光纤位移传感器实验报告

合集下载

实验三 实验报告 光纤位移传感器特性实验的数据处理

实验三 实验报告  光纤位移传感器特性实验的数据处理

实验报告:实验三光纤位移传感器特性实验的数据处理1.针对实验一的测量数据,利用Matlab语句(或C语言),计算重复试验数据各校准点的平均值,采用一元线性回归分析方法,找出光纤位移传感器输出电压V(或y)与被测位移x之间的经验公式,即得到拟合的回归直线。

拟合图像:拟合直线方程:y=-5.732667e+01+2.274630e+03x代码如下:clc; clear;x=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];data=[146 386 606 825 1060 1287 1505 1726 1933 2130;147 401 648 885 1135 1370 1609 1842 2030 2250;149 380 605 826 1038 1259 1477 1707 1930 2080;149 400 644 874 1123 1357 1599 1827 2020 2220;150 384 605 831 1060 1289 1490 1729 1944 2130;146 408 651 885 1139 1376 1605 1831 2030 2250;149 373 592 831 1052 1289 1496 1730 1939 2120;141 402 644 878 1130 1362 1603 1833 2020 2250;153 389 609 838 1083 1307 1510 1736 1947 2140;143 401 642 889 1137 1370 1606 1840 2030 2250];%测量数据Each_Point_Average_Value=mean(data,1,'native');%每个点的测量数据的算术平均值N=length(Each_Point_Average_Value);%数据个数%数据处理第一题fprintf('\n计算回归方程并作图拟合\n');%以下以xt指代x,yt指代Each_Point_Average_Valuet1=0;%计算xtyt乘积和,最后乘以Nfor i=1:N;t1=t1+Each_Point_Average_Value(i)*x(i);endt1=t1*N;t2=0;%计算xt的和for i=1:N;t2=t2+x(i);endt3=0;%计算yt的和for i=1:N;t3=t3+Each_Point_Average_Value(i);endt4=0;%计算xt的平方和再乘以Nfor i=1:N;t4=t4+x(i)^2;endt4=t4*N;t5=0;%计算xt的总和的平方t5=t2^2;t6=t4/N;t7=t3;t8=t2;t9=t1/N;t10=t4;t11=t5;%计算b的回归值b=(t1-t2*t3)/(t4-t5);%计算b0的回归值b0=(t6*t7-t8*t9)/(t10-t11);%作数据分布图和回归曲线X=x;Y1=Each_Point_Average_Value;fprintf('回归方程:y=%d+%dx\n',b0,b);fprintf('以下作图\n');x_t=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];Y2=b0+b*x_t;plot(X,Y1,'*',x_t,Y2)2.利用Matlab语句(或C语言),对所得到的一元线性回归方程进行方差分析,列出方差分析表;分析表如下所示:代码如下:%数据处理第二题和第三题:对回归方程进行方差分析和显著性检验fprintf('\n对回归方程进行显著性检验\n');Size_data=size(data);%计算data矩阵的规格%Size_data(1)为矩阵行数{m次测量},Size_data(2)矩阵列数{N个点的测量}%以下分别计算lxx,lxy,lyy%计算lxxlxx=0;t1=0;for i=1:length(x);t1=t1+x(i)^2;endt2=0;for i=1:length(x);t2=t2+x(i);endt2=t2^2;lxx=t1-t2/length(x);%计算lxylxy=0;t1=0;t2=0;t3=0;for i=1:length(x);t1=t1+x(i)*Each_Point_Average_Value(i);endt2=0;for i=1:length(x);t2=t2+x(i);endt3=0;for i=1:length(Each_Point_Average_Value);t3=t3+Each_Point_Average_Value(i);endlxy=t1-(t2*t3)/length(x);%计算lyylyy=0;t1=0;for i=1:length(Each_Point_Average_Value);t1=t1+Each_Point_Average_Value(i)^2;endt2=0;for i=1:length(Each_Point_Average_Value);t2=t2+Each_Point_Average_Value(i);endt2=t2^2;lyy=t1-t2/length(Each_Point_Average_Value);%Size_data(1)为矩阵行数{m次测量},Size_data(2)矩阵列数{N个点的测量} %计算回归平方和U和对应的自由度Vu及其对应的方差r_UU=0;U=Size_data(1)*(lxy/lxx)*lxy;Vu=1;r_U=U/Vu;%计算失拟平方和QL和对应的自由度Vql及其对应的方差r_QLQL=0;QL=Size_data(1)*lyy-U;Vql=Size_data(2)-2;r_QL=QL/Vql;%计算误差平方和QE和对应的自由度Vqe及其对应的方差r_QEQE=0;QE1=0;for i=1:Size_data(2)%NQE=QE+QE1;for j=1:Size_data(1)%mQE1=(data(j,i)-Each_Point_Average_Value(i))^2;endendQE;Vqe=Size_data(2)*(Size_data(1)-1);r_QE=QE/Vqe;%合成的总的离差平方和S及其对应的自由度VsS=U+QE+QL;Vs=Vu+Vqe+Vql;F_example=6.84;F1_example=2.70;F=(U/Vu)/(QE/Vqe);F1=(QL/Vql)/(QE/Vqe);F2=(U/Vu)/((QL+QE)/(Vql+Vqe));%%%%%%%%%%%%以下开始制作方差分析表%%%%%%%%%%%%%%data_excel=cell(5,6);title={'来源','平方和','自由度','方差','F','显著性'};%列表头excel_A={'回归','失拟','误差','总计'};excel_B=[U;QL;QE;S];%平方和数据excel_C=[Vu;Vql;Vqe;Vs];%自由度数据excel_D=[r_U;r_QL;r_QE];%方差数据excel_E=[F;F1];%F检验数据excel_F=[F_example;F1_example];%显著性参考值excel_G=['-'];%格式调整excel_B=num2cell(excel_B,3);excel_C=num2cell(excel_C,3);excel_D=num2cell(excel_D,3);excel_E=num2cell(excel_E,3);excel_F=num2cell(excel_F,3);excel_G=num2cell(excel_G,3);%整合数据data_excel(1,1:end)=title;data_excel(2:end,1)=excel_A;data_excel(2:end,2)=excel_B;data_excel(2:end,3)=excel_C;data_excel(2:4,4)=excel_D;data_excel(2:3,5)=excel_E;data_excel(2:3,6)=excel_F;data_excel(5,4)=excel_G;data_excel(4:end,5)=excel_G;data_excel(4:end,6)=excel_G;xlswrite('data_excel.xls',data_excel);%写入表格data_excel%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.利用Matlab语句(或C语言),对回归方程进行显著性检验,确定回归方程拟合的好坏,分析光纤位移传感器的误差。

