模糊控制数学基础1

合集下载

毕业设计107模糊逻辑控制系统的数学基础1

毕业设计107模糊逻辑控制系统的数学基础1

2. 模糊控制系统数学基础2.1 模糊集合的定义及表示方法 2.1.1 模糊集合的定义扎德(Zadeh)曾对模糊集合作如下的定义:设给定论域U,U 到[0,1]闭区间上的映射μA 都确定U 的一个模糊子集μA : U →[0,1]U →μ(u)μA 称之为 A 的隶属函数,μA (u )称之为U 对A 的隶属度。

隶属函数μA (x )表示元素x 属于A 的程度,若μA (X )=1,则表示X 完全属于A ,若μA (X )=0,则表示X 完全不属于A ,若μA (x)=0.5,则表示x 属于A 的程度只有了0.5。

2.1.2 模糊子集的表示方法 模糊子集有如下的表示方法:1)、当论域U 为离散有限集{X1,X2,...,Xn},此时,A 有两种表示方法:(1) 扎德表示法A=a1/x1+a2/x2+...+an/Xn;若有ai=0时,则可以省略。

式中“ai/Xi ”不是分数,仅表示“元素Xi属于A 的隶属度为ai ”;符号“+”也不是普通加法,仅仅是一个记号。

(2) 向量表示法A=(a1,a2,....,an);式中向量的次序是不能颠倒的,并且隶属度为零也不能省略。

2). 论域是离散无限域(1) 可数情况:扎德表示法A~∑⎰∞∞∞===111)(~)(~)(~~uiui A ui ui A ui ui A A其中U={u1,u2,…,un},μA(ui)=A(ui)。

这里“∑”,“U ”,“∫”仅仅是符号;A (ui )/ui 也不是分数。

(2)、 不可数情况:扎德表示法其中“∫”不是积分号;A(u)/u 也不是分数; μA (u )=A(u)。

3)、论域是连续域扎德表示法特别当U 是一个实数区间时,其上的模糊集可用普通的实函数表示。

[9]2.2 模糊集合的运算以及性质 2.2.1 模糊子集的运算由于模糊子集的特征函数是它的隶属函数,所以,进行两个模糊子集运算时通常都是逐点对其隶属度进行相应的运算。

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。

模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。

一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。

模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。

模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。

二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。

他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。

随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。

2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。

日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。

同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。

3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。

研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。

同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。

总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。

经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。

未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。

模糊控制数学基础

模糊控制数学基础

)
且定义g(vi /vj ) =1,当i=j时。
③以g(vi /vj ) (i , j=1,2)为元素构造相及矩阵G:
G
=
⎡1
⎢ ⎣
g
(v2
/
v1 )
g(v1 / v2 )⎤
1
⎥ ⎦
推广: n个元素 (v1 , v2 ,L , vn ) 的相及矩阵G:
⎡1
g(v1 / v2 ) g(v1 / v3 ) L g(v1 / vn ) ⎤
0
x ≤0
µF (u)=
1
1
+
100 u2
x>0
可算出µF (5)=0.2, µF (10)=0.5, µF (20)=0.8
可见µF (u)是U到闭区间[0,1]的映射。
U
µF (u)
5 10 20
[0,1]
0.2 0.5 0.8
模糊集合的表示方法:
1、论域U为离散域(即论域U是有限集合)
(1)查德表示法
两个模糊集A和B,若对所有元素u,它们的 隶属函数相等,则A和B也相等。即
A = B ⇔ µ A (u) = µ B (u)
设A、B为U中的两个模糊子集,隶属函 数分别为µA 和µB,则模糊集合中的并、交、 补等运算按如下定义: 并(析取):并(A∪B)的隶属函数µA∪B对 所有的u ∈U 被逐点定义为取大运算,即: µA∪B= µA(u)∨µB(u) 式中,符号“∨”为取大 值运算。
µF (u)=1:u完全属于U; µF (u)= 0:u完全不属于U; 0< µF (u)<1:u部分属于U。
U中的模糊集F可以用元素u和它的隶属度 来表示:
F={(u ,µF (u) )| u∈U}

