直线与平面平行的判定和性质同步练习.doc.docx

合集下载

(完整版)高中数学必修二2.2直线、平面平行的判定及其性质课堂练习及答案

(完整版)高中数学必修二2.2直线、平面平行的判定及其性质课堂练习及答案

2.2. 直线、平面平行的判断及其性质直线与平面平行的判断知识梳理1、直线与平面平行的判判定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:aαbβ=> a∥ αa∥ b知能训练一.选择题1.已知 m,n 是两条不同样直线,α,β,γ是三个不同样平面,以下命题中正确的选项是()A .若 m∥ α, n ∥ α,则 m∥ n B .若α⊥ γ,β⊥ γ,则α∥ βC.若 m ∥ α, m ∥ β,则α∥ β D .若 m ⊥ α, n⊥ α,则 m ∥ n 2.若直线l 不平行于平面α,且l?α,则()A .α内存在直线与 l 异面B .α内存在与 l 平行的直线C.α内存在唯一的直线与 l 平行D .α内的直线与 l 都相交3.如图, M 是正方体 ABCD-A 1B 1C1D 1的棱 DD 1的中点,给出以下命题①过 M 点有且只有一条直线与直线AB 、 B 1C1都订交;②过 M 点有且只有一条直线与直线AB 、 B 1C1都垂直;③过 M 点有且只有一个平面与直线AB 、 B 1C1都订交;④过 M 点有且只有一个平面与直线AB 、 B 1C1都平行.其中真命题是()A .② ③ ④B .① ③ ④C .① ② ④D .① ② ③4.正方体 ABCD-A 1B 1C1D 1中 M ,N ,Q 分别是棱 D 1C1, A 1D 1,BC 的中点. P在对角线 BD 1上,且BP=BD1,给出下面四个命题:(1)MN ∥面 APC;(2)C1 Q∥面 APC;(3)A ,P, M 三点共线;(4)面 MNQ ∥面 APC.正确的序号为()A .( 1 )( 2 )B .( 1 )( 4 )C.( 2)( 3 ) D .( 3 )( 4)5.在正方体ABCD-A 1B 1C1D 1的各个极点与各棱中点共20 个点中,任取两点连成直线,所连的直线中与A 1BC 1平行的直线共有()A . 12 条B . 18 条C . 21 条D . 24 条6.直线 a∥平面α,P∈ α,那么过 P 且平行于 a 的直线()A .只有一条,不在平面α内B .有无数条,不一定在平面α内C.只有一条,且在平面α内D .有无数条,一定在平面α内7.若是直线a∥平面α,那么直线 a 与平面α内的()A .一条直线不相交B .两条直线不相交C .无数条直线不相交D .任意一条直线不相交8.如图在正方体ABCD-A 1B 1C1D 1中,与平面AB 1C 平行的直线是()A .DD 1B .A 1 D 1C .C 1D 1 D .A 1 D9.如图,在三棱柱 ABC-A 1B1C1中,点 D 为 AC 的中点,点 D1是 A 1C1上的一点,若 BC 1∥平面 AB 1D 1,则等于()A . 1/2B . 1C. 2 D . 310.下面四个正方体图形中, A 、B 为正方体的两个极点,M、N 、 P 分别为其所在棱的中点,能得出AB ∥平面 MNP 的图形是()A .①②B .①④C.②③ D .③④11.如图,正方体的棱长为1,线段 B′ D上′有两个动点 E ,F,EF= ,则以下结论中错误的选项是()A . AC ⊥ BEB . EF ∥平面 ABCDC.三棱锥 A-BEF的体积为定值D .异面直线 AE , BF 所成的角为定值二.填空题12.如图,在正方体ABCD-A1B 1C1D 1 中,E,F,G,H,M分别是棱AD ,DD 1,D1A 1,A 1A ,AB的中点,点 N在四边形EFGH的四边及其内部运动,则当N 只需满足条件时,就有MN ⊥ A1C1;当N 只需满足条件时,就有MN ∥平面 B 1D 1C.13.如图,正方体ABCD-A1B 1C1D 1 中,AB=2,点E 为 AD的中点,点 F 在 CD上,若EF ∥平面AB 1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱 ABC-A 1B 1 C1中,侧棱 AA 1⊥底面 ABC ,AB ⊥ BC,D 为 AC的中点, AA 1=AB=2 .(1)求证: AB 1∥平面 BC1D ;(2)若 BC=3 ,求三棱锥 D-BC 1C 的体积.平面与平面平行的判断知识梳理1、两个平面平行的判判定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

《直线、平面平行的判定及其性质》测试题

《直线、平面平行的判定及其性质》测试题

直线、平面平行的判定及其性质一、选择题(共60分)1、若两个平而互相平行,则分别在这两个平行平面内的直线()A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有()①若a ,则a〃a(§)a〃平面 a , bU a 则a〃b③平面a 〃平面B,aU a,bU B,则a〃b④平面a 〃平面B,点PWa,a,〃B,且PWp,则aU a个个个个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE : E出CF : FB二1 : 3,则对角线AC和平面DEF的位置关系是()A.平行B.相交.C.在内D.不能确定4、a, b是两条异而直线,A是不在a, b上的点,则下列结论成立的是()A.过A有且只有一个平面平行于a, bB.过A至少有一个平面平行于a, bC・过A有无数个平面平行于a, bD.过A且平行a, b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面a ,则b与a的位置关系是()〃a C a 与a相交 D.以上都有可能6、下列命题中正确的命题的个数为()①直线1平行于平面a内的无数条直线,则l〃a;②若直线a在平面a外,则a/7a ;③若直线a〃b,直线bU a ,则a〃 a ;④若直线a〃b, b U平面a ,那么直线a就平行于平面a内的无数条直线.7、下列命题正确的个数是()⑴若直线1上有无数个点不在a内,则l〃a(2)若直线1与平面a平行,1与平面a内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那「么另一条也与这个平面平行(4)若一直线a和平面a内一直线b平行,则a//a个个个个8、已知m、n是两条不重合的直线,a、B、丫是三个两两不重合的平而,给出下列四个命题:① 若m 丄丄则a 〃B ;② 若a 丄Y,B 丄Y,则a 〃B ;③ 若 mU a , nU B , m 〃n,则 a 〃 B ;④ 若m 、n 是异面直线,mU a , m 〃 B , nU B , n 〃 a ,则a 〃 B .其中真命题是() A.①和② B.①和③ C.③和④ D.①和④「9、长方体ABCD-AbCQ 中,Z ■为中点,尸为宓中点,与肘平行的长方体的而有() 个 个 个 个10、对于不重合的两个平而。

直线、平面平行的判定及性质随堂练习(含答案)

直线、平面平行的判定及性质随堂练习(含答案)

