b 、C 和c 的电位是相同的,并且,流入对应点(例如A 和a )的电流也相同,利用这些条件证明:CABCABCAAB aR R R R R R ,并证明对R b 和R c 也有类似的结果,利用上面的结果求图4—11甲中P 和Q 两点之间的电阻.解析图4—11中甲、乙两种电路的接法分别叫三角形接法和星形接法,只有这两种电路任意两对应点之间的总电阻部分都相等,两个电路可以互相等效,对应点A 、a 、B 、b 和C 、c 将具有相同的电势.由R a b =R AB ,R ac =R AC ,R bc =R BC ,对a b 间,有CABCABBCAB CA AB BCACABba R R R R R R R R R R R R 1)11(①同样,a c 间和bc 间,也有CABCABCABC CA AB BCABCA ca R R R R R R R R R R R R 1)11(②CABCABCABC BC AB CA AB BCc b R R R R R R R R R R R R 1)11(③将①+②-③得:CABCABCAAB aR R R R R R 再通过①-②+③和③+②-①,并整理,就得到R b 和R C 的表达式.CABCABACBC cCABCABBCAB bR R R R R R R R R R R R 图4—11下面利用以上结果求图4—12乙中P 和Q 两点之间的电阻. 用星形接法代替三角形接法,可得图4—12乙所示电路,PRQS 回路是一个平衡的惠斯登电桥,所以在RS 之间无电流,因此它与图4—12丙所示电路是等效的. 因此PQ 之间的总电阻R PQ 可通过这三个并联电阻求和得到.4)61181361(1PQR 例14 如图4—13所示,放在磁感应强度B=0.6T 的匀强磁场中的长方形金属线框a bcd ,框平面与磁感应强度方向垂直,其中a b 和bc 各是一段粗细均匀的电阻丝R ab =5Ω,R bc =3Ω,线框其余部分电阻忽略不计.现让导体EF 搁置在a b 、cd 边上,其有效长度L=0.5m ,且与a b 垂直,阻值R EF =1Ω,并使其从金属框ad 端以恒定的速度V=10m/s 向右滑动,当EF滑过ab 长的4/5距离时,问流过a E 端的电流多大?解析 EF 向右运动时,产生感应电动势,当EF 滑过a b 长的54时,电路图可等效为如图4—13甲所示的电路.根据题设可以求出EF 产生的感应电动势,VBLV 3)105.06.0(3,1,4bcEb aE R R R 此时电源内阻为导体EF 的电阻,1EFR r,则电路中的总电阻为3)()(bc EbaEbc Eb aE R R R R R R rR 电路中的总电流为.1A RI∴通过a E 的电流为AI aE5.0例15 有一薄平凹透镜,凹面半径为0.5m ,玻璃的折射率为 1.5,且在平面上镀一层反射层,如图4—14所示,在此系统的左侧主轴上放一物S ,S 距系统 1.5m ,问S 成像于何处?解析本题可等效为物点S 先经薄平凹透镜成像,其像为平面镜的物,平面镜对物成像又为薄平凹透镜成像的物,根据图4—13图4—13甲图4—144—12甲4—12乙4—12丙成像规律,逐次求出最终像的位置.根据以上分析,首先考虑物S 经平凹透镜的成像S ,根据公式11111f P P 其中)(1)15.01)(15.1()11)(1(1121m R Rn f 故有mP P 6.015.11111成像在左侧,为虚像,该虚像再经平凹透镜成像S 后,其像距为mP P P 6.0122成像在右侧,为虚像,该虚像再经平凹透镜成像S ,有)(11,6.0,11112333m fm P P fP P 其中故m P P 375.016.01133成虚像于系统右侧0.375m 处此题还可用假设法求解.针对训练1.半径为R 的金属球与大地相连,距球心L 处有一带电量为+q 的点电荷如图4—15所示. 求(1)球上感应电荷的总电量;(2)q 受到的库仑力. 2.如图4—16所示,设99,40,10,5,80,40654321R R R R R R 20,10187R R ,求AB 之间的电阻.图4—153.电路如图4—17所示,35431R R R R 时,12R ,求AB 间的等效电阻.4.有9个电阻联成如图4—18电路,图中数字的单位是,求PQ 两点间的等效电阻.5.如图4—19所示电路,求AB 两点间的等效电阻.6.如图4—20所示,由5个电阻联成的网络,试求AB 两点间的等效电阻.7.