模糊控制的数学基础-1(2-16至2-30)模糊运算、分解定理

模糊控制的数学基础-1(2-16至2-30)模糊运算、分解定理

从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。

②例证法此法是扎德教授于1972年提出的。

基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。

例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。

为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。

如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。

把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。

对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。

③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。

这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。

§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。

一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。

如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。

或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。

②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。

模糊控制的数学基础

模糊控制的数学基础

选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。

模糊控制系统的设计分析

模糊控制系统的设计分析

它主要由模糊化、 知识库、 模糊推理机、 清晰化四个部分组成。
糊概念 。模糊概念不能用普通 的集合来描述 ,而只能用模糊集 合来描述 。因此 ,元素对于模糊集合 ,不存在 “ 属于”和 “ 不 属于 ”的概念 ,只是元素属于这个模糊集合 的程度不同而已。 在模糊集合中 , 为了描述元素属于模糊集合 的程度 , 引入 了隶属函数的概念。用 [ 0 ,1 ]闭区间中的一个数来描述元素 属于模糊集合 A的程度 ,这个数就称为 对 的 “ 隶属度 ” ,用 ( ) 表示 。该映射可表示为 : : 一[ 0 ,1 ] 或 A( X o ( ) 表示模糊集合 』 4的隶属 函数 。 ( ) 越接 近 1 ,表 示 X属于 A的程度越高 ; A( x) 越接近 0 ,表示 属 于 的程 度越低。

{ NB、NM 、NS 、Z、P S 、P M 、P B}
专家经验法是根据某控制过程 的实际经验对模糊信息进行 处理进而确定隶属度函数的一种方法 。其公式为 :
’ 一
般情况下选择上述 7个词汇 比较合适。选择较 多的词汇 可以精确描述变量 ,提高控制精 度 ,但使 控制 规则变得 复杂 ; 选择的词汇过少使变量 的描述太粗糙 ,导致控制其性能变坏 。
科 学 之友
F r i e n d o f S c i e n c e A m a t e u r s
2 0 1 3 年1 0 月
模 糊 控 制 系统 的设计 分 析
张 文儒
( 潍坊科技学院 ,山东 摘 潍坊 2 6 2 7 0 0 )
要 :通过在不需要建立被控 对象的精确 的数 学模型 ,依 赖控制规则库进行控制 ,能
1 . 2 隶 属 度 函数 隶属度和隶属函数 是描述客 观事物模糊性 的关键 ,它必须 符合客观规律 。隶属度函数的确定 可通过 主观途径 和客观两种 途径进行 ,尤其当隶属度无 法通 过主观途径 给出时 ,往往需要 在实验基础上 获得 。

模糊控制 - 数学基础

模糊控制 - 数学基础

一、模糊集合
6、运算性质
F集幂等律: A A=A,A A=A F集两极律:A =,A U=U F集同一律: A U=A,A =A F集交换律: A B=B
A,A B =B A
F集结合律: A B C =A
B
C , A B C =A
4
一、模糊集合
例1 设集合U 由1到5的五个自然数组成,用上述前三 种方法写出该集合的表达式。
解:(1)列举法 U ={1,2,3,4,5} (2)定义法 U ={u|u为自然数 且 1u5 }
(3)归纳法 U ={ui+1 = ui+1, i = 1,2,3,4, u1 = 1}
(4)特征函数表示法:集合U通过特征函数来TU(u)表示 u U 1 TU (u) u U 0
A
其中隶属函数定义为
x, ( x) x U
A
A ( x)
1 1 10 x 2
“接近于0的实数”之模糊集合
12
一、模糊集合
例:拥有离散性论域的模糊集合 假设U ={ 0,1,2,...,9 } 为代表一个家庭中,所可能拥有子女个数的集 合,令三个模糊集合之定义为A:子女数众多,B:子女数适中,C:子 女数很少,其隶属函数的定义如表所示。
子女数 0 1 2 3 4 5 6 7 8 9 子女众多 (A) 0 0 0 0 0 0.1 0.3 0.8 1 1 子女适中 (B) 0 0 0.2 0.7 1 0.7 0.2 0 0 0 子女很少 (C) 1 1 0.8 0.2 0.1 0 0 0 0 0
一、模糊集合
3、模糊集合的表示
当论域U由有限多个元素组成时,模糊集合可用向量表示法或扎德 表示法表示。设 U {x1 , x2 , , xn } { 0,1, 2,..., 9 }