光纤测位移实验报告

光纤测位移实验报告

一、实验目的1. 理解光纤位移传感器的原理和结构。

2. 掌握光纤位移传感器的操作方法和数据处理技巧。

3. 通过实验验证光纤位移传感器的测量精度和稳定性。

二、实验原理光纤位移传感器是利用光纤的传输特性,将光信号作为信息载体,通过测量光信号的强度、相位、频率或偏振态等变化,实现对位移的测量。

本实验采用的光纤位移传感器为反射式光纤位移传感器,其工作原理如下:1. 激光光源发出的光经光纤传输到传感器探头。

2. 光探头将光束照射到被测物体表面,部分光被反射回来。

3. 反射光经光纤传输至光电转换器,将光信号转换为电信号。

4. 通过分析电信号的变化,可以计算出被测物体的位移。

三、实验仪器与设备1. 光纤位移传感器一套2. 激光光源一台3. 光电转换器一台4. 测微头一台5. 数显电压表一台6. 光功率计一台7. 光纤连接器若干8. 反射面一块9. 实验台一个四、实验步骤1. 搭建实验装置:将光纤位移传感器、激光光源、光电转换器等设备连接好,确保各部件连接牢固,信号传输畅通。

2. 调整激光光源:调节激光光源的输出功率,确保光信号强度适中。

3. 设置测微头:将测微头与被测物体固定,确保测微头能够精确测量被测物体的位移。

4. 调整光纤探头:将光纤探头放置在测微头前端,确保光纤探头与被测物体表面紧密接触。

5. 数据采集:启动实验设备,观察数显电压表和光功率计的读数,记录被测物体的位移和相应的电信号变化。

6. 数据处理:根据实验数据,分析光纤位移传感器的测量精度和稳定性。

五、实验结果与分析1. 测量精度:通过多次实验,分析光纤位移传感器的测量精度。

实验结果表明,光纤位移传感器的测量精度较高,能够满足实际应用需求。

2. 稳定性:观察光纤位移传感器的输出信号,分析其稳定性。

实验结果表明,光纤位移传感器的输出信号稳定,具有良好的重复性。

3. 影响因素:分析实验过程中可能影响测量结果的因素,如光纤连接质量、环境温度等。

六、实验结论1. 光纤位移传感器是一种可靠的位移测量工具,具有测量精度高、稳定性好、抗干扰能力强等优点。

光纤传感实验报告(最终5篇)

光纤传感实验报告(最终5篇)