由7个阻值均为r 的电阻组成的网络元如图4—21甲所示.由这种网络元彼此连接形成的无限梯形网络如图4—21乙所示.试求P 、Q 两点之间的等效电阻.8.图4—22表示一交流电的电流随时间而变化的图像,此交流电流有效值是()A .A 25B.A 5 C.A 25.3 D.A5.39.磁流体发电机的示意图如图4—23所示,横截面为距形的管道长为L ,宽为a ,高为b ,上下两个侧面是绝缘体,相距为a 的两个侧面是电阻可忽略的导体,此两导体侧面与负载电阻R L 相连.整个管道放在一个匀强磁场中,磁感应强度的大小为B ,方向垂直于上下侧图4—19图4—20图4—21甲图4—21乙图4—22图4—23图4—24面向上. 现有电离气体(正、负带电粒子)持续稳定的流经管道,为了使问题简化,设横截面上各点流速相同. 已知流速与电离气体所受的压力成正比;且无论有无磁场存在时,都维持管道两端电离气体的压强差皆为p. 设无磁场存在时电离气体的流速为0v . 求有磁场存在时流体发电机的电动势的大小. 已知电离气体的平均电阻率为.10.一匀质细导线圆环,总电阻为R ,半径为a ,圆环内充满方向垂直于环面的匀强磁场,磁场以速率K 均匀地随时间增强,环上的A 、D 、C 三点位置对称. 电流计G 连接A 、C两点,如图4—24所示,若电流计内阻为R G ,求通过电流计的电流大小.11.固定在匀强磁场中的正方形导线框a bcd ,各边长为L 1,其中a b 是一端电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线,磁场的磁感应强度为B ,方向垂直纸面向里,现有一与a b 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,如图4—25所示,以恒定的速度v 从a d 滑向bc ,当PQ 滑过1/3L的距离时,通过a P 段电阻丝的电流是多大?方向如何?12.如图4—26所示,一根长的薄导体平板沿x 轴放置,板面位于水平位置,板的宽度为L ,电阻可忽略不计,aebcfd 是圆弧形均匀导线,其电阻为3R ,圆弧所在的平面与x 轴垂直,圆弧的两端a 和d 与导体板的两个侧面相接解,并可在其上滑动. 圆弧a e=eb=cf=fd=(1/8)圆周长,圆弧bc=(1/4)圆周长,一内阻R g =nR 的体积很小的电压表位于圆弧的圆心O 处,电压表的两端分别用电阻可以忽略的直导线与b 和c 点相连,整个装置处在磁感应强度为B 、方向竖直向上的匀强磁场中. 当导体板不动而圆弧导线与电压表一起以恒定的速度v 沿x 轴方向平移运动时(1)求电压表的读数;(2)求e 点与f 点的电势差(U e -R f ).13.如图4—27所示,长为2πa 、电阻为r 的均匀细导线首尾相接形成一个半径为a 的圆.现将电阻为R 的电压表,以及电阻可以忽略的导线,按图a 和图 b所示的方式分别与圆的两点相连接. 这两点之间的弧线所对圆心角为θ.若在垂直圆平面的方向上有均匀变化图4—25图4—26图4—27的匀强磁场,已知磁感应强度的变化率为k ,试问在图a 、b 两种情形中,电压表的读数各为多少?14.一平凸透镜焦距为f ,其平面上镀了银,现在其凸面一侧距它2f 处,垂直于主轴主置一高为H 的物,其下端位于透镜的主轴上如图4—28所示.(1)用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实;(2)用计算法求出此像的位置和大小.15.如图4—29所示,折射率n=1.5的全反射棱镜上方6cm 处放置一物体AB ,棱镜直角边长为6cm ,棱镜右侧10cm 处放置一焦距f 1=10cm 的凸透镜,透镜右侧15cm 处再放置一焦距f 2=10cm 的凹透镜,求该光学系统成像的位置和放大率.图28 图29答案:1.2222)(,R Lq KRL q LR 2.11120 3.37 4.4 5.5.0 6.4.17.1.32r 8.C 9.Lb R aBL aBv p p10 10.RqR K a G23211.Rv BL 1161 a 向P12.(1)RnR Bav nR 232(2)Bav nn )223122( 13.0,2224)2(sin 2Rr k a 14.(1)图略(2)距光心H f 31,32 15.凹透镜的右侧10cm 处,放大率为 2。
高三物理电路等效法、分电流法、等电压法高考物理解题方法大全(原卷版)