第3章 模糊控制理论的基础讲解

第3章 模糊控制理论的基础讲解

(3)模糊控制易于被人们接受。模糊控 制的核心是控制规则,模糊规则是用语言 来表示的,如“今天气温高,则今天天气 暖和”,易于被一般人所接受。 (4)构造容易。模糊控制规则易于软件 实现。 (5)鲁棒性和适应性好。通过专家经验 设计的模糊规则可以对复杂的对象进行有 效的控制。
第二节 模糊集合
一、模糊集合 模糊集合是模糊控制的数学基础。
c (x) Min A (x), B (x)
② 代数积算子
c (x) A (x) B (x)
③ 有界积算子
c (x) Max0, A (x) B (x) 1
(2)并运算算子 设C=A∪B,有三种模糊算子: ① 模糊并算子
c (x) Max A (x), B (x)
c (x) A (x) B ( x) 1 1 (1 A (x)) (1 B (x))
γ取值为[0,1]。
当γ=0时, c (x) A (x) ,B相(x当) 于A∩B
时的算子。
当γ=1时,c (x) A(x) B (x) A(,x)相.B (x)
(3)等集
两个模糊集A和B,若对所有元素u,
它们的隶属函数相等,则A和B也相等。

A B A (u) B (u)
(4)补集 若 A 为A的补集,则
A A (u) 1 A (u)
例如,设A为“成绩好”的模糊集, 某学生 u0 属于“成绩好”的隶属度为:
A (u0 ) 0.8 则u0 属于“成绩差”的隶属度
第三章 模糊控制的理论基础
第一节 概 述 一、 模糊控制的提出
以往的各种传统控制方法均是建立在 被控对象精确数学模型基础上的,然而, 随着系统复杂程度的提高,将难以建立 系统的精确数学模型。

第二章 模糊控制数学基础

第二章 模糊控制数学基础

第二章模糊控制数学基础模糊控制的应用场合:一.模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。

若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。

如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。

模糊控制是建立在人工经验(定性的、不精确的)基础之上的,模仿人类的思维方式,采用模糊数学对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制。

模糊数学是模糊控制的数学基础,二.模糊控制的特点:1.无需知道被控对象的数学模型。

模糊控制是以人对被控系统的控制经验为依据而设计的控制器,故无需知道被控系统的数学模型。

2.是一种反映人类智慧思维的智能控制。

模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。

这些模糊量和模糊推理是人类智能活动的体现。

3.易被人们所接受。

模糊控制的核心是控制规则。

模糊控制中的知识表示、模糊规则和模糊推理是基于专家知识或熟练操作者的成熟经验。

这些规则是以人类语言表示的。

很明显这些规则易被一般人所接收和理解。

如“衣服较脏,则投入洗涤剂较多,洗涤时间较长”, “今天气温高,则今天天气暖和”.4.构造容易。

用单片机等来构造模糊控制器,其结构与一般的数字控制系统无异,模糊控制算法用软件实现,也可以用专用模糊控制芯片直接构造控制器。

5.鲁棒性好。

模糊控制系统无论被控对象是线性的还是非线性的,都能执行有效的控制,具有良好的鲁棒性和适应性。

模糊控制是基于熟练操作员的实践经验,比如智能洗衣机,能够实现以下功能:“衣服较脏,则投入洗涤剂较多,洗涤时间较长”。

这个控制规律中存在着模糊概念:“衣服较脏”。

三.模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。

人工智能控制技术课件:模糊控制

人工智能控制技术课件:模糊控制
直接输出精确控制,不再反模糊化。
模糊集合


模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
‫)( ׬‬/其中“‫” ׬‬和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|

模糊控制的理论基础

模糊控制的理论基础
3.结合律
(A∪B)∪C=A∪(B∪C)
(A∩B)∩C=A∩(B∩C)
4.吸收律
A∪(A∩B)=A
A∩(A∪B)=A
5.分配律
A∪(B∩C)=(A∪B)∩(A∪C)
A∩(B∪C)=(A∩B) ∪(A∩C)
6.复原律
A A
7.对偶律
A B A B
A B A B
8.两极律
A∪E=E,A∩E=A
A∪Ф=A,A∩Ф=Ф
例3.4 设
A
B
0 .9 0 .2 0 . 8 0 .5 u1 u2 u3 u4
0 .3 0 . 1 0 .4 0 . 6 u1 u2 u3 u4
求A∪B,A∩B

