首次适应算法,最佳适应算法,最坏适应算法
操作系统-第4章习题解析

操作系统-第4章习题解析第4章习题解析1.为什么要配置层次式存储器?答:这是因为: a.设置多个存储器可以使存储器两端的硬件能并⾏⼯作。
b.采⽤多级存储系统,特别是Cache技术,这是⼀种减轻存储器带宽对系统性能影响的最佳结构⽅案。
c.在微处理机内部设置各种缓冲存储器,以减轻对存储器存取的压⼒。
增加CPU中寄存器的数量,也可⼤⼤缓解对存储器的压⼒。
2.可采⽤哪⼏种⽅式将程序装⼊内存?它们分别适⽤于何种场合?答:将程序装⼊内存可采⽤的⽅式有:绝对装⼊⽅式、重定位装⼊⽅式、动态运⾏时装⼊⽅式;绝对装⼊⽅式适⽤于单道程序环境中,重定位装⼊⽅式和动态运⾏时装⼊⽅式适⽤于多道程序环境中。
3.何为静态链接?静态链接时需要解决两个什么问题?答:静态链接是指在程序运⾏之前,先将各⾃⽬标模块及它们所需的库函数,链接成⼀个完整的装⼊模块,以后不再拆开的链接⽅式。
将⼏个⽬标链接装配成⼀个装⼊模块时,需解决以下两个问题: 将相对地址进⾏修改。
即将除第⼀个模块外的相对地址修改成装⼊模块中的相应的相对地址。
变换外部调⽤符号。
即将每个模块中所⽤的外部调⽤符号,都变换为相对地址。
4.何谓装⼊时动态链接?装⼊时动态链接⽅式有何优点?答:装⼊时动态链接是指将⽤户源程序编译后所得到的⼀组⽬标模块,在装⼊内存时,采⽤边装⼊边链接的⼀种链接⽅式,即在装⼊⼀个⽬标模块时,若发⽣⼀个外部模块调⽤事件,将引起装⼊程序去找相应的外部⽬标模块,把它装⼊内存中,并修改⽬标模块中的相对地址。
装⼊时动态链接⽅式有以下优点: 1)便于修改和更新 2)便于实现对⽬标模块的共享5.何谓运⾏时动态链接?运⾏时动态链接⽅式有何优点?答:运⾏时动态链接是将对某些模块的链接推迟到程序执⾏时才进⾏链接,也就是,在执⾏过程中,当发现⼀个被调⽤模块尚未装⼊内存时,⽴即由0S去找到该模块并将之装⼊内存,把它链接到调⽤者模块上。
优点:凡是在执⾏过程中未被⽤过的⽬标模块,都不会被调⼊内存和被链接到装⼊模块上,这样不仅能加快程序的装⼊过程,⽽且可节省⼤量的内存空间。
立体库库位分配算法

立体库库位分配算法全文共四篇示例,供读者参考第一篇示例:立体库库位分配算法是指在立体库中对货物进行存储位置分配的一种算法。
立体库是指在有限的空间内通过垂直存储结构来存放货物的仓库。
立体库的设计有着非常高的利用率,可以最大限度地节省仓储空间,提高仓储效率,并且减少人工操作。
立体库库位分配算法在货物的入库和出库过程中起着至关重要的作用。
它的设计需要考虑到货物的存储需求、货物之间的关联性以及立体库的结构特点。
一个好的库位分配算法能够有效地提高仓库的利用率,减少人工操作,并且加快货物的出库速度。
在立体库库位分配算法中,最常用的算法包括:最佳适应算法、最坏适应算法、首次适应算法等。
这些算法各有特点,适用于不同的存储需求和立体库结构。
下面我们来详细介绍几种常用的立体库库位分配算法:1. 最佳适应算法最佳适应算法是一种比较简单且常用的算法,它会选择最匹配货物大小的库位进行存储。
这种算法会尽量使得库位的利用率最高,减少空间浪费。
当货物入库时,系统会根据货物的大小选择最适合的库位进行存储。
这种算法的优点是能够最大化地利用立体库的空间,提高存储效率。
以上是几种常用的立体库库位分配算法,每种算法都有其适用的场景和优缺点。
在实际应用中,需要根据立体库的具体需求和货物特性选择合适的算法进行库位分配。
立体库库位分配算法的设计对仓储效率和出库速度产生着直接的影响,因此需要慎重选择和优化。
希望以上介绍能够为您在立体库库位分配算法的设计和应用提供一定的参考。
【此部分共629字】货物的大小和类型是立体库库位分配算法的重要考虑因素。
不同大小和类型的货物需要不同类型的库位进行存储,这就需要根据货物的特性来选择合适的库位分配算法。
一般情况下,大件货物需要大型库位进行存放,而小件货物可以采用小型库位进行存储。
因此在设计立体库库位分配算法时,需要充分考虑货物的大小和类型。
仓库结构和容量也是影响立体库库位分配算法的重要因素。
立体库的结构一般包括货架、输送系统、存储区域等。
存储器管理实验实验报告

存储器管理实验实验报告一、实验目的存储器管理是操作系统的重要组成部分,本次实验的目的在于深入理解存储器管理的基本原理和方法,通过实际操作和观察,掌握存储器分配与回收的算法,以及页面置换算法的实现和性能评估。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容与步骤(一)存储器分配与回收算法实现1、首次适应算法(1)原理:从空闲分区链的首地址开始查找,找到第一个满足需求的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态(已分配或空闲)。
当有分配请求时,从链表头部开始遍历,找到第一个大小满足需求的空闲分区。
将该分区进行分割,一部分分配给请求,剩余部分仍作为空闲分区留在链表中。
若找不到满足需求的空闲分区,则返回分配失败。
2、最佳适应算法(1)原理:从空闲分区链中选择与需求大小最接近的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。
当有分配请求时,遍历整个链表,计算每个空闲分区与需求大小的差值。
选择差值最小的空闲分区进行分配,若有多个差值相同且最小的分区,选择其中起始地址最小的分区。
对选中的分区进行分割和处理,与首次适应算法类似。
3、最坏适应算法(1)原理:选择空闲分区链中最大的空闲分区进行分配。
(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。
当有分配请求时,遍历链表,找到最大的空闲分区。
对该分区进行分配和处理。
(二)页面置换算法实现1、先进先出(FIFO)页面置换算法(1)原理:选择在内存中驻留时间最久的页面进行置换。
(2)实现步骤:建立页面访问序列。
为每个页面设置一个进入内存的时间戳。
当发生缺页中断时,选择时间戳最早的页面进行置换。
2、最近最久未使用(LRU)页面置换算法(1)原理:选择最近一段时间内最长时间未被访问的页面进行置换。
实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。
2. 掌握动态分区分配方式中的数据结构和分配算法。
3. 通过编写程序,实现内存分配和回收功能。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。
内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。
(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。
(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。
2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。
动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。
(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。
(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。
四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。
(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。
(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。
(2)对比两种算法在内存分配效率、外部碎片等方面的差异。
五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。
首次适应算法,最佳适应算法,最坏适应算法