高中物理解题方法电路等效法 分电流法 等电压法(原卷版)一道典型的题目:如图所示的电路,设电压V U AD 12=,电阻Ω=61R ,Ω=32R ,Ω=23R ,电流表A 1/A 2为理想电流表,求电流表A 1/A 2的读数。
【讲解】首先要搞清3个电阻的串并联关系,也就是画出等效电路图,即等效法。
画等效电路图有两个方法,一是分电流法,一是等电压法(等电位法)。
1. 分电流法:从电路一端出发(一般沿电流方向即从电源正极出发),如果遇到分叉就是并联。
本题如图从A 出发,分为两条电路串联,一支过1R 向右,一支过1A 向右;过1A 向右的一支到C 后又分叉,其中一支过3R 向右到D ,另一支?(暂且放下);过1R 向右的一支到B 后又分叉分叉,其中一支过2A 向右到D, 另一支?(暂且放下) 现在研究R 2上的电流方向,大家知道,电流是从高电位向低电位流的(类比水从高处向地处流),那么B 、C 两点哪点电位高?哪点电位低呢?因为电流表A 1/A 2为理想电流表,即相当于一条导线(电阻为零),所以C 接A 点,B 接D 点,因为V U AD 12=为正,所以A 点电位高于D 点,则C 点电位高于B 点,所以R 2上的电流方向为从C 向B ,即从右向左,那么过1A 向右的一支到C 后又分为两支,其中一支过3R 向右到D, 另一支过2R 向左到B.过1R 向右的一支到B 后不是再分叉,而是与从C 过R 2的一支汇合经A 2到D ,电流方向见下图:2. 等电压法(等电位法):把电位(即电势)相等的点拉在一起,组成等效电路。
因为A 与C 等电位,B 与D 等电位(都是通过理想电流表相连),所以可以把A 与C ,B 与D 拉到一起,这样可以看出,三个电阻不是串联关系而是并联关系,如图所示:然后再把两个电流表画上去,如下图:从上图可以看出,电流表A1测的是R2和R3的电流之和,即321I I I A +=;电流表A2测的是R1和R2的电流之和,即212I I I A +=。
备考高考物理 复习攻略之方法汇总 专题1 等效替代法(含解析)
宽放市用备阳光实验学校专题10 效替代法目录一、物理模型效替代法 (1)二、解题方法替代法 (7)效替代法是高中物理问题教常见的解题方法。
能够替代的前提是它们对所要解决的问题是效的,一般用比拟简洁的模型或方法代替比拟复杂的模型或方法,便于学生对物理知识的理解与掌握。
效替代法可以分为物理模型效替代法、解题方法效替代法。
一、物理模型效替代法物理模型是对物理问题的简化与抽象,物理模型包括对象模型、过程模型、状态模型。
由于学生的知识结构的限制,在构建物理模型时,由于理解的问题角度不同,构建的物理模型有简单有复杂,几种物理模型对所要解决的问题来说是效的,我们一般选择简单的模型。
典例1.〔1卷〕如图,边三角形线框LMN由三根相同的导体棒连接而成,固于匀强磁场中,线框平面与磁感强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,那么线框LMN受到的安培力的大小为〔〕A.2F B.F C.0.5F D.0【答案】B【解析】物理模型一:三角形边长为L,磁感强度为B,流入ML、LN的电流I,将ML、LN边受到的安培力进行合成,IBLIBLF==060cos2合,MN边受到的安培力IBLF2=,三角形线框受到的合力F物理模型二:经过推导,通电折线MLN的受力效于长为MN直线段受力,这样电流流入两个两个MN的导体棒,由于电阻不同,电流不同,同样得出三角形线框受到的合力F。
【点评与总结】上两边ML、LN受到安培力作用的效长度就是MN 边长,这个结论可以推广为弯曲通电导线受到安培力作用的效长度为弯曲通电导线端点之间的距离。
针对训练1.〔卷〕如图,一段半圆形粗铜线固在绝缘水平桌面〔纸面〕上,铜线所在空间有一匀强磁场,磁场方向竖直向下。
当铜线通有顺时针方向电流时,铜线所受安培力的方向〔〕A. 向前B. 向后C. 向左D. 向右【答案】A【解析】物理模型一:以竖直轴为对称轴,把半圆形通电铜线对称分,每一段通电铜线长趋近于零但不为零,每一段通电铜线可以看作直线段,对称轴两边的对称直铜线受到的安培力由左手那么确,其方向关于对称轴对称且斜向上,合力竖直向上。
高中物理解题方法:等效法技巧及典型例题归纳大全(学习)
高中物理解题方法:等效法技巧及典型例题归纳大全(学习)
Hello,大家好,洪老师今天给大家推荐这个高中物理解题方法之:等效法技巧及典型例题归纳大全!
