数列解答题专练(含答案版)

合集下载

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。

高考数学解答题(新高考)数列求和(通项含绝对值,,取整,取小数,数列求和)(解析版)

高考数学解答题(新高考)数列求和(通项含绝对值,,取整,取小数,数列求和)(解析版)

专题09 数列求和(通项含绝对值数列求和)(典型例题+题型归类练)一、必备秘籍类型一:通项含绝对值 如:求|211|n a n =-的前n 项和n T类型二:通项含取整函数类型三:通项含自定义符号如:记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=二、典型例题类型一:通项含绝对值例题1.(2022·全国·高二)已知n S 是数列{}n a 的前n 项和,且210n S n n =-.(1)求n a ;(2)求数列{}n a 的前n 项和为n T .感悟升华(核心秘籍)对于通项含绝对值问题,如本例求{}n a 的前n 项和n S ,其核心技巧是考虑当n 取何值时0n a >,0n a <, 此时的n 就是讨论的临界值,找到临界值后再进行讨论.第(2)问解题思路点拨:由(1)知,代入即:,注意到当,,所以在求时,去绝对值,要添“”号,当时,,在求时,可直接去掉绝对值. 根据通项正负,去绝对值是否添“”号,进行分类讨论当时,当时,综上:【答案】(1)211n a n =-;(2)2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.(1)由210n S n n =-,可得119a S ==-,2n ≥时,221 10(1)1010211n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得211n a n =-;(2)当15n ≤≤时,0n a <,即有()2121210n n n n T a a a a a a S n n =++⋯+=-++⋯+=-=-. 当6n ≥时,0n a >,()()21256551050n n n T a a a a a S S S n n =-++⋯+++⋯+=-+-=-+,即有2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.类型二:通项含取整函数例题2.(2022·江苏连云港·模拟预测)已知数列{}n a 是递增的等差数列,{}n b 是各项均为正数的等比数列13a =,12b =,63a b =,528b a =. (1)求数列{}n a 和{}n b 的通项公式;(2)设3n n a c ⎡⎤=⎢⎥⎣⎦,求数列{}n n b c 的前9项的和9S .(注:[]x 表示不超过x 的最大整数)【答案】(1)2n a n =+,2nn b =(2)2926第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,再代入求解由于本例求解的是,而不是,故可直接列举,则有代入求解(1)设{}n a 的公差为d ,{}n b 的公比为q ,由113,2,a b == 得()21141158a d b q b q a d ⎧+=⎪⎨=+⎪⎩ ,而0d ≠,0q >,解得391,()25d d ==-舍,22(q q ==-,舍),于是得2n a n =+,2nn b =, 所以数列{}n a 和{}n b 的通项公式分别为2n a n =+,2nn b =;(2)由(1)知,2[][]33n n a n c +==,则有1234567981,2,3c c c c c c c c c =========, 依题意,234678995121212222222323232S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=2926,综上,2n a n =+,2nn b =,92926S = .类型三:通项含自定义符号例题3.(2022·广东汕头·高二阶段练习)已知数列{}n a {}n a 是以2为公差的等差数列,125,,a a a 成等比数列,数列{}n b 前n 项和为n S ,且22n S n n =+.(1)求数列{}n a 和{}n b 的通项公式;(2)记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=, 求数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭的前20项的和20T .感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,根据题意表示的个位数字,可将,,列举,通过特殊值探路,寻找规律.列举,,通过特殊值探路,寻找规律.通过列举数列发现:,均为周期数列,且周期为5,故将数列中每5个一组,前20项和可分为4组,1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 1 3 5 7 9 1 33 5 7 9 11 13 15 17 19 21 23 25 35791 3579135代入求解【答案】(1)*21()n a n n =-∈N ,21n b n =+;(2)9. (1)由125,,a a a 成等比数列可得2215a a a =,即2111(2)(8)a a a +=⋅+,解得11a =,所以*21()n a n n =-∈N ,又22,n S n n =+,则有11123b S ==+=,当n ≥2时,2212(1)2(1)21n n n b S S n n n n n -=-=+----=+,所以21n b n =+,又13b =满足此式综上,21,N n b n n *=+∈.(2)因为n a 〈〉,n b 〈〉分别表示n a ,n b 的个位数, 所以{}n a 〈〉,{}n b 〈〉均为周期数列,且周期为5,将数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭中每5个一组,前20项和可分为4组,其前20项的和20T 为201111141335577991T ⎡⎤=++++⎢⎥⨯⨯⨯⨯⨯⎣⎦1111111114(1)233557799⎡⎤=-+-+-+-+⎢⎥⎣⎦111204(1).2999⎡⎤=-+=⎢⎥⎣⎦三、题型归类练1.(2022·海南·嘉积中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且29n S n n =-.(1)求n a ;(2)求数列{}||n a 的前n 项和为n T .【答案】(1)210n a n =-,*n ∈N ;(2)229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩. 【详解】(1)由29n S n n =-,可得118a S ==-,2n ≥时,2219(1)99210n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得210n a n =-,*n ∈N ;(2)当15n ≤≤时,0n a ≤,即有29n n T S n n =-=-; 当6n ≥时,0n a >,255940n n T S S S n n =--=-+,即有229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.2.(2022·全国·高三专题练习)数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T . 【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-,当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++ ()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩.3.(2022·全国·高三专题练习)已知数列{}n a 是公差不为零的等差数列,{}n b 是各项均为正数的等比数列,11337522,21a b a b a b ====.(1)求数列{}n a 和{}n b 的通项公式;(2)设2n n a c ⎡⎤=⎢⎥⎣⎦,求数列1n n c b +⎧⎫⎨⎬⎩⎭的前10项的和10S .注.[]x 表示不超过x 的最大整数. 【答案】(1)1n a n =+,112n n b -⎛⎫⎪⎝⎭=;(2)109558S =.(1)设{}n a 的公差为d ,{}n b 的公比为q ,由11337522,21a b a b a b ====得:()()242211262d q d q ⎧+=⎪⎨+=⎪⎩, 而0d ≠,0q >,解得1d =,12q =,于是得1n a n =+,112n n b -⎛⎫⎪⎝⎭=,所以数列{}n a 和{}n b 的通项公式分别为1n a n =+,112n n b -⎛⎫⎪⎝⎭=.(2)由(1)知,1[][]22n n a n c +==,则有123456879101,2,3,4,5c c c c c c c c c c ==========, 依题意,23456789101012122222323242425252S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯()357931222324252⨯⨯⨯⨯=++⨯++,令35791222324252T ⨯⨯⨯⨯+++⨯=+, 则37911541222324252T ⨯⨯⨯⨯++⨯=++, 两式相减得:()5357911111221472322222525221433T --=++++-⨯=-⨯=-⨯--,所以123295587233T =+=⨯,即109558S =.4.(2022·重庆八中高三阶段练习)已知各项均为正数的数列{}n a 的前n项和为)*1,1,,2n n S a a n N n =∈≥.(1)求证;数列是等差数列,并求{}n a 的通项公式;(2)若[]x 表示不超过x 的最大整数,如][1,22,2,12⎡⎤-=-=⎣⎦,求22212111n a a a ⎡⎤+++⎢⎥⎣⎦的值. 【答案】(1)证明见解析,21n a n =-(2)1(1)因为n a2n ≥时,1n nS S --=0n a >0>()12n≥所以数列1=为首项,公差为1的等差数列; ()111n n +-⨯=,则2,n S n =当2n ≥时,121n a n n n ==+-=-,又11a =满足上式, 所以{}n a 的通项公式为21n a n =-. (2)222111(21)441n a n n n ==--+,当2n ≥时,22111114441n a n n n n ⎛⎫<=- ⎪--⎝⎭, 故22212111111111111151111412231444n a a a n n n ⎛⎫⎛⎫+++<+-+-++-=+-<+= ⎪ ⎪-⎝⎭⎝⎭, 当1n =时,211514a =<,所以对任意的*n ∈N ,都有2221211154n a a a +++<, 又222212111111n a a a a +++≥=,所以22212111514n a a a ≤+++<.所以222121111n a a a ⎡⎤+++=⎢⎥⎣⎦. 5.(2022·全国·高三专题练习(理))已知等比数列{}n a 的首项为2-,前n 项和为n S ,且21,,n n n S S S ++成等差数列.(1)求{}n a 的通项公式;(2)设12n n b +⎡⎤=⎢⎥⎣⎦,求数列{}n n a b 的前10项和10T .([]x 表示不超过x 的最大整数) 【答案】(1)(2)n n a =-;(2)3186.(1)因为2n S +,n S ,1n S +成等差数列,所以21n n n n S S S S ++-=-, 所以211n n n a a a +++--=,即212n n a a ++=-,设{}n a 的公比为q ,则2q =-,所以12(2)(2)n n n a -=-⨯-=-.(2)依题意,123456789101,1,2,2,3,3,4,4,5,5b b b b b b b b b b ==========,则2345678910102(2)2(2)2(2)3(2)3(2)4(2)4(2)5(2)5(2)T =-+-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-23456789102(2)2(2)(2)3(2)(2)4(2)(2)5(2)(2)⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=-+-+⨯-+-+⨯-+-+⨯-+-+⨯-+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦457922324252=++⨯+⨯+⨯216965122560=++++ 3186=.6.(2022·全国·高三阶段练习)已知公差不为零的等差数列{}n a 和等比数列{}n b ,满足1112b a =+=,221b a =+,341b a =+.(1)求数列{}n a 、{}n b 的通项公式:(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .若m 表示不大于m 的正整数的个数,求1210T T +++.【答案】(1)21n a n =-,2nn b =(2)121016T T +++=(1)设{}n a 的公差为d ,{}n b 的公比为q ,12b =,11a =,由题意可得:22112131q d q d =++⎧⎨=++⎩整理可得:2320-+=q q ,解得:22q d =⎧⎨=⎩或10q d =⎧⎨=⎩(舍)所以()11221n a n n =+-⨯=-,1222n nn b -=⋅=;(2)因为212n n n a n b -=,则23135212222-=++++n nn T , ∴234111352122222+-=++++n n n T 两式相减得23411111111213232222222222n n n n n n T ++-+⎛⎫=+++++-=- ⎪⎝⎭ 所以2332n nn T +=-显然3n T <,且112102n n n n T T +++-=>,即{}n T 为递增数列, 1112T =<,25124T <=<,315128T <=<,437216T =>, 所以10=,231T T ==,4n ≥时,2n =, 所以121016T T +++=.7.(2022·全国·高二课时练习)在①39S =,520S =;②公差为2,且1S 、2S 、4S 成等比数列;③238n S n n =+;三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知数列{}n a 为公差不为零的等差数列,其前项和为n S ,______. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c +++的值.【答案】(1)答案见解析(2)答案见解析 (1)解:选①,设{}n a 的公差为d ,则()112n n n S na d -=+, 由已知可得315133951020S a d S a d =+=⎧⎨=+=⎩,解得121a d =⎧⎨=⎩,则()111n a a n d n =+-=+;选②,11S a =,2111221222S a a ⨯=+⨯=+,41134424122S a a ⨯=+⨯=+, 由题意可得2214S S S =,则()()211122412a a a +=+,解得11a =,所以,()12121n a n n =+-=-;选③,1111a S ==,当2n ≥时,()()()22138318165n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦. 111a =也满足65n a n =+,故对任意的N n *∈,65n a n =+.(2)解:选①,1n a n =+,则12a =,20162132a <=<, 当[]()22log log 11n n c a n ==+=⎡⎤⎣⎦,则214n ≤+<,可得13n ≤<, 当[]()22log log 12n n c a n ==+=⎡⎤⎣⎦,则418n ≤+<,可得37n ≤<, 当[]()22log log 13n n c a n ==+=⎡⎤⎣⎦,则8116n ≤+<,可得715n ≤<,当[]()22log log 14n n c a n ==+=⎡⎤⎣⎦,则16132n ≤+<,可得1531n ≤<,此时1520n ≤≤. 所以,1,132,373,7154,1520n n n c n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪≤≤⎩,故12201224384658c c c +++=⨯+⨯+⨯+⨯=;选②,21n a n =-,则11a =,20323964a <=<,当[]()22log log 210n n c a n ==-=⎡⎤⎣⎦时,则0211n <-≤,此时1n =, 当[]()22log log 211n n c a n ==-=⎡⎤⎣⎦时,则2214n ≤-<,此时2n =, 当[]()22log log 212n n c a n ==-=⎡⎤⎣⎦时,则4218n ≤-<,此时34n ≤≤, 当[]()22log log 213n n c a n ==-=⎡⎤⎣⎦时,则82116n ≤-<,此时58n ≤≤, 当[]()22log log 214n n c a n ==-=⎡⎤⎣⎦时,则162132n ≤-<,此时916n ≤≤, 当[]()22log log 215n n c a n ==-=⎡⎤⎣⎦时,则322164n ≤-<,此时1720n ≤≤.所以,0,11,22,343,584,9165,1720n n n n c n n n =⎧⎪=⎪⎪≤≤=⎨≤≤⎪⎪≤≤⎪≤≤⎩,故122001112234485469c c c +++=⨯+⨯+⨯+⨯+⨯+⨯=;选③,65n a n =+,则181116a <=<,2064125128a <=<, 当[]()22log log 653n n c a n ==+=⎡⎤⎣⎦,则86516n ≤+<,此时1n =; 当[]()22log log 654n n c a n ==+=⎡⎤⎣⎦,则166532n ≤+<,此时24n ≤≤; 当[]()22log log 655n n c a n ==+=⎡⎤⎣⎦,则326564n ≤+<,此时59n ≤≤; 当[]()22log log 656n n c a n ==+=⎡⎤⎣⎦,则6465128n ≤+<,此时1020n ≤≤.所以,3,14,245,596,1020nnncnn=⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩,故1220134355611106c c c+++=⨯+⨯+⨯+⨯=.。

2023届高考数学解答题专练-数列的性质(含答案)

2023届高考数学解答题专练-数列的性质(含答案)