首次适应算法,最佳适应算法,最坏适应算法首次适应算法、最佳适应算法和最坏适应算法是常见的内存分配算法,也是操作系统中重要的实现方式。
首次适应算法是向空闲区域分配内存时,按照空闲区域的起始地址从小到大进行扫描,找到第一个可以分配的空闲区域,然后将其分配给请求者。
虽然该算法简单易懂,但不断扫描空闲区域会大大降低操作系统的效率。
同时,由于内存释放会产生内存碎片,首次适应算法效果也会逐渐变差。
最佳适应算法是相对于首次适应算法而言的。
它是在空闲区域中寻找最小可用空间,尽可能满足分配请求。
该算法不会一遍遍扫描空闲区域,因此效率更高。
但随着分配请求增多,内存碎片也会不断增加,最佳适应算法将面临“Eureka”陷阱,即为了满足分配请求而不得不“铺平”内存分配空间,导致后续分配请求无法得到满足。
最坏适应算法是在空闲区域中寻找最大可用空间,分配请求时尽可能让内存块留有足够大的空间,防止内存碎片增多。
该算法的效率较低,因为会在所有空闲区域中查找最大空间;但相比较首次适应算法和最佳适应算法,他避免了内存碎片的问题。
总之,以上三种算法都有自己的优点和缺点,为了更好地利用内存资源,可以根据实际情况选择适合的算法。
同时,需要及时对内存进行整理、清理和释放,保证内存的健康状态,提高操作系统的运行效率。
操作系统-动态分区分配算法实验报告

实验题目:存储器内存分配设计思路:1.既然是要对内存进行操作,首先对和内存相关的内容进行设置我使用的是用自定义的数据结构struct来存放内存中一个内存块的内容包括:始地址、大小、状态(f:空闲u:使用e:结束)之后采用数组来存放自定义的数据类型,这样前期的准备工作就完成了2.有了要加工的数据,接下来定义并实现了存放自定义数据类型的数组的初始化函数和显示函数,需要显示的是每个内存块的块号、始地址、大小、状态3.接着依此定义三种动态分区分配算法首次适应算法、最佳适应算法和最差适应算法4.对定义的三种算法逐一进行实现①首次适应算法:通过遍历存放自定义数据类型的数组,找到遍历过程中第一个满足分配大小的内存块块号i,找到之后停止对数组的遍历,将i之后的块号逐个向后移动一个,然后将满足分配大小的内存块i分为两块,分别是第i块和第i+1块,将两块的始地址、大小、状态分别更新,这样便实现了首次适应算法②最佳适应算法:和首次适应算法一样,首先遍历存放自定义数据类型的数组,找到满足分配大小的内存块后,对内存块的大小进行缓存,因为最佳适应是要找到最接近要分配内存块大小的块,所以需要遍历整个数组,进而找到满足分配大小要求的而且碎片最小的块i,之后的操作和首次遍历算法相同③最差适应算法:和最佳适应算法一样,区别在于,最佳适应是找到最接近要分配内存块大小的块,而最差适应是要找到在数组中,内存最大的块i,找到之后的操作和最佳适应算法相同,因此不在这里赘述。
5.定义并实现释放内存的函数通过块号找到要释放的内存块,把要释放的内存块状态设置成为空闲,查看要释放的块的左右两侧块的状态是否为空闲,如果有空闲,则将空闲的块和要释放的块进行合并(通过改变块的始地址、大小、状态的方式)6.定义主函数,用switch来区分用户需要的操作,分别是:①首次适应②最佳适应③最差适应④释放内存⑤显示内存⑥退出系统实验源程序加注释:#include<bits/stdc++.h>#define MI_SIZE 100 //内存大小100typedef struct MemoryInfomation//一个内存块{int start; //始地址int Size; //大小char status; //状态 f:空闲 u:使用 e:结束} MI;MI MList[MI_SIZE];void InitMList() //初始化{int i;MI temp = { 0,0,'e' };for (i = 0; i < MI_SIZE; i++){MList[i] = temp;}MList[0].start = 0; //起始为0MList[0].Size = MI_SIZE;//大小起始最大MList[0].status = 'f'; //状态起始空闲}void Display() //显示{int i, used = 0;printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s", "块号", "始地址", "大小", "状态");printf("\n---------------------------------------------------\n");for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].status == 'u'){used += MList[i].Size;}printf("%5d%15d%15d%15s\n", i, MList[i].start, MList[i].Size, MList[i].status == 'u' ? "使用" : "空闲");}printf("\n----------------------------------------------\n");}void FirstFit(){int i, j, flag = 0;int request;printf("最先适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f') {if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request; MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';flag = 1;}break;}}if (flag != 1 || i == MI_SIZE || MList[i].status == 'e'){printf("没有足够大小的空间分配\n");}Display();}void BadFit(){int i, j = 0, k = 0, flag = 0, request;printf("最坏适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0;i < MI_SIZE - 1 && MList[i].status != 'e';i++){if (MList[i].Size >= request && MList[i].status == 'f') {flag = 1;if (MList[i].Size > k){k = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2;j > i;j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}void M_Release() //释放内存{int i, number;printf("\n请问你要释放哪一块内存:\n");scanf("%d", &number);if (MList[number].status == 'u'){MList[number].status = 'f';if (MList[number + 1].status == 'f')//右边空则合并{MList[number].Size += MList[number].Size;for (i = number + 1; i < MI_SIZE - 1 && MList[i].status != 'e'; i++) { //i后面的每一个结点整体后移if (i > 0){MList[i] = MList[i + 1];}}}if (number > 0 && MList[number - 1].status == 'f')//左边空则合并{MList[number - 1].Size += MList[number].Size;for (i = number; i < MI_SIZE - 1 && MList[i].status != 'e'; i++){MList[i] = MList[i + 1];}}}else{printf("该块内存无法正常释放\n");}Display();}void BestFit(){int i, j = 0, t, flag = 0, request;printf("最佳适应算法:请问你要分配多大的内存\n");scanf("%d", &request);t = MI_SIZE;for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f'){flag = 1;if (MList[i].Size < t){t = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else {for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}int main(){int x;InitMList();while (1){printf(" \n"); printf(" 1.首次适应\n");printf(" 2.最佳适应\n");printf(" 3.最差适应\n"); printf(" 4.释放内存\n"); printf(" 5.显示内存\n"); printf(" 6.退出系统\n"); printf("请输入1-6:");scanf("%d", &x);switch (x){case 1:FirstFit();break;case 2:BestFit();break;case 3:BadFit();break;case 4:M_Release();break;case 5:Display();break;case 6:exit(0);}}return 0;}实验测试结果记录:1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存10---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 90 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 65 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存15---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 50 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存20---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:2---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 空闲3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:2最佳适应算法:请问你要分配多大的内存5---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:3最坏适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 25 使用6 95 5 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:总结与自评:总结:分区存储管理是操作系统进行内存管理的一种方式。
动态分区管理方式及动态分区算法

