光的偏振马吕斯定律汇总.

合集下载

光的偏振特性 马吕斯定律

光的偏振特性 马吕斯定律
当 : 0o 90o 180o 270o 360o
出射光强:明 黑 明 黑 明
·10 ·
Chapter 16. 光的偏振 §16. 1 光的偏振特性 马吕斯定律
例 自然光光强 I0,P1⊥P3,现以与P1成 30o角插入P2,
求出射光强。

I1
1 2
I0
30o
I0
I1
I2
I3
I2 I1 cos230o
一、线偏振光与非偏振光
振动面:电矢量 E与传播方向构成的面。
称:线偏振光(或平面/完全偏振光)
Fig. 1 振动面平行于屏幕



E
Fig. 2 振动面垂直于屏幕 Fig. 3 振动面不在屏幕内
平面波
·3 ·
Chapter 16. 光的偏振 §16. 1 光的偏振特性 马吕斯定律
自然光:光矢量 E 沿任意方向概率相同 !
立体电影
·8 ·
210
Chapter 16. 光的偏振 §16. 1 光的偏振特性 马吕斯定律
·9 ·
Chapter 16. 光的偏振
三、马吕斯定律
§16. 1 光的偏振特性 马吕斯定律
光强: I A2
I1 I2
A12 A22
A2 A1 cos
I1 A1 A2
I2 ቤተ መጻሕፍቲ ባይዱ1 cos2
I2 ?
属非偏振光!
表示法:
Iy
I0
Ix
Iy
1 2
I0
Ix
·4 ·
Chapter 16. 光的偏振 §16. 1 光的偏振特性 马吕斯定律
部分偏振光:光矢量 E 沿某一方向占优势 !
表示法:

光的偏振实验马吕斯定律

光的偏振实验马吕斯定律

光的偏振实验马吕斯定律光的偏振实验马吕斯定律光的偏振是指光波振动方向的特性。

在物理学中,马吕斯定律是描述光的偏振性质的基本定律之一。

本文将介绍光的偏振实验以及马吕斯定律的原理与应用。

一、光的偏振实验光的偏振实验是通过一系列实验来观察和测量光波在通过偏振器材料时的偏振现象。

常用的偏振实验方法包括偏振片实验、旋光仪实验等。

1. 偏振片实验偏振片是一种特殊的光学材料,可以选择允许特定振动方向的光通过。

在偏振片实验中,我们可以通过两块偏振片的组合来观察光的偏振现象。

通常,将第一块偏振片设置为偏振器,通过旋转它的角度,可以改变光波通过的偏振方向。

随后,将第二块偏振片作为分析器,用于观察通过的光的强度。

根据分析器的角度,我们可以观察到光的透射光强度的变化。

2. 旋光仪实验旋光仪是一种常用的光学仪器,用于测量物质的旋光性质。

旋光性是指物质对偏振光的旋转效应。

在旋光仪实验中,通过旋转样品槽里的物质,可以观察到经过样品后偏振光旋转的现象。

二、马吕斯定律的原理马吕斯定律是法国科学家马吕斯在1808年提出的,该定律描述了光在通过各向同性材料(无论是吸收还是反射)时的偏振性质。

根据马吕斯定律,当一束不偏振光从一个均匀各向同性介质(例如空气、玻璃等)射入时,经过该介质后的光将成为线偏振光。

具体来说,假设光波的振动方向与入射面垂直,那么经过介质后,与入射面垂直的振动方向会被选择性地减弱,而平行于入射面的振动方向则会保持不变。

马吕斯定律的实质是光的振动方向在介质中受到选择性的吸收和减弱,从而导致光的偏振现象。

三、马吕斯定律的应用马吕斯定律在生活和科学研究中有着广泛的应用。

1. 偏振片根据马吕斯定律的原理,偏振片可以选择性地通过特定方向的光波,使其成为偏振光。

这种特性被广泛应用于摄影、光学仪器、偏振显微镜等领域。

2. 偏振光的产生与检测马吕斯定律的原理可以通过适当的实验装置来产生和检测偏振光。

例如,通过透镜和线性偏振片的组合,可以用于研究偏振光与物质的相互作用,有助于了解材料的光学性质。

光学18光的偏振性、马吕斯定律

光学18光的偏振性、马吕斯定律
没有优势方向
在一切可能方向上都有光振动且各个方向的光 矢量的若振把幅自又然相光等所的有光方—向—的自光然振光动(都na分tu解re到li相gh互t)。
垂直的两个方向上,在这两个方向上的光振动的 振幅和能量都相等。
表示为
自然光的分解
自然光的简化表示
自然光的光矢量可以用两个振幅相等、振动方向 互相垂直的分振动来表示。
偏器后的光强为I I, 有I:0 cos2

马吕斯定律
马吕斯定律 I I0 cos2 说明了入射到
偏振片上的线偏振光,其透射光强度的变化规律。
自然光
I0
偏振化方向
I1

I0 2
I2
起偏器
检偏器
Note:自然光通过起偏器后强度为原来
的一半!
I0
I1
I0 2
I2
I1 c os2
3、如果光强由亮至暗(尚有光线透过)(I≠0) 待检光是部分偏振光。
这样,根据透射光强度变化的情况,可将线偏振光
和自然光和部分偏振光区别开来。 这充分说明光为横波!
三、马吕斯定律 Law of Malus (important!)
光通过偏振片后光强变化了多少 ?
偏振化方向
I0
I
...
起偏器
检偏器
如图,起偏器与检偏器的偏振化方 向之间的夹角为,通过起偏器后 的偏振光的强度为I0 , 继续通过检
二、 起偏和检偏 (polarization and examine polarization )
狭缝与振动同方向
狭缝与振动 方向垂直
把自然光变为偏振光的过程称为起偏;
检验(观察)偏振光的过程称为检偏。
偏振化方向