直线、平面平行的判定及性质(时间:45分钟 分值:100分)一、选择题1. [2013·湖北八校联考]对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A. 若m ,n 与α所成的角相等,则m ∥n B. 若m ∥α,n ∥α,则m ∥n C. 若m ⊥α,m ⊥n ,则n ∥α D. 若m ⊂α,n ∥α,则m ∥n 答案:D解析:由m ⊂α,n ∥α可知m 与n 不相交,又m 与n 共面,故m ∥n .2. [2013·温州检测]已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是( )A. 若m ⊥α,m ⊥β,则α∥βB. 若α∥γ,β∥γ,则α∥βC. 若m ⊂α,n ⊂β,m ∥n ,则α∥βD. 若m ,n 是异面直线,m ⊂α,m ∥β,n ⊂β,n ∥α,则α∥β 答案:C解析:由线面垂直的性质可知A 正确;由两个平面平行的性质可知B 正确;由异面直线的性质易知D 也是正确的;对于选项C ,α,β可以相交、可以平行,故C 错误,选C.3. [2013·海口模拟]在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H 、G 分别为BC 、CD 的中点,则( )A. BD ∥平面EFG ,且四边形EFGH 是平行四边形B. EF ∥平面BCD ,且四边形EFGH 是梯形C. HG ∥平面ABD ,且四边形EFGH 是平行四边形D. EH ∥平面ADC ,且四边形EFGH 是梯形 答案:B解析:如图,由题意,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行.故选B.4. [2013·北京模拟]给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数为( ) A. 3 B. 2 C. 1 D. 0答案:C解析:①中当α与β不平行时,也能存在符合题意的l 、m .②中l 与m 也可能异面.③中⎭⎪⎬⎪⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m , 同理l ∥n ,则m ∥n ,正确.5. 如图中四个正方体图形,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是()A. ①③B. ①④C. ②③D. ②④答案:B解析:图①中,设PN中点为Q,连MQ,则AB∥MQ,所以AB∥平面MNP,图②,图③中,AB与平面MNP相交,图④中,AB∥NP,所以AB∥平面MNP.故应选B.6. 若α、β是两个相交平面,点A不在α内,也不在β内,则过点A且与α和β都平行的直线()A. 只有1条B. 只有2条C. 只有4条D. 有无数条答案:A解析:据题意如图,要使过点A的直线m与平面α平行,则据线面平行的性质定理得经过直线m的平面与平面α的交线n与直线m平行,同理可得经过直线m的平面与平面β的交线k与直线m平行,则推出n∥k,由线面平行可进一步推出直线n与直线k与两平面α与β的交线平行,即要满足条件的直线m只需过点A且与两平面交线平行即可,显然这样的直线有且只有一条.二、填空题7. [2013·长春月考]在四面体ABCD中,M、N分别为△ACD和△BCD的重心,则四面体的四个面中与MN平行的是________.答案:面ABC、面ABD解析:如图,取CD的中点E,则AE过M,且AM=2ME,BE过N,且BN=2NE.连接MN,则AB∥MN,∴MN平行于平面ABC和平面ABD.8. 如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,P A ⊥底面ABCD ,E 为PC 的中点,则BE 与平面P AD 的位置关系为________.答案:平行解析:取PD 的中点F ,连接EF , 在△PCD 中,EF 綊12CD .又∵AB ∥CD 且CD =2AB , ∴EF 綊AB ,∴四边形ABEF 是平行四边形, ∴EB ∥AF .又∵EB ⊄平面P AD ,AF ⊂平面P AD , ∴BE ∥平面P AD .9. [2013·河北唐山]a ,b 是两条不重合的直线,α,β,γ是三个不重合的平面,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________.答案:①或③解析:①中,a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).③中,b ∥β,b ⊂γ,a ⊂γ,β∩γ=a ⇒a ∥b (线面平行的性质).三、解答题 10.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A1∥平面BCHG.证明:(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC.∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形.∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.11. [2013·连云港模拟]如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.(1)求证:DE∥平面ABC;(2)求三棱锥E-BCD的体积.解:(1)取BC中点G,连接AG,EG,因为E是B1C的中点,所以EG∥BB1,且EG=12BB1.由直棱柱知,AA1綊BB1,而D是AA1的中点,所以EG綊AD,所以四边形EGAD是平行四边形,所以ED∥AG,又DE⊄平面ABC,AG⊂平面ABC,所以DE∥平面ABC.(2)因为AD∥BB1,所以AD∥平面BCE,所以V E-BCD=V D-BCE=V A-BCE=V E-ABC,由(1)知,DE∥平面ABC,所以V E-ABC=V D-ABC=13AD·12BC·AG=16×3×6×4=12.12. [2013·辽宁模拟]如图,多面体ABFEDC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.解:由多面体ABFEDC的三视图知,三棱柱AED-BFC中,底面DAE是等腰直角三角形,DA=AE=2,DA⊥平面ABFE,四边形ABFE,ABCD都是边长为2的正方形.(1)证明:连结EB,则M是EB的中点.在△EBC中,MN∥EC,又EC⊂平面CDEF,MN⊄平面CDEF,∴MN∥平面CDEF.(2)∵DA⊥平面ABFE,EF⊂平面ABFE,∴EF⊥AD.又EF⊥AE,∴EF⊥平面ADE.∴四边形CDEF 是矩形,且侧面CDEF ⊥平面DAE . 取DE 的中点H ,连结AH , ∵DA ⊥AE ,DA =AE =2,DE =2 2. ∴AH =2,且AH ⊥平面CDEF . ∴多面体A -CDEF 的体积 V =13S 四边形CDEF ·AH =13DE ·EF ·AH =83.。