动态分区管理方式及动态分区算法一、动态分区概述在操作系统中,内存管理是一个非常重要的部分。
在实际的应用中,程序的内存需求是会发生变化的,因此需要一种灵活的内存管理方式来满足不同程序的内存需求。
动态分区管理方式应运而生,它可以根据程序的需求,灵活地分配和回收内存空间,是一种高效的内存管理方式。
二、动态分区管理方式动态分区管理方式是指将内存划分为多个大小不等的分区,每个分区都可以被分配给进程使用,当进程终止时,分区将被回收。
动态分区管理方式通常通过动态分区算法来实现,下面将介绍几种常见的动态分区算法。
三、首次适应算法首次适应算法是最简单和最直观的动态分区分配算法。
它的基本思想是在空闲分区链表中按照位置区域顺序查找第一个能够满足进程大小需求的空闲分区,并将其分配给进程。
首次适应算法的优点是实现简单,分区利用率较高,但缺点是会产生大量的不连续碎片。
四、最佳适应算法最佳适应算法是在空闲分区链表中查找满足进程大小需求的最小空闲分区,并将其分配给进程。
最佳适应算法的优点是可以减少外部碎片,缺点是查找适合的空闲分区会花费较长的时间。
五、最坏适应算法最坏适应算法是在空闲分区链表中查找满足进程大小需求的最大空闲分区,并将其分配给进程。
最坏适应算法的优点是能够产生较小的碎片,但缺点是会导致剩余分区较多,影响分区利用率。
六、动态分区管理方式的优缺点动态分区管理方式相比于静态分区管理方式有很多优点,比如可以灵活地满足不同程序的内存需求,可以动态地合并和分割分区,提高了内存的利用率等。
但是动态分区管理方式也有一些缺点,比如会产生碎片,分配和回收内存的开销较大等。
七、结语动态分区管理方式及其算法在实际应用中有着广泛的应用,通过合理选择动态分区算法,可以提高内存的利用率,改善系统性能。
也需要注意动态分区管理方式可能产生的碎片问题,可以通过内存紧缩等手段来解决。
希望本文对读者有所帮助。
动态分区管理方式及动态分区算法八、碎片问题与解决方法在动态分区管理方式中,经常会出现碎片问题,包括内部碎片和外部碎片。
资源管理策略的类型

资源管理策略的类型资源管理策略是指在计算机系统中,针对不同类型的资源(如内存、CPU、磁盘等)制定的一系列管理和调度方法。
合理的资源管理策略可以提高系统的性能和效率,保证系统的稳定运行。
本文将介绍几种常见的资源管理策略类型。
一、内存管理策略内存是计算机系统中最重要的资源之一,合理的内存管理策略可以提高系统的性能和稳定性。
常见的内存管理策略有以下几种:1. 静态分区管理策略:将内存分为若干固定大小的分区,每个分区只能分配给一个进程使用。
这种策略简单高效,但会导致内存碎片问题。
2. 动态分区管理策略:根据进程的需求,动态地分配和回收内存空间。
常见的动态分区管理策略有首次适应算法、最佳适应算法和最坏适应算法等。
3. 页面置换算法:当内存不足时,需要将部分页面从内存中置换到磁盘上,以释放出内存空间。
常见的页面置换算法有最近最少使用(LRU)算法、先进先出(FIFO)算法和时钟(Clock)算法等。
二、CPU调度策略CPU是计算机系统中的核心资源,合理的CPU调度策略可以提高系统的响应速度和吞吐量。
常见的CPU调度策略有以下几种:1. 先来先服务(FCFS)调度策略:按照进程到达的顺序进行调度,不考虑进程的执行时间。
这种策略简单公平,但容易导致长作业等待时间过长。
2. 短作业优先(SJF)调度策略:选择执行时间最短的进程优先执行。
这种策略可以最大限度地减少平均等待时间,但可能导致长作业饥饿。
3. 时间片轮转(RR)调度策略:将CPU时间划分为若干时间片,每个进程在一个时间片内执行,时间片用完后切换到下一个进程。
这种策略可以平衡各个进程的响应时间,但可能导致上下文切换过多。
三、磁盘调度策略磁盘是计算机系统中常用的存储设备,合理的磁盘调度策略可以提高磁盘的访问速度和效率。
常见的磁盘调度策略有以下几种:1. 先来先服务(FCFS)调度策略:按照磁盘请求的顺序进行调度,不考虑磁盘访问时间。
这种策略简单公平,但可能导致磁盘头部移动过多。
首次适应算法最佳适应算法最坏适应算法