第十二讲 光的偏振现象马吕斯定律

第十二讲    光的偏振现象马吕斯定律
横波的最有力的证据。
机械横波与纵波的区别
机 械 波 穿 过 狭 缝
波动光学
波动光学
二、五种偏振态
(振光 3、部分偏振光 *4、圆偏振光 *5、椭圆偏振光
自然界大多数光源发出的光是自然光。
波动光学
三、自然光与偏振光
1、自然光 (非偏振光 )
在垂直于光传播方向的平面内,沿各个方向都有光 振动,且每个方向光矢量的振幅相等的光。
马吕斯定律的验证实验:
线偏振光有两次消光现象
波动光学
例题 有两个偏振片,一个用作起偏器, 一
个用作检偏器.当它们偏振化方向间的夹角
为 30时 , 一束单色自然光穿过它们, 出射 光强为 I1 ; 当它们偏振化方向间的夹角为60
时,另一束单色自然光穿过它们 , 出射光强

I
,
2

I1 I2
。求两束单色自然光的强
2、原因 普通光源所发出的光, 波列之间是相互独立的,没 有固定的关联(相位、振动方向、振幅、波列长短 等),按统计原理,无论哪一方向的振动在各方向 上的分布是对称的,振幅也可看成是完全相等的 (统计平均),这种光称为自然光。
波动光学
3、线偏振光和部分偏振光 线偏振光:在垂直于光传播方向的平面内,只包 含单一振动方向的光。 部分偏振光:在垂直于光传播方向的平面内,各 方向都有光振动但振幅不等的光。
波动光学
四、偏振片 起偏和检偏
1、二向色性 : 某些物质能吸收某一方向的光振动 , 而只让与这个方向垂直的光振动通过, 这种性质称 二向色性。
2、偏振片 :能吸收某一方向的光振动,而只让与 之垂直方向上的光振动通过的一种透明薄片。
波动光学
3、偏振化方向 :当自然光照射在偏振片上时,它 只让某一特定方向的光通过,这个方向叫此偏振片 的偏振化方向 .

光的偏振性马吕斯定律

光的偏振性马吕斯定律
解:由马吕斯定律
I10
I10/2
I1
••
I1

I10 2
cos2
30
同理:
I2

I20 2
cos2
600
取 I1 = I2
I10 cos2 30 I20 cos2 60
2
2
两束单色自然光的强度 比为:
I10 I20

cos2 cos2
60 30

1 3
§2 反射和折射光的偏振 一. 反射时光的偏振
法线
e光 • • • o光 光轴
二.惠更斯原理对双折射的 解释 1. 晶 体 的 主 折 射 率 , 正 晶
体、负晶体
法线 入射线
光轴
109º 主截面
71º
主平面:
晶体中光的传播方向 与晶体光轴构成的平面.
一般情况下, o主平面 与e主平面是不重合的.
实验表明:
o光是光矢量与o主平面 垂直的线偏振光.
I变,无消光?是什 么光
三. 马吕斯定律
I0
P I
E0
P

I0

E
2 0
,
E=E0cos
IE
2

E
2 0
cos
2
I I0 cos2
马吕斯定律(1809)
0,I Imax I0
,I 0 ——消
2

例题1.
有两个偏振片,一个用作 起偏器,一个用作检偏器. 当它们的偏振化方向之 间的夹角为30º时,一束单 色自然光穿过它们,出射 光强为I1;当它们的偏振 化方向之间的夹角为60º 时,另一束单色自然光穿 过它们,出射强度为I2, 且 I 1=I2 . 求两束单色自然 光的强度之比.

10-8光的偏振性 马吕斯定律

10-8光的偏振性  马吕斯定律
10-8 光的偏振性 马吕斯定律
光的波动性 光波是横波
机械横波与纵波的区别
光的干涉、衍射 . 光的偏振 .
机 械 波 穿 过 狭 缝
第十章 波动光学
10-8 光的偏振性 马吕斯定律 一、自然光 偏振光 自然光 :在垂直于光的传播方向的平面内的一切 方向上,光矢量的时间平均值都相等。
自然光以两互相垂直的互为 独立的(无确定的相位关系)振幅 相等的光振动表示,并各具有一半 的振动能量。
注意
v
E
两个互相垂直方向是任选的。 各光矢量间无固定的相位关系。
符号表示
第十章 波动光学
10-8 光的偏振性 马吕斯定律
偏振光(线偏振光):如果光矢量在垂直于光的 传播方向的平面内,只沿一个固定的方向振动 。

E v
振动面
符号表示
部分偏振光 :在垂直于光的传播方向的平面内, 如果某一方向的光振动比与之垂直的光振动强 。
符号表示
第十章 波动光学
10-8 光的偏振性 马吕斯定律
二、偏振片 起偏与检偏 二向色性:某些物质(如硫酸碘奎宁或电气石等)能
强烈吸收某个方向的光振动,而对垂直方向的光振动 吸收却很少.
偏振片:涂有二向色性材料的透明薄片.
偏振化方向:当自然光照射在偏振片上时,它只 让某一特定方向的光通过,这个方向叫此偏振片的偏 振化方向.三、马吕斯定律NI0M
EI
起偏器
N
M
E
E0
E0
检偏器
E E0 cos
I I0