直线平面平行的判定及其性质测试题

直线平面平行的判定及其性质测试题

直线、平面平行的判定及其性质一、选择题(共60分)一、假设两个平面相互平行,那么别离在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面二、以下结论中,正确的有( )①若aα,那么a∥α②a∥平面α,bα那么a∥b③平面α∥平面β,aα,bβ,那么a∥b④平面α∥平面β,点P∈α,a∥β,且P∈a,那么aα个个个个3、在空间四边形ABCD中,E、F别离是AB和BC上的点,假设AE∶EB=CF∶FB=1∶3,那么对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确信4、a,b是两条异面直线,A是不在a,b上的点,那么以下结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在五、已知直线a与直线b垂直,a平行于平面α,那么b与α的位置关系是( )∥αα与α相交 D.以上都有可能六、以下命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,那么l∥α;②假设直线a在平面α外,那么a∥α;③假设直线a∥b,直线bα,那么a∥α;④假设直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.7、以下命题正确的个数是( )(1)假设直线l上有无数个点不在α内,那么l∥α(2)假设直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与那个平面平行(4)假设一直线a 和平面α内一直线b 平行,那么a ∥α个 个 个 个八、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出以下四个命题:①假设m ⊥α,m ⊥β,那么α∥β;②若α⊥γ,β⊥γ,那么α∥β;③假设m α,n β,m ∥n,那么α∥β;④假设m 、n 是异面直线,mα,m ∥β,n β,n ∥α,那么α∥β. 其中真命题是( )A.①和②B.①和③C.③和④D.①和④九、长方体ABCD-A 1B 1C 1D 1中,E 为AA 1中点,F 为BB 1中点,与EF 平行的长方体的面有( )个 个 个 个10、关于不重合的两个平面α与β,给定以下条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,M ,使得l ∥α,l ∥β,M ∥α,M ∥β.其中能够判定两个平面α与β平行的条件有( )个 个 个 个1一、设m ,n 为两条直线,α,β为两个平面,那么以下四个命题中,正确的命题是 ( )A.假设m ⊂α,n ⊂α,且m ∥β,n ∥β,那么α∥βB.假设m ∥α,m ∥n ,那么n ∥αC.假设m ∥α,n ∥α,那么m ∥nD.假设m,n 是两条异面直线,且βσββσσ////,//,//,//,则n m n m1二、已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,那么以下命题正确的选项是( )A.假设α⊥γ,α⊥β,那么γ∥βB.假设m ∥n ,m ⊂α,n ⊂β,那么α∥βC.假设α⊥β,m ⊥β,那么m ∥αD.假设m ∥n ,m ⊥α,n ⊥β,那么α∥β二、填空题 (共20分)13.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 别离是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=3a ,过P 、M 、N 的平面与棱CD 交于Q ,那么PQ=_________.14.假设直线a 和b 都与平面α平行,那么a 和b 的位置关系是__________. 15.太长方体ABCD —A 1B 1C 1D 1的任意两条棱的中点作直线,其中能够与平面ACC 1A 1平行的直线有_________条.16.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β别离交于A 、C ,过点P 的直线n 与α、β别离交于B 、D 且PA =6,AC =9,PD =8,那么BD的长为 .三、解答题 (17(10分)、1八、1九、20、2一、22(12分))17. (10分)如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .18.(12分)如下图,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心. 求证:PQ ∥平面BCC 1B 1.19. (12分)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 别离是PA ,BD 上的点且PE EA BF FD ∶∶,求证:EF //平面PBC .C D A B M P20.(12分)如以下图,F,H别离是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B 1D1H.21.(12分)如图,在直四棱柱ABCD—A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1,F别离是棱AD,AA1,AB的中点.求证:直线EE1∥平面FCC1.22.(12分)如图,已知P是平行四边形ABCD所在平面外一点,M、N别离是AB、PC的中点.(1)求证:MN∥平面PAD;4,求异面直线PA与MN所成的角的大小.(2)假设MN=BC=4,PA=3直线、平面平行的判定及其性质(答案)一、选择题一、假设两个平面相互平行,那么别离在这两个平行平面内的直线( D )A.平行B.异面C.相交D.平行或异面二、以下结论中,正确的有( A )①假设aα,那么a∥α②a∥平面α,bα那么a∥b③平面α∥平面β,aα,bβ,那么a∥b④平面α∥β,点P∈α,a∥β,且P∈a,那么aα个个个个解析:假设aα,那么a∥α或a与α相交,由此知①不正确假设a∥平面α,bα,那么a与b异面或a∥b,∴②不正确假设平面α∥β,aα,bβ,那么a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设a α,过直线a作一面γ,使γ与平面α相交,那么γ与平面β必相交.设γ∩α=b,γ∩β=c,那么点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,那么a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F别离是AB和BC上的点,假设AE∶EB=CF∶FB=1∶3,那么对角线AC和平面DEF的位置关系是( A )A.平行B.相交C.在内D.不能确信参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.能够证明AC平面DEF.假设AC平面DEF,那么AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.要紧考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]4、a,b是两条异面直线,A是不在a,b上的点,那么以下结论成立的是( D )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确信的平面与b平行时,过A作与a,b都平行的平面不存在. 答案:D要紧考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]五、已知直线a与直线b垂直,a平行于平面α,那么b与α的位置关系是( )∥αα与α相交 D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系能够平行、相交、异面,a与α平行,因此b与α的位置能够平行、相交、或在α内,这三种位置关系都有可能.答案:D要紧考察知识点:空间直线和平面六、以下命题中正确的命题的个数为( A )①直线l平行于平面α内的无数条直线,那么l∥α;②假设直线a在平面α外,那么a∥α;③假设直线a∥b,直线bα,那么a∥α;④假设直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.参考答案与解析:解析:关于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(假设改成l与α内任何直线都平行,那么必有l∥α),∴①是假命题.关于②,∵直线a在平面α外,包括两种情形a∥α和a与α相交,∴a与α不必然平行,∴②为假命题.关于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不必然平行于平面α.∴③也是假命题.关于④,∵a∥b,bα.那么aα,或a∥α.∴a能够与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A要紧考察知识点:空间直线和平面7、以下命题正确的个数是( A )(1)假设直线l上有无数个点不在α内,那么l∥α(2)假设直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与那个平面平行(4)假设一直线a和平面α内一直线b平行,那么a∥α个个个个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A要紧考察知识点:空间直线和平面八、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出以下四个命题:①假设m⊥α,m⊥β,那么α∥β;②若α⊥γ,β⊥γ,那么α∥β;③假设mα,nβ,m∥n,那么α∥β;④假设m、n是异面直线,mα,m∥β,nβ,n∥α,那么α∥β.其中真命题是( D )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情形也成立,③中α与β相交时,也能知足前提条件答案:D要紧考察知识点:空间直线和平面九、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有( C )个个个个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C要紧考察知识点:空间直线和平面10、关于不重合的两个平面α与β,给定以下条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中能够判定两个平面α与β平行的条件有( B )个个个个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,可是α与β相交,不平行,故排除①,假设α与β相交,如下图,可在α内找到A、B、C三个点到平面β的距离相等,因此排除③.容易证明②④都是正确的.答案:B要紧考察知识点:空间直线和平面11.D12.D二、填空题13、在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 别离是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=,过P 、M 、N 的平面与棱CD 交于Q ,那么PQ=_________. 参考答案与解析:解析:由线面平行的性质定理知MN ∥PQ(∵MN ∥平面AC ,PQ=平面PMN ∩平面AC ,∴MN ∥PQ).易知DP=DQ=.故. 答案:要紧考察知识点:空间直线和平面14、假设直线a 和b 都与平面α平行,那么a 和b 的位置关系是__________.参考答案与解析:相交或平行或异面要紧考察知识点:空间直线和平面15、616、52424或 三、解答题17.答案:证明:连接AC 、BD 交点为O ,连接MO ,那么MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .18.答案:19.答案:证明:连结AF 并延长交BC 于M .连结PM ,C DAB MP OAD BC ∵//,BF MF FD FA=∴,又由已知PE BFEA FD=,PE MFEA FA=∴.由平面几何知识可得EF//PM,又EF PBC⊄,PM⊂平面PBC,∴EF//平面PBC.20.如以下图,F,H别离是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.证明:取DD1,中点E连AE、EF.∵E、F为DD1、CC1中点,∴EF∥CD.,EF=CD∴EF∥AB,EF=AB∴四边形EFBA为平行四边形.∴AE∥BF.又∵E、H别离为D1D、A1A中点,∴D1E∥HA,D1E=HA∴四边形HADD1为平行四边形.∴HD1∥AE∴HD1∥BF由正方体的性质易知B1D1∥BD,且已证BF∥D1H.∵B1D1⊄平面BDF,BD⊂平面BDF,∴B1D1∥平面BDF.连接HB,D1F,∵HD1⊄平面BDF,BF⊂平面BDF,∴HD1∥平面BDF.又∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.21,答案:[证明] 因为F为AB的中点,CD=2,AB=4,AB∥CD,因此CD∥AF,CD=AF因此四边形AFCD为平行四边形,因此AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,AD∩DD1=D,AD⊂平面ADD1A1,DD1⊂平面ADD1A1,因此平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,EE 1⊄平面FCC 1,因此EE 1∥平面FCC 1.22.答案:(1)取PD 的中点H ,连接AH ,NH ,∵N 是PC 的中点,∴NH =12DC .由M 是AB 的中点,且DC ∥AB ,∴NH ∥AM ,NH =AM 即四边形AMNH 为平行四边形.∴MN ∥AH,由MN ⊄平面PAD ,AH ⊂平面PAD ,∴MN ∥平面PAD .(2)连接AC 并取其中点O ,连接OM 、ON ,∴OM ∥12BC ,ON ∥12PA .,OM =12BC ,ON =12PA . ∴∠ONM 确实是异面直线PA 与MN 所成的角,由MN =BC =4,PA =43,得OM =2,ON =2 3.∴MO 2+ON 2=MN 2,∴∠ONM =30°,即异面直线PA 与MN 成30°的角.。