光纤传感实验报告(最终5篇)第一篇:光纤传感实验报告光纤传感实验报告1、基础理论 1 1、1 1 光纤光栅温度传感器原理1、1、1 光纤光栅温度传感原理光纤光栅得反射或者透射峰得波长与光栅得折射率调制周期以及纤芯折射率有关,而外界温度得变化会影响光纤光栅得折射率调制周期与纤芯折射率,从而引起光纤光栅得反射或透射峰波长得变化,这就是光纤光栅温度传感器得基本工作原理.光纤 Bragg 光栅传感就是通过对在光纤内部写入得光栅反射或透射 Br agg 波长光谱得检测,实现被测结构得应变与温度得绝对测量。

由耦合模理论可知,光纤光栅得 Bragg中心波长为式中Λ为光栅得周期;neff 为纤芯得有效折射率。

外界温度对 Bragg 波长得影响就是由热膨胀效应与热光效应引起得。

由公式(1)可知,Bragg 波长就是随与而改变得。

当光栅所处得外界环境发生变化时,可能导致光纤光栅本身得温度发生变化。

由于光纤材料得热光效应,光栅得折射率会发生变化;由于热胀冷缩效应,光栅得周期也会发生变化,从而引起与得变化,最终导致 Bragg 光栅波长得漂移。

只考虑温度对 Bragg波长得影响,在忽略波导效应得条件下,光纤光栅得温度灵敏度为式中F为折射率温度系数;α 为光纤得线性热膨胀系数;p11 与p12 为光弹常数。

由式(2)可知光纤光栅受到应变作用或当周围温度改变时,会使 n eff 与发生变化,从而引起Bragg 波长得移动。

通过测量Bragg 波长得移动量,即可实现对外部温度或应变量得测量。

1、1、2 光纤光栅温度传感器得封装为满足实际应用得要求,在设计光纤光栅温度传感器得封装方法时,要考虑以下因素:(1)封装后得传感器要具备良好得重复性与线性度;(2)必须给光纤光栅提供足够得保护,确保封装结构要有足够得强度;(3)封装结构必须具备良好得稳定性,以满足长期使用得要求。

为了能够有效起到增敏作用一般采用合金、钢、铜、铝等热膨胀系数大得材料对光纤光栅进行封装。

光纤位移压力传感特性的研究实验报告

光纤位移压力传感特性的研究实验报告

光纤位移压力传感特性的研究实验报告一、实验目的通过对光纤位移压力传感器的实验研究,掌握其基本工作原理、测量范围及精度等参数,并探究其在实际应用中的优越性。

二、实验原理光纤位移压力传感器的工作原理是利用光纤的受力柔顺性,将光纤上的光束引到探头中,并通过探头感应光纤的受力变化,从而获得被测物体的位移及压力等动态信息。

光纤位移压力传感器主要包括探头、光源和检测器等部分,其中光源产生光波,光束在光纤中传输,光纤上部分受力变形,产生较大的力致光纤光路长度的微小变化,这一微小变化将会对传输的光波偏移一定的角度,经过探头捕获到的信号经过能量变换后传递到检测器,从而实现对光纤位移压力的测量。

三、实验器材光纤位移压力传感器、电源、光源、光电检测器、滑块导轨等。

四、实验流程1.按照实验器材使用说明书将光纤位移压力传感器安装在滑块导轨上;2.将电源连接至光源和光电检测器;3.调整光源和光电检测器的位置,使得光束能够形成一个封闭的光路;4.测量光纤位移压力传感器的初始状态;5.将较大的物体作用在光纤位移压力传感器上,测量其变形后的状态;6.根据读数计算出物体的位移及压力等数据,并进行分析。

五、实验结果本次实验的光纤位移压力传感器的测量范围为0至1000牛,精度可达0.1%。

实验结果表明,在受到外来压力影响时,光纤位移压力传感器能够产生一定的光路长度变化,通过对这种变化的测量,能够较为准确地对外来压力进行测量。

此外,在位移测量方面,本次实验中的光纤位移压力传感器也表现出了较为优越的性能,能够实现对微小变形的高精度测量。

本次光纤位移压力传感器的实验研究表明,该传感器具有较高灵敏度,能够实现高精度的位移、压力测量,适用于需要实时监控、远距离测量等多种应用场景。

通过对其功耗、精度等方面的分析,进一步优化传感器的性能,可以提升其在实际应用中的可靠性和适用性。

光纤位移传感器静态实验报告

光纤位移传感器静态实验报告

光纤位移传感器静态实验报告传感器实验报告--光纤传感器静态实验北京XXX大学实验报告课程(项目)名称:实验四光纤传感器静态实验学院:自动化专业:自动化班级:学号:姓名:成绩:2013年12月10日一、任务与目的了解光纤位移传感器的原理结构、性能。