2025届高考数学解答题专练:数列的性质一、解答题(共13题)1.我们知道,在等差数列{a n}中,当公差d>0时,{a n}单调递增;当公差d<0时,{a n}单调递减.请你探究等比数列{b n}单调递增的充要条件.2.在数列{a n}中,a n=2n−5,求数列{a n}的最大项与最小项.2n−7a n,n∈N∗.3.已知各项都是正数的数列{a n}的前n项和为S n,S n=a n2+12(1) 求数列{a n}的通项公式;}的前n项和T n,求证:(2) 设数列{b n}满足:b1=1,b n−b n−1=2a n(n≥2),数列{1b nT n<2;(3) 若T n≤λ(n+4)对任意n∈N∗恒成立,求λ的取值范围.4.已知有限数列{a n}共有30项,其中前20项成公差为d的等差数列,后11项成公比为q的等比数列,记数列的前n项和为S n.从条件①、条件②、条件③这三个条件中选择一个作为已知,求:条件①:a2=4,S5=30,a21=20;条件②:S3=0,a20=−36,a22=−9;条件③:S1=48,a21=20,a24=160.(1) d,q的值;(2) 数列{a n}中的最大项.5.在公比大于0的等比数列{a n}中已知a3a5=a4,且a2,3a4,a3成等差数列.(1) 求{a n}的通项公式;(2) 已知S n=a1a2⋯a n,试问当n为何值时,S n取得最大,并求S n的最大值(n∈N∗,a∈R,且a≠0).6.已知数列{a n}中,a n=1+1a+2(n−1)(1) 若a=−7,求数列{a n}中的最大项和最小项的值;(2) 若对任意的n∈N∗,都有a n≤a6成立,求实数a的取值范围.7. 在数列 {a n } 中,若 a n ∈N ∗,且 a n+1={a n2,a n 是偶数a n +3,a n 是奇数(n =1,2,3,⋯),则称 {a n } 为“J 数列”.设 {a n } 为“J 数列”,记 {a n } 的前 n 项和为 S n . (1) 若 a 1=10,求 S 3n 的值; (2) 若 S 3=17,求 a 1 的值;(3) 证明:{a n } 中总有一项为 1 或 3.8. 用 [x ] 表示一个小于或等于 x 的最大整数.如:[2]=2,[4.1]=4,[−3.1]=−4.已知实数列 a 0,a 1,⋯ 对于所有非负整数 i 满足 a i+1=[a i ]⋅(a i −[a i ]),其中 a 0 是任意一个非零实数. (1) 若 a 0=−2.6,写出 a 1,a 2,a 3; (2) 若 a 0>0,求数列 {[a i ]} 的最小值;(3) 证明:存在非负整数 k ,使得当 i ≥k 时,a i =a i+2.9. 若数列 {a n } 是首项为 6−12t ,公差为 6 的等差数列;数列 {b n } 的前 n 项和为 S n =3n −t . (1) 求数列 {a n } 和 {b n } 的通项公式;(2) 若数列 {b n } 是等比数列,试证明:对于任意的 n (n ∈N,n ≥1),均存在正整数 c n ,使得b n+1=ac n ,并求数列 {c n } 的前 n 项和 T n .(3) 设数列 {d n } 满足 d n =a n b n ,且 {d n } 中不存在这样的项 d k ,使得“d k <d k−1 与 d k <d k+1”同时成立(其中 k ≥2,k ∈N ∗),试求实数的取值范围.10. 已知等比数列 {a n } 的公比为 q ,a 1=32,其前 n 项和为 S n (n ∈N ∗),S 2,S 4,S 3 成等差数列.(1) 求数列 {a n } 的通项公式; (2) 求 b n =S n −1S n(n ∈N ∗) ,求 b n 的最大值与最小值.11. 在数列 {a n } 中,a 1=1,a n+1=1−14a n,b n =12an−1,其中 n ∈N ∗. (1) 证明数列 {b n } 是等差数列,并写出证明过程;(2) 设 c n =2bn2b n−1,数列 {c n } 的前 n 项和为 T n ,求 T n ;(3) 已知当 n ∈N ∗且 n ≥6 时,(1−mn+3)n<(12)m,其中 m =1,2,⋯n ,求满足等式 3n +4n +⋯+(n +2)n =(b n +3)b n 的所有 n 的值之和.12. 设 m 为正整数,各项均为正整数的数列 {a n } 定义如下:a 1=1,a n+1={a n2,a n 为偶数a n +m,a n 为奇数.(1) 若m=5,写出a8,a9,a10;(2) 求证:数列{a n}单调递增的充要条件是m为偶数;(3) 若m为奇数,是否存在n>1满足a n=1?请说明理由.13.已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1) 若数列{a n}是等差数列,且a8=15,求实数a的值;(2) 若数列{a n}满足a n+2−a n=2(n∈N∗),且S19=19a10,求证:{a n}是等差数列;(3) 设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N∗),都存在m∈N∗,使得(S m−a n)(S m−a n+1)<0,写出你的探究过程,并求出满足条件的正实数a的集合.答案一、解答题(共13题)1. 【答案】b1>0,q>1或b1<0,0<q<1,其中q是等比数列{b n}的公比.2. 【答案】{a n}的最大项为a4=3,最小项为a3=−1.3. 【答案】(1) n=1时,a1=a12+12a1,所以a1=12,{S n+1=a n+12+12a n+1,S n=a n2+12a n⇒a n=a n2−a n−12+12a n−12a n−1⇒(a n+a n−1)(a n−a n−1−12)=0,因为a n>0,所以a n−a n−1=12,所以{a n}是以12为首项,12为公差的等差数列,所以a n=12n.(2) b n−b n−1=n,{b2−b1=2,b3−b2=3,⋮b n−b n−1=n⇒b n−b1=(n+2)(n−1)2⇒b n=n(n+1)2,1 b n =2n(n+1)=2(1n−1n+1),所以T n=2(1−12+12−13+⋯+1n−1n+1)=2(1−1n+1)=2nn+1.(3) 由2nn+1≤λ(n+4)得λ≥2n(n+1)(n+4)=2n+4n+5,当且仅当n=2时,2n+4n+5有最大值29,所以λ≥29.4. 【答案】(1) 选择条件①:a2=4,S5=30,a21=20.因为{a n}的前20项成等差数列,a2=4,S5=30,所以 {a 1+d =4,5a 1+5×42d =30, 解得 {a 1=2,d =2.所以 a 20=2+19×2=40.因为数列 {a n } 后 11 项成公比为 q 的等比数列, 所以 q =a 21a 20=12.综上,d =2,q =12.选择条件②:S 3=0,a 20=−36,a 22=−9.因为 {a n } 的前 20 项成等差数列,S 3=0,a 20=−36, 所以 {3a 1+3d =0,a 1+19d =−36,所以 {a 1=2,d =−2.因为数列 {a n } 后 11 项成公比为 q 的等比数列,a 20=−36, 又因为 a 22=−9,q 2=a22a 20=14,所以 q =±12.综上,d =−2,q =±12.选择条件③:S 1=48,a 21=20,a 24=160.因为数列 {a n } 后 11 项成公比为 q 的等比数列,a 21=20,a 24=160, 所以 q 3=a24a 21=8,解得 q =2,所以 a 20=a 21q=10,又因为 {a n } 的前 20 项成等差数列,S 1=a 1=48, 所以 d =a 20−a 120−1=−2,综上,d =−2,q =2.(2) 选择条件①:a 2=4,S 5=30,a 21=20. {a n } 的前 20 项成等差数列,d >0,所以前 20 项为递增数列.即:前 20 项的最大项为 a 20=40, 数列 {a n } 的后 11 项成等比数列,q =12,所以后 11 项是递减数列.即:后 11 项的最大项为 a 20=40, 综上,数列 {a n } 的最大项为第 20 项,其值为 40.选择条件②:S 3=0,a 20=−36,a 22=−9.{a n } 的前 20 项成等差数列,d <0,所以前 20 项为递减数列,前 20 项的最大项为 a 1=2, 因为 q =±12,ⅰ.当 q =12 时,a n =−36(12)n−20(20≤n ≤30 且 n ∈N ∗),所以当 20≤n ≤30 时,a n <0,此时,数列 {a n } 的最大项为第 1 项,其值为 2. ⅱ.当 q =−12 时,a n =−36(−12)n−20(20≤n ≤30 且 n ∈N ∗),后 11 项的最大项为 a 21=18,此时,数列 {a n } 的最大项为第 21 项,其值为 18.综上,当 q =12 时,数列 {a n } 的最大项为第 1 项,其值为 2; 当 q =−12 时,数列 {a n } 的最大项为第 21 项,其值为 18. 选择条件③:S 1=48,a 21=20,a 24=160. {a n } 的前 20 项成等差数列,d <0,所以前 20 项为递减数列,前 20 项的最大项为 a 1=48, {a n } 的后 11 项成等比数列,而 a 20=10,q =2, a n =10⋅2n−20(20≤n ≤30 且 n ∈N ∗),所以后 11 项为递增数列,后 11 项的最大项为 a 30=10240, 综上,数列 {a n } 的最大项为第 30 项,其值为 10240.5. 【答案】(1) 设 {a n } 的公比为 q ,由 a 3a 5=a 4,得 a 4=1. 因为 a 2,3a 4,a 3 成等差数列,所以 a 2+a 3=6a 4,则 6q 2−q −1=0, 解得 q =12 或 q =−13(舍),故 a 1=8. 所以 a n =8×(12)n−1=24−n .(2) S n =a 1a 2⋯a n =23+2+1+⋯+(4−n )=2(7−n )n 2,当 n =3或4 时,S n 取得最大值,(S n )max =64.6. 【答案】(1) 因为 a n =1+1a+2(n−1)(n∈N ∗,a ∈R ,且 a ≠0),a =−7,所以 a n =1+12n−9.结合函数 f (x )=1+12x−9 的单调性,可知 1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>⋯>a n >1(n ∈N ∗).所以数列 {a n } 中的最大项为 a 5=2,最小项为 a 4=0. (2) a n =1+1a+2(n−1)=1+12n−2−a 2.因为对任意的 n ∈N ∗,都有 a n ≤a 6 成立,并结合函数 f (x )=1+12x−2−a 2的单调性,所以 5<2−a 2<6,所以 −10<a <−8.即实数 a 的取值范围为 (−10,−8).7. 【答案】(1) 由 a 1=10,a n+1={a n2,a n 是偶数a n +3,a n 是奇数(n =1,2,3,⋯), 得 a 2=5,a 3=8,a 4=4,a 5=2,a 6=1,a 7=4,⋯, 由上可知,数列 {a n } 自第四项起以 3 为周期周期出现, 当 n =1 时,S 3n =23;当 n ≥2 时,S 3n =23+3(n −1)=3n +20. 所以 S 3n ={23,n =13n +20,n ≥2.(2) S 3=a 1+a 2+a 3=17, 若 a 1 为偶数,则 a 2=a 12, 若 a 2 为偶数,则 a 3=a 14,此时 S 3=74a 1=17,a 1=687(舍);若 a 2 为奇数,则 a 3=a 12+3,此时 S 3=2a 1+3=17,a 1=7(舍);若 a 1 为奇数,则 a 2=a 1+3 为偶数,则 a 3=a 1+32,此时 S 3=5a 1+92=17,a 1=5;综上,a 1 的值为 5.(3) 利用数学归纳法(Ⅱ)证明如下: (1)当 a 1=1,2,3 时,对应的数列分别为: 1,4,2,1,4,2,1,⋯ 2,1,4,2,1,4,2,⋯ 3,6,3,6,3,6,3,⋯ 可知当 a 1=1,2,3 时,命题为真;(2)假设当 a 1<k (k ≥4)命题成立,下面证明 a 1=k 时命题成立.若 k 为偶数,则 a 2=k2<k ,由归纳假设,自 a 2 以后,必然出现 1 或 3,命题为真;若 k 为奇数,则 a 2=k +3,a 3=k+32<k (k ≥4),由归纳假设,自 a 3 以后,必然出现 1 或3,命题为真.综(1)(2)可知,{a n } 中总有一项为 1 或 3.8. 【答案】(1) a 1=−1.2,a 2=−1.6,a 3=−0.8.(2) 因 a 0>0,则 [a 0]≥0,所以 a 1=[a 0](a 0−[a 0])≥0,设 [a i ]≥0,i ≥1,则 a i+1=[a i ](a i −[a i ])≥0,所以 [a i ]≥0,∀i ≥0.又因 0≤a i −[a i ]<1,则 a i+1=[a i ](a i −[a i ])≤[a i ],则 [a i+1]≤[a i ],∀i ≥0. 假设 ∀i ≥0,都有 [a i ]>0 成立,则 a i+1=[a i ](a i −[a i ])<[a i ], 则 [a i+1]<[a i ],∀i ≥0,即 [a i+1]≤[a i ]−1,∀i ≥0, 则 [a n ]≤[a 0]−n ,∀n ≥1,则当 n ≥[a 0] 时,[a n ]≤0, 这与假设矛盾,所以 [a i ]>0,∀i ≥0 不成立,即存在 k ∈N ,[a k ]=0,从而 {[a i ]} 的最小值为 0.(3) 当 a 0>0 时,由(2)知,存在 k ∈N ,[a k ]=0,所以 a k+1=0,所以 [a k+1]=0,所以 a i =0,∀i ≥k ,成立. 当 a 0<0 时,若存在 k ∈N ,a k =0,则 a i =0,∀i ≥k ,得证; 若 a i <0,∀i ≥0,则 [a i ]≤−1,则 a i+1=[a i ](a i −[a i ])>[a i ], 则 [a i+1]≥[a i ],∀i ≥0,所以数列 {[a i ]} 单调不减. 由于 [a i ] 是负整数,所以存在整数 m 和负整数 c , 使得当 i ≥m 时,[a i ]=c .所以,当 i ≥m 时,a i+1=c (a i −c ), 则 a i+1−c 2c−1=c (a i −c 2c−1),令 b i =a i −c 2c−1,即 b i+1=cb i ,i ≥m .当 b m =0 时,则 b i =0,i ≥m ,则 a i =c 2c−1,i ≥m ,得证. 当 b m ≠0 时,b i ≠0,i ≥m ,b i =c i−m b m ,i ≥m ,因当 i ≥m 时,[a i ]=c ,则 a i ∈[c,c +1),则 {b i } 有界, 所以 ∣c∣≤1,所以负整数 c =−1.所以 a i =−12+(−1)i−m b m =−12+(−1)i−m (a m +12)(i ≥m ),则 a i ={a m ,i =m,m +2,m +4,⋯−1−a m ,i =m +1,m +3,⋯.令 k =m ,满足当 i ≥k 时,a i =a i+2.综上,存在非负整数 k ,使得当 i ≥k 时,a i =a i+2.9. 【答案】(1) 因为 {a n } 是等差数列,所以 a n =(6−12t )+6(n −1)=6n −12t ,而数列 {b n } 的前 n 项和为 S n =3n −t ,所以当 n ≥2 时,b n =(3n −1)−(3n−1−1)=2×3n−1, 又 b 1=S 1=3−t ,所以 b n ={3−t,n =12×3n−1,n ≥2.(2) 因为 {b n } 是等比数列,所以 3−t =2×31−1=2,即 t =1, 所以 a n =6n −12.对任意的 n (n ∈N,n ≥1),由于 b n+1=2×3n =6×3n−1=6×(3n−1+2)−12,令 c n =3n−1+2∈N ∗,则 a c n =6(2+3n−1)−12=b n+1,所以命题成立. 数列 {c n } 的前 n 项和 T n =2n +1−3n 1−3=12×3n +2n −12.(3) 易得 d n ={6(3−t )(1−2t ),n =14(n −2t )3n ,n ≥2,由于当 n ≥2 时,d n+1−d n =4(n +1−2t )3n+1−4(n −2t )3n =8[n −(2t −32)]×3n ,所以(ⅰ)若 2t −32<2,即 t <74,则 d n+1>d n , 所以当 n ≥2 时,{d n } 是递增数列,故由题意得 d 1≤d 2,即 6(3−t )(1−2t )≤36(2−2t ), 解得−5−√974≤t ≤−5+√974<74.(ⅱ)若 2≤2t −32<3,即 74≤t <94, 则当 n ≥3 时,{d n } 是递增数列,故由题意得 d 2=d 3,即 4(2t −2)32=4(2t −3)33,解得 t =74.(ⅲ)若 m ≤2t −32<m +1(m ∈N ∗,m ≥3),即m 2+34≤t <m 2+53(m ∈N,m ≥3),则当 2≤n ≤m 时,{d n } 是递减数列,当 n ≥m +1 时,{d n } 是递增数列, 则由题意,得 d m =d m+1,即 4(2t −m )3m =4(2t −m −1)3m+1,解得 t =2m+34.综上所述,取值范围是 −5−√974≤t ≤−5+√974或 t =2m+34(m ∈N ,m ≥2).10. 【答案】(1) 若 q =1,又 a 1=32,所以 S 2=2a 1=3,S 4=4a 1=6,S 3=3a 1=92,则 2S 4≠S 2+S 3,不满足条件,所以 q ≠1,由 S 2,S 4,S 3 成等差数列,得 2S 4=S 2+S 3,所以2a 1(1−q 4)1−q=a 1(1−q 2)1−q+a 1(1−q 3)1−q,整理得2q 4=q 2+q 3,又 q ≠0,所以 2q 2=1+q ,解得 q =−12 或 q =1 (舍),所以q =−12,所以a n =a 1q n−1=32(−12)n−1.(2) 由(1)知 S n =32[1−(−12)n ]1−(−12)=1−(−12)n={1+(12)n,n 为奇数,1−(12)n,n 为偶数.①当 n 为奇数时,S n 随着 n 的增大而减少,所以 1<S n ≤S 1=32,因为 y =x −1x 在 (0,+∞) 上为增函数,故 0<S n −1S n≤S 1−1S 1=32−23=56,即0<b n ≤56;②当 n 为偶数时,S n 随着 n 的增大而增大,所以 S 2≤S n <1, 因为 y =x −1x 在 (−∞,0) 上为增函数,故 S 2−1S 2≤S n −1S n<0,又 S 2=1−(12)2=34,则S 2−1S 2=34−43=−712,所以 −712≤S n −1S n<0,即 −712≤b n <0,综上,∀n ∈N ∗,总有 −712≤b n ≤56,且 b n ≠0,所以 b n 的最大值为 56,最小值为 −712.11. 【答案】(1) 因为 a 1=1,a n+1=1−14a n,b n =12an −1,所以b n+1−b n=12a n+1−1−12an −1=12(1−14a n)−1−12an −1=11−12a n−12an −1=2a n2a n−1−12a n −1=1.所以数列 {b n } 是以 1 为公差,1 为首项的等差数列. (2) 由(1)可得 b n =1+n −1=n , 所以 c n =2b n 2b n−1=2n 2n−1=2n ⋅(12)n−1,所以 T n =2[(12)0+2(12)1+3(12)2+⋯+(n −1)(12)n−2+n (12)n−1],12T n =2[(12)1+2(12)2+3(12)3+⋯+(n −1)(12)n−1+n (12)n],所以12T n=2[(12)0+(12)1+(12)2+(12)3+⋯+(12)n−1]−2n (12)n =2⋅1−(12)n1−12−2n (12)n=4−4(12)n −2n (12)n .所以 T n =8−8(12)n −4n (12)n . (3) 由(1)将 3n +4n +⋯+(n +2)n =(b n +3)b n 化为 3n +4n +⋯+(n +2)n =(n +3)n , 即 (3n+3)n +(4n+3)n +⋯+(n+2n+3)n =1,所以 (1−n n+3)n +(1−n−1n+3)n +⋯+(1−1n+3)n =1,因为当 n ∈N ∗ 且 n ≥6 时,(1−m n+3)n <(12)m ,所以 (1−1n+3)n <12,(1−2n+3)n <(12)2,⋯⋯,(1−n n+3)n <(12)n , 所以 (1−n n+3)n +(1−n−1n+3)n +⋯+(1−1n+3)n <12+(12)2+⋯+(12)n =1−(12)n<1, 所以当 n ≥6 时,3n +4n +⋯+(n +2)n <(n +3)n ,当 n =1 时,31<(1+3)1,当 n =2 时,32+42=(2+3)2, 当 n =3 时,33+43+53=(3+3)3=216,当 n =4 时,34+44+54+64=2258<(4+3)4=2401,当 n =5 时,35+45+55+65+75=12168<(5+3)5=32768, 所以满足 3n +4n +⋯+(n +2)n =(b n +3)b n 的所有 n =2和3,其和为 5.12. 【答案】(1) a 8=6,a 9=3,a 10=8.(2) 先证“充分性”.当 m 为偶数时,若 a n 为奇数,则 a n+1 为奇数.因为 a 1=1 为奇数,所以归纳可得,对 ∀n ∈N ∗,a n 均为奇数,则 a n+1=a n +m , 所以 a n+1−a n =m >0,所以数列 {a n } 单调递增.再证“必要性”.假设存在 k ∈N ∗ 使得 a k 为偶数,则 a k+1=a k 2<a k ,与数列 {a n } 单调递增矛盾, 因此数列 {a n } 中的所有项都是奇数.此时 a n+1=a n +m ,即 m =a n+1−a n ,所以 m 为偶数.(3) 存在 n >1 满足 a n =1,理由如下:因为 a 1=1,m 为奇数,所以 a 2=1+m ≤2m 且 a 2 为偶数,a 3=1+m 2≤m .假设a k为奇数时,a k≤m;a k为偶数时,a k≤2m.当a k为奇数时,a k+1=a k+m≤2m,且a k+1为偶数;当a k为偶数时,a k+1=a k2≤m.所以若a k+1为奇数,则a k+1≤m;若a k+1为偶数,则a k+1≤2m.因此对∀n∈N∗都有a n≤2m.所以正整数数列{a n}中的项的不同取值只有有限个,所以其中必有相等的项.设集合A={(r,s)∣a r=a s,r<s},设集合B={r∈N∗∣(r,s)∈A}⊆N∗.因为A≠∅,所以B≠∅.令r1是B中的最小元素,下面证r1=1.设r1>1且a r1=a s1(r1<s1).当a r1≤m时,a r1−1=2a r1,a s1−1=2a s1,所以a r1−1=a s1−1;当a r1>m时,a r1−1=a r1−m,a s1−1=a s1−m,所以a r1−1=a s1−1.所以若r1>1,则r1−1∈B且r1−1<r1,与r1是B中的最小元素矛盾.所以r1=1,且存在1<s1∈N∗满足a s1=a1=1,即存在n>1满足a n=1.13. 【答案】(1) 设等差数列{a n}的公差为d.由a1=1,a8=15得1+7d=15,解得d=2,则得a2=a1+d=1+2=3,所以a=3.(2) 由S19=19a10,得10×1+10×92×2+9a+9×82×2=19×(a+8),解得a=2,由a n+2−a n=2,且a1=1,a2=2,得当n为奇数时,a n=a1+n−12×2=n;当n为偶数时,a n=a2+n−22×2=n.所以对任意n∈N∗,都有a n=n,当n≥2时,a n−a n−1=1,所以数列{a n}是以1为首项、1为公差的等差数列.(3) 由题意a n=a n−1.①当0<a<1时,a3<a2<a1≤S m,所以对任意m∈N∗,都有(S m−a2)(S m−a3)>0,因此数列{a n}不具有性质M;②当a=1时,a n=1,S n=n,所以对任意m∈N∗,都有(S m−a2)(S m−a3)=(m−1)2≥0,因此数列{a n}不具有性质M;③当1<a<2时,(a−1)2>0⇔a(2−a)<1⇔12−a >a⇔log a12−a>1n≥log a12−a ⇔a n−1a−1≥a n⇔S n≥a n+1,n<log a12−a ⇔a n−1a−1<a n⇔S n<a n+1,取⌈log a12−a⌉=n0(⌈x⌉表示不小于x的最小整数),则S n0≥a n0+1,S n0−1<a n.所以对于任意m∈N∗,(S m−a n0)(S m−a n0+1)≥0,即对于任意m∈N∗,S m都不在区间(a n0,a n0+1)内,所以数列{a n}不具有性质M;④当a≥2时,S n−a n+1=a n−1a−1−a n=(2−a)a n−1a−1<0,且S n>a n,即对任意的n≥2(n∈N∗),都有(S m−a n)(S m−a n+1)<0,所以当a≥2时,数列{a n}具有性质M.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).③④的另解:当a>1时,{a n}单调递增,{S n}单调递增,且n≥2时,S n>a n.若对任意n≥2(n∈N∗),都存在m∈N∗,使得(S m−a n)(S m−a n+1)<0,即存在S m在区间(a n,a n+1)内.观察(a2,a3),(a3,a4),⋯,发现在(a n,a n+1)内的S m只能是S n.证明:在n−1个区间(a2,a3),(a3,a4),⋯,(a n,a n+1)内需要n−1个S m,因为S1<a2,S n+1>a n+1,所以可选择的S m只能是S2,S3,⋯,S n,共n−1个.由S2<S3<⋯<S n,得a n<S n<a n+1.所以只需满足S n<a n+1恒成立,即a n−1a−1<a n,得2−1a n<a对任意n∈N∗都成立.因为数列{2−1a n }单调递增,且limn→∞(2−1a n)=2,所以a≥2.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).结束。

高考数学解答题(新高考)数列求和(错位相减法)(典型例题+题型归类练)(解析版)

高考数学解答题(新高考)数列求和(错位相减法)(典型例题+题型归类练)(解析版)