直线、平面平行的判定与性质单元测试 Word版 含答案

直线、平面平行的判定与性质单元测试 Word版 含答案

配餐作业(四十五)直线、平面平行的判定与性质(时间:40分钟)一、选择题1.已知直线a和平面α,那么a∥α的一个充分条件是() A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β解析在A,B,D中,均有可能a⊂α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确。

答案 C2.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l 的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内解析过直线外一点作该直线的平行直线有且只有一条,因为点P在平面α内,所以这条直线也应该在平面α内。

故选B。

答案 B3.(2017·福州模拟)已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点。

则其中论断正确的是()A.①④B.②③C.①②③D.②③④解析对于①,若存在平面α使得b⊥α,则有b⊥a,而直线a,b未必垂直,因此①不正确;对于②,注意到过直线a,b外一点M 分别引直线a,b的平行线a1,b1,显然由直线a1,b1可确定平面α,此时平面α与直线a,b均平行,因此②正确;对于③,注意到过直线b上的一点B作直线a2与直线a平行,显然由直线b与a2可确定平面α,此时平面α与直线a平行,且b⊂α,因此③正确;对于④,在直线b上取一定点N,过点N作直线c与直线a平行,经过直线c 的平面(除由直线a与c所确定的平面及直线c与b所确定的平面之外)均与直线a平行,且与直线b相交于一定点N,因此④正确。

综上所述,②③④正确。

故选D。

答案 D4.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m∥n,n⊂α,则m∥αC.若m∥α,m∥β,则α∥βD.若α∥β,α∥γ,则β∥γ解析借助正方体模型逐一判断。

直线、平面平行的判定及其性质_测试题(有详解)

直线、平面平行的判定及其性质_测试题(有详解)

金太阳教育网直线、平面平行的判定及其性质 测试题(有详解)A一、选择题1.下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( )A .()12MN AC BC ≥+B .()12MN AC BC ≤+ C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是 ①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .三、解答题金太阳教育网1A 10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( )A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:金太阳教育网 .⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC .C1.平面内两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;(2)若AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE ?若存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.E PD C B A金太阳教育网 参考答案A一、选择题1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条.3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ= 则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线.5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP.9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE.三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D金太阳教育网 11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确.2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α3.D【提示】根据面面平行的性质定理可推证之.4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l .5.A【提示】6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在.二、填空题7.①④⑤⑥金太阳教育网 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SC SC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368. 9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上.三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O = ,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMB DC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB平面PBC ,∴直线MN ∥平面PBC . 证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN∥平面PBC .C1.(1)证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHAN NB FN =. 又NB FN MC AM =,则NH AN =MCAM ,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.O F A B C D PE金太阳教育网 (2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE,又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE.即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC. ME ⊄α,∴ME ∥α.同理可证,NE ∥BD.又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α.又ME ∩NE=E ,∴平面MNE ∥α,而MN ⊂平面MNE ,∴MN ∥平面α.一、选择题1.下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( )A .()12MN AC BC ≥+B .()12MN AC BC ≤+金太阳教育网1A C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________. 8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( )A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂金太阳教育网 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC .E PD C BA金太阳教育网 C1.平面内两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;(2)若AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE ?若存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.金太阳教育网参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的 2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ= 则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确. 4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B 【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③ 【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D金太阳教育网11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1 (2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题 1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥金太阳教育网8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC-,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O = ,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线, ∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN∥平面PBC .C1.(1)证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHANNB FN =. 又NB FN MC AM =,则NH AN =MCAM,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.OF ABCDP E金太阳教育网(2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE, 又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE. 即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC. ME ⊄α,∴ME ∥α. 同理可证,NE ∥BD. 又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α. 又ME ∩NE=E ,∴平面MNE ∥α,而MN ⊂平面MNE ,∴MN ∥平面α.。

教师版必修2第二章22直线、平面平行的判定及性质练习.doc

教师版必修2第二章22直线、平面平行的判定及性质练习.doc

B. 0个或1个 第二章 点、直线、平面的位置关系2.2直线、平面平行的判定及性质 一、直线,平面平行的判定 (A) 1.给出下列结论:(1) 平行于同一条直线的两条直线平行;(2) 平行于同一条直线的两个平面平行;(3) 平行于同一平面的两条直线平行;(4) 平行于同一个平面的两个平面平行.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个[答案]B2. 如图,在正方体ABCDFBiCi 。

】中,E 、尸分别是棱况、的中点,则窗与平面 BBQiD 的位置关系是()A. 段〃平面BBiDQB. 与平面BBiDQ 相交C. EF 平面 BBiDQD. EF 与平面的位置关系无法判断[答案]A3. 经过平而Q 外两点,作与a 平行的平面,则这样的平面可以作()A. 1个或2个C. 1个D. 0个[答案]B4. 如下图(1),已知正方形ABCD, E, F 分别是您,CD 的中点,将回沿。

回折起, 如图(2)所示,则8尸与平面4DE 的位省关系是 [答案]平行5.如图,巳知P是平行四边形ABCD所在平而外一点,M、N分别是AB、PC的中点(1)求证:MV〃平面0D;⑵若MN=BC=4, R4=4吏,求异面直线0 与初V所成的角的大小.[解析](1)取PQ的中点连接力7, NH, •:N是PC 的中点,:.NH^DC.由〃是刀B的中点,且DC//AB,・.・NH〃AM, NH=AM即四边形AMNH为平行四边形. ・.・ MN〃AH.由必M平面PAD, AHU平面PAD, LMN 〃平面 W).⑵连接AC并取其中点0,连接OM、ON, :.OM〃*BC, ON〃*PA., OM=^BC,ON^PA. :.ZONM就是异面直线PA与枷所成的角,由MN=BC=4, R4=4*,得OM=2, ON=2$. :.MO2+ON2=MN2f;・ZONM=30。

,即异Ifli直线PA与"成30。

的角.6.如下图,F, H分别是正方体4BCD—4iB】CiDi的棱CG,如]的中点, 求证:平而8。

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。

直线、平面平行的判定与性质同步训练(有解析2015届高考数学一轮)

直线、平面平行的判定与性质同步训练(有解析2015届高考数学一轮)