首次适应算法最佳适应算法最坏适应算法首次适应算法(First Fit Algorithm)是一种常见的内存分配算法,用于管理计算机的物理内存。
它的核心思想是将内存按照从低地址到高地址的顺序进行划分,每次分配内存时从低地址开始,找到第一个足够大的空闲块来满足需求。
首次适应算法的实现相对简单,它只需要维护一个空闲内存块链表,其中存储了空闲块的起始地址和大小。
当需要分配一块内存时,首次适应算法会遍历链表,找到第一个大小足够的空闲块并将其划分为两部分:一部分用于分配,另一部分作为一个新的空闲块。
同样,当需要释放一块已分配的内存时,首次适应算法会查找内存中是否存在相邻的空闲块,若有则合并。
首次适应算法的优点是简单、高效,分配内存的时间复杂度为O(n),其中n是空闲内存块的数量。
然而,首次适应算法也存在一些问题。
首先,它可能会导致内存碎片的产生。
当分配的内存大小比较小且频繁时,会导致大量的小块空闲内存,造成内存碎片化。
其次,由于首次适应算法是按顺序空闲块来找到最适合的块,因此可能会导致较大的块被拆分成多个小块,从而降低内存的利用率。
最佳适应算法(Best Fit Algorithm)是一种改进的内存分配算法,旨在解决首次适应算法中存在的问题。
最佳适应算法的核心思想是在每次分配内存时,选择最小的能满足需求的空闲块。
最佳适应算法的实现与首次适应算法类似,但不同之处在于它需要在遍历空闲块链表时记录下最小的满足条件的块。
当找到最小的空闲块后,将其划分为分配块和新的空闲块。
最佳适应算法的优点是减少了内存碎片的产生。
通过选择最小的能满足需求的空闲块,可以更好地利用内存。
然而,最佳适应算法的缺点是实现复杂度较高。
由于需要在空闲块链表中查找最小的块,分配内存的时间复杂度为O(n),其中n是空闲内存块的数量。
最坏适应算法(Worst Fit Algorithm)是一种与最佳适应算法相反的内存分配算法。
它的核心思想是在每次分配内存时,选择最大的能满足需求的空闲块。
存储管理首次、最佳、最坏适应算法

最佳适应算法最佳适应算法是从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区的一种计算方法,这种方法能使碎片尽量小。
找到:满足要求的自由分区分配排序:从小到大含义最佳适应算法(Best Fit):它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。
为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。
该算法保留大的空闲区,但造成许多小的空闲区。
应用问题Best fit算法等价于装箱问题,举例如下:装箱问题:有体积为V的箱子N个,体积为Vi的物品M个,求使得物品全部能够装入箱子,箱子数量的最小值。
假设 V=6 M=10,V1,V2,...,V10分别为:3 4 4 3 5 1 2 5 3 1。
计算过程如下:第一步按物品体积降序排序:5 5 4 4 3 3 3 2 1 1第二步:取未装箱的最大值5装入第一个箱子。
第三步:判断第一个箱子是否已满,不满且剩余空间为1,搜寻剩下体积小于等于1的物品填入箱子1,箱子1填满。
第四步:重复第二,第三步,直到所有物品装入箱子为止,得到箱子数量为6. 6即时本例N的最小值。
最坏适应算法特点:扫描整个空闲分区或链表优点:可使剩下的空闲分区不至于太小最坏适应算法(worst fit)最坏适应分配算法要扫描整个空闲分区或链表,总是挑选一个最大的空闲分区分割给作业使用。
该算法要求将所有的空闲分区按其容量从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。
优点:可使剩下的空闲分区不至于太小,产生碎片的几率最小,对中、小作业有利,同时该算法查找效率很高。
缺点:会使存储器中缺乏大的空闲分区。
首次适应算法首次适应算法从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法目的在于减少查找时间。
为适应这种算法,空闲分区表(空闲区链)中的空闲分区要按地址由低到高进行排序。
首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法

首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法是关于操作系统内存管理中内存分配策略的四种典型算法。
以下是对它们的简要解释:1. 首次适应算法(First-fit):在内存分配时,首次适应算法从内存区域的起始部分开始搜索,找到第一个能满足请求大小的空闲内存块,并将其分配给请求者。
首次适应算法的优点是分配速度较快,但可能导致内存空间碎片化。
2. 循环首次适应算法(Next-fit):循环首次适应算法类似于首次适应算法,但它在内存分配时保留上一次搜索的位置。
下一次分配时,算法将从上次停止的位置开始搜索,直到找到合适的空闲内存块或返回到起始位置。
这种方法可以在整个内存空间中分散分配过程,进一步改善内存碎片化问题。
3. 最佳适应算法(Best-fit):最佳适应算法在分配内存时,会查找所有可用的空闲内存块,并分配能够最紧密地满足请求大小的内存块。
该策略试图使分配后的剩余空间尽量小,以减少内存浪费。
然而,最佳适应算法通常需要更多的搜索时间,并可能导致过多的小内存碎片。
4. 最坏适应算法(Worst-fit):最坏适应算法与最佳适应算法相反,它在分配内存时选择最大的可用内存块。
这种策略试图保持较大的连续空闲内存块,以便满足大型请求。
然而,最坏适应算法可能导致大量空间浪费,并需要较长的搜索时间。
这些内存分配算法都有各自的优缺点。
在实际的操作系统实现中,可能会根据需求和上下文使用多种算法的组合来优化内存管理。
首次适应算法、最佳适应算法和最差适应算法