二、原理(条件)反射式光纤位移传感器的光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。

其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量。

三、内容与步骤(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z型安装架上,外表为螺丝的端面为半圆分布;(2) 了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。

)(3) 如图31接线:因光/电转换器内部已按装好,所以可将电信号直接经差动放大器放大。

F/V显示表的切换开关置2V档,开启主、副电源。

图31(4) 旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小—大—小的变化。

(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.5mm读出电压表的读数,并将其填入表格中。

(6)关闭主、副电源,把所有旋钮复原到初始位置。

(7) 作出V-ΔX曲线,计算灵敏度S=ΔV/ΔX及线性范围。

四、数据处理(现象分析)旋转测微头使贴有反射纸的被测体慢慢离开探头时,电压读数的变化见下表:作出V-ΔX曲线:由图表可知当旋转测微头使贴有反射纸的被测体慢慢离开探头时在距离0.5到2.5mm区间和6.5mm到9.5mm区间的线性度较好,经计算,0.5到2.(转载于: 写论文网:光纤位移传感器静态实验报告)5mm区间的灵敏度S=0.831V/mm,6.5mm到9.5mm区间的灵敏度S=0.147V/mm。

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。

学会对实验测量数据进行误差分析。

二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。

两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。

三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。

四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。

光纤位移传感器实验

光纤位移传感器实验

光纤位移传感器实验一、实验目的1、了解光纤位移传感器工作原理及其特性;2、了解并掌握光纤位移传感器测量位移的方法。

二、实验内容1、光纤位移传感器输出信号处理实验;2、光纤位移传感器输出信号误差补偿实验;3、光纤位移传感器测距原理实验;4、利用光纤位移传感器测量出光强随位移变化的函数关系;5、实验误差测量。

三、实验仪器1、光线位移传感器实验仪1台2、反射式光纤1根3、对射式光纤2根4、连接导线若干5、电源线1根四、实验原理本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。

本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。

通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或称为传感型)和非功能型(传光型、结构型)两大类。

功能型光纤传感器使用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。

但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。

非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。

它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。

所以这种传感器也叫传输回路型光纤传感器。

它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。

为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。

该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。

光纤位移传感器属于非功能型光纤传感器。

相关参数:1、光源:高亮度白光LED,直径5mm2、探测器:高灵敏度光敏三极管3、反射式光纤位移传感器光纤芯直径:Φ1+ΦO.265×16长度:50mm检出距离:50mm最小检出距离:0.01mm4、对射式光纤位移传感器光纤芯直径:Φ1长度:50mm检出距离:50mm最小检出距离:0.0lmm5、二维调节支架13mm移动距离,分辨率0.01mm5、电压表(实验箱集成)200mV、2V、20V三档可调光纤位移传感器位移测量原理1.如图是反射式线性位移测量装置光从光源耦合到输入光纤射向被测物体,再被反射回另一光纤,由探测器接收。

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告光纤位移传感器实验报告引言光纤位移传感器是一种基于光纤传输原理的高精度测量设备,广泛应用于机械、航空航天、电子等领域。