专题07 数列求和(错位相减法)(典型例题+题型归类练)一、必备秘籍错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)类型二:除型二、典型例题类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)例题1.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为21n b n =+,求1122n n n T a b a b a b =+++的值.感悟升华(核心秘籍) 错位相减法的两个陷阱(易错点):(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,令,则求解目标,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)【答案】(1)3=n a (2)3n T n =⋅ (1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a . (2)01-13353(21)3n n T n =⨯+⨯+++,③12-133353+(21)?3(21)?3n n n T n n =⨯+⨯+-++,④③−④得:121232(333)(21)3n n n T n --=++++-+13(13)32(21)313n n n --=+⨯-+-(2)3n n =-,所以3n n T n =.例题2.(2022·黑龙江·哈尔滨三中模拟预测(理))已知数列{}n a ,13a =,点()1,n n a a +在曲线5823x y x -=-上,且12n n b a =-. (1)求证:数列{}n b 是等差数列; (2)已知数列{}n c 满足122n b n n c b +=⋅,记n S 为数列{}n c 的前n 项和,求n S .【答案】(1)证明见解析(2)16(23)2n n S n +=+-⋅;证明见解析(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)因为点()1,n n a a +在曲线5823x y x -=-上,所以15823n n n a a a +-=-,因为13a =,所以11111232b a ===--, 因为11111158222223n n n n n n n b b a a a a a ++-=-=-------231222n n n a a a -=-=--, 所以数列{}n b 是首项为1,公差为2的等差数列. (2)由(1)得1(1)221n b b n n =+-⋅=-, 所以1221)22(n n b n nc b n +=⋅=-⋅,所以123123252(212)n n n S =⨯+⨯+⨯++-⋅,3124123252(21)22n n S n +=⨯+⨯+⨯++-⋅,所以231222(222)(21)2n n n n S S n +-=++++--⋅,所以114(12)22(21)212n n n S n -+--=+⨯--⋅-16(32)2n n +=-+-⋅,所以16(23)2n n S n +=+-⋅.类型二:除型nn na cb =(其中n a 是等差数列,n b 是等比数列) 例题3.(2022·湖南·模拟预测)设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式;(2)若23n n a b n =,求数列{}n b 的前n 项和n T .【答案】(1)123n n a -=⨯(2)323443n nn T +=-⨯第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减,化简,求和:(注意此处等比数列求和有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)122n n a S +=+,① 当2n ≥时,122n n a S -=+,②①-②得()1122n n n n n a a S S a +--=-=,∴13(2)n n a a n +=≥,∴13n na a +=, ∵12a =,∴21226a S =+=,∴21632a a ==也满足上式, ∴{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a --=⋅=⋅. 即{}n a 的通项公式为123n n a -=⨯.(2)由(1)知123n n a -=⨯,所以233n n n n nb a ==, 令211213333n n n n nT --=++++,① 得231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-11111113311323313n n n n n n++⎛⎫- ⎪⎛⎫⎝⎭=-=-- ⎪⎝⎭-, 所以323443n nn T +=-⨯.例题4.(2022·河南·灵宝市第一高级中学模拟预测(文))已知数列{}n a 满足()()*1111n n a a n n n n n +-=∈++N ,且11a =.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足13nn n a b -=,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1133n n n S -+=-第(2)问思路点拨:由(1)知:根据题意,得,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减:化简求和:解答过程:(1)因为()1111111n n a a n n n n n n +-==-+++, 所以()111211n n a a n n n n n--=-≥--, 12111221n n a a n n n n ---=-----, …2111122a a -=-, 所以()1112n a a n n n-=-≥. 又11a =,所以21n a n n n-=,所以()212n a n n =-≥. 又11a =,也符合上式, 所以21n a n =-. (2)结合(1)得1213n n n b --=,所以 01231135********n n n S --=++++⋅⋅⋅+,① 2311352133333n n n S -=+++⋅⋅⋅+,② ①-②,得212111211233333n n n n S --⎛⎫=+++⋅⋅⋅+- ⎪⎝⎭111213321221213313n n nn n -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭-+⎢⎥⎣⎦=+-=--,所以1133n n n S -+=-. 三、题型归类练1.(2022·辽宁·沈阳市外国语学校高二期中)设数列{}n a 的前n 项和为n S ,且满足4n n S a =-,数列{}n b 满足13b =,且1n n n b b a +=+. (1)求数列{}n b 的通项公式;(2)设n n c na =,数列{}n c 的前n 项和为n T ,求n T . 【答案】(1)3172n n b -⎛⎫=- ⎪⎝⎭(2)()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭(1)解:∵4n n S a =-,当2n ≥时114n n S a --=-, 两式作差得()12n n n a a a n -=-+≥, 即()1122n n a a n -=≥.当1n =时1114a S a ==-,∴12a =, ∴{}n a 为首项为2,公比为12的等比数列,∴1122n n a -⎛⎫=⋅ ⎪⎝⎭,∴11122n n n b b -+⎛⎫=+⋅ ⎪⎝⎭,即11122n n n b b -+⎛⎫-=⋅ ⎪⎝⎭,又13b =,∴当2n ≥时,()()()121321n n n b b b b b b b b -=+-+-+⋅⋅⋅+-0121113222222n -⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111232112n -⎛⎫- ⎪⎝⎭=+⨯-3172n -⎛⎫=- ⎪⎝⎭,当1n =时,1311372b -⎛⎫==- ⎪⎝⎭,∴3172n n b -⎛⎫=- ⎪⎝⎭;(2)解:由题意1122n n c n -⎛⎫=⋅ ⎪⎝⎭则011111242222n n T n -⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①则()121111112*********n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,②①-②得012111111122222222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1112221212nnn ⎛⎫- ⎪⎛⎫⎝⎭=⨯-⋅ ⎪⎝⎭-()14222n n ⎛⎫=-+⋅ ⎪⎝⎭,∴()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭,2.(2022·广东·模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .【答案】(1)3n n a =(2)1133244n n n T +⎛⎫=+- ⎪⎝⎭(1)解:因为()22*11230n n n n a a a a n ++--=∈N , 所以()()1130n n n n a a a a +++-=,又因0n a >,所以130n n a a +-=, 即13n na a +=, 所以数列{}n a 是以3为等比的等比数列,是以3n n a =;(2)解:()3131log l 313g 3o n n n n n n b a n a ++=+==⋅,则()2323334313n n T n =⨯+⨯+⨯+++,()23413233343313n n n T n n +=⨯+⨯+⨯++⋅++, 两式相减得()2312633313n n n T n +-=++++-+()()131331313n n n +⨯-=+-+-113322n n +⎛⎫=-++ ⎪⎝⎭, 所以1133244n n n T +⎛⎫=+- ⎪⎝⎭. 3.(2022·河南郑州·三模(理))已知数列{}n a 的前n 项和为n S ,122n n n a S -=. (1)证明数列2nn a ⎧⎫⎨⎬⎩⎭为等差数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)证明见解析;(2)()2124n n T n +=-⋅+.(1)N n *∈,122n n n a S -=,当2n ≥时,111122n n n a S ----=,两式相减得:111222n n n n n a a a ----=-, 即11122n n n a a ---=,则有11122n n n n a a ---=,而11122a S -=,解得14a =, 所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列. (2)由(1)知,()21112n n a n n =+-⨯=+,即()12n n a n =+⋅,于是得12n n S n +=⋅, ()2341122232122n n n T n n +=⨯+⨯+⨯++-⨯+⨯,因此()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯=,两式相减得:22341222(22222222(112))214n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅--, 所以()2124n n T n +=-⋅+. 4.(2022·全国·模拟预测)已知公差为整数的等差数列{}n a 满足23a =,5810a <<.(1)求数列{}n a 的通项公式;(2)设()2nn n b a =-⋅,求数列{}n b 的前n 项和n S . 【答案】(1)21n a n =-;(2)()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. (1)解:设等差数列{}n a 的公差为d ,因为23a =,5810a <<,所以83310d <+<,解得5733d <<, 又d ∈Z ,所以2d =, 所以()()2232221n a a n d n n =+-=+-=-.(2)解:因为()2n n n b a =-⋅,所以()()212n n b n =-⋅-, 所以()()()()()()()231123252232212n n n S n n -=⨯-+⨯-+⨯-++-⋅-+-⋅-,① ()()()()()()23121232232212n n n S n n +-=⨯-+⨯-++-⋅-+-⋅-,②①-②得,()()()()()231322222212n n n S n +⎡⎤=-+⨯-+-+⋅⋅⋅+---⋅-⎣⎦()()()()()()2111222122223221321n n n n n +++---⎛⎫-=--⋅- ⎪-=⎝⎭-+⨯--⋅-, 所以()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. 5.(2022·江西南昌·三模(理))已知数列{}n a 为等比数列,且11a =,2112n n n a a -+=-.(1)求{}n a 的通项公式; (2)设(1)n n nn b a -⋅=,求数列{}n b 的前n 项和n S . 【答案】(1)1(2)n n a -=-(2)1242n n n S -+=- 【解析】(1)因为2112n n n a a -+=-,所以21122n n n a a +++=-, 两式相除可得24n na a +=,即24q =, 因为21n n n a a a q +=,所以22120n n a q +=-<,可得0q <,所以2q =-,所以111(2)n n n a a q --==-. (2)11(1)(2)2n n n n n n b ---⋅==--, 则01221123122222n n n n n S ---⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ① 12311231222222n n n S n n --⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ② ①-②可得:1211111122121222222212nn n n n n S n n n -⎛⎫- ⎪+⎛⎫⎝⎭=-+++⋅⋅⋅+-=-=- ⎪⎝⎭-, 故1242n n n S -+=-. 6.(2022·全国·模拟预测)已知数列{}n a 满足11a =,121n n a a n +=+-.(1)证明:{}n a n +为等比数列;(2)求数列{}2nn a的前n 项和n S . 【答案】(1)证明见解析(2)222n nn S n +=-+ (1)由已知得()()112n n a n a n +++=+.又因为111120a +=+=≠,所以{}n a n +是首项为2,公比为2的等比数列;(2)由(1)可知1222n n n a n -+=⨯=.所以122n n n a n =-. 记2n n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则n n S n T =-,且有 231232222n n n T =+++⋅⋅⋅+, ① 12⨯①得 2341112322222n n n T +=+++⋅⋅⋅+, ② -①②得23411111112222222n n n n T +=++++⋅⋅⋅+- 1111221212n n n +⎛⎫- ⎪⎝⎭=--所以222n nn T +=- 所以222n n n n S n T n +=-=-+. 7.(2022·河南河南·三模(理))已知等差数列{}n a 的前n 项和为n S ,13a =-,612S =,数列{}n b 的前n 项和为122n n G .(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1)25,2n n n a n b =-=(2)127214n n T n .(1)设等差数列{}n a 的公差为d ,则1615181512,2a d d d +=-+==,所以25n a n =-. 由122n n G ,令1n =得21222b ,当2n ≥时,112222n n n n G G +-⎧=-⎨=-⎩,两式相减得()22n n b n =≥,12b =也符合上式, 所以2n n b =.(2)252n n c n ,()()()123212252n n T n =-⋅+-⋅++-⋅①, ()()()23123212252n n T n +=-⋅+-⋅++-⋅②,①-②得:()34116222252n n n T n ++-=-++++--⋅ ()()()311121262521472212n n n n n -++-=-+--⋅=-+-⋅-, 所以127214n n T n .8.(2022·全国·模拟预测(理))设数列{}n a 满足12a =,()122*n n a a n n --=-∈N .(1)求证:{}n a n -为等比数列,并求{}n a 的通项公式;(2)若()n n b a n n =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析,12n n a n -=+(2)()121n n T n =-⨯+(1)解:因为12a =,()122*n n a a n n --=-∈N , 所以122n n a a n -=+-,即()121n n a n a n -⎡⎤-=--⎣⎦ 又11211a -=-=,所以{}n a n -是以1为首项,2为公比的等比数列,所以112n n a n --=⨯,所以12n n a n -=+(2)解:由(1)可得()12n n n b a n n n -=-⋅=⨯,所以01211222322n n T n -=⨯+⨯+⨯++⨯①,所以12321222322n n T n =⨯+⨯+⨯++⨯②,①-②得12311121212122n n n T n --=+⨯+⨯+⨯++⨯-⨯ 即12212n n n T n --=-⨯-,所以()121n n T n =-⨯+; 9.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N . (1)求{}n a 的通项公式;(2)若n nn b a =,求数列{}n b 的前n 项和n T . 【答案】(1)3n n a =(2)323443n n n T +=-⨯ (1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去), 令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3n n a =.(2)由(1)可得,3n n n n n b a ==, 所以231233333n nn T =++++, 所以2341112333333n n n T +=++++, 两式相减得,23412111113333333n n n n T +=+++++- 11111123331322313n n n n n ++⎛⎫- ⎪+⎝⎭=-=-⋅-, 所以323443n nn T +=-⨯. 10.(2022·江西萍乡·二模(文))已知数列{}n a 中,111,2n n n a a a +==,令2n n b a =.(1)计算123,,b b b 的值,并求数列{}n b 的通项公式;(2)若()31n n c n b =+,求数列{}n c 的前n 项和n T .【答案】(1)1232,4,8b b b ===;2n n b =(2)1(32)24n n T n +=-⋅+(1)由12nn n a a +=得12nn n a a +=,又11a =,423562,2,4,84,a a a a a ∴=====,4612232,4,8b a b a b a ∴======,由 12n n n a a +=得1122n n n a a +++=,两式相除可得 22n na a +=, 则 12222n n n nb a b a ++==, {}n b ∴ 是以2 为首项,2 为公比的等比数列,故 2n n b =;(2)由 (1) 知 (31)2n n c n =+,则 ()2314272102322(31)2n n n T n n -=⨯+⨯+⨯++-++,()234124272102322(31)2n n n T n n +=⨯+⨯+⨯++-++, 两式相减得()2123112283222(31)283(31)212n n n n n T n n +++--=+⨯+++-+=+⨯-+- 1(23)24n n +=-⋅-,故1(32)24n n T n +=-⋅+。

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。

高考调研数列解答题专题练习作业含答案

高考调研数列解答题专题练习作业含答案

高考调研数列解答题专题练习作业含答案数列专练・作业(二十五)1.(2021・成都二次诊断)(本小题满分12分)已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n,n∈N*. (1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若等比数列{bn}的前1n项和为Tn.求证:数列{Tn+6}为等比数列.解析 (1)由已知a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,∴a2=3p+2.由已知a2-a1=2,∴p=1.(3分) ∴an=2n+1,n∈N*.(5分)(2)在等比数列{bn}中,b3=a1=3,b4=a2+4=9.(7分) 1由b3=b1・3,即3=b1・3,解得b1=3. 221∴{bn}是以3为首项,3为公比的等比数列.(8分) 1n?1-3?31∴Tn==6×(3n-1).(10分)1-3111即Tn+6=6×3n=2×3n-1.1Tn+611*又∵T1+6=2,=3,n≥2,n∈N, 1Tn-1+611∴数列{Tn+6}是以2为首项,3为公比的等比数列.(12分) 2.(2021・都江堰市4月模拟)(本小题满分12分)设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{an}的通项公式;n(2)令bn=a,求数列{bn}的前n项和Tn.n解析?a1+a2+a3=7,(1)由已知得??a1+3?+?a3+4?=3a2,?2解得a2=2.(2分)2设数列{an}的公比为q,由a2=2,可得a1=q,a3=2q. 2又S3=7,可知q+2+2q=7,1即2q-5q+2=0,解得q=2或2.由题意知q>1,∴q=2,∴a12=1.(5分)故数列{an}的通项公式为an=2n-1.(6分)nn12n(2)由于bn=a=n-1,∴Tn=20+21+…+n-1.(8分)22nn-1n112∴2Tn=21+22+…+n-1+2n. 21111n1n两式相减,得2Tn=1+21+22+…+n-1-2n=2(1-2n)-2n=2- 2n+22n.(10分)∴Tn=4-n+2.(12分) 2n-13.(2021・浙江宁波一模)(本小题满分12分)n设数列{an}满足a1+3a2+32a3+…+3n-1an=3,n∈N*. (1)求数列{an}的通项; n(2)设bn=a,求数列{bn}的前n项和Sn.n解析(1)∵a1+3a2+3a3+…+322n-1nan=3,①n-2∴当n≥2时,a1+3a2+3a3+…+3①-②,得3n-1n-1an-1=3,②11an=3,an=3n.(4分)11在①中,令n=1,得a1=3.∴an=3n.(6分) n(2)∵bn=a,∴bn=n・3n.n∴Sn=3+2×32+3×33+…+n・3n.③ ∴3Sn=32+2×33+3×34+…+n・3n+1.④④-③,得2Sn=n・3n+1-(3+32+33+…+3n).(10分) 即2Sn=n・3n+13?1-3n?-. 1-3?2n-1?3n+13∴Sn=+4.(12分) 44.(2021・沈阳质量监测二)(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,满足b2+c2=bc+a2.(1)求角A的大小;(2)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,4a8成等比数列,求{}的前n项和Sn.anan+1解析(1)∵b2+c2-a2=bc, b2+c2-a2bc1∴2bc=2bc=2.1∴cosA=2.π又A∈(0,π),∴A=3.(5分) (2)设{an}的公差为d,12由已知得a1=cosA=2,且a4=a2・a8. ∴(a1+3d)2=(a1+d)(a1+7d).又d不为零,∴d=2.(9分) ∴an=2n.(10分) ∴4111==n-.(11分) anan+1n?n+1?n+111111111∴Sn=(1-2)+(2-3)+(3-4)+…+(n-)=1-=n+1n+1n.(12分) n+15.(2021・成都四校3月联考)(本小题满分12分)已知等差数列{an}满足a3-a1=6,且a1,a2,a6成等比数列. (1)求{an}的通项公式;??an,当an为奇数时,(2)设bn=?求{bn}的前n项和Tn.?-an,当an为偶数时,?解析 (1)设等差数列{an}的公差为d,则由a3-a1=2d=6,∴d=3.(2分)所以由a1,a2,a6成等比数列,得a1(a1+5×3)=(a1+3)2,解得a1=1.(4分)于是an=1+(n-1)×3=3n-2,即{an}的通项公式是an=3n-2.(6分)(2)因为数列{an}的公差为3,即an+1=an+3(n∈N*),所以{an}中的项奇偶性交替出现,而a1=1,所以当an为奇数时,n为奇数,当an为偶数时,n 为偶数,所以??an,当n为奇数时,bn=?(7分)?-a,当n为偶数时.?n对{bn}的前n项和Tn:①当n为偶数时,Tn=a1-a2+a3-a4+…+an-1-an =(a1-a2)+(a3-a4)+…+(an-1-an) n =(-3)×2 3n=-2;(9分) ②当n为奇数时,Tn=a1-a2+a3-a4+…+an-2-an-1+an =(a1-a2)+(a3-a4)+…+(an-2-an-1)+an n-1=(-3)×2+3n-2 3n-1=2.(11分)?综上,T=?3n-?2,当n为偶数时.n3n-12,当n为奇数时,(12分)6.(2021・南昌二模)(本小题满分12分)1已知公比不为1的等比数列{an}的首项a1=2,前n项和为Sn,且a4+S4,a5+S5,a6+S6成等差数列.(1)求等比数列{an}的通项公式;(2)对n∈N*,在an与an+1之间插入3n个数,使这3n+2个数成等差数列,记插入的这3n个数的和为bn,求数列{bn}的前n项和Tn.解析 (1)因为a4+S4,a5+S5,a6+S6成等差数列,所以a5+S5-a4-S4=a6+S6-a5-S5.(2分) 即2a6-3a5+a4=0,所以2q2-3q+1=0. 1因为q≠1,所以q=2.(4分)1所以等比数列{an}的通项公式为an=2n.(6分) an+an+1n33n(2)由题设及(1)知bn=2・3=4(2),(9分) 33n+1-??32293n故Tn=4×=34[(2)-1].(12分)1-2感谢您的阅读,祝您生活愉快。

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

高中数学 数列 练习题(含答案)

高中数学  数列  练习题(含答案)