0.9 0.2 0.8 0.6 A B u1 u2 u3 u4
0 .3 0 .1 0 .4 0 .5 A B u1 u2 u3 u4
A {0.95,0.90 ,0.85}
其含义为张三、李四、王五属于“学习 好”的程度分别是0.95,0.90,0.85。 例3.3 以年龄为论域,取 X 0,200 。Zadeh给 出了“年轻”的模糊集Y,其隶属函数为
0 x 25 1 1 Y ( x) x 25 2 25 x 100 1 5
例3.5 试证普通集合中的互补律在模糊集 合中不成立,即 A (u ) A (u ) 1 ,
A (u ) A (u ) 0
证:设 A (u ) 0.4 , 则
A (u ) 1 0.4 0.6
A (u) A (u) 0.4 0.6 0.6 1
模糊集合是以隶属函数来描述的, 隶属度的概念是模糊集合理论的基石。

模糊控制的理论基础

模糊控制的理论基础

第二章:模糊控制的理论基础第一节:引言模糊控制的发展传统控制方法:数学模型。

模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。

模糊控制以模糊集合论为数学基础。

模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。

模糊控制器的设计依赖于操作者的经验。

模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。

改善模糊控制器性能的有效方法是优化模糊控制规则。

模糊控制的特点:一、无需知道被控对象的数学模型二、是一种反应人类智慧思维的智能控制三、易被人们所接受四、推理过程采用“不精确推理”五、构造容易六、存在的问题:1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略;2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;3、模糊控制的设计尚缺乏系统性,无法定义控制目标。

“模糊控制的定义”定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。

基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。

“模糊控制技术的相关技术”模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。

模糊信息与精确转换技术:AD,DA,转换技术。

模糊控制的软技术:系统的仿真软件。

综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。

第二节:模糊集合论基础“模糊集合的概念”经典集合论所表达概念的内涵和外延都必须是明确的。

模糊控制的理论基础1

模糊控制的理论基础1

A B
定理2-1 模糊集运算的基本定律:设U为论域,A、B、C为U中 的任意模糊子集,则下列等式成立:
(1)、幂等律
A A A,A A A
A ( B C ) ( A B) C,A ( B C ) ( A B) C
(2)、结合律
(3)、交换律
模糊控制发展的几个转折点:
1972年 Zadeh 模糊控制原理 复杂系统分析和决策过程的逼近方法
1973年 Zadeh
1974年 Mamdani et al 蒸汽机的模糊控制
1976年 Rutherford et al 模糊算法分析 1977年 Ostergaad 1979年 Komolov et al 1980年 Tong et al 1983年 Hrota et al 1988年 Czogala 热交换器和水泥窑模糊控制 有限自动机原理 污水处理过程的模糊控制 概率模糊理论集 多输入模糊控制系统
A B B A,A B B A
(4)、分配律 A ( B C) ( A B) ( A C),A ( B C) ( A B) ( A C) (5)、同一律 (6)、零一律
A U A,A A A U U,A
若U为离散域,即论域U是有限集合时,模糊集合可以有以下 三种表示方法: 1、查德表示法 即: F

i 1
n
F
(ui ) / ui
例2-2 考虑论域U={0,1,2,……10}和模糊集F‖接近 于0的整数“,它的隶属度函数表示法
F 1.0 / 0 0.9 / 1 0.75 / 2 0.5 / 3 0.2 / 4 0.1 / 5
(7)、吸收律

智能控制技术(-模糊控制的数学基础)名师公开课获奖课件百校联赛一等奖课件

智能控制技术(-模糊控制的数学基础)名师公开课获奖课件百校联赛一等奖课件
若采用一般集合旳观点,选用特征函数
1 C A (u) 0
学习好 A 学习差 A
此时特征函数分别为(张三)=1,(李四)=1, (王五)=1。这么就反应不出三者旳差别。假 若采用模糊子集旳概念,选用[0,1]区间上 旳隶属度来表达它们属于“学习好”模糊子 集A旳程度,就能够反应出三人旳差别。
采用隶属函数 A (u) u /100 ,由三人旳
(5)三角形隶属函数 三角形曲线旳形状由三个参数a,b,c
拟定:
0
x
a
f
(
x,
a,
b,
c)
b
c
a x
c b
0
xa a xb
b xc xc
其中参数a和c拟定三角形旳“脚”,而
参数b拟定三角形旳“峰”。 Matlab表
达为
trimf(x,[a, b, c])
(6)Z形隶属函数 这是基于样条函数旳曲线,因其呈现Z形
图 高斯型隶属函数(M=1)
图 广义钟形隶属函数(M=2)
图 S形隶属函数 (M=3)
图 梯形隶属函数(M=4)
图 三角形隶属函数(M=5)
图 Z形隶属函数(M=6)
二、隶属函数旳仿真
例3.6 设计一种三角形隶属函数,按[-3,3] 范围七个等级,建立一种模糊系统,用来 表达{负大,负中,负小,零,正小,正中, 正大}。仿真成果如图所示。
A (u) A (u) 0.4 0.6 0.6 1
A (u) A (u) 0.4 0.6 0.4 0
2 模糊算子
模糊集合旳逻辑运算实质上就是隶属 函数旳运算过程。采用隶属函数旳取大 (MAX)-取小(MIN)进行模糊集合旳 并、交逻辑运算是目前最常用旳措施。但 还有其他公式,这些公式统称为“模糊算 子”。