本实验旨在通过搭建光纤位移传感器实验装置,探究其原理和性能,并对其进行实际应用测试。

一、实验装置搭建实验装置主要由光源、光纤传输线、光纤接收器和信号处理器组成。

首先,将光源连接到光纤传输线的一端,然后将另一端连接到光纤接收器。

在实验过程中,需要保证光纤传输线的稳定性和光源的亮度。

信号处理器用于接收光纤传输线传输过来的信号,并将其转化为位移数值。

二、原理分析光纤位移传感器的工作原理基于光的传输特性。

光纤传感器通过测量光纤中的光信号的强度变化来确定位移的大小。

当物体发生位移时,光纤中的光信号会受到干扰,从而导致光强度的变化。

通过测量光强度的变化,可以计算出位移的数值。

三、性能测试1. 精度测试为了测试光纤位移传感器的精度,我们将其与一个标准测量仪器进行对比。

首先,我们将标准测量仪器测量得到的位移数值作为参考值,然后使用光纤位移传感器进行测量。

通过对比两者的测量结果,可以评估光纤位移传感器的精度。

2. 灵敏度测试光纤位移传感器的灵敏度是指其对位移变化的响应能力。

我们可以通过改变物体的位移大小,然后观察光纤位移传感器的输出值来测试其灵敏度。

在实验中,我们可以逐渐增加物体的位移,然后记录下光纤位移传感器的输出值。

通过分析数据,可以得出光纤位移传感器的灵敏度。

3. 稳定性测试光纤位移传感器的稳定性是指其在长时间使用过程中的性能表现。

为了测试稳定性,我们可以将光纤位移传感器连接到一个振动平台上,然后进行长时间的振动测试。

通过观察光纤位移传感器的输出值,可以评估其在振动环境下的稳定性。

四、实际应用光纤位移传感器在实际应用中具有广泛的用途。

例如,在机械领域,光纤位移传感器可以用于测量机械零件的位移,以确保其工作正常。

在航空航天领域,光纤位移传感器可以用于测量飞机结构的变形,以确保飞机的安全性。

光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验

实验报告:实验07(光纤传感器的位移测量与及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。

学会对实验测量数据进行误差分析。

二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。

两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。

三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。

四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。

光纤传感器测速实验

光纤传感器测速实验

光纤传感器测速实验
一、实验目的:了解光纤位移传感器用于测量转速的方法。

二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元测转速档、直流源±15V、转速调节2-24V,转动源单元。

四、实验步骤:
1、将光纤传感器按下图装于传感器支架上,使光纤探头与电机转盘平台中反射点对准。

2、按下图将光纤传感器实验模板输出V 01与数显电压表V I 端相接,接上实验模板上±15V 电源,数显表的切换开关选择开关拨到2V 档。

①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节R W 使数显表显示接近零(≥0)。

②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的压差值最大,再将V01与转速/频率数显表
F in 输入端相接,数显表的波段开关拨到转速档。

3、将转速调节2-24V,接入转动电源24V 插孔上,使电机转动,逐渐加大转速源电压。

使电机转速盘加快,固定某一转速观察并记下数显表上读数n1。

4、固定转速电压不变,将选择开关拨到频率测量档,测量频率记下频率读数,根据转盘上的测速点数折算成转速值n2。

5、将实验步骤4与实验步骤3比较,以转速n1作为真值计算二种方法的测速误差(相对误差),相对误差r=((n1-n2)/n1)×100%。

五、思考题:测量转速时转速盘上反射 (或吸收点)的多少与测速精度有否影响,你可以用实验来验证比较转盘上是一个黑点的情况。

光纤传感器的位移特性实验报告

光纤传感器的位移特性实验报告

光纤传感器的位移特性实验报告
本文将分析光纤传感器的位移特性实验,介绍器件本身的特性、参数设置、实验方法,测试数据以及实验结果。

光纤传感器是一种新兴的技术,它主要利用光纤的光学特性和检测技术来检测运动物体的物理位移,以及其他物理变化。

它具有小尺寸、低功耗、设备安装方便、非接触式等优点,可用于检测、控制和监视过程中的各种参数,在机器人技术、航空航天技术、发动机控制系统、安全监测、绿色能源等领域中有广泛的应用。

本实验使用的特定型号的光纤传感器器件是由XXX公司生产的,采用高精度表面贴装工艺,结构小巧,反应迅速,适合作为精密机械设备中的传感器使用。

此款器件采用单模光纤非接触式测量,最大位移量可达到±100mm,分辨率为1m以下,误差低于1%。

为了测试光纤传感器的位移特性,设计了一个由钢丝和支架组成的测试装置,将光纤传感器的光路安装在测试装置的两个固定点上,模拟了实际工作环境中的物理位移,测试装置还具有一定的可调性,可以满足不同的测试要求。

根据实验设计,将光纤传感器安装在协调测试装置上,通过实验室校验系统调节设备参数,如增益和温度,以保证测量结果的准确性,将器件设置为双轴平行模式,然后选择不同增益,模拟不同物理位移。

在每组测试中,模拟的位移值为10mm,20mm,30mm,40mm,50mm,60mm,70mm,80mm,90mm,100mm;每组测试都重复进行了三次,以获得有效的测量结果。

根据测量结果,绘制出光纤传感器的位移特性
图,将量测到的位移值与模拟的位移值进行比较,以确定光纤传感器的准确度。

实验结果表明,在测量范围内,光纤传感器的实测位移与模拟位移之间的误差在1μm以内,无论是在纵轴还是横轴方向,测量精度均达到了预期的要求。

光纤位移传感器实验报告

光纤位移传感器实验报告

一、实验目的1. 理解光纤位移传感器的工作原理和结构。

2. 掌握光纤位移传感器的测量方法及其在位移检测中的应用。

3. 验证光纤位移传感器的准确性和可靠性。

二、实验原理光纤位移传感器是利用光纤的传输特性,通过测量光纤内传输光的变化来检测位移的一种传感器。

反射式光纤位移传感器是其中一种常见类型,其工作原理如下:1. 光源发射的光经光纤探头照射到被测物体表面。

2. 被测物体反射的光经接收光纤传输至光电转换元件。

3. 光电转换元件将光信号转换为电信号输出。

4. 根据电信号的强弱变化,计算被测物体的位移。

三、实验仪器与设备1. 光纤位移传感器2. 激光光源3. 光功率检测器4. 测微头5. 反射面6. 差动放大器7. 电压放大器8. 数显电压表9. 实验台四、实验步骤1. 搭建实验装置:将激光光源、光路系统、待测物体、光功率检测器等连接好。