其实曹冲称象用的方法就是等效法。
这种思维方法的实质,就是在效果相同的前提下,利用等效法将一个陌生复杂的物理问题变换成熟悉简单的理想物理问题,建立研究问题的简化模型来揭示问题的本质特征和规律。
使问题化繁为简,由难变易,从而达到解决问题的目的。
常用的等效法有状态的等效、过程的等效、条件的等效和对象的等效,下面分别举例说明。
高中物理常用解题方法总共有21种,均有一套word版,如需word版的资料来打印,请发送085给洪老师。
不会私信的很简单的方式:点洪老师的头像,然后会看到底下有个“洪粉必看”的菜单按钮,里面会有个内容提示的。
等效法!。
高中物理解题方法专题指导等效法
高中物理解题方法专题指导方法专题二:等效法解题一.方法介绍等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等. 二.典例分析1.物理量等效在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷. 例l .如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。
(g=10m/s 2)求:(1)它到达C 点时的速度是多大? (2)它到达C 点时对轨道压力是多大? (3)小球所能获得的最大动能是多少? 2.物理过程等效对于有些复杂的物理过程,我们可以用一种或几种简单的物理过程来替代,这样能够简化、转换、分解复杂问题,能够更加明确研究对象的物理本质,以利于问题的顺利解决.高中物理中我们经常遇到此类问题,如运动学中的逆向思维、电荷在电场和磁场中的匀速圆周运动、平均值和有效值等.例2.如图所示,在竖直平面内,放置一个半径R 很大的圆形光滑轨道,0为其最低点.在0点附近P 处放一质量为m 的滑块,求由静止开始滑至0点时所需的最短时间.例3.矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有阻值为R 的电阻,其余部分电阻均不计.导线框的位置如图所示,线框内的磁场方向及分布情况如图,大小为0cos 2x B B l π⎛⎫= ⎪⎝⎭.一电阻为R 的光滑导体棒AB 与短边平行且与长边始终接触良好.起初导体棒处于x =0处,从t =0时刻起,导体棒AB 在沿x 方向的外力F 的作用下做速度为v 的匀速运动.试求:(1)导体棒AB 从x =0运动到x =2l 的过程中外力F 随时间t变化的规律;(2)导体棒AB 从x =0运动到x =2l 的过程中整个回路产生的热量. 3.物理模型等效物理模型等效在物理学习中应用十分广泛,特别是力学中的很多模型可以直接应用到电磁学中去,如卫星模型、人船模型、子弹射木块模型、碰撞模型、弹簧振子模型等.实际上,我们在学习新知识时,经常将新的问题与熟知的物理模型进行等效处理.例4.如图所示,R 1、R 2、R 3为定值电阻,但阻值未知,R x 为电阻箱.当R x 为R x1=10 Ω时,通过它的电流I x1=l A ;当R x 为R x2=18 Ω时,通过它的电流I x2=0.6A .则当I x3=0.l A 时,求电阻R x3.例5.如图所示,倾角为θ=300,宽度L =1 m 的足够长的U 形平行光滑金属导轨固定在磁感应强度B =1 T 、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上,用平行于导轨且功率恒为6 w 的牵引力牵引一根质量m =0.2 kg ,电阻R =1 Ω放在导轨上的金属棒ab 由静止沿导轨向上移动,当金属棒ab 移动2.8 m 时获得稳定速度,在此过程中金属棒产生的热量为5.8 J(不计导轨电阻及一切摩擦,g 取10 m /s 2),求:(1)金属棒达到的稳定速度是多大?(2)金属棒从静止达到稳定速度所需时间是多少?三.强化训练( ) 1. 如图所示,一面积为S 的单匝矩形线圈处于一个交变的磁场中,磁感应强度的变化规律为t B B ωsin 0=。
高考物理实验方法:等效法
五、高考物理实验方法:等效法本实验用简单的方法验证了力的平行四边形定则,这一思想方法比较典型重要即等效法:实验中用两个弹簧秤拉橡皮条与一个弹簧秤拉橡皮条的效果相同:拉到同一位置O(见图1).在实验中特别要注意区别实验得到的合力与理论得到的合力,分析两者不完全重合的原因.知识梳理一、实验原理此实验先是用互成角度的两个力与一个力产生相同的效果(即使橡皮条在某一方向伸长一定的长度),再看用平行四边形定则求出的两个力的合力与这一个力是否在实验误差允许的范围内相等.如果在实验误差允许的范围内相等,就验证了力的平行四边形定则.二、实验器材木板一块、白纸一张、图钉若干、橡皮条一段、铅笔一支、细绳套两个、弹簧测力计两个、三角板、刻度尺、量角器等.三、实验步骤1.用图钉把一张白纸钉在放于水平桌面上的方木板上.2.用图钉把橡皮条的一端固定在板上的A点,将两个细绳套结在橡皮条的另一端.