E2 E02
马吕斯定律 强度为 I0 的偏振
光通过检偏振器后, 出射光的强度为
I I0 cos2
第十章 波动光学

光的偏振现象与相关计算方法的归纳与总结

光的偏振现象与相关计算方法的归纳与总结

光的偏振现象与相关计算方法的归纳与总结一、引言光是一种电磁波,具有传播方向和振动方向。

偏振现象描述了光波的振动方向相对于传播方向的特性。

了解光的偏振现象对于光学应用具有重要意义。

本文将对光的偏振现象进行归纳总结,并介绍相关的计算方法。

二、光的偏振现象1. 偏振现象定义光的偏振现象指的是光波在传播过程中,振动方向在空间中具有一定的规律性。

光波的振动方向可以分为垂直于传播方向的横向振动和平行于传播方向的纵向振动。

2. 偏振方式常见的偏振方式包括线偏振、圆偏振和椭圆偏振。

线偏振光中的电场矢量沿着特定方向振动,圆偏振光中的电场矢量沿着圆周方向振动,椭圆偏振光中的电场矢量沿着椭圆轨迹振动。

3. 偏振器与偏振片偏振器是通过选择特定偏振方向的光而剔除其他方向的光的光学元件。

偏振片则是一种常用的偏振器,它能够将非偏振光转换为偏振光。

三、光的偏振计算方法1. 马吕斯定律马吕斯定律是计算光通过偏振片后的偏振方向的基本方法。

根据马吕斯定律,入射光的偏振方向与偏振片的偏振方向之间的夹角决定了透射光的偏振方向。

2. 光的偏振椭圆参数描述椭圆偏振光的主要参数包括长半轴、短半轴、旋转角和相位差。

这些参数能够完整地描述椭圆偏振光的偏振特性。

3. 光的偏振度偏振度是衡量光偏振程度的物理量,它描述了光波偏离非偏振状态的程度。

偏振度的计算方法可以根据光的电场矢量进行推导。

4. 光的偏振矢量法偏振矢量法是用于计算光经过偏振器等光学元件后的偏振状态的一种常用方法。

通过将光波的振动方向表示为复数形式,并进行相应的运算,可以得到光的最终偏振矢量。

四、光的偏振现象应用1. 光偏振在液晶显示技术中的应用液晶显示器采用了液晶分子在电场作用下的偏振特性,通过控制电场以实现显示效果。

光偏振的理论和计算方法为液晶显示技术的研究提供了基础。

2. 光偏振在光学显微镜中的应用光学显微镜利用了光的偏振现象,通过观察样品处于特定偏振状态下的相位变化,实现对样品细微结构的观察和分析。

马吕斯定律(精)

马吕斯定律(精)

第12节 偏振片 马吕斯定律一、 偏偏振化方向(起偏方向)1、 起偏、起偏器2、 检偏、检偏器A B 线偏振光通过偏振片,旋转偏振片,透射光强明暗交替变化 自然光通过偏振片变为线偏振光,旋转偏振片,透射光强不变 示教二、 马吕斯定律 线偏振光通过一个偏振片后,透射光强I 与入射光强之间满足0I α20cos I I = 马吕斯定律α证:设入射线偏振光的振幅 0A αcos 0//A A =,αsin 0A A =⊥ α2202//0cos ==A A I I,α20cos I I = 注意:只对入射线偏振光成立若入射光是自然光,01I I = 讨论:0=α,0I I =2/πα=,0=I例:让一束自然光通过两个偏振化方向相互垂直的偏振片,透射光强=?如果在两个偏振片之间 加上另一个偏振片,其 偏振化方向与第一个偏振偏振化方向夹角为α,透射光强αα220sin cos 21I I =如果每个偏振片吸收的平行于偏振化方向的光振动能量 %10透射光强%90sin %90cos %9021220⋅⋅⋅⋅⋅=ααI I第13节 反射和折射光的偏振入射面:(入射线,法线)Π反射定律i i =′折射定律γsin sin 21n i n = M ′反射光和折射光都是部分偏振光 反射光中,⊥振动多于//振动折射光中,//振动多于振动⊥120n n arctg i i ==时 反射光为完全偏振光,只包含⊥0i :布儒斯特角(起偏角) 120n n tgi =:布儒斯特定律 注意:(1)0i i =时,只反射部分⊥振动,不反射//振动 折射光中包含其余的⊥振动和全部的//振动折射光仍是部分偏振光(2)0i i =时,反射光线⊥折射光线证明:γsin sin 201n i n =,120n n tgi ==00cos sin i i ,0201cos sin i n i n = γsin 2n =,02cos i n γsin ==0cos i )sin(0i −π,20πγ=+i(3)自然光以布儒斯特角 照射玻璃片堆,可使折射光成为完全偏振光折射光中只剩下//振动例:一束自然光以布儒斯特角从空气照射玻璃片,界面2上的反射光是()自然光A (B )完全偏振光,光矢量振动方向⊥()完全偏振光,光矢量振动方向// C ()部分偏振光D 解:对界面1,是布儒斯特角,对界面2,0i γ是布儒斯特角 120n n tgi =,20πγ=+i ,210n n ctgi tg ==γ 例:第14节 晶体的双折射现象一、晶体的双折射现象用自然光照射某些晶体(方解石)表面 产生两条折射光线 双折射现象,示教特点:(1) 寻常光线(o 光),遵守折射定律非常光线(e 光),不遵守折射定律(2) 两条光线都是线偏振光,振向不同(3) 光轴(光线沿该方向入射不产生双折射)p253,单轴晶体,双轴晶体某条光线与光轴构成的平面:该光线的主平面 (光,光轴):o 光主平面 Πo (光,光轴):e 光主平面Πe (4)光振向o ⊥o 光主平面光振向//光主平面e e 二、 对双折射的解释产生双折射的原因: o 光、光在晶体中的传播速度不同e o 光波面是球面,光波面是旋转椭球面e 沿光轴方向o 光、e 光速度相同垂直光轴方向o 光、e 光速度相差最大o V :e 光速度oo V e Vo V e e o 晶体对光的折射率,o o n V c =/o e e n V c =/晶体对e 光的折射率 、:晶体的主折射率o n e n 1、 平行光斜入射(光轴位于 2、平行光垂直入射(光轴位于 入射面内,光轴与界面斜交) 入射面内,光轴与界面斜交)3、 平行光垂直入射(光轴平行4、平行光垂直入射(光轴位于 界面,光轴位于入射面内) 入射面内,光轴垂直界面)光轴光同传播方向,但速度不同 光同传播方向,速度相同 e o ,e o , 仍属于双折射 不属于双折射5、 平行光斜入射(光轴//界面,光轴垂直入射面)光、光都遵守折射定律,o e e e o o n n i n γγsin sin sin 1==三、 偏振棱镜1、 尼科耳(棱镜)用加拿大树胶粘在一起加拿大树胶对o 2、 渥拉斯顿镜两块方解石直角棱镜构成两者光轴相垂直负晶体,,e e V >o V e n n <垂直板面振动的光线: 对第一块棱镜是o 光对第二块棱镜是e 光平行板面振动的光线: 对第一块棱镜是e 光对第二块棱镜是o 光垂直板面振动的光线由o 光,光密→光疏,折射光偏离法线 →e 平行板面振动的光线由e 光,光疏→光密,折射光靠近法线 →o 两条光线分开,都是线偏振光四、 偏振片某些双折射晶体对o 光和e获得偏振光的方法:(1)偏振片(2)偏振棱镜(3)以布儒斯特角照射玻璃片例:两块偏振片叠放在一起,其偏振化方向夹角,用强度相同的o 30自然光和线偏振光混合而成的光束垂直入射,已知两成分的入 射光透射后强度相等求:(1)入射光中线偏振光振向与第一块偏振片偏振化方向夹角(2)透射光强与入射光强之比(3)若每个偏振片对透射光吸收率为,%5 再求透射光强与入射光强之比解:(1)设入射线偏振光强为I ,入射自然光强为Io o 30cos 2130cos cos 222I I =α,21cos 2=α,o45=α (2)375.083230cos 2130cos cos 222==+=I I I oo α入射光强透射光强(3)=入射光强透射光强=I I I 2%9530cos %9521%9530cos %95cos 222⋅⋅+⋅⋅⋅o o α=338.0%)95(832=×。