2. 调节激光光源的位置和光路系统,使激光能够正常发出。

3. 将光纤位移传感器连接到光功率检测器,并调整其位置,使其与待测物体表面保持一定距离。

4. 旋转测微头,使光纤探头与待测物体表面接触,记录初始位移值。

5. 逐渐增加待测物体的位移,记录每个位移值对应的输出光功率。

6. 分析实验数据,绘制位移-光功率曲线,计算位移与光功率之间的关系。

五、实验结果与分析1. 通过实验,验证了光纤位移传感器在位移检测中的应用。

2. 实验结果表明,光纤位移传感器具有以下特点:- 高灵敏度:位移变化对光功率的影响较大,可以精确测量微小位移。

- 高稳定性:光纤传感器受外界环境干扰较小,具有较好的稳定性。

- 抗干扰能力强:光纤传感器对电磁干扰、温度变化等具有较强的抗干扰能力。

3. 实验数据表明,光纤位移传感器的输出光功率与位移之间存在线性关系,可以用于精确测量位移。

六、实验总结1. 通过本次实验,我们了解了光纤位移传感器的工作原理和结构。

2. 掌握了光纤位移传感器的测量方法及其在位移检测中的应用。

光纤位移传感器-位移测试实验.

光纤位移传感器-位移测试实验.

3 光纤探头安装于位移平台的支架 上用紧定螺丝固定,电机叶片对准 光纤探头。 4 尽量降低室内光照,移动位移平 台使光纤探头紧贴反射面,此时 变换电路输出电压Vo应约等于零。 5 旋动螺旋测微仪带动位移平台使 光纤端面离开反ห้องสมุดไป่ตู้叶片,每旋转 一圈(0.5毫米)记录Vo值,并将记录 结果填入表格,做出距离X与电压值 mV的关系曲线。
实验五
光纤位移传感器-位移测试实验 (验证性)
实验所需部件: 光纤、光电变换器、放大 稳幅电路、近红外发射及 检测电路(光纤变换电路 内)、反射物(电机叶 面)、电压表
光纤位移传感器工作原理图
实验步骤
• 1、观察光纤结构:一支发射、另一支为接 收的多模光纤,两端合并处为半圆形结构, 光纤质量的优劣可通过对光照射观察光通 量的大小而得出结论。 • 2、光电传感器内发射光源是近红外光,接收 电路接收近红外信号后经稳幅及放大输出。

光纤传感器的位移特性

光纤传感器的位移特性

光纤传感器的位移特性实验报告一、实验目的了解光纤位移传感器的工作原理和性能。

二、基本原理本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。

两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。

三、需用器件与单元光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。

四、实验步骤1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。

其内部已和发光管D及光电转换管T 相接。

图1-6光纤传感器安装示意图2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。

图1-7光纤传感器位移实验接线图2、调节测微头,使探头与反射面圆平板接触。

3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。

4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。

表1-4光纤位移传感器输出电压与位移数据X(mm)V(v)5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。

五、实验数据处理1、实验数据:X(mm) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 V(v)0.00 0.08 0.19 0.32 0.45 0.59 0.76 0.92 1.13 1.27 X(mm) 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 V(v) 1.39 1.50 1.59 1.65 1.70 1.78 1.84 1.88 1.91 1.91X(mm) 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 V(v) 1.93 1.94 1.96 1.95 1.90 1.89 1.87 1.87 1.79 1.74 X(mm) 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 V(v) 1.73 1.70 1.68 1.65 1.54 1.50 1.48 1.46 1.42 1.34 X(mm) 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 V(v) 1.29 1.27 1.26 1.23 1.13 1.12 1.10 1.08 1.10 1.112、光纤传感器位移与输出电压特性曲线:3、1mm时的灵敏度与非线性误差:用最小二乘法拟合的直线为:灵敏度为0.1458V/mm在0.45mm处取最大相对误差为:0.07V非线性误差为:六、思考题光纤位移传感器测位移时对被测体的表面有些什么要求?答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告篇一:光纤位移传感器测位移特性实验实验二十六光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。

三、器件与单元:主机箱中的?15V直流稳压电源、电压表;,型光纤传感器、光纤传感器实验模板、测微头、反射面(抛光铁圆片)。

四、实验步骤:1、观察光纤结构:二根多模光纤组成Y形位移传感器。

将二根光纤尾部端面(包铁端部)对住自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察面为半圆双D形结构。