图13.用两个弹簧秤分别钩住两个细绳套,在平板平面内互成一定角度地拉橡皮条,使结点到达某一位置O,如图1所示.4.用铅笔描下结点O的位置和两个细绳套的方向,并记录弹簧秤的示数.在白纸上按确定的标度作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板,根据平行四边形定则,用作图法求出合力F.5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到位置O,记下弹簧秤的示数和细绳的方向.按同样的标度用刻度尺从O点起作出这个弹簧秤的拉力F′的图示.6.比较F′与用平行四边形定则求得的合力F,在实验误差允许的范围内看是否相等.7.改变两个分力F1和F2的大小和夹角.再重复实验两次,比较每次的F 与F′是否在实验误差允许的范围内相等.四、数据记录与处理实验F1F2F’FΔF=F′-F相对误差Δθ次数123图2根据上表中F1和F2的大小和方向,用平行四边形定则按力的图示作出合力F,同时作出一个弹簧秤的拉力F′的图示,如图2所示,比较F与F′的大小和方向.五、注意事项1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内.测力计的挂钩应避免与纸面摩擦.2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变.3.由经验得知:两个分力F1、F2间的夹角θ越大,用平行四边形作图得出的合力F的误差也越大.所以实验中不要把θ角取成120°左右.4.拉橡皮条的细线要长些,标记每条细线方向的方法是:使视线通过细线垂直于纸面,在细线下面的纸上用铅笔点出两个定点的位置,并使这两个点的距离尽量远些.六、实验误差的主要来源1.用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这一因素使得两个测力计的水平分力的实际合力比由作图法得到的合力小.2.结点O的位置和两个测力计的方向画得不准,造成作图的误差.3.标度选取不恰当造成作图误差.例1将橡皮筋的一端固定在A点,另一端拴上两根细绳,每根细绳分别连着一个量程为5 N、最小刻度为0.1 N的弹簧秤.沿着两个不同的方向拉弹簧秤.当橡皮筋的活动端拉到O点时,两根细绳相互垂直,如图6-3甲所示.这时弹簧秤的示数可从图中读出.图3(1)由图3甲中可读得两个相互垂直的拉力大小分别为F1=________N和F2=________N(只要读到0.1 N).(2)在6-3乙图的方格纸上按作图法的要求画出这两个力及它们的合力.图3丙【解析】从图3甲中可知,弹簧秤的最小分度为0.1 N,因此,竖直向下的弹簧秤示数为2.5 N,水平向右的弹簧秤示数为4.0 N.因为读数2.5 N、4.0 N均是0.5 N的整数倍,因此,选方格纸中一个小方格的边长表示0.5 N,应用平行四边形定则即可画出两个力以及它们的合力,如图6-3丙所示.【答案】2.5 4.0如图6-3丙所示【点评】①读数时要注意到弹簧秤“0”刻度线所在位置,否则就容易将竖直弹簧秤示数,读成3.5 N.②在实验中作图时,要根据坐标纸的大小和弹簧秤上的读数选取适当的标度,使得“平行四边形”在坐标纸中所占的大小适当.例2图4所示为两位同学在做“验证力的平行四边形定则”的实验时所得到的实验结果,若F′的作用效果与F1、F2共同作用的效果相同,则一定与实验结果不相符的结果是()图4【解析】在实验中,由于各种偶然误差的影响,实验得到的合力矢量可能会与“平行四边形”得到的矢量不完全重合,但是实验得到的合力矢量一定要沿橡皮筋方向.故B、D肯定与实验结果不符.【答案】BD平行四边形法则新题速递2018年天津9.(2)题9.(2)某研究小组做“验证力的平行四边形定则”的实验,所有器材有:方木板一块,白纸,量程为5 N的弹簧测力计两个,橡皮条(带两个较长的细绳套),刻度尺,图钉(若干个)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、等效法方法简介在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法.等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解.赛题精讲例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解.由题意得:gv v t v d θθθsin 2cos cos 2000⋅=⋅= 可解得抛射角 202arcsin 21v gd =θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度.解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解.