11-11光的偏振性 马吕斯定律

11-11光的偏振性 马吕斯定律
物理学
第五版
1111-11 光的偏振性 马吕斯定律
一.光的偏振状态 1. 平面偏振光 线偏振光) (线偏振光) E
向 传 播方
·
面 振 动 面对光的传播方向看
•线偏振光的分解 线偏振光的分解
Ex = Ecosα
y
Ey = Esinα
Ey
E
α
Ex
•表示法: 表示法: 表示法
x
· · · · ·
光振动垂直板面
二、起偏和检偏
1. 起偏: . 起偏: 从自然光获得偏振光. 从自然光获得偏振光 起偏的光学器件, 起偏的光学器件, 偏振片是常用的起偏器. 2. 起偏器: . 起偏器: 偏振片是常用的起偏器 原理:某些材料吸收某一方向的光振动,而让与此 原理:某些材料吸收某一方向的光振动 而让与此 二向色性) 方向垂直的光振动通过. 方向垂直的光振动通过 (二向色性)
I20 2 0 I2 = cos 60 2
I10 • • I10/2
I1
I 令 1 = I2
I10 1 得Βιβλιοθήκη I = 3 20第十一章 光学
7
物理学
第五版
1111-11 光的偏振性 马吕斯定律
作业 : P170. 11-35,36 11-35,
第十一章 光学
8
自然光
···
偏振化方向 线偏振光 电气石晶片
1 线偏振光的光强: 线偏振光的光强: I = I0 2
第十一章 光学
4
物理学
第五版
1111-11 光的偏振性 马吕斯定律
E0 I P E=E0cosα
三、马吕斯定律
I0
αP
α
E = E 0 cosα ,

光的偏振与马吕斯定律

光的偏振与马吕斯定律

光的偏振与马吕斯定律光是一种电磁波,具有波动性质。

当光通过介质或其他物体时,其电矢量在垂直于传播方向的平面上振动,这种振动称为光的偏振。

一、光的偏振态光的偏振态是指光波的电矢量的振动方向。

光可以是不偏振,也可以是部分偏振或完全偏振。

1.1 不偏振光不偏振光是指电矢量在所有方向上都均匀振动的光。

这种光既没有偏振方向,也不随着时间变化。

1.2 部分偏振光部分偏振光是指电矢量在特定方向上振动,并且有一个主导方向。

这种光可以理解为由两个方向上偏振光的叠加而成。

1.3 完全偏振光完全偏振光是指电矢量只在一个确定方向上振动的光。

这种光具有明确的偏振方向和振幅。

二、光的偏振与马吕斯定律马吕斯定律(Malus' law)是描述光的偏振现象的定律,它阐述了入射偏振光强度与通过偏振片后的透射光强度之间的关系。

马吕斯定律的表达式为:I = I₀cos²θ其中,I₀为入射光的强度,I为透射光的强度,θ为透射光与偏振方向之间的夹角。

根据马吕斯定律,当透射光与偏振方向之间夹角为0°时,透射光强度最大,为入射光的强度。

当夹角为90°时,透射光强度为0,完全消光。

马吕斯定律还可以用来分析光的偏振态的成分。

通过将入射光依次通过多个偏振片,并测量透射光的强度,可以得到透射光与偏振方向的夹角与透射光强度的关系。

根据马吕斯定律,可以确定光的偏振态的振动方向。

三、应用与实践光的偏振现象在许多领域中有广泛的应用。

3.1 光学仪器与装置偏振片被广泛应用于光学仪器和装置中,如摄影和摄像机中的偏振镜头,显微镜中的偏振装置等。

通过控制光的偏振态,可以提高成像的清晰度和对比度。

3.2 光通信与光电子学光通信和光电子学中的偏振控制器可以用于调节光的偏振态,提高信号传输的质量和速率。

3.3 材料科学与光学器件通过控制材料的结构和性质,可以制备具有特定偏振特性的光学器件,如偏振滤波器、偏振分光器、液晶显示器等。

3.4 光生物学与医学应用光的偏振现象在生物和医学领域中也有重要应用,如偏振显微镜可以观察细胞和组织的结构,利用光的偏振性质可以实现非侵入性的生物组织成像。

第一节 光的偏振性及马吕斯定律

第一节 光的偏振性及马吕斯定律

例:晴朗蔚蓝色的天空中所散射的日光多是部分偏振光,散 射光与入射光的方向越接近垂直,散射光的偏振度越高。
椭圆偏振光和圆偏振光 椭圆偏振光:在传播过程中,光矢量围绕传播方向旋转,其末端在垂直于传播方向
的平面上的投影是一椭圆。
圆偏振光:光矢量末端在垂直于传播方向的平面上的投影是圆。 右旋椭圆偏振光:迎着光的前进方向看时,光矢量顺时针旋转。 左旋椭圆偏振光:迎着光的前进方向看时,光矢量逆时针旋转。
I 0 A02
I A2 A02 cos2
I I0 cos2
(马吕斯定律)
当 α 0,I Imax I0