2、按图安装、接线。

?安装光纤:安装光纤时,要用手抓捏两根光纤尾部的包铁部分轻轻插入光电座中,绝对不能用手抓捏光纤的黑色包皮部分进行插拔,插入时不要过分用力,以免损坏光纤座组件中光电管。

?测微头、被测体安装:调节测微头的微分筒到5mm处(测微头微分筒的0刻度与轴套5mm刻度对准)。

将测微头的安装套插入支架座安装孔内并在测微头的测杆上套上被测体(铁圆片抛光反射面),移动测微头安装套使被测体的反射面紧贴住光纤探头并拧紧安装孔的紧固螺钉。

3、将主机箱电压表的量程切换开关切换到20V档,检查接线无误后合上主机箱电源开关。

调节实验模板上的RW、使主机箱中的电压表显示为0V。

4、逆时针调动测微头的微分筒,每隔0.1mm(微分筒刻度0,10、10,20……)读取电压表显示值线性度最好区域:5、根据表26数据画出实验曲线并找出线性区域较好的范围计算灵敏度和非线性误差。

实验完毕,关闭电源。

实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。

二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示,,即可得到转速,=10f。

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告篇一:光纤位移传感器测位移特性实验实验二十六光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。

三、器件与单元:主机箱中的?15V直流稳压电源、电压表;,型光纤传感器、光纤传感器实验模板、测微头、反射面(抛光铁圆片)。

四、实验步骤:1、观察光纤结构:二根多模光纤组成Y形位移传感器。

将二根光纤尾部端面(包铁端部)对住自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察面为半圆双D形结构。

2、按图安装、接线。

?安装光纤:安装光纤时,要用手抓捏两根光纤尾部的包铁部分轻轻插入光电座中,绝对不能用手抓捏光纤的黑色包皮部分进行插拔,插入时不要过分用力,以免损坏光纤座组件中光电管。

?测微头、被测体安装:调节测微头的微分筒到5mm处(测微头微分筒的0刻度与轴套5mm刻度对准)。

将测微头的安装套插入支架座安装孔内并在测微头的测杆上套上被测体(铁圆片抛光反射面),移动测微头安装套使被测体的反射面紧贴住光纤探头并拧紧安装孔的紧固螺钉。

3、将主机箱电压表的量程切换开关切换到20V档,检查接线无误后合上主机箱电源开关。

调节实验模板上的RW、使主机箱中的电压表显示为0V。

4、逆时针调动测微头的微分筒,每隔0.1mm(微分筒刻度0,10、10,20……)读取电压表显示值线性度最好区域:5、根据表26数据画出实验曲线并找出线性区域较好的范围计算灵敏度和非线性误差。

实验完毕,关闭电源。

实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。

二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示,,即可得到转速,=10f。

实验光纤位移传感器原理

实验光纤位移传感器原理

实验六光纤位移传感器原理一:实验原理:本实验仪中所用的为传光型光纤传感器,光纤在传感器中起到光的传输作用,因此是属于非功能性的光纤传感器。

光纤传感器的两支多模光纤分别为光源发射及接收光强之用,其工作原理如图(22)所示。

光纤传感器工作特性曲线如图(23)所示。

一般都选用线性范围较好的前坡为测试区域。

二:实验所需部件:光纤、光电变换器、放大稳幅电路、红外发射及检测电路(光纤变换电路内)、反射物(电机叶面)、电压表.三:实验步骤:1.观察光纤结构:一支发射、另一支为接收的多模光纤为半圆形结构,光纤质量的优劣可通过对光照射观察光通量得出结论。

2.光电传感器内发射光源是近红外光,接收近红外信号后经稳幅及放大。

判断光电变换器中两个安装孔位置具体为发射还是接收可采用如以下办法: 将光纤变换器电压输出端接电压表输入端,光电变换块四芯航空插头接入光纤变换器四芯插座,将双支光纤的其中一根插入光电变换块中的一孔,观察电压表输出情况。

将接通电源的红外发光管靠近光纤探头,如VO端有电压输出则此孔为接收放大端,如单独插入另一孔,光纤探头靠近接通电源的红外光敏三极管,探测电路动作则说明此孔为红外光源发射。