直线、平面平行的判定与性质同步训练(有解析2015届高考数学一轮)直线、平面平行的判定与性质同步训练(有解析2015届高考数学一轮)A组基础演练1.(2013•广东)设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:l∥α,l∥β,则α与β可能平行,也可能相交,故A项错;由面面平行的判定可知B项正确;由l⊥α,l∥β可知α⊥β,故C项错;由α⊥β,l∥α,可知l与β可能平行,也可能相交,故D项错.故选B. 答案:B2.(2014•厦门模拟)设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A、B分别在α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A、B在两条相交直线上移动时才共面C.当且仅当A、B在两条给定的平行直线上移动时才共面D.不论A、B如何移动都共面解析:根据平行平面的性质,不论A、B如何运动,动点C均在过C且与α,β都平行的平面上.答案:D3.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则α∥β,b∥α,故排除C.答案:D4.(2014•浙江模拟)已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是()A.①或②B.②或③C.①或③D.只有②解析:由定理“一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C.答案:C5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析:过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案:66.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=________. 解析:∵平面ABCD∥平面A1B1C1D1,∴MN∥PQ.∵M、N分别是A1B1、B1C1的中点,AP=a3,∴CQ=a3,从而DP=DQ=2a3,∴PQ=223a.答案:223a7.如图所示,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH 及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.解析:由题意,得HN∥面B1BDD1,FH∥面B1BDD1.∵HN∩FH=H,∴面NHF∥面B1BDD1.∴当M在线段HF上运动时,有MN∥面B1BDD1.答案:M∈线段HF8.(2014•无锡模拟)如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:PA∥平面EFG;(2)求三棱锥P-EFG的体积.解:(1)证明:∵E,F分别为PC,PD的中点,∴EF∥CD.∵ABCD为正方形,∴CD∥AB,∴EF∥AB,∵E,G分别是PC,BC的中点,∴EG∥PB,∴平面EFG∥平面PAB.∵PA⊂平面PAB,∴PA∥平面EFG.(2)∵PD⊥平面ABCD,GC⊂平面ABCD,∴GC⊥PD.∵ABCD为正方形,∴GC⊥CD.∵PD∩CD=D,∴GC⊥平面PCD.∵PF=12PD=1,EF=12CD=1,∴S△PEF=12EF×PF=12.∵GC=12BC=1,∴VP-EFG=VG-PEF=13S△PEF•GC=13×12×1=16.9.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.解:存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1.∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1,又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.B组能力突破1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内与过B 点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:当直线a在平面β内且经过B点时,可使a∥平面α,但这时在平面β内过B点的所有直线中,不存在与a平行的直线,而在其他情况下,都可以存在与a平行的直线.答案:A2.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④解析:由线面平行的判定定理知图①②可得出AB∥平面MNP.答案:A3.已知平面α∥β,P∉α且P∉β,过点P的直线m与α,β分别交于A、C,过点P的直线n与α,β分别交于B,D,且PA=6,AC=9,PD=8则BD的长为________.解析:如图1,∵AC∩BD=P,∴经过直线AC与BD可确定平面PCD.∵α∥β,α∩平面PCD=AB,β∩平面PCD=CD,∴AB∥CD.∴PAAC=PBBD,即69=8-BDBD.∴BD=245.如图2,同理可证AB∥CD.∴PAPC=PBPD,即63=BD-88.∴BD=24.综上所述,BD=245或24.答案:245或244.(2014•北京海淀一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC 是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA =AB=4,点N在线段PB上,且PNNB=13.(1)求证:BD⊥PC;(2)求证:MN∥平面PDC;(3)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.解:(1)证明:因为△ABC是正三角形,M是AC的中点,所以BM⊥AC,即BD⊥AC.又因为PA⊥面ABCD,BD⊂面ABCD,所以PA⊥BD,又PA∩AC=A,所以BD⊥面PAC,又PC⊂面PAC,所以BD⊥PC.(2)证明:在正三角形ABC中,BM=23,在△ACD中,因为M为AC中点,DM⊥AC,所以AD=CD,因为∠CAD=30°,所以DM=233,所以BM∶MD=3∶1,所以BN∶NP=BM∶MD,所以MN∥PD,又MN⊄平面PDC,PD⊂平面PDC,所以MN∥平面PDC.(3)假设直线l∥CD,因为l⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB,又CD⊂平面ABCD,平面PAB∩平面ABCD=AB,所以CD∥AB,这与CD 与AB不平行矛盾,所以直线l与直线CD不平行.。

数学:2.2《直线、平面平行的判定及其性质》同步测试及解析(新人教A版必修2)

数学:2.2《直线、平面平行的判定及其性质》同步测试及解析(新人教A版必修2)

2. 2直线、平面平行的判定及其性质一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个B.2个C.3个D.4个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知Pβ过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.bαC.b与α相交D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b 与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有()A.1个B.2个C.3个D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面二、填空题【共4道小题】1、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面2、如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.参考答案与解析:共线或在与已知平面垂直的平面内主要考察知识点:空间直线和平面3、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面4、正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1与过点A,C,E的平面的位置关系是_________. 参考答案与解析:解析:如图所示,连结BD,设BD∩AC=O,连结BD1,在△BDD1中,E为DD1的中点,O为BD的中点,∴OE为△BDD1的中位线.∴OE∥BD1.又平面ACE,OE平面ACE,∴BD1∥平面ACE.答案:平行主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.参考答案与解析:解析:①平面α∥平面β,平面α与β没有公共点,但不一定总有AD∥BE. 同理不总有BE∥CF.②过A点作DF的平行线,交β,γ于G,H两点,AH∥DF.过两条平行线AH,DF的平面,交平面α,β,γ于AD,GE,HF.根据两平面平行的性质定理,有AD∥GE∥HF.AGED为平行四边形.∴AG=DE.同理GH=E F.又过AC,AH两相交直线之平面与平面β,γ的交线为BG,CH.根据两平面平行的性质定理,有BG∥CH.在△ACH中,.而AG=DE,GH=EF,∴.主要考察知识点:空间直线和平面2、如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.参考答案与解析:解析:要说明SA∥平面MDB,就要在平面MDB内找一条直线与SA平行,注意到M是SC的中点,于是可找AC的中点,构造与SA平行的中位线,再说明此中位线在平面MDB内,即可得证.证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.主要考察知识点:空间直线和平面3、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD 的中心,求证:MN∥平面PB1C.参考答案与解析:证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.。

(完整版)直线与平面平行的判定和性质经典练习及详细答案

(完整版)直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ 。

①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点。

2. 下列条件中,不能判断两个平面平行的是 (填序号)。

①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b 。

其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件。

A.充分而不必要 B.必要而不充分 C 。

充要 D 。

不充分也不必要6. 能保证直线a 与平面α平行的条件是 A 。

b a b a //,,αα⊂⊄ B 。

b a b //,α⊂ C.c a b a c b //////,,,αα⊂D 。

b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A 。

(2021年整理)直线与平面平行的判定和性质同步练习.doc

(2021年整理)直线与平面平行的判定和性质同步练习.doc

(完整)直线与平面平行的判定和性质同步练习.doc编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)直线与平面平行的判定和性质同步练习.doc)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)直线与平面平行的判定和性质同步练习.doc的全部内容。