模糊控制基本原理

模糊控制基本原理

模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。

模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。

一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。

因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。

模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。

模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。

再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。

这样循环下去,就实现了被控对象的模糊控制。

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。

模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

模糊控制—第1章

模糊控制—第1章

模糊控制的发展主要分为以下三个阶段: 1、形成期(1974年以前) 1965年,美国加州大学自动控制系L. A. Zedeh教 授提出模糊集合理论,开创了模糊控制数学基础的研 究。 2、发展期(1974-1979年) 1974年,伦敦大学教授E. H. Mamdani 博士利用 模糊逻辑开发了世界上第一台模糊控制的蒸汽机,开 创了模糊控制的历史。 3、高性能控制阶段(1979年——现在)
图1-4 模糊逻辑系统结构
第2章
模糊控制的数学基础
模糊集合论的诞生,解决了数值和模糊概
念间的相互映射问题。以模糊集合论为基础的
模糊数学,在经典数学和充满模糊性的现实世
界之间,架起了一座桥梁,使得模糊性事物有
了定量表述的方法,从而可以用数学方法揭示 模糊性问题的本质和规律。
2. .1 清晰向模糊的转换 三类数学模型 第一类:确定性数学模型 确定性数学模型往往用于描述具有清晰的确定 性、归属界线分明、相互间关系明确的事物。对这类事物 可以用精确的数学函数予以描述,典型的代表学科就是 “数学分析”、“微分方程”、“矩阵分析”等常用的重 要数学分支。 第二类:随机性数学模型 随机性数学模型常用于描述具有或然性或者随 机性的事物,这类事物本身是确定的,但是它的发生与否 却不是确定的。 第三类:模糊性数学模型 模糊性数学模型适用于描述含义不清晰、概念 界线不分明的事物,它的外延不分明,在概念的归属上不 明确。
提出模糊集合定义:
在模糊集合涉及的数值范围——论域U 上,给定了一个映射: A : U [0, 1], x
A ( x)
则称集合A为论域U上的模糊集合或模糊子集;用 A ( x)表示 U中各个元素x属于集合A的程度,称为元素x属于模糊集合A 的隶属函数。当x是一个确定的元素x0时,称 A ( x0 )为元素x0 对模糊集合A的隶属度。 这一定义使得任何一个确定的元素x0,属于一个边界不 清晰的模糊集合A的程度,有了确定的数学方法,个不同的事物处于中间过渡状态时,就会出现 “亦此亦彼”的特性,也就是模糊性。 模糊性起源于事物的发生、发展和变化性,处于过渡 阶段的事物,其最大特征就是性态的不确定性和类属的不明 确性,即模糊性。

模糊控制技术第2章模糊逻辑的数学基础

模糊控制技术第2章模糊逻辑的数学基础
③ 序偶表示法: 将论域中元素ui与其隶属度μF(ui)构成序偶来表示F,则 F={(u1,μF(u1)),(u2,μF(u2)),…,(un,μF(un))} (2.7)
第2章 模糊逻辑的数学基础 例2.1 在论域U={1,2,3,4,5,6,7,8,9,10}中
讨论“小的数”F这一模糊概念,分别写出上述三种模糊集 合的表达式。
概念的外延,一个概念所包含的那些区别于其他概念的全体 本质属性就是这概念的内涵。用集合论的观点来看,内涵是 集合的定义,外延就是组成集合的所有元素。一个概念的外 延就是一个集合。
集合中的个体称为元素,通常用小写字母u、v表示; 集 合的全体又称为论域,通常用大写字母U、V表示; u∈U, 表示元素u在集合论域U内。一个集合如果由有限个元素 组成,则称为有限集合,不是有限集合的集合称为无限集合。 集合可以是连续的,也可以是离散的。
第2章 模糊逻辑的数学基础
定义2.2 支集(Support):模糊集合的支集是一个普
通集合,它是由论域U中满足μF(u)>0的所有u组成的,即
S={u∈U|μF(u)>0}
(2.3)
例如,在图2.1中,模糊集合B(“中年”)的支集是开
区间(35,60)。
定义2.3 模糊单点(Singleton): 如果模糊集合F的支
第2章 模糊逻辑的数学基础
在普通集合中,任何一个元素或个体与任何一个集合之 间的关系只有“属于”和“不属于”两种情况,两者必居其 一,而且只居其一,绝对不允许模棱两可。例如,“大于100 的自 然数”是一个清晰的概念,该概念的内涵和外延均是明确的。
1. 经典集合定义 依据一定的标准进行分类,可以把不同的事物归于这一 类,或不归于这一类。 集合是具有某种特定属性的对象的全体。