α ,I 0 消光现象
2
A0
Malus (1775-1812 )
A
公式中入射光必须是线偏振光,不是自然光。
A A0 cos
用偏振片检验光的偏振态
偏振片转一周
线偏振光 部分偏振光
X
•••
X
简单表示法
S
Y
O
Y
Z
u
Z
u
完全偏振光
自然光经过某些物质的反射、折射或吸收后,可能只保留某一方向的光 振动。这种只有某一固定方向振动的光叫做线偏振光或完全偏振光,简称偏 振光。
E
光振动平行屏幕
u
• • •• •
光振动垂直屏幕
部分偏振光
• • • • ••
•• •
垂直屏幕的光振动较强
平行屏幕的光振动较强
自然光
消光 强度变,无消光 强度不变 偏振化方向
二、起偏与检偏
偏振片
晶体(如硫酸金鸡钠硷)对相互垂直的两个光振动分量具有选择吸收 的性能,称为二向色性。将这种晶体涂敷于透明薄片上,就成为偏振片 。偏振片是常用的起偏器和检偏器,每个偏振片上都标有偏振化方向。

14-9 光的偏振性 马吕斯定律

14-9 光的偏振性 马吕斯定律

解:(1)透镜的焦距为 ,由于 >>b,对点 :( )透镜的焦距为f,由于f ,对点P
x 而言, 而言,有 sin ϕ ≈ 。根据单缝衍射明纹条 f 件 b sin ϕ = (2 k + 1 ) λ ,有 2 bx λ = (2 k + 1 ) f 2
的值代入, 将b、f、x和λ的值代入,得 、 、 和 的值代入
第十四章 波动光学
14 – 9 光的偏振性 马吕斯定律 一
物理学教程 第二版) (第二版)
自然光 偏振光 一般光源发出的光中, 自然光 :一般光源发出的光中,包含着各个方向 的光矢量在所有可能的方向上的振幅都相等(轴对称) 的光矢量在所有可能的方向上的振幅都相等(轴对称) 这样的光叫自然光 .
自然光以两互相垂直的互为独 自然光以两互相垂直的互为独 垂直 立的(无确定的相位关系 关系) 立的(无确定的相位关系)振幅相 并各具有一半 一半的 等的光振动表示 , 并各具有一半的 振动能量 . 注意
第十四章 波动光学
14 – 9 光的偏振性 马吕斯定律
物理学教程 第二版) (第二版)
检 偏
偏器 检 偏器 检偏器 偏 检偏器 检偏器
第十四章 波动光学
14 – 9 光的偏振性 马吕斯定律 三 马吕斯定律( 马吕斯定律(1808 年) N
物理学教程 第二版) (第二版)
I0 E0
M
E
检偏器
I
起偏器 N M
14 – 9 光的偏振性 马吕斯定律
物理学教程 第二版) (第二版)
r 矢量称为光矢量, E矢量称为光矢量 , 它能引起感光作用和生理 作用,其振动称为光振动。 作用,其振动称为光振动。
光波是横波,是指光矢量的振动方向总是与光的 光波是横波 是指光矢量的振动方向总是与光的 传播方向垂直。 传播方向垂直。 光矢量的振动对于传播方向的不对称性, 光矢量的振动对于传播方向的不对称性,称为 为光的偏振性 为光的偏振性。

光的偏振性马吕斯定律

光的偏振性马吕斯定律

01
通过深入研究光的偏振性,可以优化光学器件的设计和性能,
提高光学系统的整体性能。
促进光学技术的发展
02
光的偏振性研究可以为光学技术的发展提供新的思路和方法,
推动光学技术的进步。
在量子信息中的应用
03
光的偏振性在量子信息领域具有重要的应用价值,可以用于量
子通信和量子计算中的信息编码和处理。
感谢观看
THANKS
为了克服马吕斯定律的局限性,需要研究非线性偏振光的行为, 并发展相应的理论。
引入量子力学理论
将量子力学理论引入光的偏振性研究中,可以更深入地理解光的本 质和行为。
发展多维偏振测量技术
为了更准确地描述光的偏振状态,需要发展多维偏振测量技术,以 获取更全面的偏振信息。
马吕斯定律在未来的应用前景
提高光学器件的性能
光的偏振性马吕斯定 律
• 光的偏振性 • 马吕斯定律 • 马吕斯定律的应用 • 马吕斯定律的局限性与发展
目录
01
光的偏振性
光的偏振现象
01
02
03
自然光
无偏振现象,光波电矢量 在垂直于波传播方向的平 面内呈无规则分布。
线偏振光
光波电矢量仅在某一特定 方向上振动,其余方向上 振幅为零。
圆偏振光
光波电矢量在垂直于波传 播方向的平面内呈旋涡状 分布,且沿波传播方向看, 电矢量随时间作旋转。
实验中,通常使用激光作为光源,通过偏振片产 生线偏振光,再通过检偏器观察透射光的光强变 化。
3
通过调整夹角θ的大小,可以观察到透射光的光 强随夹角的变化规律,从而验证马吕斯定律的正 确性。
03
马吕斯定律的应用
ห้องสมุดไป่ตู้