⾸次适应算法、最佳适应算法和最差适应算法关于⾸次适应算法、最佳适应算法和最差适应算法,先看⼀下百度百科的解释,已经说出了三者的最⼤区别。
⾸次适应算法(first-fit):从空闲分区表的第⼀个表⽬起查找该表,把最先能够满⾜要求的空闲区分配给作业,这种⽅法的⽬的在于减少查找时间。
最佳适应算法(best-fit):从全部空闲区中找出能满⾜作业要求的,且⼤⼩最⼩的空闲分区,这种⽅法能使碎⽚尽量⼩。
最差适应算法(worst-fit):它从全部空闲区中找出能满⾜作业要求的、且⼤⼩最⼤的空闲分区,从⽽使链表中的节点⼤⼩趋于均匀。
下⾯看⼀个实例:Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?⾸次适应算法:为212k分配空间:依次找寻,找到第⼀个⼤于212k的空闲区;找到第⼆个空闲区500k>212k,分配给212k,剩余288k空闲区;为417k分配空间:依次找寻,找到第⼀个⼤于417k的空闲区;找到第五个空闲区600k>417k,分配给417k,剩余183k空闲区为112k分配空间:依次找寻,找到第⼀个⼤于112k的空闲区;找到第⼆个空闲区288k>112k,分配给112k,剩余176k空闲区为426k分配空间:依次找寻,找到第⼀个⼤于426k的空闲区;未找到,此作业将等待释放空间最佳适应算法:为212k分配空间:找到第⼀个跟212k⼤⼩最接近的空闲区找到第四个空闲区300>212k,剩余88k空闲区为417k分配空间:找到第⼀个跟417k⼤⼩最接近的空闲区找到第⼆个空闲区500>417,剩余83k空闲区为112k分配空间:找到第⼀个跟112k⼤⼩最接近的空闲区找到第三个空闲区200>112k,剩余88k空闲区为426k分配空间:找到第⼀个跟426⼤⼩最接近的空闲区找到第五个空闲区600k>426,剩余74k空闲区最坏适应算法:为212k分配空间:找到第⼀个⼤⼩最⼤的空闲区找到第五个空闲区600>212k,剩余388k空闲区为417k分配空间:找到第⼀个⼤⼩最⼤的空闲区找到第⼆个空闲区500>417,剩余83k空闲区为112k分配空间:找到第⼀个⼤⼩最⼤的空闲区找到第三个空闲区388>112k,剩余276k空闲区为426k分配空间:找到第⼀个⼤⼩最⼤的空闲区达到⼤⼩最⼤的空闲区300k<426k,所以不分配ps:好久没碰操作系统了,今天看到这三个算法的第⼀反应居然有点懵,还是好记性不如烂笔头啊,本⽂中的定义来⾃百度百科,实例题⽬来⾃⽼师布置的作业,答案分析为笔者按⾃⼰的理解写的,若有不对,欢迎指出~~。
c模拟内存分配算法(首次适应算法,最佳适应算法,最坏适应算法)

c模拟内存分配算法(⾸次适应算法,最佳适应算法,最坏适应算法)#include<bits/stdc++.h>using namespace std;/*定义内存的⼤⼩为100*/#define MEMSIZE 100/*如果⼩于此值,将不再分割内存*/#define MINSIZE 2/*内存分区空间表结构*/typedef struct _MemoryInfomation{/*起始地址*/int start;/*⼤⼩*/int Size;/*状态 F:空闲(Free) U:占⽤(Used) E 结束(End)*/char status;} MEMINFO;/*内存空间信息表*/MEMINFO MemList[MEMSIZE];/*显⽰内存状态*/void Display(){int i,used=0;//记录可以使⽤的总空间量printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s","Number","start","size","status");printf("\n---------------------------------------------------\n");for(i=0; i<MEMSIZE&&MemList[i].status!='e'; i++){if(MemList[i].status=='u'){used+=MemList[i].Size;}printf("%5d%15d%15d%15s\n",i,MemList[i].start,MemList[i].Size,MemList[i].status=='u'?"USED":"FREE");}printf("\n----------------------------------------------\n");printf("Totalsize:%-10d Used:%-10d Free:%-10d\n",MEMSIZE,used,MEMSIZE-used);}/*初始化所有变量*/void InitMemList(){int i;MEMINFO temp= {0,0,'e'};//初始化空间信息表for(i=0; i<MEMSIZE; i++){MemList[i]=temp;}//起始地址为0MemList[0].start=0;//空间初始为最⼤MemList[0].Size=MEMSIZE;//状态为空闲MemList[0].status='f';}/*最先适应算法*//*算法原理分析:将空闲的内存区按其在储存空间中的起始地址递增的顺序排列,为作业分配储存空间时,从空闲区链的始端开始查找,选择第⼀个满⾜要求的空闲区,⽽不管它究竟有多⼤优点:1.在释放内存分区的时候,如果有相邻的空⽩区就进⾏合并,使其成为⼀个较⼤的空⽩区2.此算法的实质是尽可能的利⽤储存器的低地址部分,在⾼地址部分则保留多的或较⼤的空⽩区,以后如果需要较⼤的空⽩区,就容易满⾜缺点:1.在低地址部分很快集中了许多⾮常⼩的空⽩区,因⽽在空⽩区分配时,搜索次数增加,影响⼯作效率。
广工 操作系统课程设计 最佳适应算法、最坏适应算法、循环首次适应算法