因加速度随通过的距离均匀增加,则此运动中的平均加速度为na n n a an n an a a a a a 2)13(232)1(2-=-=-++=+=末初平 由匀变速运动的导出公式得2022v v L a B -=平解得 naLn v v B )13(20-+=例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s 1=1m 的A 点时,速度大小为s cm v /201=,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小?2=v 老鼠从A 点到达B 点所用的时间t=?解析 我们知道当汽车以恒定功率行驶时,其速度v 与牵引力F 成反比,即,v =P/F ,由此可把老鼠的运动等效为在外力以恒定的功率牵引下的弹簧的运动.由此分析,可写出kxPF P v == 当11,v v s x ==时 将其代入上式求解,得2211s v P s v P k ==所以老鼠到达B 点时的速度s cm v s s v /1020211212=⨯==再根据外力做的功等于此等效弹簧弹性势能的增加,21222121ks ks Pt -= 代入有关量可得)(21212211s s s v P Pt -⋅=由此可解得s v s s s t 5.72.012122)(22112122=⨯⨯-=-=此题也可以用图像法、类比法求解.例4 如图4—2所示,半径为r 的铅球内有一半径为2r的 球形空腔,其表面与球面相切,铅球的质量为M.在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球(可以看成质点),求铅球对小球的引力.解析 因为铅球内部有一空腔,不能把它等效成位于球心的质点. 我们设想在铅球的空腔内填充一个密度与铅球相同的小铅球△M ,然后在对于小球m 对称的另一侧位置放另一个相同的小铅球△M ,这样加入的两个小铅球对小球m 的引力可以抵消,就这样将空腔铅球变成实心铅球,而结果是等效的.带空腔的铅球对m 的引力等效于实心铅球与另一侧△M 对m 的引力之和. 设空腔铅球对m 的引力为F ,实心铅球与△M 对m 的引力分别为F 1、F 2. 则F=F 1-F 2 ①经计算可知:M M 71=∆,所以 22178)(L GmM L M M m G F =∆+= ②图4—2222)2(7)2(r L GmMr L M m GF -=-∆= ③ 将②、③代入①式,解得空腔铅球对小球的引力为])2(7178[2221r L LGmM F F F --=-=例5 如图4-3所示,小球长为L 的光滑斜面顶端自由下滑,滑到底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大小为碰撞前速度大小的54,求小球从开始下滑到最终停止于斜面下端时,小球总共通过的路程. 解析 小球与挡板碰撞后的速度小于碰撞前的速度,说明碰撞过程中损失能量,每次反弹距离都不及上次大,小球一步一步接近挡板,最终停在挡板处. 我们可以分别计算每次碰撞垢上升的距离L 1、L 2、……、L n ,则小球总共通过的路程为L L L L s n ++++=)(221 ,然后用等比数列求和公式求出结果,但是这种解法很麻烦.我们假设小球与挡板碰撞不损失能量,其原来损失的能量看做小球运动过程中克服阻力做功而消耗掉,最终结果是相同的,而阻力在整个运动过程中都有,就可以利用摩擦力做功求出路程.设第一次碰撞前后小球的速度分别为v 、1v ,碰撞后反弹的距离为L 1,则θθsin 21sin 211212mgL mv mgL mv == 其中222111)54(,54===v v L L v v 所以碰撞中损失的动能为)25161(2121212212-=-=∆mv mv mv E k 根据等效性有k E L L f ∆=+)(1 解得等效摩擦力θsin 419mg f =通过这个结果可以看出等效摩擦力与下滑的长度无关,所以在以后的运动过程中,等效摩擦力都相同. 以整个运动为研究过程,有θsin ⋅=⋅mgL s f解出小球总共通过的总路程为.941L s =此题也可以通过递推法求解,读者可试试.例6 如图4—4所示,用两根等长的轻质细线悬挂一个小球,设L 和α已知,当小球垂直于纸面做简谐运动时,其周期为 . 解析 此题是一个双线摆,而我们知道单摆的周期,若将又线摆摆长等效为单摆摆长,则双线摆的周期就可以求出来了.将双线摆摆长等效为单摆摆长αsin L L =',则此双线摆的周期为g l g L T /sin 2/2αππ='='例8 如图4—5所示,由一根长为L 的刚性轻杆和杆端的小球组成的单摆做振幅很小图4—3图4—4的自由振动. 如果杆上的中点固定另一个相同的小球,使单摆变成一个异形复摆,求该复摆的振动周期.