光学光的偏振现象及马吕斯定律说明

光学光的偏振现象及马吕斯定律说明

光学光的偏振现象及马吕斯定律说明引言:在日常生活中,我们经常与光打交道,而光学是研究光的性质和行为的学科。

其中,光的偏振现象是光学中的一个重要研究方向。

马吕斯定律是用来解释光的偏振现象的一种定律。

本文将详细介绍光的偏振现象以及马吕斯定律的原理和应用。

一、光的偏振现象的定义与原理光的偏振现象是指光传播过程中,光的振动方向只在某一平面上的现象。

正常的自然光一般是无偏振光,其振动方向在各个平面上都存在。

然而,根据不同的条件和材料,光可被偏振成只在一个方向振动的偏振光。

光的偏振现象可以通过偏振片实验来观察。

当偏振片通过滤去特定方向的光振动后,只有符合特定振动方向的光透过。

这表明光的偏振是由光的电矢量在空间中的方向决定的。

二、马吕斯定律的原理马吕斯定律是描述偏振光传播过程中光的振动方向变化的定律。

该定律表明,当偏振光遇到一个无法传播的方向时,其振动方向会发生改变。

根据马吕斯定律,当入射光的振动方向与某一介质吸收或反射界面垂直时,光将无法传播,反射出的光将发生偏振。

这是因为只有与特定方向相同的振动方向的光能够通过。

三、马吕斯定律的应用马吕斯定律在实际生活中有着广泛的应用,下面将介绍其中几个重要的应用。

1. 偏振片偏振片是利用马吕斯定律制造的,它能够选择性地通过某一方向的光,可以用于消除光的反射、减弱光的强度以及调节和分析光的偏振特性。

2. 偏光镜偏光镜也是利用马吕斯定律制造的光学元件,可将无偏振光转换为偏振光,用于拍摄与显示屏、太阳镜等设备中,可以减少水平方向上的光反射,避免光的干扰。

3. 光电传感器光电传感器是利用马吕斯定律的原理制作的,它可以通过检测偏振光的方向来实现光的检测和控制,常用于工业自动化、光学通信等领域。

4. 光学相对旋转仪光学相对旋转仪是利用马吕斯定律对光的旋转性质进行测量的仪器,常用于测定光学材料中的光学活性物质的旋光度。

结论:光的偏振现象是光学中的重要研究内容,通过偏振片等光学元件可以实现对光的偏振控制,而马吕斯定律则为解释光的偏振提供了合理的解释和应用基础。

光的偏振性马吕斯定律

光的偏振性马吕斯定律

e光是光矢量与e主平面平
行的线偏振光.
当光轴在入射面内时,主截 面,o主平面,e主平面都重合.
• 光轴 e光
法线
• • • o光
法线
e光 • • • o光 光轴
二.惠更斯原理对双折射的 解释 1. 晶 体 的 主 折 射 率 , 正 晶
体、负晶体
在双折射晶体中 ,o光
沿各向传播的速度相同,
故 o 波 波 面 为 球 面 ;e 光 沿 各向的传播速度不同,e波
射定律
sin i const sin re e光折射线也不一定在
入射面内.
3. 晶体的光轴
当光在晶体内沿某个特 殊方向传播时不发生双 折射,该方向称为晶体 的光轴。
例如,方解石晶体(冰洲石)
102° A
光轴
B
光轴是一特殊的方向,凡 平行于此方向的直线均 为光轴. 4. 主平面和主截面 主截面: 晶体表面的法 线与晶体光轴构成的平 面.如图入射时,入射面就 是主截面.
(接近线偏振光)
自然光从空气→玻璃
I 7% I0
§3 双折射 偏振棱镜
一. 双折射的概念
1.双折射现象
一束光线进入某种晶体,
产生两束折射光叫双折
射.
e
e
··· o ··· o
方解石
自然光 i
n1 n2 (各向异
性媒质) ro
re e光
o光
二. 玻璃片堆折射的偏振
当i =i0时
I I0
解:由马吕斯定律
I10
I10/2
I1
••
I1

I10 2
cos2
30
同理:
I2

I20 2

光的偏振性 马吕斯定律

光的偏振性 马吕斯定律

偏振性马吕斯定律光的一、自然光偏振光1.光的偏振性(Polarization)电磁波是横波,光是电磁波在人眼视觉范围内的波段0.4nm 0.7nm。

对应红、橙、黄、绿、青、蓝、紫光。

研究光的振动方向的特性即研究光的偏振性。

光矢量的振动对于传播方向的不对称性,称为为光的偏振。

2. 光偏振态的分类和图示根据光矢量对传播方向的对称情况,光可以分为:自然光、线偏振光、部分偏振光,以及椭圆偏振光。

(1)完全偏振光* 线偏振光光矢量只沿某一固定方向振动的光为线偏振光。

偏振光的振动方向与传播方向组成的平面称为振动面。

线偏振光的振动面是固定不动的。

线偏振光的表示方法如下:* 椭圆偏振光光矢量末点的运动轨迹是正椭圆或斜椭圆。

在迎光矢量图上,光矢量端点沿逆时针方向旋转的称为左旋偏振光;沿顺时针方向旋转的称为右旋偏振光。

*圆偏振光椭圆 圆 线(2)自然光普遍光源如太阳、白炽灯、钠灯等发光时,组成光源的原子自发或受激辐射光波列是随机的,各光波列振动方向、频率和位相不尽相同,光矢量在垂直于光传播方向的平面上取各方向的几率相等,自然光可分解为两 互相垂直方向、振幅相等、没有任何相位关系的偏振光。

自然光的表示方法如图:对自然光,若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等,如图所示:Y X I I I +=0,021I I I Y X ==(3)部分偏振光若光波中虽包含各种方向的振动,但在某特定方向上的振动占优势,例如在某一方向上的振幅最大,而在与之垂直的另一方向上的振幅最小,则这种偏振光称为部分偏振光。

其优势越大,其偏振化程度越高。

因此,可以用一定方法将自然光变成部份偏振光和偏振光。

部分偏振光的两个相互垂直的光振动也没有任何固定的相位关系。

部分偏振光的表示方法如下:自然光加线偏振光、自然光加椭圆偏振光、自然光加圆偏振光,都是部分偏振光。

二、偏振片起偏和检偏1. 偏振片两向色性的有机晶体,如硫酸碘奎宁、电气石或聚乙烯醇薄膜在碘溶液中浸泡后,在高温下拉伸、烘干,然后粘在两个玻璃片之间就形成了偏振片。