动态分区分配算法仿真,循环首次适应算法、最佳适应算法、最坏适应算法#include<iostream>#include<iomanip>//在输入输出流中用到控制符#include<windows.h>//用到了SetConsoleTextAttribute函数#define minsize 2//事先规定的不再切割的剩余分区大小为2using namespace std;struct Node{int name;int start;int size;int state;Node *pre;Node *next;};typedef struct Dlinklist{Node *head;}Dlist;//===================Dlist pro,fre;int memory,name,size,fit;Node *temp=NULL;//temp是NestFit算法中的起始查寻指针//===================void initDlist(Dlist &L)//创建带有头结点的双向链表{L.head=new Node;L.head->next=L.head->pre=NULL;}void MemoryInit()//初始化两个链表{initDlist(pro); //process链表initDlist(fre); //free block链表Node *p=new Node;p->name=0;p->start=0;p->state=0;p->size=memory;p->next=NULL;//这里曾错写成p->pre..............p->pre=fre.head;//这里曾漏写fre.head->next=p;}int getLength(Dlist &L)//返回链表的长度,即元素的个数int m=0;Node *p=L.head->next;while(p!=NULL){m++;p=p->next;}return m;}void arrangeSmaller(Dlist &L)//冒泡排序,链表按size进行排序,从小到大{int length=getLength(L);for(int i=0; i<length-1; i++)//当链表中的元素个数>=2的时候才排序{Node *p=L.head->next;Node *q=p->next;inta,b,c,d;//===================================================================== =====for(int j=0; j<length-1-i; j++){if(p->size>q->size) //交换位置,如果前面的大于后面的,使小的上浮,如果两个相等,则还是原来在前的保持在前{a=p->size;p->size=q->size;q->size=a;b=p->name;p->name=q->name;q->name=b;c=p->start;p->start=q->start;q->start=c;d=p->state;//============================================================== ============p->state=q->state;q->state=d;}p=p->next;q=p->next;}}void arrangeBigger(Dlist &L)//链表按size进行排序,从大到小{int length=getLength(L);for(int i=0; i<length-1; i++){Node *p=L.head->next;Node *q=p->next;int a,b,c,d;for(int j=0; j<length-1-i; j++){if(p->size<q->size){a=p->size;p->size=q->size;q->size=a;b=p->name;p->name=q->name;q->name=b;c=p->start;p->start=q->start;q->start=c;d=p->state;//============================================================== ============p->state=q->state;q->state=d;}p=p->next;q=p->next;}}}void arrangeStart(Dlist &L)//链表按start递增排序{int length=getLength(L);for(int i=0; i<length-1; i++){Node *p=L.head->next;Node *q=p->next;int a,b,c,d;for(int j=0; j<length-1-i; j++){if(p->start>q->start){a=p->size;p->size=q->size;q->size=a;b=p->name;p->name=q->name;q->name=b;c=p->start;p->start=q->start;q->start=c;d=p->state;//============================================================== ============p->state=q->state;q->state=d;}p=p->next;q=p->next;}}}void DlistInsert(Dlist &L,Node e) //在头结点之后插入元素,即L.head->next指向e {Node *p=new Node;p->name=;p->size=e.size;p->start=e.start;p->state=e.state;if(L.head->next!=NULL)//这是个值得注意的地方,L.head->next==NULL,则没有指针L.head->next->pre,如果这里不加判断的话,会出错L.head->next->pre=p;p->next=L.head->next;p->pre=L.head;L.head->next=p;//双向链表,插入一个新的元素,如果元素不是插入在链尾,则一共要修改四次指针}void DlistDelete(Node *p,Node &e)//传递指针p,删除指针p指向的链表元素,用Node 型变量e记录该元素的相关数据{=p->name;e.start=p->start;e.size=p->size;e.state=p->state;p->pre->next=p->next;//这里曾写成=p->pre....if(p->next!=NULL)p->next->pre=p->pre;//这里曾写成p->next->pre=p,留意delete(p); //删除一个元素修改一次或两次指针}//=======================void Green(){SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSIT Y|FOREGROUND_GREEN);}void Red(){ SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSIT Y|FOREGROUND_RED);}void White(){SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_RED|FORE GROUND_GREEN|FOREGROUND_BLUE);}void Yellow(){SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSIT Y|FOREGROUND_RED|FOREGROUND_GREEN);}//=======================void BestOrWorst(){arrangeStart(fre);//先按地址递增排序if(fit==1)arrangeSmaller(fre);//再按size递增排序,当两个空闲区的size一样时,由于先按地址递增排序了,所以还是地址低的在前。
操作系统-实验四动态分区分配算法源代码最新最全

实验四操作系统-动态分区分配算法萨斯的发生的v设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。
假设内存中空闲分区个数为n,空闲分区大小分别为P l,…,P n,在动态分区分配过程中需要分配的进程个数为m (m<n),它们需要的分区大小分别为S i,…,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。
程序要求如下:1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。
2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。
3)输入:空闲分区个数n,空闲分区大小P i,…,P n,进程个数m, 进程需要的分区大小S i,…,S m,算法选择1-首次适应算法,2-循环首次适应算法,3-最佳适应算法,4-最坏适应算法。
4)输出:最终内存空闲分区的分配情况。
代码实现:#include<iostream>#include<fstream>#include<iomanip>using namespace std;const int MaxNumber=100;int FreePartition[MaxNumber];// 空闲分区大小int FirstPartition[MaxNumber];//1-首次适应算法int CycleFirstPartition[MaxNumber];//2-循环首次适应算法int BestPartition[MaxNumber];//3-最佳适应算法int WorstPartition[MaxNumber];//4-最坏适应算法int ProcessNeed[MaxNumber];// 进程需要的分区大小int PartitionNum,ProcessNum;char ProcessName[MaxNumber];// 进程名char ProcessPartition[MaxNumber];// 进程分配的序列int Partition[MaxNumber];char str[MaxNumber][MaxNumber];void FirstFit(int n,int m);void NextFit(int n,int m);void BestFit(int n,int m);void WorstFit(int n,int m);void Print(int n, int m);void Print2(int n, int m);//======================================================== void FirstFit(int n, int m){cout<<"选择了首次适应算法!"<<endl;cout<<endl;int i,j,k=0;for(i=0; i<n; i++){FirstPartition[i] = FreePartition[i];}for(j=0; j<m; j++){for(i=0; i<n; i++){if(ProcessNeed[j]<=FirstPartition[i]){ProcessPartition[j]=i;//str[i][k] = ProcessName[j];FirstPartition[i] = FirstPartition[i]-ProcessNeed[j]; break;}}}Print(n,m);cout<<"空间序号:"<<" ";for(i=0; i<n; i++)(cout<<T<<setw(m-1)<<"空间”<<(i+1);}cout<<endl;cout<<"分区大小:"<<" ";for(i=0; i<n; i++)(cout<<T<<setw(m)<<setiosflags(ios::left)<<FreePartition[i];}cout<<endl;cout<<"剩余分区大小:";for(i=0; i<n; i++)(cout<<"|"<<setw(m)<<setiosflags(ios::left)<<FirstPartition[i];}cout<<endl;Print2(n,m);}void NextFit(int n, int m)(cout<<"选择了循环首次适应算法!"<<endl;cout<<endl;int i,j,flag=0;for(i=0; i<n; i++)(CycleFirstPartition[i] = FreePartition[i];}for(j=0; j<m; j++)(for(i=flag; i<n; i++)(if(ProcessNeed[j]<=CycleFirstPartition[i])(ProcessPartition[j]=i;CycleFirstPartition[i] = CycleFirstPartition[i]-ProcessNeed[j];flag = i+1;if(i==n-1)(flag=O;)break;)))Print(n,m);cout«"空间序号:for(i=0; i<n; i++){cout«"|"«setw(m-1)«"空间"«(i+1);)cout«endl;cout«"分区大小:"vv"for(i=0; i<n; i++){cout«"|"«setw(m)«setiosflags(ios::left)«FreePartition[i];)cout«endl;cout«"剩余分区大小:";for(i=0; i<n; i++){cout«"|"«setw(m)«setiosflags(ios::left)«CycleFirstPartition[i];)cout«endl;Print2(n,m);)void BestFit(int n, int m){cout«"选择了最佳适应算法!"«endl;cout«endl;int i j,flag=O,temp,id=O,flag1 =0;for(i=0; i<n; i++){BestPartition[i] = FreePartition[i];)while(flag1<m){flag = 0;for(i=0; i<n; i++)Partition[i]=0;}for(i=0; i<n; i++)(if(ProcessNeed[flag1]<=BestPartition[i])(Partition[flag]=i;flag += 1;}}temp = BestPartition[Partition[0]];id = Partition]。
操作系统分配算法例题