高二下 9.3 直线与平面平行的判定和性质同步练习基础练习1.给出下列四个命题:①若一直线与一个平面内的一条直线平行,则这直线与这个平面平行.②若一直线与一平面内的两条直线平行,则这直线与这个平面平行.③若平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. ④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是( ).A .0B .1C .2D .32.梯形ABCD 中,AB ∥CD ,AB 平面,CD 平面,则直线CD 与平面内的直 线的位置关系只能是( ).A .平行B .平行或异面C .平行或相交D .异面或相交3.(1)若直线a 、b 均平行于平面a ,那么a 与b 的位置关系是__________;(2)若直线a ∥b ,且a ∥平面,则b 与的位置关系是__________;(3)若直线a 、b 是异面直线,且a ∥,则b 与的关系是__________. 4.如图9-空间四边形ABCD 中,E 是边AB 上的一点,求作过C 、E 的一个平面,使对角线BD 平行于这个平面,并说明理由.图9- 5.在正方体ABCD -1111D C B A 中,E 、F 分别为11C A 和1CC 的中点,求证:直线C A 1∥平.面EFB1综合练习1.直线与平面平行的充要条件是这条直线与平面内的().A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交2.给出以下命题,不正确的是().A.如果两条平行线中的一条与一个平面相交,那么另一条也和这个平面相交B.如果直线a和直线b平行,那么直线a平行于经过b的所有的平面C.如果a和b是异面直线,那么经过a有且只有一个平面与直线b平行D.空间四边形相邻两边的中点连线,平行于经过另外两条边的平面3.如图9-21,在空间四边形ABCD中,E、F分别是AB、AD上的点,且AE∶EB=AF∶FD =1∶4,又H、G分别是BC、CD的中点,则().A.BD∥平面EFGH,且EFGH是矩形B.HG∥平面ABD,且EFGH是菱形C.HE∥平面ADC,且EFGH是梯形D.EF∥平面BCD,且EFGH是梯形4.设a、b是异面直线,则().A.过不在a、b上的任一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一条直线与a、b都相交C.过不在a、b上的任一点,可作一条直线与a、b都平行D.过a有且只有一个平面与b平行图9-215.如图9-22,已知a ∥,B 、C 、D ∈a ,A 与a 在平面的异侧,直线AB 、AC 、AD 分别交于E 、F 、G 三点,若BC =5,AD =7,DG =4,则EF 的长为_________.图9-226.如图9-23,在正方体ABCD -1111D C B A 中,E 为1BB 上不同于B 、1B 的任一点,1AB F E A =1,G E C C B =11 .求证:图9-23(1)AC ∥平面11EC A ;(2)AC ∥FG .7.已知三个平面、、满足βα =,γβ =b ,αγ =c ,且a ∥ ,求证:b ∥,c ∥.8.在正方体ABCD —1111D C B A 中,E 、F 分别为BC 、11D C 的中点,求证:直线EF ∥平面D D BB 11.9.已知平面∩平面=l ,A ∈,B ∈,C ∈(如图9-24),在下列情况下求作平面ABC 与平面的交线,并说明理由.(1)AB l ;(2)AB ∥l .图9-24 10.如图9-25,在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且EH ∥FG .求证:EH ∥BD .图9-2511.如图9-26,P 为△ABC 所在平面外一点,点M 、N 分别是△PAB 和△PBC 的重心.求证:MN ∥平面ABC .(三角形的三条中线交于一点,称为重心,重心到一个顶点的距离是该点到对边中点距离的2倍)图9-26参考答案基础练习1.B .只有③是正确的.2.B .由已知CD ∥平面,内的直线与CD 平行或异面.3.(1)平行、相交或异面.(2)b ∥或b. (3)b ∥或b 或b 与相交.4.在△ABD 内过E 点作BD 的平行线,交AD 于F .连结CE 、CF ,则BD ∥平面CEF .∵BD ∥EF (作图),BD 平面CEF ,EF 平面CEF ,由直线与平面平行的判定定理可知BD ∥平面CEF .5.注意在△C A C 11中,EF 是中位线.综合练习1.C .2.B .3.D .A 选项中“BD ∥平面EFGH ”正确,但“EFGH 是矩形”错误;B 选项中“EFGH 是菱形”不正确;C 选项中“HE ∥平面ADC ”不正确.4.D .借助正方体这一模型加以排除错误选项.取AB 为a ,11C B 为b ,当任一点取1A 时,AB ∥平面111C B A ,但1A 平面111C B A .于是A 不正确.而1A 与11C B 上任一点的连线均在平面111C B A内,所以这些直线与AB 均无交点,所以B 不正确.用反证法说明C 不正确,若过任一点有直线与a 、b 都平行,则由公理4知a ∥b ,这与a 、b 异面矛盾.5.∵ E 、F 、G 是平面ABC 与平面的公共点, ∴ E 、F 、G 共线,∵ BC ∥,∴ BC ∥EF , ∴ AD AG CD FG BC EF ==,∴ 7157475=-⨯==•AD AG BC EF图答9-137.如图答9-14,同理可证c ∥.图答9-148.取BD 中点G ,连结EG ,1GD .可证G EFD 1为平行四边形(还有其他证法).9.(1)∵AB l ,AB 与l 共面于,∴ AB 与l 相交,设AB ∩l =D ,连结CD ,则CD =β ABC 平面,这是因为D ∈AB ,D ∈l ,∴ D ∈平面ABC ,D ∈,∴ D 为平面ABC 与平面的一个公共点,∴ 平面ABC 与平面的交线是过D 的一条直线,又C 是平面ABC 与平面的另一个公共点,且平面ABC 与平面的交线是过C 的一条直线,所以平面β ABC 平面=CD .图答9-15(2)在平面内过C 作CE ∥l ,则CE =β ABC 平面.∵ AB ∥l ,AB ,l ,∴ AB ∥平面.∵ 平面ABC 与平面有一个公共点C ,∵ 平面ABC 与相交于过C 的一条直线m .∵ AB 平面ABC ,βABC 平面=m ,AB ∥,∴ AB ∥m .∵ AB ∥l ,∴ l ∥m .于是在内过C 作l 的平行线即为所求的交线.11.如图答9-16,连结PM 并延长交AB 于D ,连结PN 并延长交BC 于E ,连结DE .在ΔPAB 中,∵ M 是ΔPAB 的重心,∴ 2=MD PM ,同理在△PBC 中有2=NEN P ,在△PDE 中,∵ NE PN MD PM =,∴ MN ∥DE ,∵ MN ⊄平面ABC ,DE 平面ABC ,∴ MN ∥平面ABC .图答9-16。