光学光的偏振与马吕斯定律

光学光的偏振与马吕斯定律

光学光的偏振与马吕斯定律光学中的偏振是指光波在传播过程中,由于某种原因而偏离了原来的振动方向。

而马吕斯定律则是描述了偏振光经过偏振片后发生的各种现象。

1.光的偏振光是由电磁波组成的,传播时电矢量和磁矢量垂直于传播方向。

振动方向是指电矢量或磁矢量的振动方向。

在正常情况下,光的振动方向是各个方向都有的,即既有沿x轴方向的振动,也有沿y轴方向的振动。

然而,在某些情况下,光的振动方向会发生偏离。

这是由于某些原因,例如光波与物体发生相互作用,如反射、折射等。

这种偏离后的光,被称为偏振光。

2. 偏振片偏振片是一种光学元件,它具有选择性地通过或阻挡特定方向的偏振光。

偏振片通常由有机或无机物质制成,例如由聚合物或聚动物物质形成的聚合物偏振片。

通过调整偏振片的方向,可以选择通过或阻挡不同方向振动的光。

这种性质使得偏振片在许多实际应用中发挥重要作用,如液晶显示器、偏振板等。

3. 马吕斯定律马吕斯定律是偏振光通过偏振片后的行为的描述。

根据马吕斯定律,偏振光通过偏振片时,如果偏振光的振动方向与偏振片的振动方向一致,那么该光会完全通过;如果两者垂直,那么该光将完全被阻挡。

此外,根据马吕斯定律,如果偏振光的振动方向与偏振片的振动方向之间存在一个角度,那么通过偏振片的光的强度将发生变化。

具体来说,随着两者之间的角度增加,通过偏振片的光的强度将减小,直到完全被阻挡。

4. 偏振光应用偏振光的特性使得它在许多领域中具有广泛的应用。

在光学仪器中,偏振片被广泛用于控制光的强度和方向,并在显微镜、光学测量中起到重要作用。

在液晶显示器中,偏振片用于控制液晶的分子排列以产生不同的颜色和图像。

此外,偏振光还在摄影领域中应用广泛。

通过使用偏振镜,摄影师可以有效地去除逆光和反射,改善照片的质量。

总结:光学中的偏振是指光波的振动方向发生偏离的现象。

马吕斯定律描述了偏振光通过偏振片后的行为。

偏振片具有选择性地通过或阻挡特定方向的偏振光。

偏振光在许多领域中都有广泛的应用,如光学仪器、液晶显示器和摄影等。

光的偏振与马吕斯定律

光的偏振与马吕斯定律

光的偏振与马吕斯定律光是一种电磁波,具有波粒二象性。

在空间传播过程中,光波中的电场矢量振动方向可以沿着任意方向旋转。

这就涉及到光的偏振现象。

而马吕斯定律是描述光在通过偏振片时发生偏振现象的定律。

本文将对光的偏振和马吕斯定律进行探讨。

一、光的偏振1.1 偏振现象的产生过程偏振现象是指光波中的电场矢量的振动方向偏离了随机方向。

光的偏振可以通过自然偏振、人工偏振以及双折射等方式实现。

自然光是指自然界中的光,它是由多种频率、多个方向的光波构成的。

这意味着自然光中的电场矢量振动方向是随机的,没有明显的偏好方向。

人工偏振是通过适当的光学元件来改变光波的偏振状态。

常见的人工偏振方式包括偏振片、波片和偏振器等。

双折射是某些材料在受到光的传播时,光波分裂为普通光和振动方向特定的偏振光。

典型的双折射材料有石英和方解石等。

1.2 偏振光的分类根据光的振动方向来划分,可以将偏振光分为水平偏振光、垂直偏振光和斜偏振光三类。

水平偏振光是指光波的电场矢量沿水平方向振动,垂直偏振光则是电场矢量沿垂直方向振动。

斜偏振光则是电场矢量在水平和垂直方向之间进行振动,并呈一定角度。

1.3 光偏振的应用光偏振在科学研究和技术应用中具有广泛的应用。

在光学仪器中,利用偏振片可以调节光的偏振状态,实现对光的调制、分析和检测。

偏振片还常用于消除光源的反射、减少画面的反光,提高显示效果。

在光通信领域,光偏振控制技术是实现高速传输和复用的重要手段。

此外,偏振光还在材料分析、生命科学、纤维材料等领域发挥着重要作用。

二、马吕斯定律马吕斯定律是描述光在通过偏振片时发生偏振现象的定律。

该定律由法国物理学家马吕斯于1815年提出,经过实验验证和理论推导得出。

2.1 马吕斯定律的表述马吕斯定律的表述如下:当一束自然光通过一个偏振片时,如果光的振动方向与偏振片的主偏振方向一致,那么该光将通过偏振片;反之,如果光的振动方向与偏振片的主偏振方向垂直,那么该光将被偏振片完全吸收,无法通过。

光的偏振性马吕斯定律

光的偏振性马吕斯定律
液晶显示(LCD)
LCD显示器中的偏振片利用马吕斯定律来控制光线方向,从而实现图像的显示。通过调整偏振片的角度和方向, 可以控制像素的亮度,从而实现清晰、高对比度的图像显示。
3D电影技术
在3D电影技术中,通过佩戴不同方向的偏振眼镜,将不同角度的影像分别传递给左右眼,使观众感受到立体的视 觉效果。这也是利用了马吕斯定律的原理。
马吕斯定律的验证
为了验证马吕斯定律,可以使用不同的实验装置和方法。
其中一种常用的方法是使用偏振片、反射镜和测量光强的 仪器。当线偏振光通过偏振片后反射,再经过另一个偏振 片,通过测量光强的变化即可验证马吕斯定律。
另一种方法是使用双折射晶体和偏振片。当线偏振光通过 双折射晶体后分成两束偏振方向不同的光线,再经过偏振 片,通过观察光强的变化也可以验证马吕斯定律。
马吕斯定律的发现为光学和物理学的 发展做出了重要贡献,它揭示了光在 反射和折射过程中偏振状态的变化规 律。
马吕斯定律的内容
马吕斯定律指出,当线偏振光在通过 偏振片后,其振动方向与偏振片的透 振方向平行时,光的强度不发生变化; 当其振动方向与偏振片的透振方向垂 直时,光的强度完全消失。
VS
该定律适用于任何线偏振光和任何偏 振片,是光学和物理学中的基本定律 之一。
圆偏振光
电矢量振动方向与传播方向形成一 定夹角,形成圆偏振光。
04
偏振光分类
自然光
无偏振现象,光波电矢量平均值在各个方向上相等。
部分偏振光
部分光波电矢量在某一特定方向上振动,部分在垂直 方向上振动。
全偏振光
光波电矢量完全在某一特定方向上振动。
偏振光的应用
光学仪器
利用偏振片消除或减弱反射光、散射光,提 高光学仪器成像质量。