模糊数学基础-推理与评价

模糊数学基础-推理与评价

①若 则 型
若 ,则 ; 如今 ; 结论
②若 则 否则 型
若 ,则 否则 ; 如今 ; 结论
③若 且 则 型
若 且 ,则 ; 如今 且 ; 结论

设 、 分别是论域X、Y上的模糊集合,其隶属函数分别 为 、 。又设 是X×Y论域上描述模糊条件语句“ ”的模糊 关系,其隶属函数为:
对上式模糊关系,可用模糊关系矩阵表示为:
它表示的是a» b的模糊关系。 的模糊关系。 它表示的是 的模糊关系
模糊关系的基本运算
相等与包含
设同一论域上的两个模糊关系矩阵, , 若所有的 若所有的 。


,则称 R与 相等。记作
。 ,记作 。
%
,则称
包含
,或
包含于
并、交、补运算
为同一论域U上的两个模糊关系矩阵 上的两个模糊关系矩阵, 设 、 为同一论域 上的两个模糊关系矩阵, , 并运算: , 。
合成运算
0.3 0.6 0.1 0.2 0.3 0.3 0.6 S = 0.2 0.4 R o S = 0.4 0.5 0.6 o 0.2 0.4 0.8 0.1 0.7 0.8 0.9 0.8 0.1
t 22 = max{min(0.4,0.6), min(0.5,0.4), min(0.6,0.1)} = 0.4 t31 = max{min(0.7,0.3), min(0.8,0.2), min(0.9,0.8)} = 0.8 t32 = max{min(0.7,0.6), min(0.8,0.4), min(0.9,0.1)} = 0.6
1 当只当(x, y ) ∈ R(U × V ) µR = 0 其它。
模糊关系 表示二个或二个以上集合元 素之间关联、交互、互连是 否存在或不存在的程度。

模糊数学的基础知识

模糊数学的基础知识

模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。

由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。

这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。

二.模糊与精确的关系对立统一,相互依存,可互相转化。

- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。

三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。

- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。

* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。

模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。

2)地震科学方面:地震预报、地震危害分析。

模糊控制基础知识

模糊控制基础知识

1965年美国自动控制理论专家L.A. Zadeh首次提出了模糊集合理论,
1974年英国E.H.Mamdani首先将模糊控制应用于锅炉和蒸汽机的自动控 制。目前,模糊控制(Fuzzy Control)作为90年代的高新技术,得到非常广泛 的应用,被公认为简单而有效的控制技术。
模糊控制是以模糊集合论模糊语言变量和模糊逻辑推理为基础的 微机数字控制。它是模拟人的思维,构造一种非线性控制,以满足 复杂的,不确定的过程控制的需要。
A
i 1 5
论域 X 是离散的,则A可表示为
A ( xi )
xi
0 0 0.6 0.8 1 1 2 3 4 5
(2) 模糊集合的运算 A B A ( x) B ( x) ① 等集: ② 子集: A B A ( x) B ( x) A A ( x) 0 ③ 空集: ④ 并集: C A B c ( x) A ( x) B ( x) max[ A ( x), B ( x)] ⑤ 交集: c ( x) A ( x) B ( x) min[ A ( x), B ( x)] C A B ⑥ 补集: B A B ( x) 1 A ( x)
用模糊关系矩阵表示:
RAB ( A B) ( A E)
一些常见的模糊规则的关系矩阵的表达式: •如果x为A,则y为B, 否则y为C, A X , B Y , C Y •如果x为A,y为B, 则z为C
R ( A B) ( A C) :
A X , B Y ,C Z
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex5 设X为横轴,Y为纵轴,直积 X Y即整个平面。模糊关系“x远远大于y” 的隶属函数确定为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档