直线、平面平行的判定及其性质一课一练1.doc

直线、平面平行的判定及其性质一课一练1.doc

2.2 直线、平面平行的判定及其性质一、选择题1、若α//l ,α∈A ,则下列说法正确的是( )A 、过A 在平面α内可作无数条直线与l 平行B 、 过A 在平面α内仅可作一条直线与l 平行C 、 过A 在平面α内可作两条直线与l 平行D 、 与A 的位置有关2、b a //,P a =⋂α,则b 与α的关系为( )A 、 必相交B 、 必平行C 、 必在内D 、 以上均有可能3、α∉A ,过A 作与α平行的直线可作( )A 、 不存在B 、 一条C 、 四条D 、 无数条4、α//a ,b 、c α⊂,b a //,c b ⊥,则有( )A 、 c a //B 、 c a ⊥C 、 a 、c 共面D 、 a 、c 异面,所成角不确定5、下列四个命题(1)b a //,c b //c a //⇒(2)b a ⊥,c b ⊥c a //⇒(3)α//a ,α⊂b b a //⇒(4)b a //,α//b α//a ⇒正确有( )个A 、 1B 、 2C 、 3D 、 46、若直线a ∥直线b ,且a ∥平面α,则b 与a 的位置关系是( )A 、一定平行B 、不平行C 、平行或相交D 、平行或在平面内7、直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的()A 、至少有一条B 、至多有一条C 、有且只有一条D 、不可能有8、若a //b //c , 则经过a 的所有平面中( )A 、必有一个平面同时经过b 和cB 、必有一个平面经过b 且不经过cC 、必有一个平面经过b 但不一定经过cD 、不存在同时经过b 和c 的平面二、填空题9、过平面外一点,与平面平行的直线有_________条,如果直线m ∥平面,那么在平面内有_________条直线与m 平行10、n ⊂平面α,则m ∥n 是m ∥α的______条件11、若P 是直线l 外一点,则过P 与l 平行的平面有___________个。