7.10 光的偏振性 马吕斯定律

7.10  光的偏振性 马吕斯定律

. . . .
.
起偏器 检偏器
光强为零
两偏振片的偏振化方向相互垂直
自然光通过旋转的检偏器, 自然光通过旋转的检偏器,光强不变
自然光
.
. . . .
检偏器
自然光通过旋转的检偏器, 自然光通过旋转的检偏器,光强不变
自然光
. . . .
.
检偏器
二. 马吕斯定律 如果入射线偏振光的光强为I 透过检偏器后, 如果入射线偏振光的光强为 0,透过检偏器后, 透射光的光强I为 透射光的光强 为 2 I = I0 cos α
线偏振光
偏振光通过旋转的检偏器, 偏振光通过旋转的检偏器, 光强发生变化
自然光 线偏振光
.
. . . .
起偏器
检偏器
偏振光通过旋转的检偏器, 偏振光通过旋转的检偏器, 光强发生变化
自然光 线偏振光
. . . .
.
起偏器
检偏器
偏振光通过旋转的检偏器, 偏振光通过旋转的检偏器, 光强发生变化
自然光 线偏振光
1 I 3 = I 0 sin 2 2α 8
时透过偏振片P 的光强最大, 当 α = 45° 时透过偏振片 3的光强最大 最大值为
I max
1 = I0 8
• • •
x
二、线偏振光(完全偏振光、平面偏振光、偏振光) 线偏振光(完全偏振光、平面偏振光、偏振光) 光波的光矢量方向始终不变, 光波的光矢量方向始终不变, 只沿一个固定方向振动。 只沿一个固定方向振动。
线偏振光的表示法: 线偏振光的表示法:
• • • • • •
光振动平行板面
x
光振动垂直板面
7.10
光的偏振性 马吕斯定律
一、横波的偏振性 振动面:通过波的传播方向且包含振动矢量的平面。 振动面:通过波的传播方向且包含振动矢量的平面。 偏振: 的振动方向相对传播方向的不对称性。 偏振: 波的振动方向相对传播方向的不对称性。 E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意
二互相垂直方向是任选的 . 符号表示
各光矢量间无固定的相位关系 .
19-13 光的偏振性 马吕斯定律 偏振光(线偏振光)
第十九章 波动光学
光振动只沿某一固定方向的光 .
E
振动面
符号表示
v
部分偏振光 :某一方向的光振动比与之垂直方 向上的光振动占优势的光为部分偏振光 . 符号表示
19-13 光的偏振性 马吕斯定律 二 偏振片 起偏与检偏
I10 I 20 经过起偏器后光强分别为 和 . 2 2
I I 2 2 10 20 经过检偏器后 I1 cos 30 I 2 cos 60 2 2 I10 cos2 30 1 I1 I 2 2 I 20 cos 60 3
19-13 光的偏振性 马吕斯定律
第十九章 波动光学
讨论 在两块正交偏振片 p1 , p 3 之间插入另一块偏 振片 p 2 ,光强为 I 0 的自然光垂直入射于偏振片 p1 , 讨论转动 p 2 透过 p 3 的光强 I 与转角的关系 .
I0
p1
p3
p1

p2
p3
I0
p1
I1
p2
I2
2
p3
I3
1 I1 I 0 2
I0 2 I 2 I1 cos cos 2
19-13 光的偏振性 马吕斯定律
第十九章 波动光学
I0
p1
I1
p2
I2
p3
I3
p1

p2
p3
I0 2 π 2 I 2 cos I 3 I 2 cos ( ) 2 2 1 2 2 2 I 3 I 2 sin I 0 cos sin 2 1 I 3 I 0 sin 2 2
1 I0 2 偏振化方向
19-13 光的偏振性 马吕斯定律
第十九章 波动光学
检 偏
起偏器 检偏器
19-13 光的偏振性 马吕斯定律 三 马吕斯定律(1880 年) N
第十九章 波动光学
I0
E0
M
E
检偏器
I
起偏器 N
M
E
E0
光通过检偏振器后, 出射光的强度为
I E 2 E E0 cos I 0 E0 马吕斯定律 强度为 I 0 的偏振
19-13 光的偏振性 马吕斯定律
第十九章 波动光学
光的波动性 光波是横波
机械横波与纵波的区别
光的干涉、衍射 . 光的偏振 .
机 械 波 穿 过 狭 缝
19-13 光的偏振性 马吕斯定律
第十九章 波动光学

自然光 偏振光
自然光 :一般光源发出的光中,包含着各个方 向的光矢量在所有可能的方向上的振幅都相等(轴 对称)这样的光叫自然光 . 自然光以两互相垂直的互 v 为独立的 (无确定的相位关 系)振幅相等的光振动表示 , E 并各具有一半的振动能量 .
第十九章 波动光学
二向色性 : 某些物质能吸收某一方向的光振 动 , 而只让与这个方向垂直的光振动通过, 这种性质 称二向色性 . 偏振片 : 涂有二向色性材料的透明薄片 . 偏振化方向 : 当自然光照射在偏振片上时, 它只让某一特定方向的光通过,这个方向叫此偏振 片的偏振化方向 .
起 偏Hale Waihona Puke I0起偏器2
I I 0 cos 2
19-13 光的偏振性 马吕斯定律
第十九章 波动光学
例1 有两个偏振片,一个用作起偏器, 一个用作检 30 偏器. 当它们偏振化方向间的夹角为 时 , 一束单色 自然光穿过它们, 出射光强为 I1 ; 当它们偏振化方向间 的夹角为 60 时, 另一束单色自然光穿过它们 , 出射光 强为 I 2 , 且 I1 I 2 . 求两束单色自然光的强度之比 . 解 设两束单色自然光的强度分别为 I10 和 I 20 .
8



0 ~ 2π 间变化, I 3如何变化?
I0 π 3π 5π 7π π 3π 0, ,π , , I 3 0 , , , , I 3 4 4 4 4 8 2 2
相关文档
最新文档