操作系统分配算法例题假设有三个进程需要使用内存,它们的空间需求分别是100KB,200KB和300KB。
现在可用的内存大小为600KB。
请使用以下三种操作系统分配算法中的一种来分配内存:1.首次适应算法(First Fit)2.最佳适应算法(Best Fit)3.最坏适应算法(Worst Fit)假设我们使用首次适应算法(First Fit):- 进程1需要100KB内存,可用内存起始地址是0。
- 进程1被放置在0-99的内存区域。
- 进程2需要200KB内存,剩余内存起始地址是100。
- 进程2被放置在100-299的内存区域。
- 进程3需要300KB内存,剩余内存大小不足,无法分配空间。
- 因此,无法分配完整的内存,分配失败。
假设我们使用最佳适应算法(Best Fit):- 进程1需要100KB内存,可用内存大小有4个区域:0-99、100-199、200-299和300-399。
- 进程1被放置在0-99的内存区域。
- 进程2需要200KB内存,可用内存大小有2个区域:100-299和300-399。
- 进程2被放置在100-299的内存区域。
- 进程3需要300KB内存,可用内存大小有1个区域:300-599。
- 进程3被放置在300-599的内存区域。
- 因此,所有进程都被成功分配了内存。
假设我们使用最坏适应算法(Worst Fit):- 进程1需要100KB内存,可用内存大小为0-599。
- 进程1被放置在300-399的内存区域。
- 进程2需要200KB内存,可用内存大小有2个区域:0-99和400-599。
- 进程2被放置在400-599的内存区域。
- 进程3需要300KB内存,只有0-99和100-299区域的大小大于等于300KB。
- 进程3被放置在0-299的内存区域。
- 因此,所有进程都被成功分配了内存。
综上所述,不同的分配算法可能会产生不同的结果。
在实际应用中,需要根据具体情况选择合适的算法,以最大化内存利用率和系统性能。
内存分配实验报告总结(3篇)

第1篇一、实验目的本次实验旨在让学生深入理解内存分配的基本原理和不同分配算法,通过实际操作,提高学生对内存管理技术的掌握程度。
通过本次实验,我们希望达到以下目标:1. 熟悉内存分配的基本概念和过程;2. 掌握常见的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法;3. 理解内存分配中的碎片问题,并尝试解决;4. 培养学生的动手实践能力和问题解决能力。
二、实验内容1. 实验环境:使用C语言编写程序,运行在Linux操作系统上。
2. 实验步骤:(1)首次适应算法:从内存空间的起始位置开始查找,找到第一个满足申请大小的空闲分区,将其分配给请求者。
(2)最佳适应算法:从所有空闲分区中查找一个最小的满足申请大小的分区,将其分配给请求者。
(3)最坏适应算法:从所有空闲分区中查找一个最大的满足申请大小的分区,将其分配给请求者。
(4)解决内存碎片问题:采用紧凑算法,将所有空闲分区合并成一个连续的大空间,从而减少内存碎片。
三、实验过程1. 编写程序实现内存分配算法,包括内存初始化、申请内存、释放内存等功能。
2. 对不同分配算法进行测试,观察分配效果,分析不同算法的优缺点。
3. 分析内存碎片问题,尝试解决方法,如紧凑算法。
四、实验结果与分析1. 首次适应算法:该算法简单易实现,但可能导致内存利用率较低,且可能产生较大的内存碎片。
2. 最佳适应算法:该算法分配效果较好,内存利用率较高,但分配速度较慢。
3. 最坏适应算法:该算法分配效果较差,内存利用率较低,但分配速度较快。
4. 紧凑算法:通过合并空闲分区,减少了内存碎片,提高了内存利用率。
五、实验体会1. 通过本次实验,我们深入了解了内存分配的基本原理和不同分配算法,掌握了常见内存分配算法的优缺点。
2. 实验过程中,我们遇到了各种问题,如内存碎片问题、算法实现问题等,通过查阅资料、讨论和尝试,最终解决了这些问题,提高了我们的问题解决能力。
3. 实验使我们认识到,内存管理是操作系统中的一个重要组成部分,对计算机性能和稳定性有着重要影响。
【操作系统】分区分配算法(首次适应算法、最佳适应算法)(C语言实现)