新高考题型:解答题开放性问题(条件3选1)《数列》1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T .3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ,*n N ∈. (1)求n S 的最小值;(2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n nn b a a +=,求数列{}n b 的前n 项和n T .7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <.10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<.11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T .13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n 项和n T .15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S .17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值.注:如果选择多个条件分别解答,那么按第一个解答计分.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)注:如果选择多个条件分别解答,按第一个解答计分.19.给出以下三个条件:①34a ,43a ,52a 成等差数列;①对于*n N ∀∈,点(,)n n S 均在函数2x y a =-的图象上,其中a 为常数;①37S =.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{}n a 是一个公比为(0,1)q q q >≠的等比数列,且它的首项11a =,. (1)求数列{}n a 的通项公式;(2)令*22log 1()n n b a n N =+∈,证明数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和12n T <.20.在①133a a b +=,①52a =-,①254b S b +=-这三个条件中任选两个,补充在下面的问题中.若问题中的m 存在,求出m 的值;若不存在,请说明理由.等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列, , ,且12b =,2312b b +=.是否存在大于2的正整数m ,使得14S ,3S ,m S 成等比数列?21.在①2213(0)n n n a a a +-=>,①211390n n n n a a a a -----=,①222n S n n =-+这三个条件中任选一个,补充在下面问题中.已知:数列{}n a 的前n 项和为n S ,且11a =, . (1)求数列{}n a 的通项公式;(2)对大于1的自然数n ,是否存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列.若存在,求m 的最小值;若不存在,说明理由.22.在①21n n S b =-,①14(2)n n b b n --=,①12(2)n n b b n -=+这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求出k 的值;若k 不存在,说明理由. 已知数列{}n a 为等比数列,123a =,312a a a =,数列{}n b 的首项11b =,其前n 项和为n S , ,是否存在k ,使得对任意*n N ∈,n n k k a b a b 恒成立?23.已知函数()log (k f x x k =为常数,0k >且1)k ≠.(1)在下列条件中选择一个 使数列{}n a 是等比数列,说明理由; ①数列{()}n f a 是首项为2,公比为2的等比数列; ①数列{()}n f a 是首项为4,公差为2的等差数列;①数列{()}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =时,设12241n n n a b n +=-,求数列{}n b 的前n 项和n T .24.在①44a b =,①624S =-这两个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设n S 为等差数列{}n a 的前n 项和,{}n b 是等比数列, ,15b a =,39b =-,6243b =.是否存在k ,使得1k k S S ->且1k k S S +<?注:如果选择多个条件分别解答,按第一个解答计分.25.设33M a =-,22N a =,4T a =,给出以下四种排序:①M ,N ,T ;①M ,T ,N ;①N ,T ,M ;①T ,N ,M .从中任选一个,补充在下面的问题中,解答相应的问题. 已知等比数列{}n a 中的各项都为正数,11a =,且___依次成等差数列. (①)求{}n a 的通项公式;(①)设,01,1,1,n n n n na ab a a <⎧⎪=⎨>⎪⎩数列{}n b 的前n 项和为n S ,求满足100n n S b >的最小正整数n .26.已知数列{}n a 的前n 项和为n S ,11a =,1(0n n S pa p +=≠且1p ≠-,*)n N ∈. (1)求{}n a 的通项公式;(2)在①1k a +,3k a +,2k a +①2k a +,1k a +,3k a +这两个条件中任选一个,补充在下面的问题中:对任意的正整数k ,若将1k a +,2k a +,3k a +按______的顺序排列后构成等差数列,求p 的值.27.设*n N ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,①69a =,①535S =这三个条件中任选一个补充在上面题干中,并解答下面问题. (1)求数列{}n a 的通项公式;(2)若数列{}n b满足1(1)n a n n n b a +=+-,求数列{}n b 的前2n 项的和2n T .28.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且 ______(①1a ,2a ,4a 成等比数列;①(3)2n n n S +=;①926a =任选一个条件填入上空). 设3n a n b =,nn n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小.注:如果选择多个条件分别解答,按第一个解答计分.29.在①2a ,3a ,44a -成等差数列;①1S ,22S +,3S 成等差数列;①12n n a S +=+中任选一个,补充在下列的问题中,并解答.在各项均为正数等比数列{}n a 中,前n 项和为n S ,已知12a =,且 . (1)求数列{}n a 的通项公式; (2)数列{}n b的通项公式nn b =,*n N ∈,求数列{}n b 的前n 项和n T .30.在①36S a =,①420S =,①14724a a a ++=这三个条件中任选一个,补充在下面问题中,并解答.(注:如果选择多个条件分别解答,则按第一个解答给分) 已知等差数列{}n a 的前n 项和为n S ,满足36a =,____. (1)求{}n a 的通项公式;(2)设2n a n n b a =+,求{}n b 的前n 项和n T .31.已知{}n a 是等差数列,{}n b 是等比数列,15b a =,23b =,581b =-. (1)求数列{}n b 的通项公式:(2)设数列{}n a 的前n 项和为n S ,在①132b b a +=,①44a b =这两个条件中任选一个,补充在题干条件中,是否存在k ,使得1k k S S +>且21k k S S ++>?若问题中的k 存在,求k 的值;着k 不存在,说明理由.32.已知等差数列{}n a 的公差为d ,前n 项和为n S ,315S =,0n a >,1d >,且______从“①21a -为11a -与31a +的等比中项”,“①等比数列{}n b 的公比12q =,12b a =,33b a =”这两个条件中,选择一个补充在上面问题中的划线部分,使得符合条件的数列{}n a 存在并作答.(1)求数列{}n a 的通项公式; (2)设数列11{}n n a a +的前n 项和为n T ,求n T .33.在①312S =,①2123a a -=,①824a =这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是公差不为0的等差数列,其前n 项和为n S ,__,且1a ,2a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 是各项均为正数的等比数列,且21b a =,44b a =,求数列{}n n a b +的前n 项和n T .34.在①4516a a +=;①39S =;①2(n S n r r =+为常数)这3个条件中选择1个条件,补全下列试题后完成解答(选择多个条件并分别解答的按第1个评分).设等差数列{}n a 的前n 项和为n S ,若数列{}n a 的各项均为正整数,且满足公差1d >,______. (1)求数列{}n a 的通项公式;(2)令21n a n b =+,求数列{}n b 的前n 项的和.35.已知{}n a 为等差数列,各项为正的等比数列{}n b 的前n 项和为n S ,且1122a b ==,2810a a +=,_____.在①1()n n S b R λλ=-∈;①43212a S S S =-+;①2()n a n b R λλ=∈.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .36.在①5CA CB =-,①ABC ∆的面积为-一个,补充在下面问题中,并解决该问题:在ABC ∆中,角A ,B ,C 所对各边分别为a ,b ,c , 已知sin sin 1sin sin sin sin A CB C A B+=++,_______,且1b =.(1)求ABC ∆的周长;(2)已知数列{}n a 为公差不为0的等差数列,数列{}n b 为等比数列,1cos 1a A =,且11b a =,23b a =,37b a =.若数列{}n c 的前n 项和为n S ,且113c =,111n n n n n a c b a a -+=-.2n . 证明:116n S <. 注:在横线上填上所选条件的序号,如果选择多个条件分别解答,按第一个解答计分.新高考题型:解答题开放性问题(条件3选1)《数列》答案解析1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .解:设等差数列{}n a 的公差为d ,选①:由1a ,3a ,7a 成等比数列得22111(6)(2)a a d a d +=+, 化简得20d dd =≠,11n d a n ∴=∴=+,于是1(1)2n n b n -=+,∴21213242(1)2n n T n -=+++⋯++,232223242(1)2n n T n =+++⋯++,相减得:212222(1)22n n n n T n n --=+++⋯+-+=-,∴2n n T n =;选①:()()()13122,122n n n n n n n n a S S n -+-+=-=-=+时,1n =时,12a =,符合上式,1n a n ∴=+,下同①; 选①:81281a a d -==-,22(1)2n a n n ∴=+-=, ∴2n n b n =,231222322n n T n =⨯+⨯+⨯+⋯+, 234121222322n n T n -=⨯+⨯+⨯+⋯+,相减得2311122222222n n n n n T n n +++-=+++⋯+-=--,∴1(1)22n n T n +=-+.2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, 22b =,3433a a b += .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T . 解: 选择①(1)35a =,2526a a b +=,11a b =,d q =,111251256a d d a d a d +=⎧>∴⎨+=⎩,解得112a d =⎧⎨=⎩或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),∴112b q =⎧⎨=⎩,1(1)21n n d n αα∴=+--=-,1112n n n b b q --==,(2)n n n a c b =,11211(21)()22n n n n c n ---∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212n n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.选择①22b =,3433a a b +=;(1)设11a b t ==,1d q =>,由22b =,3433a a b +=,可得2tq =,2253t d tq +=, 又d q =,解得2d q ==,1t =, 可得12(1)21n a n n =+-=-;12n n b -=; (2)11(21)()2n n n n a c n b -==-, 前n 项和11111135(21)()242n n T n -=+++⋯+-, 11111135(21)()22482n n T n =+++⋯+-, 两式相减可得21111111()(21)()22422n n n T n -=++++⋯+--,111121(1)()1212n n n --=+---, 化简可得116(23)()2n n T n -=-+.选择①39S ∴=,4528a a b +=,11a b =,d q =,1d >,∴1113278a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或121838a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),1(1)21n a a n d n ∴=+-=-,1112n n n b b q --==.(2)11211(21)()22n n n n n n a n c c n b ---=∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212m n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.解:(1)由题意,设等差数列{}n a 的公差为d ,则 115121736a d a d +=⎧⎨+=⎩,解得122a d =⎧⎨=⎩, 2(1)22n a n n ∴=+-⨯=,*n N ∈.(2)方案一:选条件① 由(1)知,144122(1)(1)n n n b a a n n n n +===++, 12n n S b b b =++⋯+1111223(1)n n =++⋯+⨯⨯+ 1111112231n n =-+-+⋯+-+ 111n =-+ 1nn =+. 方案二:选条件①由(1)知,(1)(1)2n n n n b a n =-=-,122468(1)2n n n S b b b n ∴=++⋯+=-+-+-⋯+-,()i 当n 为偶数时, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(1)2]n n =-++-++⋯+--+222=++⋯+22n =⨯ n =,()ii 当n 为奇数时,1n -为偶数, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(2)2(1)]2n n n =-++-++⋯+--+--2222n =++⋯+-1222n n -=⨯- 1n =--,,,1,.n n n S n n ⎧∴=⎨--⎩为偶数为奇数;方案三:选条件①由(1)知,222224n a n n n n b a n n ===,1231224446424n n n S b b b n ∴=++⋯+=⨯+⨯+⨯+⋯+⨯, 231424442(1)424n n n S n n +=⨯+⨯+⋯+-⨯+⨯,两式相减,可得123132424242424n n n S n +-=⨯+⨯+⨯+⋯+⨯-⨯ 12118(1444)24n n n -+=⨯+++⋯+-⨯11482414nn n +-=⨯-⨯-12(13)8433n n +-=-.12(31)8499n n n S +-∴=+. 4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ①① ,*n N ∈. (1)求n S 的最小值; (2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.解:(1)①若选择①①; 由题知:6650a S S =-=, 又因为15535()5152a a S a +===-,所以33a =-. 所以6333d a a =-=,解得1d =. 所以6(6)6n a a n n =+-=-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①;由题知:5541a S S =-=-, 又因为15535()5152a a S a +===-, 所以33a =-.所以5322d a a =-=,1d =. 所以3(3)6n a a n d n =+-=-. 所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①; 由题知:1666()152a a S +==-,所以161255a a a d +=+=- 由题知:1444()142a a S +==-,所以141237a a a d +=+=-所以15a =-,1d =. 所以6n a n =-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==-. 证明(2)因为6n a n =-, 所以671111(1)1n n a a n n n n ++==-++ 所以11111111122311n T n n n =-+-+⋯+-=-<++. 5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值. 解:选择①2(1)n n S n a =+,112(2)n n S n a ++∴=+,相减可得:112(2)(1)n n n a n a n a ++=+-+,∴11n na a n n+=+, ∴111n a a n ==,可得:n a n =. 2(2)(12)(2)(3)22k k k k k S ++++++∴==. 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(3)2k k k ++∴=,*k N ∈,解得6k =.选择(2)n a n =,1n n S S -=-=,0n S >1=,∴数列是等差数列,首项为1,公差为1.∴11n n =+-=,解得2n S n =.2n ∴时,221(1)21n n n a S S n n n -=-=--=-.2(2)(123)(2)(2)2k k k S k k ++++∴==++1a ,k a ,2k S +成等比数列,∴212kk a a S +=,22(21)(2)k k ∴-=+,*k N ∈,解得3k =. 选择①0n a >,22n n n a a S +=,∴21112n n n a a S ++++=,相减可得:221112n n n n n a a a a a ++++--=,化为:11()(1)0n n n n a a a a +++--=, 可得:11n n a a +-=,∴数列{}n a 是首项与公差都为1的等差数列,11n a n n ∴=+-=.(1)2n n n S +∴=, 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(12)2k k k +++∴=,*k N ∈,解得6k =.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n nn b a a +=,求数列{}n b 的前n 项和n T . 解:(1)选择条件①:设等差数列{}n a 的公差为d , 则11265,4347,2a d a d +=⎧⎪⎨⨯+=⎪⎩解得11,1,2a d =⎧⎪⎨=⎪⎩ ∴12n n a +=,*n N ∈; 选择条件①:243n S n n =+,∴当2n 时,2214443(1)3(1)22n n n a S S n n n n n -=-=+--+-=+即1(2)2n n a n +=, 当1n =时,21113114a S +⨯===,也适合上式,∴12n n a +=,*n N ∈; 选择条件①:设等差数列{}n a 的公差为d , 则112115(46)14(2),9(4)(2),2a d a d a d a d ⨯+=+⎧⎪⎨+=+⎪⎩, 解得11a =,12d =,或10a =,0d =,不合题意,舍去, ∴12n n a +=,*n N ∈; (2)由(1)可知,22214112()(21)(23)2123n n n b a a n n n n +===-++++,∴121111112()35572123n n T b b b n n =++⋯+=-+-+⋯+-++ 1142()32369nn n =-=++. 7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .解:(1)若选择条件①12a =,则放在第一行的任何一列,满足条件的等差数列{}n a 都不存在,若选择条件①11a =,则放在第一行的第二列,结合条件可得11a =,24a =,37a =,则32n a n =-,则*n N ∈,若选择条件①13a =,则放在第一行的任何一列,结满足条件的等差数列{}n a 都不存在, 综上可得32n a n =-,则*n N ∈, (2)由(1)知,12(1)(32)n n b n +=--, 当n 为偶数时,22222212312341n n n n T b b b b a a a a a a -∴=+++⋯+=-+-+⋯+-,1212343411()()()()()()n n n n a a a a a a a a a a a a --=+-++-+⋯+-+,2123(132)933()3222n n n a a a a n n +-=-+++⋯+=-⨯=-+,当n 为奇数时,22219393(1)(1)(32)22222n n n T T b n n n n n -=+=--+-+-=--,2293,22932,22n n n n T n n n ⎧-+⎪⎪∴=⎨⎪--⎪⎩为偶数为奇数 8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 解:选①:当1n =时,112a S ==,当2n 时,12n n n a S S n -=-=,又1n =满足2n a n =,所以2n a n =.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =; 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①:设公差为d ,由1353512616,16,42,81342,a d a a S S a d +=⎧+=+=⎨+=⎩得解得12,2,a d =⎧⎨=⎩所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =.由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①: 由11111,,,11n n n n n n a a a a an a a n a n n n n +++====+得所以即,74172856S a a ===,所以12a =,所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12,2,2n n b q b ===所以. 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++, 故11112212111n n n T n n ++=-+-=--++. 9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <. 解:(1)若选择①2342a a a +=,可得231112a q a q a q +=,化为220q q --=,解得2(1q =-舍去),又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n n n b a ==++; 选择①22n n S a =-,可得11122a S a ==-,解得12a =,又122222a a S a +==-,解得24a =,可得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n nn b a ==++; 选择①425S S =,可得4211(1)(1)511a q a q q q--=--,即215q +=,解得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n n n b a ==++; (2)证明:111211(21)(21)2121n n n n n n n n a b b +++==-++++, 2231111111111()()()212121212121321n n n n T ++=-+-+⋯+-=-+++++++, 由11021n +>+,可得13n T <. 10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<. 解:选择①①:(1)解:由131n n S S +=+⇒当2n 时,有131n n S S -=+,两式相减得:13n n a a +=,即113n n a a +=,2n .又当1n =时,有2112313()S S a a =+=+,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 选择:①①:(1)解:由1213n n S a +=-⇒当2n 时,1213n n S a -=-,两式相减得:1233n n n a a a +=-+,即113n n a a +=,2n .又当1n =时,有1212132S a a =-=,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .解:选①,由已知142n n S S +=+⋯①, 当2n 时,142n n S S -=+⋯①,①-①可得14n n a a +=,当1n =时,2142S S =+可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知2132n n S λ+==+⋯①211.32n n S λ--==+⋯①, ①-①可得21212132232n n n n a +--=-=. 当1n =时,12a =满足212n n a -=.∴数列{}n a 是首项为2,公比为4的等比数列,即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知132n n S a +=-⋯①, 当2n 时,12n n S S -=-⋯①, ①-①可得14n n a a +=,当1n =时,可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++.∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T . 解:方案一:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--= 解得2q =或1q =-,0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为435d a b b =+,5462a b b =+,∴113431316b d b d +=⎧⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)由(1)可知:12,n n n a b n -==,012111221222(1)22n n n n n T a b a b a b n n --∴=++⋯+=⨯+⨯+⋯+-⨯+⨯,∴12121222(1)22n n n T n n -=⨯+⨯+⋯+-⨯+⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)∴1211212222221212nn nn n n n T n n n ---=+++⋯+-⨯=-⨯=--⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-(9分)∴(1)21n n T n =-+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)方案二:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=. 解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d ,435a b b =+,135141344()235b d a a b b b d +=⎧+=+∴⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2). 方案三:选条件①(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=,解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d . 435a b b =+,4235S a b =,∴11340b d b d +=⎧⎨-=⎩解得111b d =⎧⎨=⎩,n b n ∴=,∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2).13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.解:(1){}n a 是公差d 为2的等差数列,若选①4S 是2a 与21a 的等差中项,可得42212S a a =+, 即有112(46)221a d a d +=+,即为16918a d ==,解得13a =; 若①7a 是33S 与22a 的等比中项,可得2732213a S a =,即21111(62)(332)(212)3a a a +⨯=+⨯+⨯, 即2111(12)(2)(42)a a a +=++, 解得13a =;若选①数列2{}n a 的前5项和为65,可得241065a a a ++⋯+=, 即1115(13579)52555065a d a d a +++++=+=+=, 解得13a =;综上可得32(1)21n a n n =+-=+,*n N ∈;(2)33()(21)()44n n n n b a n ==+,由1133523(23)()(21)()()4444n n nn n n b b n n ++--=+-+=,当1n =,2时,可得10n n b b +->,即321b b b >>;当3n ,*n N ∈时,可得10n n b b +-<,即345b b b >>>⋯, 则n b 的最大项为318964b =, 由18927648<, 可得不存在k N ∈,使得278k b >. 14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n 项和n T .解:选条件①: (1)数列1{}n S a +为等比数列,2211131()()()S a S a S a ∴+=++,即2121123(2)2(2)a a a a a a +=++.设等比数列{}n a 的公比为q ,22(2)2(2)q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)点(n S ,1)n a +在直线1y x =+,11n n a S +∴=+,又11(2,)n n a S n n N -=+∈,两式相减有:12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列.1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)1121222n n n n a a a na -+++⋯+=,12121222(1)(2)n n n n a a a n a n ---∴++⋯+=-. 由两式相减可得:122(1)n n n a na n a +=--,即12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列. 1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++.15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2351a a a b +=-,3d ∴=,31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2372a a a =,(2)(22)2(26)d d d ∴++=+,0d >,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又315S =,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S . 解:方案一:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,53A B =,∴112351096a d a d d +=⎧⎨+=+⎩,解得111a d =⎧⎨=⎩,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)由(1)知, 331122()(21)(23)22123n n n c n n n n =+=+-++++,12n n S c c c ∴=++⋯+2311311311[2()][2()][2()]23525722123n n n =+-++-+⋯++-++23111111(222)[()()()]235572123n n n =++⋯++-+-+⋯+-++2(12)311()122323n n -=+--+13(2)223n n n ++=-+. 方案二:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且21221143,A a aB =-=,∴111114232a a d d ⎪⎨-=⎪+⨯+⎩, 整理,得()()1111231,4621a d a a a d d d d +==⎧⎧⎨⎨+=+=⎩⎩解得,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程. 方案三:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,535B =, ∴11231,541352352a d a d d +=⎧=⎧⎪⎨⎨⨯=⨯+⨯=⎩⎪⎩解得, 11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程.17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值. 注:如果选择多个条件分别解答,那么按第一个解答计分.解:由21n n T b =-,可得1n =时,11b =;2n 时,1121n n T b --=-,相减可得122n n n b b b -=-,1n n -由此可得{}n b 为首项为1,公比为2的等比数列,故12n n b -=, ①当535a b b =+,1632a b ==,541620a =+=, 设{}n a 的公差为d ,则20324d =+,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当387S =时,132a =,2387a =,设{}n a 的公差为d ,则3(32)87d +=,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当91012a a b b -=+时,132a =,9103a a -=, 设{}n a 的公差为d ,则3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)。

2020年高考数学(文数)解答题强化专练——数列含答案

2020年高考数学(文数)解答题强化专练——数列含答案

(文数)解答题强化专练——数列一、解答题(本大题共10小题,共120.0分)1.在等差数列{a n}中,S n为其前n项的和,若S5=25,a10=19.(1)求数列{a n}的通项公式a n及前n项和S n;(2)若数列{b n}中b n=,求数列{b n}的前n和T n.2.在数列{a n}中,a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).(1)求证:数列{a n+n}是等比数列,并求{a n}的通项公式;(2)求数列{a n}的前n项和S n.3.已知数列是以为首项,为公差的等差数列,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.4.设S n是等差数列{a n}的前n项和,若公差d≠0,a5=10,且、、成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n=b1+b2+…+b n,求证:T n<.5.已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.6.已知数列{a n}中,a1=1,a2=3,点(a n,a n+1)在直线2x-y+1=0上,(Ⅰ)证明数列{a n+1-a n}为等比数列,并求其公比.(Ⅱ)设b n=log2(a n+1),数列{b n}的前n项和为S n,若S m≤λ(a m+1),求实数λ的最小值.7.已知正项等比数列{a n}满足a3=9,a4-a2=24.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)设b n=n·a n,求数列{b n}的前n项的和S n.8.已知数列{a n}满足a1=1,na n+1-(n+1)a n=1+2+3+…+n,n∈N*.(1)求证:数列{}是等差数列;(2)若b n=,求数列{b n}的前n项和为S n.9.已知数列{a n}的前n项和S n满足S n+1=S n+•a n(n∈N*),且a1=1.(Ⅰ)证明:数列{}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.10.已知数列{a n}的前n项和为S n,满足S1=1,且对任意正整数n,都有.(1)求数列{a n}的通项公式;(2)若,求数列{b n}的前n项和T n.答案和解析1.【答案】解:(1)设等差数列{a n}的公差为d,∵S5=25,a10=19.∴5a1+d=25,a1+9d=19,联立解得:a1=1,d=2.∴a n=1+2(n-1)=2n-1.S n==n2.(2)b n===,∴数列{b n}的前n和T n===.【解析】(1)设等差数列{a n}的公差为d,由S5=25,a10=19.可得5a1+d=25,a1+9d=19,联立解得:a1,d.即可得出.(2)b n===,利用裂项求和即可得出.本题考查了等差数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.2.【答案】(1)证明:∵a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).∴a n+n=2(a n-1+n-1),∴数列{a n+n}是等比数列,首项为4,公比为2.∴a n=4×2n-1-n=2n+1-n.(2)解:数列{a n}的前n项和S n=(22+23+…+2n+1)-(1+2+…+n)=-=2n+2-4-.【解析】(1)a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).变形为a n+n=2(a n-1+n-1),再利用等比数列的通项公式即可得出.(2)利用等差数列与等比数列的通项公式及其前n项和公式即可得出.本题考查了递推关系、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.3.【答案】解:(1)因为,,成等比数列,所以,即,因为,所以,即,所以(负值舍去),所以.(2)由(1)知,,所以.【解析】本题考查等差数列的通项公式及前n项和公式,等比数列的通项公式、性质及前n项和公式,以及分组法求和,属于一般题.(1)根据,,成等比数列列方程组,求出a1和公差,即可得到数列的通项公式;(2)由(1)求得,,利用分组求和法,结合等差数列和等比数列的前n项和公式即可求解.4.【答案】(Ⅰ)解:∵S n是等差数列{a n}的前n项和,公差d≠0,a5=10,且a2、a4、a8成等比数列,∴由题知:,解得:a1=2,d=2,故数列{a n}的通项公式a n=2n.(Ⅱ)证明:∵==,∴T n=b1+b2+…+b n==.∴T n<.【解析】本题考查数列的通项公式,等差数列的前n项和公式及裂项求和公式,属于一般题.(Ⅰ)利用等差数列的前n项和公式、等比数列性质,列出方程组,求出a1=2,d=2,由此能求出数列{a n}的通项公式;(Ⅱ)由==,利用裂项求和法能证明T n<.5.【答案】解:(1)设等比数列{a n}的公比为q(q>1),因为4a2,3a3,2a4成等差数列,所以6a3=4a2+2a4,即6a1q2=4a1q+2a1q3,即q2-3q+2=0,解得q=2或q=1(舍去).又因为a5=a1q4=16a1=48,所以a1=3,所以a n=3·2n-1.(2)由条件及(1)可得b1=a2=3×2=6.因为b n+1=b n+a n,所以b n+1-b n=a n,所以b n-b n-1=a n-1(n≥2),所以b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1=a n-1+a n-2+a n-3+…+a2+a1+6=3·2n-1+3(n≥2).又因为b1=6满足上式,所以b n=3·2n-1+3(n∈N*).所以.【解析】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列通项公式的求法中的应用,数列的求和的应用,主要考查学生的运算能力和转换能力,属于中档题.(1)利用已知条件求出公比和首项,进而得到通项公式;(2)利用叠加法,并利用等比数列的求和公式求出n≥2时b n的表达式,进一步验证n=1时是否成立,从而得出数列{b n}的通项公式,然后利用分组求和法,求得S n.6.【答案】解:(Ⅰ)证明:点(a n,a n+1)在直线2x-y+1=0上,可得a n+1=2a n+1,即有a n+1+1=2(a n+1),可得{a n+1}为首项为2,公比为2的等比数列,可得a n+1=2n,即a n=2n-1,a n+1-a n=2n+1-1-(2n-1)=2n,可得数列{a n+1-a n}为等比数列,其公比为2;(Ⅱ)设b n=log2(a n+1)=log22n=n,S n=n(n+1),S m≤λ(a m+1)即为m(m+1)≤λ•2m,可得2λ≥恒成立,由c m=,c m+1-c m=-=,当m=1时,c2>c1,m=2时,c3=c2,m>2时,c m+1<c m,即c1<c2=c3>c4>c5>…,可得c2=c3=为最大值,即有λ≥,则λ≥,即实数λ的最小值为.【解析】(Ⅰ)首先判断{a n+1}为首项为2,公比为2的等比数列,由等比数列的通项公式和定义,即可得到所求;(Ⅱ)运用对数的运算性质可得b n,再由等差数列的求和公式和通项公式,结合参数分离和数列的单调性,求得最大值,可得所求最小值.本题考查等比数列的定义和通项公式、以及等差数列的通项公式和求和公式的运用,考查数列不等式恒成立问题,注意运用参数分离和数列的单调性,考查运算能力、推理能力,属于中档题.7.【答案】解:(Ⅰ)设数列{a n}的公比为q.由a4-a2=24,得,即3q2-8q-3=0,解得q=3或.又∵a n>0,则q>0,∴q=3,∴a n=.(Ⅱ)b n=n·a n=,∴S n=3S n=,∴=,∴.【解析】本题考查等比数列的通项公式和用错位相减法求数列的前n项和.(Ⅰ)把已知条件用a3和公比q表示,建立方程,求出q,即可得到通项公式.(Ⅱ)紧紧抓住数列的特点,它是由一个等比数列和一个等差数列对应项相乘而得,此类数列可通过错位相减法求前n项和.8.【答案】解:(1)证明:数列{a n}满足a1=1,na n+1-(n+1)a n=1+2+3+…+n=,n∈N*,则(常数),n∈N*.则数列{}是以1为首项,为公差的等差数列.(2)由(1)得=,n∈N*,所以,n∈N*,所以,所以S n=b1+b2+…+b n=,=.【解析】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题.(1)根据数列的递推关系式整理得到(常数),n∈N*即可证明.(2)利用裂项相消法求出数列的和.9.【答案】解:(Ⅰ)证明:根据题意可得,S n+1-S n=•a n,∴a n+1=•a n,∴=•,∵a1=1,∴数列{}是以1为首项,以为公比的等比数列,(Ⅱ)由(Ⅰ)可得=()n-1,∴a n=n•()n-1,∴S n=1×()0+2×()1+3×()2+…+n•()n-1,∴S n=1×()1+2×()2+3×()3+…+n•()n,∴S n=1+()1+()2+()3+…+()n-1-n•()n=-n•()n=-(+n)•()n,∴S n=-(+)•()n.【解析】本题考查了等比数列的判定、数列递推关系、错位相减求和法,考查了推理能力与计算能力,属于中档题.(Ⅰ)由S n+1=S n+•a n,可得∴=•,故数列{}是以1为首项,以为公比的等比数列,(Ⅱ)先求出a n=n•()n-1,再利用“错位相减法”与等比数列的求和公式即可得出.10.【答案】解析:(1)由S1=1,得a1=1.又对任意正整数n,都成立,即S n+1+n(n+1)=(n+1)S n+1-(n+1)S n,所以nS n+1-(n+1)S n=n(n+1),所以,即数列是以1为公差,1为首项的等差数列,所以,即,得a n=S n-S n-1=2n-1(n≥2),又由a1=1,所以.解法2:由,可得S n+1+n(n+1)=(n+1)a n+1,当n≥2时,S n+n(n-1)=na n,两式相减,得a n+1+2n=(n+1)a n+1-na n,整理得a n+1-a n=2,在中,令n=2,得,即1+a2+2=2a2,解得a2=3,∴a2-a1=2,所以数列{a n}是首项为1,公差为2的等差数列,∴a n=1+2(n-1)=2n-1.(2)由(1)可得,所以,①则,②①-②,得,整理得,所以.【解析】本题考查的知识要点:数列的通项公式的求法,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力,属于中档题.(1)法1:将题中条件变形为nS n+1-(n+1)S n=n(n+1),即可求解;法2:将题中条件变形为S n+1+n(n+1)=(n+1)a n+1,再利用作差法即可求解.(2)利用(1)的结论,进一步利用乘公比错位相减法求出数列的和.。

经典等差数列练习题(含答案)

经典等差数列练习题(含答案)

等差数列一、选择题:1.2005是数列7,13,19,25,31,,中的第( )项.A. 332B. 333C. 334D. 3352.已知等差数列首项为2,末项为62,公差为4,则这个数列共有 ( )A .13项B .14项C .15项D .16项3.已知等差数列的通项公式为为常数,a a n a n ,3+-=则公差d=( )4.首项为24-的等差数列从第10项起开始为正数,则公差d 的取值范围是( ) A.83d > B.3d < C.833d ≤< D.833d <≤( )A .第22项 B .第21项 C .第20项 D .第19项6. 已知数列a ,-15,b ,c ,45是等差数列,则a+b+c 的值是( )A .-5B .0C .5D .10( )A .45B .48C .52D .558. 已知等差数列的首项1a 和公差d 是方程x 2-2x-3=0的两根,且知d >1a ,则这个数列的第30项是( )A .86B .85C .84D .83( )A .3B .2C .1D .-110、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( ) (A)43 (B)34 (C)32 (D)值不确定二 填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。

2.数列{n a }是等差数列,47a =,则7s =_________3.等差数列{}n a 中,3524a a +=,23a =,则6a = 21 .4.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -=.5.在首项为31,公差为-4的等差数列中,与零最接近的项是6.如果等差数列{}n a 的第5项为5,第10项为5-,则此数列的第1个负数项 是第项.7.已知}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =8.在△ABC 中,A ,B ,C 成等差数列,则=++2tan 2tan 32tan 2tan C A C A . 三、解答题:1.根据数列的前几项写出数列的一个通项公式。