3.将两根光纤均装入光电变换块,装入时注意不要过分用力,以免影响到变换块中光电管的位置。

分别将光纤探头置于全暗无反射和对准较强光源的照射,光纤变换器输出电压应分别为零和最大值。

四:注意事项:光纤三端面均经过精密光学抛光,其端面的光洁度直接会影响光源损耗的大小,需仔细保护。

禁止使用硬物、尖锐物体碰触,遇脏可用镜头纸擦拭。

如非必要,最好不要自行拆卸,观察光纤结构一定要在实验老师的指导下进行。

光纤传感器--------位移测试一:实验所需部件:光纤、光电变换块、光纤变换电路、电压表、反射片(电机叶片)、位移平台二:实验步骤:1.将光纤、光电变换块与光纤变换电路相连接,注意同一实验室如有多台光电传感器实验仪,由于光电变换块中的光电元件特性存在不一致,则光纤变换电路中的发射\接收放大电路的参数也不一致,故请做实验之前将光纤\光电变换块和实验仪对应编号,不要混用,以免影响正常实验。

光纤位移实验实验报告

光纤位移实验实验报告

光纤位移实验实验报告实验报告:光纤位移实验一、实验目的:1. 掌握光纤位移测量原理和方法。

2. 熟悉光纤位移测量仪器的使用。

3. 观察并分析光纤位移实验现象。

4. 进一步了解光纤在位移测量中的应用。

二、实验原理:光纤位移测量是利用光纤的光学特性实现的一种非接触式位移测量方法。

光纤位移传感器由光纤传感头、光纤连接线、光纤光源和光纤检测器等组成。

当被测物体发生位移时,传感器通过测量光纤传感头上表面的光强变化来计算物体的位移。

实验中通常使用的原理是利用微小的位移引起光纤端面的反射光强变化。

光纤传感头的端面经过特殊处理,可以使光纤端面处于全反射状态。

当物体位移时,光纤端面受到微小的变形,导致反射光的入射角发生改变,进而改变了反射光的强度。

通过测量光纤端面反射光的强度变化,可以计算出被测物体的位移。

三、实验步骤:1. 将光纤位移传感器连接到光纤测量仪器上。

2. 将光纤传感头固定在实验台上,确保其对准待测物体。

3. 调整光纤传感头的位置,使其与待测物体接触。

4. 通过光纤测量仪器进行校准,调整其工作参数使其适应当前实验环境。

5. 在光纤测量仪器上设置起始位移值。

6. 手动移动待测物体,观察光纤测量仪器显示的位移数值。

7. 记录测量结果,并计算位移的精度和稳定性。

四、实验结果与分析:在实验进行中,我们观察到光纤测量仪器能够实时显示被测物体的位移数值,并且具有较高的精度和稳定性。

在实验过程中,我们改变了待测物体的位移范围和速度,发现光纤测量仪器都能够准确地测量出位移数值,并且与实际值基本一致。

通过对实验结果的分析,我们发现光纤位移测量具有以下特点:1. 非接触式测量:由于光纤传感头与被测物体不直接接触,因此不会对被测物体产生影响。

2. 高精度:光纤测量仪器能够实时测量微小的位移,并且具有较高的测量精度。

3. 快速响应:光纤位移传感器能够实时监测位移的变化,并且反应速度较快。

4. 长距离传输:光纤传感器可以通过光纤连接线与光纤测量仪器进行远距离传输,适用于一些需要远程监测位移的场合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤位移传感器实验报告
实验报告
光纤位移传感器实验报告
一、实验目的
本次实验旨在掌握光纤位移传感器的原理和应用,通过实验了解其测量精度和稳定性。

二、实验原理
光纤位移传感器是一种基于菲涅尔衍射原理的传感器。

其基本原理是将激光光源照射到一根光纤上,光纤的端面形成一定的折射角,使得光束沿着光纤内部进行传输,当光纤存在位移时,光束经过光纤端面的折射角发生变化,从而产生了光程差。

通过检测光程差的变化,可以测量出位移的大小。

三、实验步骤
1.按照实验要求搭建实验装置,其中包括激光光源、光路系统、待测物体、光功率检测器等。

2.调节激光光源的位置和光路系统的组成,使得激光能够正常
发出。

3.将光纤位移传感器连接到待测物体上,确保其位置不变。

4.调整光纤位移传感器上的折射角,使得检测光束经过光纤后
能够与基准光束相互衍射。

5.通过光功率检测器检测检测光束的功率变化,计算出待测物
体的位移。

四、实验结果与分析
经过实验发现,光纤位移传感器在测量位移时具有较高的精度
和稳定性。

我们通过调整折射角和光纤的长度,可以进一步提高
其测量精度和稳定性。

在实验中我们还发现,光纤位移传感器对外界环境的干扰较小,可以在恶劣的环境下正常工作。

五、实验结论
通过本次实验,我们成功地掌握了光纤位移传感器的原理和应用,实验结果表明,光纤位移传感器具有较高的测量精度和稳定性,在工业生产和科学研究中具有广泛的应用前景。

相关文档
最新文档