【操作系统】分区分配算法(⾸次适应算法、最佳适应算法)(C语⾔实现)【操作系统】分区分配算法(⾸次适应算法、最佳适应算法)(C语⾔实现)(编码⽔平较菜,写博客也只是为了个⼈知识的总结和督促⾃⼰学习,如果有错误,希望可以指出)今天测试,发现⼀点问题:1.最佳插⼊算法:对于插⼊的时候忘记修改temp.next.front的指向2.回收头节点的时候现在多了⼀种判断。
判断头节点的下⼀个是否为空。
对如果不为空⽽且后⾯的空闲的话,做出了处理。
原来则没有这⼀情况。
1.动态分区分配算法:为了实现动态分区分配,通常将系统中的空闲分区链接成⼀个链。
所谓顺序查找是指依次搜索空闲分区链上的空闲分区,去寻找⼀个⼤⼩能满⾜要求的分区。
--------计算机操作系统(第四版)2.动态分区算法主要包括四种:(1).⾸次适应算法(first fit,FF):要求,空闲分区链以地址递增的顺序链接。
每次从链⾸开始,直到找到第⼀个能满⾜要求的空闲分区为⽌。
简单来说,就是,每次都从第⼀个开始顺序查找,找到⼀块区域可以满⾜要求的。
优点:优先利⽤内存中低址部分的空闲分区,从⽽保留了⾼址部分的⼤空闲区,这为以后到达的⼤作业分配⼤的内存空间创造了条件。
缺点:低址部分不断被划分,会留下许多难以利⽤的,很⼩的空闲分区,称为碎⽚。
⽽每次查找⼜都是从低址部分开始的,这⽆疑⼜会增加查找可⽤空闲分区时的开销。
(2).循环⾸次适应算法(next fit,NF):与FF算法区别就是,不是每次都从⾸次开始,⽽是从上次找到的空闲分区的下⼀个空闲分区开始。
(第⼀次查找的话也是从⾸页开始)。
特点:能使内存中的空闲区分布得较均匀。
(3).最佳适应算法(best,BF):将所有空闲分区按照空闲分区容量⼤⼩从⼩到⼤的顺序连接起来,形成⼀个空闲分区链。
即,每次都是找空间容量不但可以满⾜要求的空闲区,⽽且该空闲分区的容量还要最接近要求的容量⼤⼩。
优点:每次分配给⽂件的都是最合适该⽂件⼤⼩的分区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
else if(q->data.size > p->data.size)
{
}
p=p->next;
}
return ERROR;
}
//最佳适应算法
Status Best_fit(int request)
{
int ch; //记录最小剩余空间
DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
temp->prior=q->prior;
temp->next=q;
temp->data.address=qr->next=temp;
q->prior=temp;
q->data.address+=request;
#include<stdlib.h>
#define Free 0 //空闲状态
#define Busy 1 //已用状态
#define OK 1 //完成
#define ERROR 0 //出错
#define MAX_length 640 //最大内存空间为640KB
typedef int Status;
{//有大小恰好合适的空闲块
p->data.state=Busy;
return OK;
break;
}
if(p->data.state==Free && p->data.size>request)
{
if(p->data.state==Free && (p->data.size>=request) )
{
if(q==NULL)
{
q=p;
q=p;
ch=p->data.size-request;
}
}
p=p->next;
}
if(Best_fit(request)==OK) cout<<"分配成功!"<<endl;
else cout<<"内存不足,分配失败!"<<endl;
return OK;
}
if(ch==3) //选择最差适应算法
{
temp->prior=q->prior;
temp->next=q;
temp->data.address=q->data.address;
q->prior->next=temp;
q->prior=temp;
q->data.address+=request;
temp->data.size=request;
temp->data.state=Busy;
DuLNode *p=block_first->next;
DuLNode *q=NULL; //记录最佳插入位置
while(p) //初始化最小空间和最佳位置
p->prior=temp;
p->data.address=temp->data.address+temp->data.size;
p->data.size-=request;
return OK;
break;
typedef struct DuLNode
{
ElemType data;
struct DuLNode *prior; //前趋指针
struct DuLNode *next; //后继指针
}
DuLNode,*DuLinkList;
DuLinkList block_first; //头结点
if(q==NULL) return ERROR;//没有找到空闲块
else if(q->data.size==request)
{
q->data.state=Busy;
return OK;
}
else
{
ch=p->data.size-request;
}
else if(q->data.size < p->data.size)
{
else cout<<"内存不足,分配失败!"<<endl;
return OK;
}
}
//首次适应算法
Status First_fit(int request)
{
//为申请作业开辟新空间且初始化
DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
q->data.size=ch;
return OK;
}
return OK;
}
//最差适应算法
Status Worst_fit(int request)
{
int ch; //记录最大剩余空间
DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
void show();//查看分配
Status Initblock();//开创空间表
Status Initblock()//开创带头结点的内存空间链表
{
block_first=(DuLinkList)malloc(sizeof(DuLNode));
block_last=(DuLinkList)malloc(sizeof(DuLNode));
{//有空闲块能满足需求且有剩余
temp->prior=p->prior;
temp->next=p;
temp->data.address=p->data.address;
p->prior->next=temp;
q->data.size=ch;
return OK;
}
return OK;
}
//主存回收
Status free(int flag)
{
DuLNode *p=block_first;
DuLinkList block_last; //尾结点
Status alloc(int);//内存分配
Status free(int); //内存回收
Status First_fit(int);//首次适应算法
Status Best_fit(int); //最佳适应算法
Status Worst_fit(int); //最差适应算法
int flag;
typedef struct freearea//定义一个空闲区说明表结构
{
long size; //分区大小
long address; //分区地址
int state; //状态
}ElemType;
// 线性表的双向链表存储结构
block_first->prior=NULL;
block_first->next=block_last;
block_last->prior=block_first;
block_last->next=NULL;
block_last->data.address=0;
temp->data.size=request;
temp->data.state=Busy;
DuLNode *p=block_first->next;
while(p)
{
if(p->data.state==Free && p->data.size==request)
temp->data.size=request;
temp->data.state=Busy;
DuLNode *p=block_first->next;
DuLNode *q=NULL; //记录最佳插入位置
while(p) //初始化最大空间和最佳位置
block_last->data.size=MAX_length;
block_last->data.state=Free;
return OK;
}
//分配主存
Status alloc(int ch)
{
int request = 0;
cout<<"请输入需要分配的主存大小(单位:KB):";
{
if(p->data.state==Free && (p->data.size>=request) )
{
if(q==NULL)
{
q=p;
if(q==NULL) return ERROR;//没有找到空闲块
else if(q->data.size==request)
{
q->data.state=Busy;
return OK;
}
else
{
cin>>request;
if(request<0 ||request==0)