(完整版)《数列》练习题及答案

(完整版)《数列》练习题及答案

欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。

专题16 数列(解答题)(12月)(人教A版2019)(解析版)

专题16 数列(解答题)(12月)(人教A版2019)(解析版)

专题16 数 列(解答题)1.已知等差数列{}n a 的前n 项和为n S ,10n n a a +->,23a =,且1a ,3a ,712a +成等比数列.(1)求n a 和n S ; (2)设n b =,数列{}n b 的前n 项和为n T ,求证:112n T ≤<. 【试题来源】广东省湛江市2021届高三上学期高中毕业班调研测试题【答案】(1)21n a n =-,2n S n =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,首项为1a , 由10n n a a +->,得0d >,则223173,(12),a a a a =⎧⎨=+⎩所以121113,(2)(126).a d a d a a d +=⎧⎨+=++⎩ 解得11a =,2d =,所以21n a n =- ,()21212n n n S n +-==.(2)因为111(1)1n b n n n n ===-++. 所以1111111111112233411n T n n n =-+-+-++-=-<++. 因为111nT n =-+单调递增.所以112n T T ≥=,综上,112T ≤<.【名师点睛】数列求和的方法:(1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如a n =(−1)n f(n)类型,可采用两项合并求解.2.n S 为等差数列{}n a 的前n 项和,已知71a =,432S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(理)【答案】(1)213n a n =-;(2)212n n S n =-,6n =时,n S 的最小值为36-.【解析】(1)设{}n a 的公差为d ,由71a =,432S =-,即1161434322a d a d +=⎧⎪⎨⨯+=-⎪⎩,解得1112a d =-⎧⎨=⎩, 所以()11213n a a n d n =+-=-. (2)()221111122n n n S na d n n n n n -=+=-+-=-, ()2212636n S n n n =-=--,所以当6n =时,n S 的最小值为36-. 3.已知数列{}n a 的前n 项和为n S ,112a =,且10n n S a +-=(*n N ∈). (1)求数列{}n a 的通项公式; (2)若()21log nn b n a =-+⋅,数列()*N 1n n b ⎧⎫⎬⎭∈⎨⎩的前n 项和为n S ,求证:112n S ≤<.【试题来源】四川省内江市第六中学2020-2021学年高三上学期第三次月考(文) 【答案】(1)12n na =;(2)证明见解析. 【解析】(1)因为10n n S a +-=①,所以()11102n n S a n --+-=≥②,①-②得112n n a a -=,2n ≥; 所以数列{}n a 是首项和公比都为12的等比数列,于是1111222n n n a -⎛⎫=⨯=⎪⎝⎭,*n N ∈.(2)由(1)得()()21log 1n n b n a n n =-+⋅=+,所以()111111n b n n n n ==-++, 所以12111111*********11n n S b b b n n n =+++=-+-++-=-++. 又易知函数()111f x x =-+在[)1,+∞上是增函数,且()1f x <,而112S =, 所以112n S ≤<. 【名师点睛】裂项相消法求数列和的常见类型: (1)等差型111111n n n n a a da a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2=(3)指数型()11nn n a a a a +-=-;(4)对数型11log log log n aa n a n na a a a ++=-. 4.已知数列{}n a 前n 项和n S 满足()2*n S n n N =∈(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】(1)21n a n =-;(2)n 21nT n =+. 【解析】(1)当1n =时,111a S ==,当2n ≥时,()22121n S n n n =-=-+,121n n n a S S n -=-=-, 当1n =时上式也符合.所以21n a n =-. (2)由题意知,可设111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭n 12111111(1)()()23352121n T b b b n n ⎡⎤=+++=-+-++-⎢⎥-+⎣⎦则n 11122121n T n n ⎛⎫=-= ⎪++⎝⎭. 5.从①前n 项和()2n S n p p R =+∈②611a =且122n n n a a a ++=+这两个条件中任选一个,填至横线上,并完成解答.在数列{}n a 中,11a =,________,其中n *∈N . (1)求数列{}n a 的通项公式;(2)若1a ,n a ,m a 成等比数列,其中m ,n *∈N ,且1m n >>,求m 的最小值. (注:如果选择多个条件分别解答,那么按第一个解答计分)【试题来源】广东省深圳、汕头、潮州、揭阳名校2021届高三上学期联考 【答案】(1)答案见解析;(2)答案见解析.【解析】选择①:(1)当1n =时,由111S a ==,得0p =.当2n ≥时,由题意,得()211n S n -=-,所以()1212n n n a S S n n -=-=-≥.经检验,11a =符合上式,所以()*21n a n n =-∈N .(2)由1a ,n a ,m a 成等比数列,得21nm a a a =, 由(1)得()*21n a n n =-∈N,即()()221121n m -=⨯-.化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭. 因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5. 选择②:(1)由122n n n a a a ++=+,得121 n n n n a a a a +++-=-, 所以数列{}n a 是等差数列.设数列{}n a 的公差为d . 因为11a =,61511a a d =+=,所以2d =. 所以()()*1121n a a n d n n =+-=-∈N .(2)因为1a ,n a ,m a 成等比数列,所以21nm a a a =,即()()221121n m -=⨯-. 化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭.因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5.【名师点睛】()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,检验11a =是否符合通项是解题的关键. 6.在数列{}n a 中,12a =,1541n n a a n +=-+,*n N ∈. (1)证明:数列{}n a n -是等比数列; (2)求{}n a 的前n 项和n S .【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】(1)证明见解析;(2)()1(1)5142n n n +-+. 【解析】(1)1541n n a a n +=-+,*n N ∈,1(1)5()n n a n a n +∴-+=-.因为111a -=, ∴数列{}n a n -是首项为1,公比为5的等比数列,(2)由(1)可得15n n a n --=,15n n a n -∴=+,{}n a ∴的前n 项和211555(12)n n S n -=+++⋯⋯++++⋯⋯+()115(1)51(1)1(1)(51)15251242nnn n n n n n n ⨯-+-++=+=+=-+-- 7.n S 为等差数列{}n a 的前n 项和,已知410a =-,864S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文)【答案】(1)426n a n =-;(2)2224n S n n =-,6n =时,n S 的最小值为72-.【解析】(1)设{}n a 的公差为d ,由410a =-,864S =-得11310878642a d a d +=-⎧⎪⎨⨯+=-⎪⎩, 解得1224a d =-⎧⎨=⎩,所以{}n a 的通项公式为()2241426n a n n =-+-=-;(2)由(1)得()()1244822422n n n a a n n S n n +-===-, 又222242(6)72n S n n n -=--=,所以当6n =时,n S 取得最小值,最小值为72-.8.已知正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项,12a =. (1)求数列{}n a 的通项公式;(2)令222log n n n b a a =+,求数列{}n b 的前n 项和n T .【试题来源】天津市滨海新区大港一中2021届高三(上)第一次月考【答案】(1)2nn a =;(2)12443n n n +-++.【解析】(1)正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项, 设公比为q ,则22142()2S a a a +=+,整理得12142(2)2a a a a +=+,由于12a =,即32(24)42q q +=+,即34q q =,因为0q >,所以解得2q ,所以2nn a =.(2)由于222log 24nn n b a a n =+=+,所以12324446424n n T n =++++++++12(2462)(444)n n =++++++++4(41)(1)41n n n -=++-12443n n n +-=++.9.已知数列{}n a 是公差不为零的等差数列,92a =-,且满足3a ,13a ,8a 成等比数列. (1)求数列{}n a 的通项公式;(2)设12n n n n b a a a ++=,数列{}n b 的前n 项和为n S ,求使得n S 最小的n 的值. 【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(文) 【答案】(1)329n a n =-;(2)7【解析】(1)设数列{}n a 的公差为d ()0d ≠,因为92a =-,3a ,13a ,8a 成等比数列,所以21338a a a =,即()()()224262d d d -+=----,整理得230d d -=, 解得3d =或0d =(舍去).故()99329n a a n d n =+-=-. (2)当19n ≤≤时,0n a <,当10n ≥时,0n a >,因为12n n n n b a a a ++=,当17n ≤≤时,0n b <,当10n ≥时,0n b >, 而且()()8891052110b a a a ==-⨯-⨯=,9910112148b a a a =-⨯⨯==-, 因此97S S >,所以使得n S 最小的n 为7.10.已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式. (2)若2221log n n n c a b +=⋅,求12n c c c +++….【试题来源】黑龙江宾县第一中学2020-2021学年高三第一学期第二次月考(理) 【答案】(1)n a n =,12n n b -=;(2)()21nn +.【解析】(1)因为{}n a 为等差数列,且11a =,所以可设公差为d , 则()11n a n d =+-,所以21a d =+,312a d =+. 因为236a a ⋅=,所以()()1126d d ++=,解得1d =或52d =-. 又等差数列{}n a 各项均为正数,所以52d =-不合题意,舍去,所以n a n =. 因为{}n b 为等比数列,且11b =,所以可设公比为(0)q q ≠,则1n n b q -=.因为2388b b a ⋅==,所以128q q ⋅=,解得2q,满足各项均为正数,所以12n n b -=.(2)由(1)知1,2n n n a n b -==,所以2221log n n n c a b +=⋅()121n n =+111=21n n ⎛⎫- ⎪+⎝⎭.所以12n c c c +++111111122231n n ⎛⎫=-+-++- ⎪+⎝⎭11121n ⎛⎫=⋅- ⎪+⎝⎭()21n n =+.11.在等比数列{}n a 中,已知11a =,48a =. (1)求数列{}n a 的通项n a ;(2)在等差数列{}n b 中,若15b a =,82b a =,求数列{}n b 前n 项和n S . 【试题来源】甘肃省临夏州临夏中学2019-2020学年高二(上)第二次月考(文) 【答案】(1)12n na ;(2)217n S n n =-.【解析】(1)设等比数列{}n a 的公比为q ,由题设知3418a q a ==, 2q ∴=,因此12n na ;(2)由(1)可得415216b a ===,822b a ==,∴公差81281b b d -==--,2(1)16(2)172n n n S n n n -∴=+⨯-=-. 12.已知数列{}n a 满足12a =,()121n n n a a n++=.设nn a b n=. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和为n S .【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】(1)证明见解析;(2)()1122n n S n +=-+.【解析】(1)由()121n n n a a n++=,可得121n n a an n+=⋅+,即12n n b b += 则数列{}n b 是以1121a b ==为首项,2为公比的等比数列; (2)由(1)可得,2nn n a b n ==,2n n a n ∴=⋅,23122232...2n n S n =⨯+⨯+⨯++⨯,则有()23412122232 (122)nn n S n n +=⨯+⨯+⨯++-⨯+⨯,两式作差得()231111212222 (22222212)n n n n n n nS n n n ++++--=++++-⨯=-⨯=--⨯-()1122n n S n +∴=-+.13.在数列{}n a 中,11a =,24a =,2134n n n a a a ++=-. (1)求证:数列{}1n n a a +-是等比数列;(2)若数列{}n a 的前n 项和为n S ,且22n S m m ≥-对任意正整数n 恒成立,求实数m 的取值范围.【试题来源】河南省商丘市虞城高级中学2020~2021学年高三11月质量检测(理)【答案】(1)证明见详解;(2)1⎡⎣.【解析】(1)由2134n n n a a a ++=-,得214133n n n a a a ++=-. 则()1112111141113333n n n n n n n n nn n n n a a a a a a a a a a a a a ++++++++----===---,所以数列{}1n n a a +-是以213a a -=为首项,13为公比的等比数列. (2)由(1)得11211333n n n n a a -+-⎛⎫-=⨯=⎪⎝⎭.当2n ≥时,()()()()12132431n n n a a a a a a a a a a -=+-+-+-+⋅⋅⋅+-01231111133333n -=+++++⋅⋅⋅+2111119134122313n n --⎛⎫- ⎪⎛⎫⎝⎭=+=-⨯ ⎪⎝⎭-.当1n =时,11a =适合11191223n n a -⎛⎫=-⨯ ⎪⎝⎭.所以11191223n n a -⎛⎫=-⨯ ⎪⎝⎭,所以1111927111273122432413nnn S n n ⎛⎫- ⎪⎛⎫⎝⎭=-⨯=⨯+-⎪⎝⎭-. 因为11191223n n a -⎛⎫=-⨯ ⎪⎝⎭是关于n 的递增数列,且110a =>,所以n S 也关于n 单调递增,从而n S 的最小值为11S =.因为22n S m m ≥-恒成立.所以212m m ≥-,解得11m ≤≤.即实数m的取值范围是1⎡+⎣.【名师点睛】根据数列不等式恒成立求参数时,一般通过分离参数,得到参数大于某个式子或小于某个式子恒成立的问题,再根据分离后的式子,由函数(或数列)的性质求出最值,即可求解参数范围.14.已知等差数列{}n a 满足323a a -=,2414a a +=. (1)求{}n a 的通项公式;(2)设n S 是公比为正数的等比数列{}n b 的前n 项和,若22b a =,46b a =,求7S . 【试题来源】湖北省荆州市滩桥高级中学2019-2020学年高二下学期期末(文) 【答案】(1)32n a n =-;(2)254. 【解析】(1)设等差数列{}n a 的公差为d ,因为32243,14-=+=a a a a .所以3d =,12414a d +=,解得11a =, 所以()1132n a a n d n =+-=-; (2)设等比数列{}n b 的公比为q ,则2124b b q a ===,341616b b q a ===,解得122b q =⎧⎨=⎩或122b q =-⎧⎨=-⎩, 因为公比为正数,所以122b q =⎧⎨=⎩,所以()7721225412S ⨯-==-. 15.已知数列{}n a 为正项等比数列,12a =,数列{}n b 满足25b =,且11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-.(1)求数列{}n a 和{}n b 的通项公式; (2)若11{}n n b b +的前n 项和n T ,求n T 的取值范围. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题【答案】(1)2nn a =,21n b n =+;(2)[11,)156. 【解析】(1)令1n =,则2112(21)26a b =+-=,所以13b =,令2n =,则112226a b a b +=,所以2220a b =,因为25b =,所以24a =, 设数列{}n a 的公比为q ,则212a q a ==,所以2n n a =. 因为11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-,①当2n ≥时,112233112(23)2nn n a b a b a b a b n --+++⋅⋅⋅+=+-,② 由①-②得1[2(21)2][2(23)2](21)2n n nn n a b n n n +=+--+-=+,所以21n b n =+,当1n =时也成立,所以21n b n =+,(2)由(1)可知111111()(21)(23)22123n n b b n n n n +==-++++, 所以1111111[()()()]235572123n T n n =-+-+⋅⋅⋅+-++111()2323n =-+, 因为n T 随着n 的增大而增大,当1n =时,1115T =,当n →+∞时,16n T →, 所以n T 的取值范围是11[,)156. 【名师点睛】数列求和的方法常用的有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列通项的特征,灵活选择方法求和. 16.已知数列{}n a 的前n 项和为n S ,且312n n S a =-*()n N ∈. (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理)【答案】(1)123n n a -=⋅;(2)134n n b -=+.【解析】(1)当n =1时,11312a a =-, 所以 a 1=2. 当2n ≥时,因为312n n S a =- ①,1131(2)2n n S a n --=-≥ ②,①-②得133(1)(1)22n n n a a a -=---,即13n n a a -=所以 数列{}n a 是首项为2,公比为3的等比数列,所以123n n a -=⋅.(2)因为1n n n b b a +=+,所以当2n ≥时,2123n n n b b --=+⋅ ,……,13223b b =+⋅,2123b b =+⋅,相加得 12111132(333)523413n n n n b b ----=+⋅+++=+⋅=+-.当n =1时,111345b -+==,所以 134n n b -=+.【名师点睛】递推数列求数列通项公式,对于形如a (n+1)=a n +f (n )或者a (n+1)-a n =f (n )的关系式,其中f (n )可以为常数(此时为等差数列)、也可以是关于n 的函数如一次函数、分式函数、二次函数和指数函数等,此时求解通项公式时均可使用累加法.17.已知正项数列{}n a 的前n 项和为n S ,且满足:11a =,211n n n a S S ++=+.(1)求数列{}n a 的通项公式; (2)设()()121213n n n a n n a b a a +=-+,求数列{}n b的前n 项和n T .【试题来源】湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)【答案】(1)n a n =;(2)()1114213n n T n ⎡⎤=-⎢⎥+⋅⎣⎦.【解析】(1)由211n n n a S S ++=+,又有21n n n a S S -=+,()2n ≥,两式相减得()22112n n n n a a a a n ++-=+≥,因为0n a >,所以()112n n a a n +-=≥,又11a =,22121a a a a =++,解得22a =,满足11n n a a +-=,因此数列{}n a 是等差数列,首项1a 为1,公差d 为1, 所以()11n a a n d n =+-=; (2)()()1121213n n n b n n +=⋅-+()()113111114212134213213n n n n n n n -⎡⎤⎛⎫=-⋅=-⎢⎥ ⎪-+-⋅+⋅⎝⎭⎢⎥⎣⎦,所以 ()()1201121111111111...41333433534213213n n n n T b b b n n -⎡⎤⎛⎫⎛⎫=+++=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅⋅-⋅+⋅⎝⎭⎝⎭⎣⎦()1114213n n ⎡⎤=-⎢⎥+⋅⎣⎦. 【名师点睛】常见的数列中可进行裂项相消的形式:(1)()11111n n n n =-++;(2)211114122121n n n ⎛⎫=- ⎪--+⎝⎭; (31=-(4)()()1121121212121n n n n n ++=-----. 18.已知数列{}n a 中,11a =,13nn n a a a +=+. (1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()312nn n n nb a =-⋅,数列{}n b 的前n 项和为n T ,若不等式1(1)2n n n nT λ--<+对一切*n ∈N 恒成立,求λ的取值范围. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)证明见解析,231n na =-;(2)23λ-<<. 【解析】(1)由13n n n a a a +=+得13131n n n n a a a a ++==+,即11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 又111322a +=,所以112n a ⎧⎫+⎨⎬⎩⎭是以32是为首项,3为公比的等比数列. 所以111333222n n n a -+=⨯=,即231n n a =-. (2)()12231nnnn n b an n --⋅==, 所以0122111111123(1)22222n n n T n n --=⨯+⨯+⨯+⋯+-⨯+⨯, 211111112(1)22222n n n T n n -=⨯+⨯++-⨯+⨯. 两式相减得121011111222222222n n n n T n n -+=+++⋯+-⨯=-,所以1242n n n T -+=-,所以12(1)42nn λ--<-. 令()()*1242n f n n -=-∈N ,易知()f n 单调递增,若n 为偶数,则()21242f n λ-<-≤,所以3λ<; 若n 为奇数,则()11242f n λ--<-≤,所以2λ-<,所以2λ>-. 综上所述23λ-<<.【名师点睛】利用构造等比数列可求解形如递推关系1n n a pa q -=+的通项公式;根据数列的单调性求数列的最值,可求得参数的取值范围.19.已知n S 为等差数列{}n a 的前n 项和,满足410S =,55a =,n T 为数列{}n b 的前n 项和,满足()4413nn T =-,*n ∈N . (1)求{}n a 和{}n b 的通项公式; (2)设211log n n n n c b a a +=+,若数列{}n c 的前n 项和100n C <,求n 的最大值. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)*n a n n N =∈,,4n nb ,*n N ∈;(2)9.【解析】(1){}n a 为等差数列,因为410S =,55a =,所以14610a d +=,145a d +=,解得11a =,1d =,所以*n a n n N =∈,.因为()4413n n T =-,所以当2n ≥时,()()11444141433n n n n n n b T T --=-=---=; 当1n =时,114b T ==.综上,4n n b ,*n N ∈.(2)()2111log 4211nn c n n n n n ⎛⎫=+=+- ⎪++⎝⎭,所以()12111111212312231n n C c c c n n n ⎛⎫=+++=+++++-+-++- ⎪+⎝⎭()()111111n n n n n n n ⎛⎫=++-=++ ⎪++⎝⎭,所以()11nn C n n n =+++, 因为()11001n nC n n n =++<+, 当1n ≥时,()1111n C n n n =++-+为关于n 的递增数列,8999010010C C <=+<,101011010011C =+>,所以n 的最大值为9. 【名师点睛】已知数列的通项和前n 项和的递推关系,常采用多递推一项再相减的思想;通过研究数列的单调性,进而研究数列项的最值或解不等式,是常用的方法.20.在①112n n a a +=-,②116n n a a +-=-,③a n +1=a n +n -8这三个条件中任选一个,补充在下面的问题中,若问题中的S n 存在最大值,则求出最大值;若问题中的S n 不存在最大值,请说明理由.问题:设S n 是数列{a n }的前n 项和,且a 1=4,_________,求{a n }的通项公式,并判断S n 是否存在最大值.【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】答案不唯一,具体见解析 【解析】选①因为112n n a a +=-,a 1=4,所以{a n }是首项为4,公比为12-的等比数列,所以13114()()22n n n a --=⨯-=-.当n 为奇数时,14[1()]812(1)13212n n nS --==++,因为81(1)32n +随着n 的增加而减少,所以此时S n 的最大值为S 1=4.当n 为偶数时,81(1)32n n S =-,且818(1)4323n n S =-<<.综上,S n 存在最大值,且最大值为4.选②因为116n n a a +-=-,a 1=4,所以{a n }是首项为4,公差为16-的等差数列,所以11254(1)()666n a n n =+--=-+.由125066n -+≥,得n ≤25,所以S n 存在最大值,且最大值为S 25(或S 24),因为2525241254()5026S ⨯=⨯+⨯-=,所以S n 的最大值为50.选③因为a n +1=a n +n -8,所以a n +1-a n =n -8,所以a 2-a 1=-7,a 3-a 2=-6,…,a n -a n -1=n -9,则12132n a a a a a a -=-+-+…21(79)(1)171622n n n n n n a a --+---++-==,又a 1=4,所以217242n n n a -+=.当n ≥16时,a n >0,故S n 不存在最大值.21.已知数列{}n a 中,11a =,1(1)(2)1n n n a n a ++-+=*()n N ∈,n S 为数列{}n a 的前n项和.数列{}n b 满足*1()n nb n N S =∈.(1)证明:数列{}n a 是等差数列,并求出数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T .问是否存在正整数,(3)p q p q <<,使得3,,p q T T T 成等差数列?若存在,求出,p q 的值;若不存在,请说明理由.【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】(1)证明见解析,n a n =;(2)存在,11,5q p ==或27,6q p == 【解析】(1)1(1)(2)1n n n a n a ++-+=,则()()1111211212n n a a n n n n n n +-==-++++++, 设1n n a c n =+,则112c =,11112n n c c n n +-=-++,1122111111111123211n n n n n nc c c c c c c c n n n n ---=-+-+⋅⋅⋅+-+=-+⋅⋅⋅+-+=-=+++,故11n n a nc n n ==++,n a n =,11n n a a --=,故数列{}n a 为等差数列.(2)()12n n n S +=,()1211211⎛⎫===- ⎪++⎝⎭n nb S n n n n , 故1111122122311n n T n n n ⎛⎫=-+-+⋅⋅⋅+-=⎪++⎝⎭. 3,,p q T T T 成等差数列,则32p q T T T =+,即423112p q p q =+++, 化简整理得到:5730pq p q +--=,即()()7532p q -+=-,3p q <<,故58q +>,且*,p q N ∈,故516q +=或532q +=,故11,5q p ==或27,6q p ==.22.在①123,1,a a a +成等差数列;②430S =;③12364a a a =三个条件中任选一个补充在下面的问题中,并作答.(注:如果选择多个条件分别作答,按第一个解答计分)已知n S 是数列{}n a 的前n 项和.若12()n n S a a n N *=-∈,10a ≠,且满足(1)求数列{}n a 的通项公式;(2)设11b =,*1()n n n b b a n N +-=∈,求数列{}n b 的通项公式. 【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中【答案】(1)2nn a =;(2)21n n b =-.【解析】(1)因为12n n S a a =-,所以1112n n S a a ++=-,所以()1111122n n n n n a S S a a a a +++--==--,化简得12n n a a +=,若选择①:因为123,1,a a a +成等差数列,所以()21321a a a +=+即()1112214a a a +=+,解得12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =;若选择②:因为2413411530a a a a S a =+++==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; 若选择③:因为31231864a a a a ==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; (3)由(1)得2nn a =,则12n n n b b +-=,所以当2n ≥时,()()()()2311213243112222n n n n b b b b b b b b b b --+-+-+-+⋅⋅⋅+-=+++⋅⋅⋅+= ()1122112n n ⋅-==--,当1n =时,11b =满足上式,所以21nn b =-.23.阅读本题后面有待完善的问题,在下列三个关系①1112n n a a +=+,②12n n a a +=+,③21n n S a =-中选择一个作为条件,补充在题中横线标志的__________处,使问题完整,并解答你构造的问题.(如果选择多个关系并分别作答,在不出现逻辑混乱的情况下,按照第一个解答给分)设数列{}n a 的前n 项和为n S ,11a =,对任意的*N n ∈,都有_________;等比数列{}n b 中,对任意的*N n ∈,都有0n b >,2123n n n b b b ++=+,且11b =,问:是否存在*N k ∈,使得对任意的*N n ∈,都有n k k n a b a b ≤?若存在,试求出k 的值;若不存在,试说明理由. 【试题来源】江苏省南京市三校2020-2021学年高三上学期期中联考 【答案】答案见解析【解析】设等比数列{}n b 的公比为q .因为对任意的*n ∈N ,都有2123n n n b b b ++=+,所以223q q =+,解得1q =-或32. 因为对任意的*n ∈N ,都有0n b >,所以0q >,从而32q =. 又11b =,所以132n n b -⎛⎫= ⎪⎝⎭.显然,对任意的*n ∈N ,0n b >.所以,存在*n ∈N ,使得对任意的*n ∈N ,都有n k k n a b a b ≤,即n kn ka ab b ≤. 记nn na cb =,*n ∈N .下面分别就选择①②③作为条件进行研究. ①因为对任意的*n ∈N ,都有1112n n a a +=+,即()11222n n a a +-=-.又11a =,即1210a -=-≠,所以20n a -≠,从而12122n n a a +-=-,所以数列{}2n a -是等比数列,公比为12,得1122n n a -⎛⎫-=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭.所以1123n n n n n a c b --==,从而()1112321n n n nc c ++-=-. 由()1121122132n nn n +--≤⇔≥⇔≥,得12c c =,当1n ≥时,1n n c c +<, 所以,当1n =或2时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有2121n n a a a b b b ≤=,即11n n a b a b ≤,22n n a b a b ≤, 所以存在1k =,2,使得对任意的*n ∈N ,都有n k k n a b a b ≤. ②因为对任意的*n ∈N ,都有12n n a a +=+,即12n n a a +-=,所以数列{}n a 是等差数列,公差为2.又11a =,所以12(1)21n a n n =+-=-.所以12(21)03n n n n a c n b -⎛⎫==-> ⎪⎝⎭,从而12(21)3(21)n n c n c n ++=-. 由2(21)51253(21)2n n n n +≤⇔≥⇔≥-,得当2n ≤时,1n n c c +>;当3n ≥时,1n n c c +<,所以,当3n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有33n n a a b b ≤,即33n n a b a b ≤. 所以存在3k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. ③因为对任意的*N n ∈,都有21n n S a =-,所以1121n n S a ++=-, 从而()1111212122n n n n n n n a S S a a a a ++++=-=---=-,即12n n a a +=.又110a =>,所以0n a >,且12n na a +=, 从而数列{}n a 是等比数列,公比为2,得12n na .所以1304n n n n a c b -⎛⎫==> ⎪⎝⎭,从而1314n n c c +=<,所以1n n c c +<, 所以,当1n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*N n ∈,都有11n n a a b b ≤,即11n n a b a b ≤. 所以存在1k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. 24.已知数列{}n a 的前n 项和为n S ,且21(*)n n S a n N =-∈ (1)求1a 和2a 的值;(2)证明数列{}n a 是等比数列,并求出{}n a 的通项公式;(3)设13log n n b a =,n n n c a b =,求数列{}nc 的前n 项和n T .【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中【答案】(1)113a =;219a =;(2)证明见解析,13n n a =;(3)n T =332443nn +-⨯. 【解析】(1)1121S a =-,得113a =,当2n =时,2221S a =-,所以1222()1a a a +=-,解得219a =.(2)由21n n S a =-,1121(2)n n S a n --=-≥, 两式相减得11(2)3n n a a n -=≥,即11(2)3n n a n a -=≥, 所以数列{}n a 是以首项为13,公比为13的等比数列,得13n n a =. (3)13log n n b a n ==,3n n nnn c a b ==, 则12n n T c c c =+++=21111112(1)3333n n n n -⨯+⨯++-⨯+⨯,得3×n T =21231333n-n++++,上两式相减得 2×n T =1+211113333n n n -+++-=311)233n n n--(, 得n T =13133244323443n n nn n-+--=-⨯⨯⨯. 【名师点睛】已知条件是n S 和n a 的关系的,可用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求通项公式.如果一个数列的结构是等差数列乘以等比数列,则数列求和采用错位相减求和法. 25.设数列{}n a 的前n 项和为n S ,且22n n S n a +=-.(1)证明数列{}1n a +是等比数列,并求出数列{}n a 的通项公式;(2)若数列{}n b 中,12b =,12n n b b +=-,求数列{}n n a b +的前n 项和n T . 【试题来源】云南省德宏州2020届高三上学期期末教学质量检测(文)【答案】(1)证明见解析;121n n a +=-;(2)n T 2224n n +=+-.【解析】(1)证明:当1n =时,13a =,当2n ≥时,22n n S n a +=- ①,11(1)22n n S n a --∴+-=- ②, 由①-②得121n n a a -+=, 1221n n a a -∴+=+,即1121n n a a -+=+,故数列{}1n a +是以2为公比,首项为114a +=的等比数列,112n n a +∴+=,得121n n a +=-.(2)由题得12nnb b ,故{}n b 是以2为公差,2为首项的等差数列,2n b n ∴=.()231(242)222n n T n n +∴=++⋅⋅⋅++++⋅⋅⋅+-()412(1)22212n n n n n --=+⨯+--2224n n +=+-.【名师点睛】本题考查数列求通项公式与求和问题,求数列和常用的方法: (1)等差+等比数列:分组求和法;(2)倒序相加法; (3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法; (4)等差⨯等比数列:错位相减法.26.已知数列{}n a 满足12a =,1(1)2(2)n n n a n a ++=+ (1)求数列{}n a 的通项公式;(2)设n S 是数列{}n a 的前n 项和,求证:2nn S a <.【试题来源】浙江省温州市2020-2021学年高三上学期11月高考适应性测试(一模) 【答案】(1)1(1)2n n a n -=+⋅;(2)证明见解析.【解析】(1)因为1(1)2(2)n n n a n a ++=+,所以12(2)(1)n n a n a n ++=+,则 1123411123134512(1)2(2)234n n n n n a a a a n a a a n n a a a a n ---+⎛⎫=⋅⋅⋅=⋅⋅⨯⨯⨯⨯=+⋅≥ ⎪⎝⎭当1n =时,12a =满足上式,所以1(1)2n n a n -=+⋅.(2)0121223242(1)2n n S n -=⋅+⋅+⋅+⋅+⋅①,123122232422(1)2n n n S n n -=⋅+⋅+⋅++⋅++⋅②,①-②得123122222(1)2n n n S n --=+++++-+⋅,化简得()12122(1)2212---=+-+⋅=-⋅-n nn nS n n ,所以2nn S n =⋅,又2(1)2220nnnn n a S n n -=+⋅-⋅=>,所以2n n S a <.【名师点睛】本题考查根据递推关系式求数列的通项公式,考查错位相减法求和,难度一般.(1)当数列{}n a 满足()1n na f n a +=时,可采用累乘法求通项公式; (2)当数列n n n c ab =⋅,其中{}n a 和{}n b 分别为等差数列与等比数列时,采用错位相减法求和.27.已知数列{}n a 满足122nn n a a a +=+,且12a =,数列{}n b 满足1n n n n b b a b +-=,且12b =,(n *∈N ). (1)求证:数列1na 是等差数列,并求通项n a ; (2)解关于n 的不等式:22n a nb <.【试题来源】江苏省盐城市一中、射阳中学等五校2020-2021学年高二上学期期中联考 【答案】(1)证明见解析,2n a n=;(2){}2,3,4n ∈. 【解析】(1)由122nn n a a a +=+,且12a =知,0n a >, 故有11112n n a a +-=得,所以数列1na 是等差数列, 由于1111,22d a ==,所以12n n a =,即2n a n=; (2)由1n n n n b b a b +-=得,121n n n b n a b n++=+=,由累乘法得,(1)n b n n =+ 则不等式22na nb <可化为2(1)nn n <+,即(1)12nn n +>, 令(1),2n nn n c n N *+=∈,则1n c >. 当1n =时,11c =,不符合;当2n =时,2312c =>,符合;当3n =时,3312c =>,符合;当4n =时,4514c =>,符合; 当5n =时,515116c =<,不符合;而当5,n n N *≥∈时,()()1111(2)1(2)(1)0222n n n nn n n n n n n c c ++++++-+-=-=<故当5,n n N *≥∈不符合;综上所述,{}2,3,4n ∈.28.已知数列1n n a ⎧⎫⎨⎬-⎩⎭的前n 项和为n ,数列{}n b 满足11b =,1n n n b b a +-=,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式; (2)若数列{}n c 满足22nnn a c b =,*n N ∈,求满足126316n c c c +++≤的最大整数n . 【试题来源】浙江省杭州地区重点中学2020-2021学年高三上学期期中 【答案】(1)1n a n =+()n N ∈,(1)2n n nb +=()n N ∈;(2)证明见解析 【解析】(1)因为1212111n nn a a a +++=---①, 2n ≥时,1211211111n n n a a a --+++=----②,由-①②得11n na =-,所以1(2)n a n n =+≥, 当1n =时,1111a =-,12a =符合1n a n =+,所以1n a n =+()n N ∈,因为11n n n b b a n +-==+,所以()()()121321n n n b b b b b b b b -=+-+-++-1121n b a a a -=++++(1)122n nn +=+++=, 当1n =时,11b =也符合,(1)2n n nb +=. (2)因为22224(21)(1)n n n a n c b n n +==+,22224(21)114()(1)(1)n n c n n n n +==-++, 所以,12216341(1)16n c c c n ⎛⎫+++=-≤ ⎪+⎝⎭,21631(1)64n -≤+,211(1)64n ≥+,2(1)64n +≤,所以()18n +≤即7n ≤. 所以满足126316n c c c +++≤的最大整数n 为7. 29.已知数列{a n }中,已知a 1=1,a 2=a ,a n +1=k (a n +a n +2)对任意n ∈N *都成立,数列{a n }的前n 项和为S n .(1)若{a n }是等差数列,求k 的值; (2)若a =1,k =-12,求S n . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文)【答案】(1)12k =;(2)()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N . 【解析】(1)若{}n a 是等差数列,则对任意*n N ∈,121n n n n a a a a +++-=-, 即122n n n a a a ++=+,所以()1212n n n a a a ++=+,故12k =. (2)当12k =-时,()1212n n n a a a ++=-+,即122n n n a a a ++=--. 所以()211n n n n a a a a ++++=-+,故()32211n n n n n n a a a a a a ++++++=-+=+, 所以,当n 是偶数时,()()()1234112341n n n n n S a a a a a a a a a a a a --=++++++=++++++()122na a n =+=, 当n 是奇数时,()23212a a a a +=-+=-,()()()12341123451n n n n n S a a a a a a a a a a a a a --=++++++=+++++++11(2)22n n -=+⨯-=- 综上,()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N .30.已知等差数列{}n a 的前n 项和为n S ,918a =,10110S =. (1)求数列{}n a 的通项公式n a ;(2)设1n nb S =,求数列{}n b 的前n 项和n T . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】(1)2n a n =;(2)1n nT n =+. 【解析】(1)设等差数列{}n a 的公差为d ,由911018181045110a a d S a d =+=⎧⎨=+=⎩,解得12a d ==,所以,()112n a a n d n =+-=,故数列{}n a 的通项公式2n a n =; (2)由(1)可得()()2212n n n S n n +==+, 所以()111111n n b S n n n n ===-++, 所以111111111122334111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭. 【名师点睛】数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法.31.已知等比数列{}()n a n N*∈满足234a aa =,13223a a a +=.(1)定义:首项为1且公比为正数的等比数列为“M -数列”,证明:数列{}n a 是“M -数列”;(2)记等差数列{}n b 的前n 项和记为n S ,已知59b =,864S =,求数列{}21n n b a -的前n 项的和n T .【试题来源】内蒙古呼和浩特市2021届高三质量普查调研考试(理) 【答案】(1)证明见解析;(2)()4727nn T n =-+.【解析】(1)由题意可设公比为q ,则23311a q a q =,得11a =,211123a a q a q +=得1q =或2q,所以数列{}n a 是“M -数列”.(2)设数列{}n b 的公差为d ,易得()458464b b S +==得47b =, 所以542d b b =-=,得21n b n =-,由(1)知若1q =,则2143n n b a n -=-,所以()214322n n n T n n +-==-,若2q,则12n na ,所以()121432n n nb a n --=-⋅,所以()()0221125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-①, 所以()()2312125292472432n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-②,①-②得()()231125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()1812143212n n nT n ---=+---,所以()4727nn T n =-+.32.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列.(1)求数列{}n a 的通项公式; (2)设()1nn n b a =-,求1ni i b =∑.【试题来源】江苏省南通市平潮高级中学2020-2021学年高二上学期期中【答案】(1)32n a n =-;(2)13,213,2n i i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【解析】{}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+,整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得2230d d --=,解得3d =或1d =-(舍),所以11a =, 所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得2111762450a a -+=,即 ()()11117450a a --=解得113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意;若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩,32n a n =-,(2)()()132nn b n =--,()()()()()12311231111111nn nin n i b a a a a a --==-+-+-+-+-∑()()()()114710135132n nn n -=-+-++--+--当n 为偶数时,13322ni i n n b ==⨯=∑,当n 为奇数时,()11131322ni i n nb =--=-+-⨯=∑,所以13,213,2ni i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数.【名师点睛】本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1nn nb a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.33.已知函数f (x )=x a ( a 为常数,a >0且a ≠1 )(1)在下列条件中选择一个条件___ (仅填序号),使得依次条件可以推出数列{a n }为等差数列,并说明理由;①数列{f (n a )}是首项为4,公比为2的等比数列; ②数列{f (n a )}是首项为4,公差为2的等差数列;③数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列;(2)在(1)的选择下,若a =2,b =12n⎛⎫ ⎪⎝⎭(n ∈*N ),求数列{n a .n b }的前n 项和n S , 【试题来源】江苏省南京师大附中2020-2021学年高三上学期期中 【答案】(1) 选①,理由见解析(2)332n n +-【解析】(1)②③不能推出数列{a n }为等差数列,①能推出数列{a n }为等差数列. 若选①,数列{f (n a )}是首项为4,公比为2的等比数列, 所以f (n a )1+1422n a n n a -==⨯=, 解得1log 2(1)log 2n n a a a n +==+,故数列{a n }为等差数列,若选②,数列{f (n a )}是首项为4,公差为2的等差数列, 所以()42(1)22n f a n n =+-=+,即22na a n =+,解得log 22)a n a n =+(,故数列{a n }不为等差数列,若选③,数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列,因为首项为4 ,公比为2的等比数列的前n 项和为4(12)4(21)12n n n S -==--,所以()4(21)na n n f a a==-,解得log 4(21)n n a a =-,显然数列{a n }不为等差数列.(2)由(1)及a =2可得1n a n =+,所以11(1)22nn n n n a b n +⎛⎫=+⋅= ⎪⎝⎭, 234345n+112222n n S =+++++,345111345n+1222222n n S +∴=+++++, 两式相减可得23451111111112222222n n n n S ++∴=++++++-。