解析 复摆这一物理模型属于大学普通物理学的内容,中学阶段限于知识的局限,不能直接求解. 如能进行等效操作,将其转化成中学生熟悉的单摆模型,则求解周期将变得简捷易行.设想有一摆长为L 0的辅助单摆,与原复摆等周期,两摆分别从摆角α处从静止开始摆动,摆动到与竖直方向夹角为β时,具有相同的角速度ω,对两摆分别应用机械能守恒定律,于是得22)2(21)(21)cos (cos 21)cos (cos l m l m mg mgl ωωαβαβ+=-+- 对单摆,得 200)(21)cos (cos l m mgl ωαβ=-联立两式求解,得l l 650=故原复摆的周期为.65220gl g l T ππ== 例9 粗细均匀的U 形管内装有某种液体,开始静止在水平面上,如图4—6所示,已知:L=10cm ,当此U 形管以4m/s 2的 加速度水平向右运动时,求两竖直管内液面的高度差.(g=10m/s 2)解析 当U 形管向右加速运动时,可把液体当做放在等效重力场中,g '的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与g '方向垂直.设g '的方向与g 的方向之间夹角为α,则4.0tan ==gaα 由图4—6可知液面与水平方向的夹角为α, 所以,.04.044.010tan m cm L h ==⨯=⋅=∆α例10 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v .解析 小球同时受到重力和电场力作用,这时也可以认为小球处在等效重力场中. 小球受到的等效重力为mg mg mg G 332)33()(22=+=' 等效重力加速度g m G g 332='='图4—6图4—7与竖直方向的夹角︒=30θ,如图4—7甲所示.所以B 点为等效重力场中轨道的最高点,如图4—7,由题意,小球刚好能做完整的圆周运动,小球运动到B 点时的速度R g v B '=在等效重力场中应用机械能守恒定律22021)cos (21Bmv R R g m mv ++'=θ 将g '、B v 分别代入上式,解得给小球的初速度为gR v )13(20+=例11 空间某一体积为V 的区域内的平均电场强度(E )的定义为∑∑==∆=∆++∆+∆∆++∆+∆=ni ini ii nn n VVE V V V V E V E V E E 11212211如图4—8所示,今有一半径为a 原来不带电的金属球,现 使它处于电量为q 的点电荷的电场中,点电荷位于金属球外, 与球心的距离为R ,试计算金属球表面的感应电荷所产生的电 场在此球内的平均电场强度.解析 金属球表面的感应电荷产生的球内电场,由静电平衡知识可知等于电量为q 的点电荷在金属球内产生的电场,其大小相等,方向相反,因此求金属球表面的感应电荷产生的电场,相当于求点电荷q 在金属球内产生的电场.由平均电场强度公式得∑∑∑∑∑=====∆=∆=∆=∆∆=ni ni ii i ni i i i ni ini ii V V r kq V V E V E VVVE E 1121111 设金属球均匀带电,带电量为q ,其密度为Vq=ρ,则有 ∑∑==∆=∆=ni ni iii i r q k r V k E 11221ρ ∑=∆ni ii r q k 12为带电球体在q 所在点产生的场强,因而有2R kqE =,方向从O 指向q. 例11 质量为m 的小球带电量为Q ,在场强为E 的水平匀强电场中获得竖直向上的初速度为0v . 若忽略空气阻力和重力加速度g 随高度的变化,求小球在运动过程中的最小速度.图4—7甲图4—8解析 若把电场力E q 和重力mg 合成一个力,则小球相当于只受一个力的作用,由于小球运动的初速度与其所受的合外力之间成一钝角,因此可以把小球的运动看成在等效重力G '(即为合外力)作用下的斜抛运动,而做斜抛运动的物体在其速度方向与G '垂直时的速度为最小,也就是斜抛运动的最高点,由此可见用这种等效法可以较快求得结果.电场力和重力的合力方向如图4—9所示, 由图所示的几何关系可知Eqmg=θtan 小球从O 点抛出时,在y 方向上做匀减速直线运动,在x 轴方向上做匀速直线运动. 当在y 轴方向上的速度为零时,小球只具有x 轴方向上的速度,此时小球的速度为最小值,所以2200min )()(cos Eq mg Eqv v v +==θ此题也可以用矢量三角形求极值的方法求解,读者可自行解决. 例12 如图4—10所示,R 1、R 2、R 3为定值电阻,但阻值未 知,R x 为电阻箱.当R x 为Ω=101x R 时,通过它的电流Ω==18;121x x x R R A I 为当时,通过它的电流.6.02A I x =则当A I x 1.03=时,求电阻.3x R解析 电源电动势ε、内电阻r 、电阻R 1、R 2、R 3均未知, 按题目给的电路模型列式求解,显然方程数少于未知量数,于 是可采取变换电路结构的方法.