专题13 数列(解答题)(教师版)

专题13 数列(解答题)(教师版)

专题13 数列(解答题)1.【2022年全国甲卷】记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2S n+n2=2na n+n,根据a n={S1,n=1S n−S n−1,n≥2,作差即可得到a n−a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{a n}的通项公式与前n项和,再根据二次函数的性质计算可得.(1)解:因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N*,所以{a n}是以1为公差的等差数列.(2)解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.2.【2022年新高考1卷】记S n为数列{a n}的前n项和,已知a1=1,{S na n }是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×n n−2×n+1n−1=n (n+1)2,显然对于n =1也成立, ∴{a n }的通项公式a n =n (n+1)2;(2)1a n=2n (n+1)=2(1n −1n+1),∴1a 1+1a 2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n −1n+1)]=2(1−1n+1)<23.【2022年新高考2卷】已知{a n }为等差数列,{b n }是公比为2的等比数列,且a 2−b 2=a 3−b 3=b 4−a 4. (1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】 【分析】(1)设数列{a n }的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得m =2k−2,即可解出. (1)设数列{a n }的公差为d ,所以,{a 1+d −2b 1=a 1+2d −4b 1a 1+d −2b 1=8b 1−(a 1+3d ) ,即可解得,b 1=a 1=d2,所以原命题得证. (2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列{}n S 是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】21S S {}n S 的公差d ,进一步写出{}n S 的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列{}n S 是等差数列,设公差为d 212111a a a a S S +111(1)n S a n a a n =-,()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列{}n S 是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】n S ,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.n S 选②③作条件证明①时,n S an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式 (0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d ,等差数列{}n S 的公差为1d , 11(1)n S a n d -,将1(1)2n n n S na d -=+11(1)n S a n d -, 化简得())222221111111222d d n a n d n a d d n a d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有2121111112,2440,d d a d a d d a d ⎧=⎪⎪-=-⎨=,解得111,2d a d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=1n S a n =, )11111n n S S a n a n a +=+ 所以{}n S 是等差数列. 选②③作条件证明①: [方法一]:定义法(0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3n S an b an a =+-103aS =-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =11S a =21212S a a a +{}n S 也为等差数列,所以公差1211d S S a ()1111n S a n d n a -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系11d a =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S n S 进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数n S 1211d S S a ==nS 的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】 (1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =. 所以数列{}n b 是以32为首项,12为公差的等差数列. [方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列. [方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列. (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】 (1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解; 方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果. 【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =. 【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=, 11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础. 15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n *≤≤∈N . 【解析】 【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果. 【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式. 【答案】(1)见解析;(2)1122nn a n,1122nnb n.【解析】 【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b ,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ,即1112n n n n a b a b ,n n 22n n 因为11443434448n n n n n n n n a b a b b a a b ,所以112n n n n a b a b ,数列{}n n a b -是首项1、公差为2的等差数列,21n na b n .(2)由(1)可知,112n n n a b ,21n na b n ,所以111222nnn n n na ab a b n,111222nn n n n nb a b a b n.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】 【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a 中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果. 【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a ,12a =, 所以令数列{}n a 的公比为q ,2231=2a a q q ,212a a qq ,所以22416q q =+,解得2q =-(舍去)或4,n n (2)因为2log n n b a =,所以21n b n =-,+121n b n ,12n nb b , 所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S nn .【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列; (3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{an }的通项公式为an =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =. 【解析】 【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。

数列解答题专练(含答案版)

数列解答题专练(含答案版)

数列高考真题汇编1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,(3分)由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1. 所以a n =2n -1.(5分)(2)b n =(-1)n -14n a n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1.(6分)当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.(10分)2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.3.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . 解析 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1.(4分) 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(5分)(2)解:由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2. 从而b n =n ·3n .(7分)S n =1×31+2×32+3×33+…+n ·3n ,① 3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.② ①—②,得-2S n =31+32+ (3)-n ·3n+1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32.(10分)所以S n =(2n -1)·3n +1+34.(12分)4.已知S n 是数列{a n }的前n 项和,a 1=2,S n +1=3S n +n 2+2(n ∈N *),设b n =a n +n .(1)证明:数列{b n }是等比数列;(2)若c n =n b n ,数列{c n }的前n 项和为T n ,求证:T n <45.解析 (1)证明:因为a 1=2,S n +1=3S n +n 2+2, 所以当n =1时,a 1+a 2=3a 1+12+2,解得a 2=7.(2分)由S n +1=3S n +n 2+2及S n =3S n -1+(n -1)2+2(n ≥2),两式相减,得 a n +1=3a n +2n -1.故a n +1+n +1=3(a n +n ). 即b n +1=3b n (n ≥2).(4分)又b 1=3,b 2=9,所以当n =1时上式也成立. 故数列{b n }是以3为首项,3为公比的等比数列.(5分) (2)由(1)知b n =3n,所以c n =n3n .所以T n =13+232+333+…+n -13n -1+n 3n , ①3T n =1+23+332+…+n -13n -2+n3n -1. ②(7分)②-①,得2T n =1+13+132+…+13n -1-n 3n =32-3+2n2·3n . 所以T n =34-3+2n4·3n .(10分) 因为n ∈N *,显然有3+2n4·3n >0. 又34<45,所以T n <45.(12分)5.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n .解析 (1)设等比数列{a n }的公比为q ,由题知a 1=12, 又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=S 1+a 1+S 3+a 3.∴S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即3a 2=a 1+2a 3. ∴32q =12+q 2,解得q =1或q =12.(4分) 又{a n }为递减数列,于是q =12. ∴a n =a 1q n -1=(12)n .(6分) (2)∵b n =a n log 2a n =-n (12)n ,∴T n =-[1×12+2×(12)2+…+(n -1)(12)n -1+n ×(12)n ]. 于是12T n =-[1×(12)2+…+(n -1)(12)n +n ×(12)n +1].(8分)两式相减,得12T n =-[12+(12)2+…+(12)n -n ×(12)n +1]=-12×[1-(12)n ]1-12+n ×(12)n +1.∴T n =(n +2)(12)n-2,6.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解析 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a n b n=2,即c n +1-c n =2.(4分)所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =c n b n =(2n -1)3n -1. 于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n .所以S n =(n -1)3n +1.7.已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.解析 (1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3 设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32. 所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减,得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2. 所以S n =2-n +42n +1.8.已知{a n }是各项均为正数的等比数列,且a 1·a 2=2,a 3·a 4=32. (1)求数列{a n }的通项公式;(2)设数列{b n }满足b 11+b 23+b 35+…+b n 2n -1=a n +1-1(n ∈N *),求数列{b n }的前n 项和.解析 (1)设等比数列{a n }的公比为q ,由已知得⎩⎨⎧a 21q =2,a 21q 5=32.又∵a 1>0,q >0,∴⎩⎨⎧a 1=1,q =2.∴a n =2n -1.(2)由题意,可得b 11+b 23+b 35+…+b n2n -1=2n -1.∴2n -1-1+b n 2n -1=2n -1(n ≥2),b n2n -1=2n -1.∴b n =(2n -1)2n -1(n ≥2). 当n =1时,b 1=1,符合上式, ∴b n =(2n -1)·2n -1(n ∈N *).设T n =1+3×21+5×22+…+(2n -1)·2n -1,2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,两式相减,得-T n =1+2(2+22+…+2n -1)-(2n -1)·2n =-(2n -3)·2n -3. ∴T n =(2n -3)2n +3.9.已知数列{a n }是a 3=164,公比q =14的等比数列.设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n b n .(1)求证:数列{b n }是等差数列; (2)求数列{c n }的前n 项和S n .解析 (1)证明:由已知,可得a n =a 3q n -3=(14)n . 则b n +2=3log 14(14)n =3n ,∴b n =3n -2. ∵b n +1-b n =3,∴{b n }为等差数列. (2)由(1)知c n =a n b n =(3n -2)(14)n ,∴S n =1×14+4×(14)2+7×(14)3+…+(3n -2)×(14)n , ①14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. ② ①-②,得34S n =14+3[(14)2+(14)3+(14)4+…+(14)n ]-(3n -2)·(14)n +1 =14+3·(14)2[1-(14)n -1]1-14-(3n -2)·(14)n +1 =12-(3n +2)·(14)n +1.∴S n =23-3n +23·(14)n.健康文档 放心下载 放心阅读。

数列测试卷(含答案)

数列测试卷(含答案)

第五章数列测试卷一、选择题(本大题20个小题,每小题3分,共60分) ( )1. 数列1,-2,3,-4……的一个通项公式是A.a n=(一1)n•nB. a n= (-1)n+1 •nC. a n=nD. a n=-n2.已知数列{a n}的通项公式为a n=n2+n,且156是该数列的一项,则n 等于 ( )A.10B.11C.12D.133.若等差数列的前n项和S n=2n2- n,则它的通项公式a n为( )A.4n+3B.4n一3C.2n-1D.2n+14.在数列{ a n}中,若a1=2,a n=a n+1-2,则该数列的第5项等于( )A.16B. 14C.12D.55.已知2,m,8构成等差数列,则实数m的值是 ( )A.4B.4或一4C.10D.566.在等差数列{a n}中,已知S3=54,则a2为 ( )A.6B.12C.18D.247.在等差数列中,若a1=23,公差d为整数,a6>0,a7<0,则d等于 ( )A.-1B. -2C.-3D.-4 8.若a ≠b,且aa 1,a 2a 3,b 和a.b 1b 2b 3,b 4,b 都是等差数列,则a1−a2b1−b2等于( )A.43B.34C. 45D.549.在等差数列{a n }中,若a 1+a 4+a 7= 39,a 3+a 6+a 9=27,则S 9等于 ( )A.66B.144C.99D.297 10.等差数列{a n }中,若a n = m,a m =n,且m ≠n,那么a m+n .等于( ) A. mn B.m+n C.m-n D.011.已知a,b,c 成等比数列,则函数y=2ax 2+ 3bx+c 与x 轴交点的个数是 ( )A.0B.1C.2D.3 12.等比数列{a n }中,a 6=6,a 9=9,则a 3等于 ( ) A.4 B .32C.169D.213.已知等比数列{a n },前3项的和为7,积为8,则此数列的公比等于( )A.2B.2或32C.12D.-2或-12.14.已知等差数列{a n }的公差d=3,若a 1,a 3.a 4.成等比数列,则a 2等于 ( )A.-18B.-15C.-12D. -9 15.在等比数列(a n )中:若 a 2•a 6=8,Iog 2(a 1•a 7)= ( )A. 8 B .3 C.16 D.28 16.已知1和4的等比中项是log 3x,则实数x 的值是 ( ) A.2或12B.3或13C.4或14D.9或1917.已知等比数列{a n }的各项均为正数.且a 1, 12a 3,2a 2成等差数列,则a9+a10a7+a8= ( )A.1+√2B.1- √2C.3+2√2D.3-2√2 18.在等比数列{a n }中,著a4a7+a5a6=20.则此数列的前10项之积为( )A.50B.2010C.105D. 1010 19.为了治理沙漠,某农场要在沙漠上赖种植被,计划第一年栽种15公顷,以后每年比上一年多栽种4公顷,那么10年后该农场共裁种植被的公顷数是 ( )A.510公顷B.330公顷C.186公顷D.51公顷 20.《九章算术)“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积是 ( )A.1升B.6766升 C.4744升 D.3733升二、填空题(本大题5个小题,每小题4分,共20分) 21.在等差数列{a n }中,若Sn=3n 2+2n.则公差d 的值是22.已知数列{a n }的通项公式为a n =2n 一49,则当n= 时,S n 有最小值.23.在等差数列{a n }中,已知公差d=12,且a 1+a 3+a 5…+a 97+a 99=60.则a1+a2+a3+…+a99+a100= .24.等比数列{a n}中,a2=2,a5=16,则S6=25.某种储蓄利率为2.5%,按复利计算,若本金为30 000元,设存入工期后的本金和利息为y元,则y随x变化的函数关系为三、解答题(本大题5个小题,共40分)26.(本小题6分)已知等差数列{a n}中,a n=33-3n,求前n项和S n的最大值.27.(本小题8分)设数列{a n}满足:a1=1,a n+1=2a n.n∈N+.(1)求数列{a n}的通项公式:(2)已知数列{b n}是等差数列,S n是其前n项和,且满足b1=a3,b3=a1+a2+a3,求S20的值。

数列难题专题(含答案)

数列难题专题(含答案)

数列难题专题一.解答题(共50小题)1.已知数列{a n }的前n 项和为S n ,且S n =n (n+1)(n ∈N *). (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足:,求数列{b n }的通项公式;(Ⅲ)令(n ∈N *),求数列{c n }的前n 项和T n .2.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12. (1)求数列{a n }的通项公式;(2)令b n =a n •3n ,求数列{b n }的前n 项和S n .3.已知数列{a n }中,a 1=3,a 2=5,其前n 项和S n 满足S n +S n ﹣2=2S n ﹣1+2n ﹣1(n ≥3).令b n =.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若f (x )=2x ﹣1,求证:T n =b 1f (1)+b 2f (2)+…+b n f (n )<(n ≥1).4.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =(﹣1)n ﹣1,求数列{b n }的前n 项和T n .5.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2•S 3=36. (Ⅰ)求d 及S n ;(Ⅱ)求m ,k (m ,k ∈N *)的值,使得a m +a m+1+a m+2+…+a m+k =65.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.16.已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).17.已知等差数列{a n }的首项a 1=1,公差d >0,且a 2,a 5,a 14分别是等比数列{b n }的b 2,b 3,b 4. (Ⅰ)求数列{a n }与{b n }的通项公式; (Ⅱ)设数列{c n }对任意自然数n 均有=a n+1成立,求c 1+c 2+…+c 2014的值.18.设数列{a n }的前n 项和为S n ,已知a 1=1,,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有.19.数列{a n }的首项a 1=1,前n 项和S n 与a n 之间满足a n =(n ≥2).(1)求证:数列{}是等差数列;(2)设存在正数k ,使(1+S 1)(1+S 2)..(1+S n )对一切n ∈N ×都成立,求k 的最大值. 20.若数列{a n }的前n 项和为S n ,a 1=1,.(1)证明:数列{a n ﹣2}为等比数列; (2)求数列{S n }的前n 项和T n .21.已知数列{a n },{b n }满足b n =a n+1﹣a n ,其中n=1,2,3,…. (Ⅰ)若a 1=1,b n =n ,求数列{a n }的通项公式; (Ⅱ)若b n+1b n ﹣1=b n (n ≥2),且b 1=1,b 2=2.(ⅰ)记c n =a 6n ﹣1(n ≥1),求证:数列{c n }为等差数列; (ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a 1应满足的条件.22.在数列{an }中,a1=3,an+1an+λan+1+μan2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{an}的通项公式;(Ⅱ)若λ=(k0∈N+,k≥2),μ=﹣1,证明:2+<<2+.23.设数列{an }的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an }的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an }是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an },总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.24.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an} 前n项和为Sn ,且满足S3=a4,a3+a5=2+a4(1)求数列{an}的通项公式;(2)求数列{an }前2k项和S2k;(3)在数列{an }中,是否存在连续的三项am,am+1,am+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m的值;若不存在,说明理由.25.已知数列{an }满足a1=1,|an+1﹣an|=p n,n∈N*.(Ⅰ)若{an }是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.26.已知数列{an }满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.27.设数列{an }的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.28.已知公比为q(q≠1)的无穷等比数列{an }的首项a1=1.(1)若q=,在a1与a2之间插入k个数b1,b2,…,bk,使得a1,b1,b2,…,bk,a2,a3成等差数列,求这k个数;(2)对于任意给定的正整数m,在a1,a2,a3的a1与a2和a2与a3之间共插入m个数,构成一个等差数列,求公比q的所有可能取值的集合(用m表示);(3)当且仅当q取何值时,在数列{an }的每相邻两项ak,ak+1之间插入ck(k∈N*,ck∈N)个数,使之成为一个等差数列?并求c1的所有可能值的集合及{cn}的通项公式(用q表示).29.已知数列{an }的各项均为正数,bn=n(1+)n an(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令cn =(a1a2…an),数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn.30.设等差数列{an }的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.31.正整数列{an },{bn}满足:a1≥b1,且对一切k≥2,k∈N*,ak是ak﹣1与bk﹣1的等差中项,bk是ak﹣1与bk﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{an }是等差数列的充要条件是{an}为常数数列;(3)记cn =|an﹣bn|,当n≥2(n∈N*)时,指出c2+…+cn与c1的大小关系并说明理由.32.已知数列{an }是无穷数列,a1=a,a2=b(a,b是正整数),.(Ⅰ)若a1=2,a2=1,写出a4,a5的值;(Ⅱ)已知数列{an }中,求证:数列{an}中有无穷项为1;(Ⅲ)已知数列{an }中任何一项都不等于1,记bn=max{a2n﹣1,a2n}(n=1,2,3,…;max{m,n}为m,n较大者).求证:数列{bn}是单调递减数列.33.对于项数为m的有穷数列{an },记bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk为a1,a2,…,a k 中的最大值,并称数列{bn}是{an}的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{an }的控制数列为2,3,4,5,5,写出所有的{an}.(2)设{bn }是{an}的控制数列,满足ak+bm﹣k+1=C(C为常数,k=1,2,…,m),求证:bk=ak(k=1,2,…,m).(3)设m=100,常数a∈(,1),an =an2﹣n,{bn}是{an}的控制数列,求(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100).34.已知数列{an }是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N*,总有b1•b2•b3…bn﹣1•bn=an+2成立.(Ⅰ)求数列{an }和{bn}的通项公式;(Ⅱ)记cn =(﹣1)n,求数列{cn}的前n项和Tn.35.已知f(x)=,数列{an }为首项是1,以f(1)为公比的等比数列;数列{bn}中b1=,且bn+1=f(bn),(1)求数列{an }和{bn}的通项公式(2)令,{cn }的前n项和为Tn,证明:对∀n∈N+有1≤Tn<4.36.已知数列{an }满足a1=,an=(n≥2,n∈N).(1)试判断数列是否为等比数列,并说明理由;(2)设bn =,求数列{bn}的前n项和Sn;(3)设cn =ansin,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn<.37.已知数列{an }满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an }是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.38.对于函数f(x),若存在x0∈R,使f(x)=x成立,则称x为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(1)试求b、c满足的关系式.(2)若c=2时,各项不为零的数列{an }满足4Sn•f()=1,求证:<<.(3)设bn =﹣,Tn为数列{bn}的前n项和,求证:T2009﹣1<ln2009<T2008.39.在数列{an }中,a1=1,an+1=(1+)an+.(1)设bn =,求数列{bn}的通项公式;(2)求数列{an }的前n项和Sn.40.已知数列{an }的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).(Ⅰ)求数列{an }的通项公式an;(Ⅱ)设Tn 为数列{}的前n项和,求Tn;(Ⅲ)设bn =,证明:b1+b2+b3+…+bn<.41.已知数列an满足(1)求数列an 的通项公式an;(2)设,求数列bn 的前n项和Sn;(3)设,数列cn 的前n项和为Tn.求证:对任意的.42.如图,已知曲线C 1:y=(x >0)及曲线C 2:y=(x >0),C 1上的点P 1的横坐标为a 1(0<a 1<).从C 1上的点P n (n ∈N +)作直线平行于x 轴,交曲线C 2于点Q n ,再从点Q n 作直线平行于y 轴,交曲线C 1于点P n+1.点P n (n=1,2,3,…)的横坐标构成数列{a n } (Ⅰ)试求a n+1与a n 之间的关系,并证明:a 2n ﹣1<; (Ⅱ)若a 1=,求证:|a 2﹣a 1|+|a 3﹣a 2|+…+|a n+1﹣a n |<.43.已知数列{a n }中,a 1=1,a n+1=(n ∈N *).(1)求证:{+}是等比数列,并求{a n }的通项公式a n ;(2)数列{b n }满足b n =(3n ﹣1)••a n ,数列{b n }的前n 项和为T n ,若不等式(﹣1)n λ<T n +对一切n ∈N *恒成立,求λ的取值范围.44.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,)都在函数f (x )=x+的图象上.(1)计算a 1,a 2,a 3,并归纳出数列{a n }的通项公式;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值; (3)设A n 为数列的前n 项积,若不等式A n <f (a )﹣对一切n ∈N *都成立,求a的取值范围.45.数列{bn }的前n项和为Sn,且对任意正整数n,都有;(1)试证明数列{bn}是等差数列,并求其通项公式;(2)如果等比数列{an }共有2017项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(﹣1)i bi (i∈N*)后,得到一个新数列{cn},求数列{cn}中所有项的和;(3)如果存在n∈N*,使不等式成立,若存在,求实数λ的范围,若不存在,请说明理由.46.已知数列{an}的首项,,n=1,2,….(Ⅰ)求{an}的通项公式;(Ⅱ)证明:对任意的x>0,,n=1,2,…;(Ⅲ)证明:.47.已知数列{an }的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1﹣,(n+2)cn=﹣,其中n∈N*.(1)若数列{an }是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn ≤λ≤cn,求证:数列{an}是等差数列.48.已知数列{an }满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }滿足,证明:数列{bn}是等差数列;(Ⅲ)证明:.49.已知数列{an }的各项均为正数,且a1=1,对任意的n∈N*,均有an+12﹣1=4an(an+1),bn=2log2(1+an)﹣1.(1)求证:{1+an }是等比数列,并求出{an}的通项公式;(2)若数列{bn }中去掉{an}的项后,余下的项组成数列{cn},求c1+c2+…+c100;(3)设dn =,数列{dn}的前n项和为Tn,是否存在正整数m(1<m<n),使得T1、Tm、Tn成等比数列,若存在,求出m的值;若不存在,请说明理由.50.在数列{an }中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an﹣2n}为等差数列;(2)设数列{bn }满足bn=log2(an+1﹣n),若…对一切n∈N*且n≥2恒成立,求实数k的取值范围.参考答案与试题解析一.解答题(共50小题)1.已知数列{an }的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }满足:,求数列{bn}的通项公式;(Ⅲ)令(n∈N*),求数列{cn }的前n项和Tn.【分析】(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an=Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,由此能求出数列{an}的通项公式.(Ⅱ)由(n≥1),知,所以,由此能求出bn.(Ⅲ)=n(3n+1)=n•3n+n,所以Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n),令Hn=1×3+2×32+3×33+…+n×3n,由错位相减法能求出,由此能求出数列{cn}的前n项和.【解答】解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an =Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{an }的通项公式为an=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,bn+1=2(3n+1+1),故bn=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令Hn=1×3+2×32+3×33+…+n×3n,①则3Hn=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2Hn=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{cn}的前n项和…(12分)【点评】本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的灵活运用.2.已知数列{an }是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn =an•3n,求数列{bn}的前n项和Sn.【分析】(1)由数列{an }是等差数列,且a1=2,a1+a2+a3=12,利用等差数列的通项公式先求出d=2,由此能求出数列{an}的通项公式.(2)由an =2n,知bn=an•3n=2n•3n,所以Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,再由错位相减法能够求出数列{bn }的前n项和Sn.【解答】解:(1)∵数列{an }是等差数列,且a1=2,a1+a2+a3=12,∴2+2+d+2+2d=12,解得d=2,∴an=2+(n﹣1)×2=2n.(2)∵an=2n,∴bn =an•3n=2n•3n,∴Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,①3Sn=2×32+4×33+6×34+…+2(n﹣1)×3n+2n×3n+1,②①﹣②得﹣2Sn=6+2×32+2×33+2×34+…+2×3n﹣2n×3n+1=2×﹣2n×3n+1=3n+1﹣2n×3n+1﹣3=(1﹣2n)×3n+1﹣3∴Sn=+.【点评】本题考查数列的通项公式的求法和数列前n项和的求法,综合性强,难度大,易出错.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用错位相减法进行求和.3.已知数列{an }中,a1=3,a2=5,其前n项和Sn满足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).令bn=.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若f(x)=2x﹣1,求证:Tn =b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【分析】(Ⅰ)由题意知an =an﹣1+2n﹣1(n≥3)(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n+1.(Ⅱ)由于=.故Tn =b1f(1)+b2f(2)+…+bnf(n)=,由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【解答】解:(Ⅰ)由题意知Sn ﹣Sn﹣1=Sn﹣1﹣Sn﹣2+2n﹣1(n≥3)即an =an﹣1+2n﹣1(n≥3)∴an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n﹣1+2n﹣2+…+22+5=2n+1(n≥3)检验知n=1、2时,结论也成立,故an=2n+1.(Ⅱ)由于bn=,f(x)=2x﹣1,∴=.故Tn =b1f(1)+b2f(2)+…+bnf(n)==.【点评】本题考查数列的性质和综合应用,解题时要认真审题.仔细解答.4.已知等差数列{an }的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn =(﹣1)n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得bn=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{an }的公差为2,前n项和为Sn,∴Sn ==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴an =a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1==.∴Tn=﹣++…+.当n为偶数时,Tn=﹣++…+﹣=1﹣=.当n为奇数时,Tn=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.5.已知等差数列{an }的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.(Ⅰ)求d及Sn;(Ⅱ)求m,k(m,k∈N*)的值,使得am +am+1+am+2+…+am+k=65.【分析】(Ⅰ)根据等差数列通项公式和前n项和公式,把条件转化为关于公差d的二次方程求解,注意d的范围对方程的根进行取舍;(Ⅱ)由(Ⅰ)求出等差数列{an }的通项公式,利用等差数列的前n项和公式,对am+am+1+am+2+…+am+k=65化简,列出关于m 、k 的方程,再由m ,k ∈N *进行分类讨论,求出符合条件的m 、k 的值. 【解答】解:(Ⅰ)由a 1=1,S 2•S 3=36得, (a 1+a 2)(a 1+a 2+a 3)=36,即(2+d )(3+3d )=36,化为d 2+3d ﹣10=0, 解得d=2或﹣5, 又公差d >0,则d=2, 所以S n =n=n 2(n ∈N *).(Ⅱ)由(Ⅰ)得,a n =1+2(n ﹣1)=2n ﹣1, 由a m +a m+1+a m+2+…+a m+k =65得,,即(k+1)(2m+k ﹣1)=65,又m ,k ∈N *,则(k+1)(2m+k ﹣1)=5×13,或(k+1)(2m+k ﹣1)=1×65, 下面分类求解:当k+1=5时,2m+k ﹣1=13,解得k=4,m=5;当k+1=13时,2m+k ﹣1=5,解得k=12,m=﹣3,故舍去; 当k+1=1时,2m+k ﹣1=65,解得k=0,故舍去;当k+1=65时,2m+k ﹣1=1,解得k=64,m=﹣31,故舍去; 综上得,k=4,m=5.【点评】本题考查了等差数列的通项公式、前n 项和公式,及分类讨论思想和方程思想,难度较大,考查了分析问题和解决问题的能力.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.【分析】(Ⅰ)依题意得S n+1=2S n +3n ,由此可知S n+1﹣3n+1=2(S n ﹣3n ).所以b n =S n ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.(Ⅱ)由题设条件知S n =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,a n =S n ﹣S n ﹣1=,由此可以求得a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n+1﹣S n =a n+1=S n +3n ,即S n+1=2S n +3n , 由此得S n+1﹣3n+1=2S n +3n ﹣3n+1=2(S n ﹣3n ).(4分)因此,所求通项公式为bn =Sn﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知Sn=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n =Sn﹣Sn﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣an=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,∴an+1(an+2﹣an)=λan+1∵an+1≠0,∴an+2﹣an=λ.(Ⅱ)解:①当λ=0时,an an+1=﹣1,假设{an}为等差数列,设公差为d.则an+2﹣an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=﹣1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n﹣1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣an }是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故bn >0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)=由此可知bn <bn+1,n为正整数.方法二:由题设条件知,所以.由此可知bn<bn+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣an}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故bn>0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)= =又由(1)知an >0且an≠1,故bn+12﹣bn2>0,因此bn <bn+1,n为正整数.方法二:由(1)可知,因为,所以.由an≠1可得,即两边开平方得.即bn <bn+1,n为正整数.【点评】本题考查数列的综合应用,难度较大,解题时要认真审题,注意挖掘题设中的隐含条件.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.【分析】(I)使用三角不等式得出|an |﹣|an+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|an|<2+()m•2n,利用m的任意性可证|an|≤2.【解答】解:(I)∵|an ﹣|≤1,∴|an|﹣|an+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|an |≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|an|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|an|≤2.否则,存在n∈N*,使得|a|>2,取正整数m0>log且m>n,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|an|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.【分析】(1)利用“当n≥2时,an =Sn﹣Sn﹣1;当n=1时,a1=S1”即可得出;(2)对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.利用等比数列的定义可得,即(3n﹣2)2=1×(3m﹣2),解出m为正整数即可.【解答】(1)解:∵Sn=,n∈N*.∴当n≥2时,an =Sn﹣Sn﹣1=﹣=3n﹣2,(*)当n=1时,a1=S1==1.因此当n=1时,(*)也成立.∴数列{an }的通项公式an=3n﹣2.(2)证明:对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.则,∴(3n﹣2)2=1×(3m﹣2),化为m=3n2﹣4n+2,∵n>1,∴m=3n2﹣4n+2=>1,因此对任意的n>1,都存在m=3n2﹣4n+2∈N*,使得a1,an,am成等比数列.【点评】本题考查了递推式的意义、等差数列与等比数列的通项公式、二次函数的单调性等基础知识与基本技能方法,考查了恒成立问题的等价转化方法,考查了反证法,考查了推理能力和计算能力,属于难题.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【分析】(1)对于分别取n=1,2,an+1=f(an),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.【解答】解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a 3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当an ≥﹣c时,an+1﹣an=c+8>c;当﹣c﹣4≤an <﹣c时,an+1﹣an=2an+3c+8≥2(﹣c﹣4)+3c+8=c;当an <﹣c﹣4时,an+1﹣an=﹣2an﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,an+1﹣an≥c;(3)假设存在a1,使得a1,a2,…,an,…成等差数列.由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.又{an }为等差数列,所以存在正数M,当n>M时,an≥﹣c,从而an+1=f(an)=an+c+8,由于{an}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{an }为递增数列,故an≥a2=0>﹣c,∴an+1=f(an)=an+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{an}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由an≥a1得到an+1=f(an)=an+c+8,从而{an}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).【点评】本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{an }的通项公式,利用等比数列的前n项和公式即可求数列{an}的前 n项和Tn;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…nan=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+nan=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)an﹣1=4﹣,n∈N+.两式相减得nan=4﹣﹣(4﹣)=,n≥2,则an=,n≥2,当n=1时,a1=1也满足,∴an=,n≥1,则a3=;(2)∵an=,n≥1,∴数列{an}是公比q=,则数列{an }的前 n项和Tn==2﹣21﹣n.(3)bn =+(1+++…+)an,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴bn =+(1+++…+)an,∴Sn =b1+b2+…+bn=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)an=(1+++…+)(a1+a2+…+an)=(1+++…+)Tn=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即Sn<2(1+lnn)=2+2lnn.【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.【分析】(1)本题可以用n=1代入题中条件,利用S1=a1求出a1的值;(2)利用an 与Sn的关系,将条件转化为an的方程,从而求出an;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:,即.∴(S1+3)(S1﹣2)=0.∵S1>0,∴S1=2,即a1=2.(2)由得:.∵an>0(n∈N*),∴Sn>0.∴.∴当n≥2时,,又∵a1=2=2×1,∴.(3)由(2)可知=,∀n∈N*,=<=(),当n=1时,显然有=<;当n≥2时,<+=﹣•<所以,对一切正整数n,有.【点评】本题考查了数列的通项与前n项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.【分析】(1)设等差数列的公差为d,等比数列的公比为q由题意列式求出公差和公比,则等差数列和等比数列的通项公式即可得出;(2)分am =2k和am=2k﹣1,利用amam+1=am+2即可求出满足该等式的正整数m的值;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1),由此式得到L的可能取值,然后依次分类讨论求解.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,则a1=1,a2=2,a3=1+d,a4=2q,a9=1+4d.∵S5=2a4+a5,∴a1+a2+a3=a4,即4+d=2q,又a9=a3+a4.∴1+4d=1+d+2q.解得:d=2,q=3.∴对于k∈N*,有.故;(2)若am =2k,则由amam+1=am+2,得2•3k﹣1(2k+1)=2•3k,解得:k=1,则m=2;若am=2k﹣1,则由(2k﹣1)•2•3k﹣1=2k+1,此时左边为偶数,右边为奇数,不成立.故满足条件的正数为2;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,又由(1)知,数列中的每一项都为正数,故可设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1)①.∵m≥1,L≥1,3m﹣1>0,∴L≤3.又L∈N*,故L可能取1,2,3.当L=1时,(3﹣L)3m﹣1>0,(L﹣1)(m2﹣1)=0,∴①不成立;当L=2时,(3﹣2)3m﹣1=(2﹣1)(m2﹣1),即3m﹣1=m2﹣1.若m=1,3m﹣1≠m2﹣1,令,则=.因此,1=T2>T3>…,故只有T2=1,此时m=2,L=2=a2.当L=3时,(3﹣3)3m﹣1=(3﹣1)(m2﹣1).∴m=1,L=3=a3.综上,存在正整数m=1,使得恰好为数列{an}中的第三项,存在正整数m=2,使得恰好为数列{an}中的第二项.【点评】本题考查了等差数列和等比数列的性质,训练了分类讨论的数学思想方法,考查了学生综合分析问题和解决问题的能力,考查了学生的逻辑思维能力,是压轴题.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.【分析】(1)由题意,得,由此可解得an=1+(n﹣1)•2=2n﹣1.(2)由=,知=.由此可求出m的值.【解答】解:(1)由题意,得解得<d<.又d∈Z,∴d=2.∴an=1+(n﹣1)•2=2n﹣1.(2)∵=,∴=.∵,,,S2为S1,Sm(m∈N*)的等比中项,∴S22=SmS1,即,解得m=12.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.16.已知数列{an }满足a1=且an+1=an﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{an 2}的前n项和为Sn,证明(n∈N*).【分析】(1)通过题意易得0<an ≤(n∈N*),利用an﹣an+1=可得>1,利用==≤2,即得结论;(2)通过=an ﹣an+1累加得Sn=a1﹣an+1,对an+1=an﹣an2两边同除以an+1an采用累积法可求出an+1的范围,从而得出结论.【解答】证明:(1)由题意可知:an+1﹣an=﹣an2≤0,即an+1≤an,故an≤,1≤.由an =(1﹣an﹣1)an﹣1得an=(1﹣an﹣1)(1﹣an﹣2)…(1﹣a1)a1>0.所以0<an≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵an ﹣an+1=,∴an>an+1,∴>1,∴==≤2,∴1≤≤2(n∈N*),综上所述,1<≤2(n∈N*);(2)由已知,=an ﹣an+1,=an﹣1﹣an,…,=a1﹣a2,累加,得Sn =++…+=a1﹣an+1,①由an+1=an﹣an2两边同除以an+1an得,和1≤≤2,得1≤≤2,累加得1+1+...1≤+﹣+...+﹣≤2+2+ (2)所以n≤﹣≤2n,因此≤an+1≤(n∈N*)②,由①②得≤(n∈N*).【点评】本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.17.已知等差数列{an }的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an }与{bn}的通项公式;(Ⅱ)设数列{cn }对任意自然数n均有=an+1成立,求c1+c2+…+c2014的值.【分析】(Ⅰ)依题意,a2,a5,a14成等比数列⇒(1+4d)2=(1+d)(1+13d),可求得d,继而可求得数列{an }的通项公式;由b2=a2=3,b3=a5=9,可求得q与其首项,从而可得数列{bn}的通项公式;(Ⅱ)由(Ⅰ)知an =2n﹣1,bn=3n﹣1,由++…+=an+1,可求得c1=b1a2=3,=an+1﹣an=2(n≥2),于是可求得数列{cn }的通项公式,继而可求得c1+c2+…+c2014的值.【解答】解:(Ⅰ)∵a2=1+d,a5=1+4d,a14=1+13d,∵a2,a5,a14成等比数列,∴(1+4d)2=(1+d)(1+13d),解得d=2,∴an=1+(n﹣1)×2=2n﹣1;又b2=a2=3,b3=a5=9,∴q=3,b1=1,∴bn=3n﹣1.(Ⅱ)∵++…+=an+1,∴=a2,即c1=b1a2=3,又++…+=an(n≥2),∴=an+1﹣an=2(n≥2),∴cn =2bn=2•3n﹣1(n≥2),∴cn=.∴c1+c2+…+c2014=3+2×3+2×32+…+2×32013=3+2×(3+32+ (32013)=3+2×。