将图4—10所示的虚线框内电路看成新的电源,则等效电 路如图4—10甲所示,电源的电动势为ε',内电阻为r '. 根据 电学知识,新电路不改变R x 和I x 的对应关系,有),(11r R I x x '+='ε ① ),(22r R I x x '+=='ε ② )(33r R I x x '+='ε ③由①、②两式,得Ω='='2,12r V ε, 代入③式,可得Ω=1183x R例13 如图4—11所示的甲、乙两个电阻电路具有这样的特性:对于任意阻值的R AB 、图4—9图4—10图4—10甲R BC 和R CA ,相应的电阻R a 、R b 和R c 可确定. 因此在对应点A 和a ,B 和b 、C 和c 的电位是相同的,并且,流入对应点(例如A 和a )的电流也相同,利用这些条件 证明:CABC ABCAAB a R R R R R R ++=,并证明对R b 和R c 也有类似的结果,利用上面的结果求图4—11甲中P 和Q 两点之间的电阻.解析 图4—11中甲、乙两种电路的接法分别叫三角形接法和星形接法,只有这两种电路任意两对应点之间的总电阻部分都相等,两个电路可以互相等效,对应点A 、a 、B 、b 和C 、c 将具有相同的电势.由R a b =R AB ,R ac =R AC ,R bc =R BC ,对a b 间,有CABC AB BC AB CA AB BC AC AB b a R R R R R R R R R R R R +++=++=+-1)11(① 同样,a c 间和bc 间,也有CA BC AB CA BC CA AB BC AB CA c a R R R R R R R R R R R R +++=++=+-1)11(② CABC AB CA BC BC AB CA AB BC c b R R R R R R R R R R R R +++=++=+-1)11(③ 将①+②-③得:CABC ABCAAB a R R R R R R ++=再通过①-②+③和③+②-①,并整理,就得到R b 和R C 的表达式.CABC ABACBC c CABC ABBCAB b R R R R R R R R R R R R ++=++=下面利用以上结果求图4—12乙中P 和Q 两点之间的电阻. 用星形接法代替三角形接法,可得图4—12乙所示电路,PRQS 回路是一个平衡的惠斯登电桥,所以在RS 之间无电流,因此它与图4—12丙所示电路是等效的. 因此PQ 之间的总电阻R PQ 可通过这三个并联电阻求和得到.图4—114—12甲4—12乙4—12丙Ω=++=-4)61181361(1PQ R 例14 如图4—13所示,放在磁感应强度B=0.6T 的匀强磁场中的长方形金属线框a bcd ,框平面与磁感应强度方向垂直,其中a b 和bc 各是一段粗细均匀的电阻丝R ab =5Ω,R bc =3Ω,线框其余部分电阻忽略不计.现让导体EF 搁置在a b 、cd 边上,其有效长度L=0.5m ,且与a b 垂直,阻值R EF =1Ω,并使其从金属框ad 端以恒定的速度V=10m/s 向右滑动,当EF 滑过ab 长的4/5距离时,问流过a E 端的电流多大?解析 EF 向右运动时,产生感应电动势ε,当EF 滑过a b 长的54时,电路图可等效为如图4—13甲所示的电路.根据题设可以求出EF 产生的感应电动势ε,V BLV 3)105.06.0(=⨯⨯==εΩ=Ω=Ω=3,1,4bc Eb aE R R R此时电源内阻为导体EF 的电阻,Ω==1EF R r ,则电路中的总电阻为Ω=+++⋅+=3)()(bc Eb aE bc Eb aE R R R R R R r R电路中的总电流为.1A RI ==ε∴通过a E 的电流为A I aE 5.0=例15 有一薄平凹透镜,凹面半径为0.5m ,玻璃的折射 率为1.5,且在平面上镀一层反射层,如图4—14所示,在此 系统的左侧主轴上放一物S ,S 距系统1.5m ,问S 成像于何处?解析 本题可等效为物点S 先经薄平凹透镜成像,其像为 平面镜的物,平面镜对物成像又为薄平凹透镜成像的物,根据 成像规律,逐次求出最终像的位置.根据以上分析,首先考虑物S 经平凹透镜的成像S ', 根据公式11111f P P =+' 其中)(1)15.01)(15.1()11)(1(1121--=∞---=--=m R R n f 图4—13图4—13甲图4—14故有m P P 6.015.11111-='-=+'成像在左侧,为虚像,该虚像再经平凹透镜成像S ''后,其像距为m P P P 6.0122='-=-='成像在右侧,为虚像,该虚像再经平凹透镜成像S ''',有)(11,6.0,11112333--=='=='+m fm P P f P P 其中 故m P P 375.016.01133-='-=+'成虚像于系统右侧0.375m 处此题还可用假设法求解.。