数列综合经典练习题(含详细答案)

数列综合经典练习题(含详细答案)

数列综合经典练习题(含详解答案)一、选择题1.已知等差数列{}n a 中79416,1,a a a +==则12a 的值是( ) A .15B .30C .31D .642.如果等差数列{}n a 中,,34515a a a ++=,那么127a a a +++=( )A.14B.21C.28D.353.已知首项为正数的等差数列{}n a 满足:20052006200520060,.0a a a a +><.则使0n S >成立的最大自然数n 是 ( )A. 4009B.4010C. 4011D.4012 4.在等差数列{}n a 中, n S 为其前n 项和,若34825a a a ++=,则9S = ( ) A.60 B.75 C.90 D.1055.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S 的值为( ) A.27B.21C.14D.56.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=( ) A.12B.8C.20D.167.若数列{}n a 的首项112a =,且*1(1)(N )n n n a a a n +=+∈,则200300a a =( )A.32B.23 C.201301D.3012018.古时有如下问题:今有肖司差夫一丁八万六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,每个修筑堤坝的人每天分发到3升大米.在该问题中第三天共发了大米( ) A. 234升B.405升C. 639升D.894升9.一个有限项的等差数列,前4项的和为40,最后4项的和是80,所有项的和是210,则此数列的项数为( ) A.12B.14C.16D.1810.已知等差数列{}n a 的前n 项和为n S ,且112,0,3,2m m m S S S m -+=-==≥,则n nS 的最小值为( ) A.-3B.-5C.-6D.-911.在等比数列{}n a 中,已知151,20192019a a ==,则3a =( ) A.1B.3C.±1D.±312.设{}n a 是首项为1a ,公差为2-的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A.2B.-2C.1D.-113.已知等比数列{}n a 的前n 项和为n S ,103010,130S S ==,则40S =( ) A.-510B.400C.400或-510D.30或4014.已知数列{}n a 是等比数列,2511,8a a ==,则*12231...(N )n n a a a a a a n ++++∈的最小值为( ) A.83B.1C.2D.315.已知数列{}n a 的前n 项和为n S ,若*1111,(N )3n n a S a n +==∈,则7a =( ) A. 74B. 534⨯C.634⨯D. 641+16.已知等比数列{}n a 中,2346781,64a a a a a a ==,则5a =( ) A .2±B .2C .2-D .417.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则20192014a a = ( ) A .2 B .3 C .6 D .3或618.已知正项等比数列{}n a 满足7652a a a -=.若存在两项,m n a a14a =,则9n mmn +的最小值为( )A .83 B .114 C .145 D .17619.2+2的等比中项是( ) A .1 B .2 C .1± D .2±20.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A.253 B. 503 C. 507D. 100721.若1既是2a 与2b 的等比中项,又是1a 与1b 的等差中项,则22a ba b++的值是( ) A .1或12B .1或12-C .1或13D .1或13-22.如果等差数列{}n a 中34512a a a ++=,那么7S =( ) A.28 B.21 C.35D.14二、填空题23.在等比数列{}n a 中,若7944,1a a a ⋅==,则12a 的值是 . 24.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋅⋅⋅的最大值为__________.25.已知等比数{}n a 中, 171,2727a a ==,求n a = 26.设数列{}n a 的前n 项和为n S ,且11a =,13n n a S +=,*N n ∈,则n a =_____________. 27.设数列{}n a 满足121,3a a ==,且112(1)(1)(2)n n n na n a n a n -+=-++≥,则20a 的值为___________.28.已知n S 为数列{}n a 的前n 项和,且*2log (1)1(N )n S n n +=+∈,则数列{}n a 的通项公式为___________.29.等比数列{}n a 的公比大于1,514215,6a a a a -=-=,则3a =_______. 三、解答题30.已知数列{}n a 是等差数列,且1212,()a a a a <分别为方程2650x x -+=的两个根. 1.求数列{}n a 的前n 项和n S ; 2.在1中,设n n S b n c =+,求证:当12c =-时,数列{}n b 是等差数列.31.已知等差数列{}n a 中,1242,16a a a =+=. 1.设2n an b =,求证:数列{}n b 是等比数列; 2.求{}n n a b +的前n 项和.32.已知等比数列{}n a 的前n 项和为n S ,满足443321,21S a S a =-=-. 1.求{}n a 的通项公式; 2.记161n n b S =+,求12...n b b b +++的最大值. 参考答案一、选择题1.答案:A 解析:2.答案:D 解析:3.答案:B解析:由题意知:等差数列中,从第1项到第2005项是正数,且从第2006项开始为负数, 则()()40101401020052006200520050S a a a a =+=+>,14011401120064011()401102a a S a +==<故n 的最大值为4010. 故选B 4.答案:B解析:因为等差数列{}n a 中, n S 为其前n 项和, 348153(4)325a a a a d a ++=+==,所以131225a d +=,所以512543a a d =+=,所以()9195925997523S a a a =+==⨯=.故选B. 5.答案:B解析:因为{}n a 为等比数列,所以23211,a aq q a a ==,故原方程可以化为220x q x q -+=.又该方程有两个相等的实数根,故440q q -=,解得0q =(舍)或34q =,所以9933116421114S q S q --===--,故选B. 6.答案:C解析:∵4841281612,,,S S S S S S S ---成等差数列,∴由4848,12S S S =-=,得128161216,20S S S S -=-=,即1314151620a a a a +++=.故选C.7.答案:D解析:由1(1)n n n a a a +=+,得11n n n n a a a a ++-=且0n a ≠,所以1111n n a a +-=,即1{}na 是以2为首项,1为公差的等差数列,所以11nn a =+,所以20030011201,301a a ==,从而200300301201a a =. 8.答案:C解析:根据题意设每天派出的人数组成数列{}n a ,它是首项164a =,公差为7的等差数列,则第二天派出的人数为2a ,且264771a =+=,第三天派出的人数为3a ,且3642778a =+⨯=.又每人每天分发到3升大米,则第三天共分发大米(647178)3639++⨯=(升),故选C.9.答案:B解析:设等差数列共有n 项,记该数列为{}n a , 则123440a a a a +++=,12380n n n n a a a a ---+++=, 相加得14()120n a a +=,所以130n a a +=.1()152102n n n a a S n +===,解得14n =.故选B. 10.答案:D解析:由112,0,3,2m m m S S S m -+=-==≥,后式减前式知12,3m m a a +==.设等差数列{}n a 的公差为d,则1d =.∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=.设22(5)3(),0,'()5,022x x f x x f x x x x -=>=->, 则当1003x <<时, ()f x 单调递减,当103x >时, ()f x 单调递增, ∴()f x 的极小值点为103x =,在此处()f x 取得最小值. 又(3)9,(4)8f f =-=-,∴n nS 的最小值为-9,故选D. 11.答案:A解析:由等比数列的性质可得23151201912019a a a ==⨯=,解得31a =±.又2310a a q =>,所以31a =.故选A.解析:由题意得111212(1),,22n a a n S a S a =--==-,41412S a =-.∵124,,S S S 成等比数列,∴2111(22)(412)a a a -==-,解得11a =-.故选D.13.答案:B解析:设等比数列{}n a 公比为q,∵等比数列{}n a 的前n 项和为n S ,∴10201030204030,,,S S S S S S S ---也成等比数列,∴21030202010()()S S S S S -=-,即2202010(130)(10)S S -=-,解得2040S =或2030S =-.∵10100S =>,10201030203,90S S q S S =+=-=,4030270S S -=,∴40400S =.故选B.14.答案:C解析:由已知得数列{}n a 的公比满足35218a q a ==,解得12q =,∴1312,2a a ==,∴数列1{}n n a a +是以2为首项,公比为231214a a a a =的等比数列.由于数列1{}n n a a +各项均为正,∴12231...n n a a a a a a ++++的最小值为122a a =.故选C.15.答案:B 解析:由113n n S a +=,可得11,23n n S a n -=≥,两式相减可得111,233n n n a a a n +=-≥,即14,2n n a a n +=≥.又113n n S a +=,所以2133a S ==,所以数列{}n a 是从第2项起的等比数列,公比为4.所以72572434a a -==⨯,故选B.16.答案:B 解析: 17.答案:B 解析: 18.答案:B 解析: 19.答案:C 解析: 20.答案:D 解析: 21.答案:D 解析:解析:二、填空题 23.答案:4解析:24.答案:64 解析:25.答案:43n n a -=或()43.n n a -=--解析: 26.答案:21,134,2n n n a n -=⎧=⎨⨯≥⎩解析:当1n =时,211333a S a ===. 当2n ≥时,∵13n n a S +=,∴13n n a S -=,两式相减得113()3n n n n n a a S S a +--=-=,即14n n a a +=,当2n ≥时,{}n a 是以3为首项,4为公比的等比数列,得234n n a -=⨯.综上,21,134,2n n n a n -=⎧⎨⨯≥⎩. 27.答案:245解析:因为112(1)(1)(2)n n n na n a n a n -+=-++≥,所以数列{}n na 为等差数列,首项为1,公差为2125a a -=.所以1(1)554n na n n =+-⨯=-,则204245,54205n n a a =-=-=. 28.答案:3,12,2n n n a n =⎧=⎨≥⎩解析:由2log (1)1n S n +=+,得112n n S ++=.当1n =时, 113a S ==;当2n ≥时,12n n n n a S S -=-=.则数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨≥⎩.29.答案:4 解析:三、解答题30.答案:1.解方程2650x x -+=得其两个根分别为1和5, ∵1212,()a a a a <分别为方程2650x x -+=的两个根,∴121,5a a ==,∴等差数列{}n a 的公差为4, ∴2(1)1422n n n S n n n -=⋅+⋅=-. 2.当12c =-时, 22212n n S n n b n n c n -===+-, ∴112(1)22,2n n b b n n b +-=+-==, ∴{}n b 是首项为2,公差为2的等差数列. 解析:31.答案:1.设等差数列{}n a 的公差为d .由2416a a +=可得11()(3)16a d a d +++=,即12416a d +=. 又12a =,可得3d =.故1(1)2(1)331n a a n d n n =+-=+-⨯=-. 依题意, 312n n b -=,因为3231312282n n n n b b ++-===(常数),所以{}n b 是首项为4,公比为8的等比数列. 2.因为{}n a 的前n 项和为1()(31)22n n a a n n ++=, {}n b 的前n 项和为313324221421877n n -+-⋅=⋅--.所以{}n n a b +的前n 项和为32(31)142277n n n +++⋅-. 解析:32.答案:1.设等比数列{}n a 的公比为q , 由434S S a -=得43422a a a -=, 所以432a a =,所以2q =. 又因为3321S a =-,所以11112481a a a a ++=-,所以11a =.所以12n n a -=.2.由1知122112nn n S -==--,所以416()2821n n n b n S -===-+,所以12n n b b +-=-,所以{}n b 是首项为6,公差为-2的等差数列, 所以12346,4,2,0b b b b ====,当5n ≥时, 0n b <,所以当3n =或4n =时, 12...n b b b +++有最大值,且最大值为12. 解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列高考真题汇编1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n . 解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,(3分)由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1.所以a n =2n -1.(5分)(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1.(6分) 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.(10分)2.已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.解析 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . 故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.3.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .解析 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1.(4分) 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(5分) (2)解:由(1)得a n n =1+(n -1)·1=n ,所以a n =n 2.从而b n =n ·3n .(7分)S n =1×31+2×32+3×33+…+n ·3n ,①3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.②①—②,得-2S n =31+32+…+3n -n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32.(10分) 所以S n =(2n -1)·3n +1+34.(12分) 4.已知S n 是数列{a n }的前n 项和,a 1=2,S n +1=3S n +n 2+2(n ∈N *),设b n =a n +n .(1)证明:数列{b n }是等比数列;(2)若c n =n b n ,数列{c n }的前n 项和为T n ,求证:T n <45. 解析 (1)证明:因为a 1=2,S n +1=3S n +n 2+2,所以当n =1时,a 1+a 2=3a 1+12+2,解得a 2=7.(2分)由S n +1=3S n +n 2+2及S n =3S n -1+(n -1)2+2(n ≥2),两式相减,得 a n +1=3a n +2n -1.故a n +1+n +1=3(a n +n ).即b n +1=3b n (n ≥2).(4分)又b 1=3,b 2=9,所以当n =1时上式也成立.故数列{b n }是以3为首项,3为公比的等比数列.(5分)(2)由(1)知b n =3n ,所以c n =n 3n .所以T n =13+232+333+…+n -13n -1+n 3n , ① 3T n =1+23+332+…+n -13n -2+n 3n -1. ②(7分) ②-①,得2T n =1+13+132+…+13n -1-n 3n =32-3+2n 2·3n .所以T n =34-3+2n 4·3n .(10分)因为n ∈N *,显然有3+2n 4·3n >0. 又34<45,所以T n <45.(12分)5.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n .解析 (1)设等比数列{a n }的公比为q ,由题知a 1=12,又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列,∴2(S 2+a 2)=S 1+a 1+S 3+a 3.∴S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即3a 2=a 1+2a 3.∴32q =12+q 2,解得q =1或q =12.(4分)又{a n }为递减数列,于是q =12.∴a n =a 1q n -1=(12)n .(6分)(2)∵b n =a n log 2a n =-n (12)n ,∴T n =-[1×12+2×(12)2+…+(n -1)(12)n -1+n ×(12)n ].于是12T n =-[1×(12)2+…+(n -1)(12)n +n ×(12)n +1].(8分)两式相减,得12T n =-[12+(12)2+…+(12)n -n ×(12)n +1]=-12×[1-(12)n ]1-12+n ×(12)n +1.∴T n =(n +2)(12)n -2,6.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .解析 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n b n=2,即c n +1-c n =2.(4分) 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =c n b n =(2n -1)3n -1.于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n . 所以S n =(n -1)3n +1.7.已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.解析 (1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则 S n =322+423+…+n +12n +n +22n +1, 12S n =323+424+…+n +12n +1+n +22n +2.两式相减,得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2.所以S n =2-n +42n +1. 8.已知{a n }是各项均为正数的等比数列,且a 1·a 2=2,a 3·a 4=32.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b 11+b 23+b 35+…+b n 2n -1=a n +1-1(n ∈N *),求数列{b n }的前n 项和.解析 (1)设等比数列{a n }的公比为q ,由已知得⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32. 又∵a 1>0,q >0,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴a n =2n -1.(2)由题意,可得b 11+b 23+b 35+…+b n 2n -1=2n -1. ∴2n -1-1+b n 2n -1=2n -1(n ≥2),b n 2n -1=2n -1. ∴b n =(2n -1)2n -1(n ≥2).当n =1时,b 1=1,符合上式,∴b n =(2n -1)·2n -1(n ∈N *).设T n =1+3×21+5×22+…+(2n -1)·2n -1,2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,两式相减,得-T n =1+2(2+22+…+2n -1)-(2n -1)·2n =-(2n -3)·2n -3. ∴T n =(2n -3)2n +3.9.已知数列{a n }是a 3=164,公比q =14的等比数列.设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n b n .(1)求证:数列{b n }是等差数列;(2)求数列{c n }的前n 项和S n .解析 (1)证明:由已知,可得a n =a 3q n -3=(14)n .则b n +2=3log 14(14)n =3n ,∴b n =3n -2.∵b n +1-b n =3,∴{b n }为等差数列.(2)由(1)知c n =a n b n =(3n -2)(14)n ,∴S n =1×14+4×(14)2+7×(14)3+…+(3n -2)×(14)n , ①14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. ② ①-②,得34S n =14+3[(14)2+(14)3+(14)4+…+(14)n ]-(3n -2)·(14)n +1=14+3·(14)2[1-(14)n -1]1-14-(3n -2)·(14)n +1=12-(3n +2)·(14)n +1.∴S n =23-3n +23·(14)n .。

相关文档
最新文档