(22)直线、平面平行的判定及其性质 Word版含答案

(22)直线、平面平行的判定及其性质 Word版含答案

寒假作业(22)直线、平面平行的判定及其性质1、已知两条相交直线,,//a b a 平面α,则 b 与α的位置关系是( )A. b ⊂平面αB. b 与平面α相交C. //b 平面αD. b 在平面α外2、若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A. α内所有的直线与a 异面.B. α内存在唯一的直线与a 平行.C. α内不存在与a 平行的直线.D. α内的直线与a 都相交.3、,?a b 是两条异面直线, A 是不在,?a b 上的点,则下列结论成立的是( )A.过A 且平行于a 和 b 的平面可能不存在B.过A 有且只有一个平面平行于a 和 bC.过A 至少有一个平面平行于a 和 bD.过A 有无数个平面平行于a 和 b4、如图,在下列四个正方体中, A ,B 为正方体的两个顶点, ,,M N Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( ) A. B. C. D.5、下列说法中正确的个数是( )① 两条平行线中的一条平行于一个平面,则另一条也平行于这个平面;② 平行于平面内一条直线的直线平行于该平面;③ 过平面外一点只有一条直线和这个平面平行;④ 某一条直线和一个平面平行,则这条直线和这个平面内所有直线都平行.A.1B.2C.2D.36、长方体ABCD A B C D '-'''中, E 、F 分别是AA '、BB '的中点,则长方体的6个面中与EF 平行的有( )A.1个B.2个C.3个D.4个7、若直线//a 直线 b ,且//a 平面α,则 b 与α的位置关系是( )A.一定平行B.不平行C.平行或相交D.平行或在平面内8、经过平面外两点与这个平面平行的直线( )A.只有一条B.至少有一条C.可能没有D.有无数条9、已知如图,平面α⋂平面, 12312,,,//l l l l l βαγβγ=⋂=⋂=,则下列说法正确的是( )A. 1l 平行3l 且2l 平行3lB. 1l 平行3l 但2l 不平行3lC. 1l 不平行3l 且2l 不平行3lD. 1l 不平行3l 但2l 平行3l10、已知甲命题是“如果直线//a b ,那么//a 平面a ,乙命题是“如果//a 平面α,那么//a b ”要使上面两个命题成立,需分别添加的条件是( )A.甲:“b α⊂”,乙:“b α⊂”B.甲:“b α⊂”,乙:“a β⊂且b αβ⋂=”C.甲:“,a b αα⊄⊂”,乙:“a β⊂且b αβ⋂=”D.甲:“,a b αα⊄⊂”,乙:“//b α”11、如图所示, 1111ABCD A B C D -是棱长为a 的正方体, M 、N 分别是下底面的棱11A B 、11B C 的中点, P 是上底面的棱AD 上的一点, 3a AP =,过点P 、M 、N 的平面交上底面于,PQ Q 在CD 上,则PQ =__________.12、如图所示, //,//,,AB CD AC BD αα分别交α于,M N 两点2AM MC=,则BN ND =__________.13、平面α过正方体1111ABCD A B C D -的三个顶点B 、D 、1A ,且α与平面1111A B C D 的交线为l ,则l 与11B D 的位置关系是__________.14、如图所示,在空间四边形ABCD 中, E 、F 、G 、H 分别是四边上的点,它们共面,并且//AC 平面EFGH ,//BD 平面EFGH ,,AC m BD n ==.当EFGH 是菱形时, :AE EB =__________.15、如图所示,平面//α平面β,△ABC ,△A B C '''分别在,αβ内,线段',','AA BB CC 共点于,O O 在平面α和平面β之间,若2AB =,2AC =,60?BAC ∠=,:3:2OA OA =',则△A B C '''的面积为__________.16、如图所示, B 为△ACD 所在平面外一点, M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心.1.求证:平面//MNG 平面ACD .2.求.17、如图,在正方体1111ABCD A B C D -中, O 为底面ABCD 的中心, P 是1DD 的中点,设 Q 是1CC 上的点,问:当点 Q 在什么位置时,平面1//D BQ 平面PAO ?答案以及解析1答案及解析:答案:D解析:因为两条相交直线,,//a b a 平面α,所以 b 与α相交或//b 平面α,因而 b 在平面α外.2答案及解析:答案:C解析:若α内存在与a 平行的直线,则//a α,与已知矛盾.3答案及解析:答案:A解析:过A 点作a 、 b 的平行线a '、'b ,则直线','a b 确定唯一的平面α,又//',//'a a b b ,当,a b αα⊄⊄时, ,?a b 都平行于平面α,当a α⊂或b α⊂时,过点A 且平行于a 和 b 的平面不存在,故选A.4答案及解析:答案:A解析:A 项,作如图①所示的辅助线,其中D 为BC 的中点,则//QD AB .∵QD ⋂平面MNQ Q =,∴QD 与平面MNQ 相交,∴直线AB 与平面MNQ 相交B 项,作如图②所示的辅助线,则//,//AB CD CD MQ ,∴//AB MQ .又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,∴//AB 平面MNQ .C 项,作如图③所示的辅助线,则//,//AB CD CD MQ ,∴//AB MQ ,又AB ⊄平面MNQ ,∴//AB 平面MNQ ..D 项,作如图④所示的辅助线,则//,//AB CD CD MQ∴//AB NQ M又AB ⊄平面MNQ ,NQ ⊂平面MNQ ,∴//AB 平面MNQ .故选A5答案及解析:答案:A解析:6答案及解析:答案:C解析:在长方形ABCD A B C D '-'''中//,EF AB EF ⊄平面ABCD ,AB ⊂平面ABCD ,所以//EF 平面ABCD ,同理//EF 平面A B C D '''',//EF 平面''DCC D .故选C.7答案及解析:答案:D解析:直线在平面内的情况不能遗漏,正确选项为D.8答案及解析:答案:C解析:当这两点的连线与平面相交时,没有直线与这个平面平行;当这两点的连线与平面平行时,有一条直线与这个平面平行.故选C9答案及解析:答案:A解析:∵1212//,,l l l l γγ⊄⊂,∴1//l γ.∵113,,l l l βγβγ⊂⊄⋂=,∴13//l l∴23//l l∴1l 平行3l 且2l 平行3l .故选A.10答案及解析:答案:C解析:11答案及解析:答案:3a解析:12答案及解析:答案:如图所示,连接AD 交平面α于E 点,连接ME 和NE .∵平面,ACD ME CD α⋂=⊂平面ACD ,//CD α,∴//CD ME ∴AM AEMC ED =同理, //EN AB ,∴AE BNED ND = ∴AM BNMC ND = ∴2BNND =.解析:13答案及解析:答案:平行解析:∵//BD 平面1111A B C D ,BD ⊂平面α,平面α⋂平面1111A B C D l =,∴//BD l ,又∵11//BD B D∴11//l B D .14答案及解析: 答案:mn解析:15答案及解析:答案:9解析:因为平面//α平面β,','AA BB 相交于 O ,所以//''AB A B , 且3'''2OA AB OA A B == 同理可得3'''''2OAACBC OA A C B C ===,所以△ABC △A B C ''',且相似比为3?:?2所以△ABC 与△A B C '''的面积比为9?:?4,又由已知可求得△ABC 的面积为,所以△A B C '''.16答案及解析:答案:1.证明:如图所示,连接BM 、BN 、BG 并延长,分别交AC 、AD 、CD 于点P 、F 、H ,连接P F 、F H 、P H . ∵M 、N 分别为△ABC 、△ABD 的重心, ∴2BM BN MP NF== ∴//MN PF .又PF ⊂平面ACD ,MN ⊄平面ACD ,∴//MN 平面ACD ,同理可证//MG 平面ACD .又MG ⊂平面MNG ,MN ⊂平面MNG ,MG MN M ⋂=, ∴平面MNG //平面ACD .2.由1可知23MGBGPH BH ==, ∴23MG PH =. 又12PH AD = ∴13MG AD =. 同理可得11,33MN CD NG AC ==,∴△MNG △DCA ,且相似比为1:3,∴解析:17答案及解析:答案:当 Q 为1CC 的中点时,平面1//D BQ 平面PAO .理由:连接P Q 、.∵ Q 1CC 的中点时, P 为1DD 的中点,∴P Q 、CD .又CD AB ,∴P Q 、AB ,∴四边形PABQ 为平行四边形, ∴//QB PA ,∴//QB 平面PAO ∵,?P Q 分别是1,DD DB 的中点, ∴1//D B PO∴1//D B 平面PAO . 又1D B QB B ⋂=∴平面1//D BQ 平面PAO . 解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下9.3 直线与平面平行的判定和性质同步练习
基础练习
1.给出下列四个命题:
①若一直线与一个平面内的一条直线平行,则这直线与这个平面平行.
②若一直线与一平面内的两条直线平行,则这直线与这个平面平行.
③若平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.
其中正确命题的个数是().
A . 0B. 1C. 2D. 3
2.梯形 ABCD 中, AB∥ CD ,AB平面,CD平面,则直线 CD 与平面内的直
线的位置关系只能是().
A .平行B.平行或异面
C.平行或相交D.异面或相交
3.( 1)若直线 a、 b 均平行于平面a,那么 a 与 b 的位置关系是 __________;
(2)若直线 a∥ b,且 a∥平面,则 b 与的位置关系是 __________;
(3)若直线 a、 b 是异面直线,且 a∥,则 b 与的关系是 __________ .
4.如图 9-空间四边形ABCD 中, E 是边 AB 上的一点,求作过C、E 的一个平面,使对角线 BD 平行于这个平面,并说明理由.
图 9-5.在正方体ABCD -A1B1C1D1中,E、F 分别为A1C1和CC1的中点,求证:直线A1C ∥平面 B1EF .
综合练习
1.直线与平面平行的充要条件是这条直线与平面内的().
A.一条直线不相交
2.给出以下命题,不正确的是().
A.如果两条平行线中的一条与一个平面相交,那么另一条也和这个平面相交
B.如果直线 a 和直线 b 平行,那么直线 a 平行于经过 b 的所有的平面
C.如果 a 和 b 是异面直线,那么经过 a 有且只有一个平面与直线 b 平行
D.空间四边形相邻两边的中点连线,平行于经过另外两条边的平面
3.如图 9- 21,在空间四边形ABCD 中, E、 F 分别是 AB、 AD上的点,且AE∶ EB=AF∶ FD =1∶ 4,又 H 、G 分别是 BC、 CD 的中点,则().
A . BD∥平面 EFGH ,且 EFGH 是矩形
B.HG ∥平面 ABD ,且 EFGH 是菱形
C.HE ∥平面 ADC ,且 EFGH 是梯形
D. EF∥平面 BCD,且 EFGH 是梯形
4.设 a、 b 是异面直线,则().
A .过不在a、 b 上的任一点,可作一个平面与a、 b 都平行
B.过不在a、b 上的任一点,可作一条直线与a、b 都相交
C.过不在a、b 上的任一点,可作一条直线与a、b 都平行
D.过 a 有且只有一个平面与 b 平行
5.如图 9- 22,已知 a∥分别交于 E、 F、 G 三点,若
图 9-21
,B、C、D ∈ a, A 与 a 在平面
BC=5, AD= 7,DG = 4,则 EF
的异侧,直线AB、 AC、 AD
的长为 _________ .
图 9-22
6.如图 9- 23,在正方体ABCD —A1B1C1D1中, E 为BB1上不同于 B、B1的任一点,AB1 A1E F , B1C C1 E G .求证:
图 9-23
(1)AC ∥平面A1EC1;
(2)AC ∥FG .
7.已知三个平面、、满足=,=b,=c,且a∥,求证:b∥,c∥ .
8.在正方体ABCD —A1B1C1D1中, E、F 分别为 BC、C1D1的中点,求证:直线EF ∥平面 BB1 D1D .
9.已知平面∩平面= l ,A∈,B∈,C∈
(如图
9- 24),在下列情况下求作平
面 ABC 与平面
( 1)AB 的交线,并说明理由.
l ;( 2) AB∥ l.
图 9-24
10.如图 9- 25,在空间四边形 ABCD 中, E、 F、G、H 分别是 AB、BC、 CD 、 DA 上的点,且 EH ∥FG.求证: EH∥ BD.
图 9-25
11.如图 9- 26,P 为△ ABC 所在平面外一点,点 M、N 分别是△ PAB 和△ PBC 的重心.求证: MN ∥平面 ABC.
(三角形的三条中线交于一点,称为重心,重心到一个顶点的距离是该点到对边中点距离
的 2倍)
图 9-26
参考答案
基础练习
1. B.只有③是正确的.
2. B.由已知CD ∥平面,内的直线与CD 平行或异面.
3.( 1)平行、相交或异面.
( 2) b∥或b.
( 3) b∥或b或 b 与相交.
4.在△ ABD内过E 点作BD的平行线,交AD于F.连结CE、CF,则 BD ∥平面CEF .∵BD ∥EF (作图), BD平面CEF , EF平面CEF ,由直线与平面平行的判定定理可知BD ∥平面CEF .
5.注意在△C1 A1C 中,EF是中位线.
综合练习
1. C.
2. B.
3.D .A 选项中“ BD ∥平面 EFGH ”正确,但“EFGH 是矩形” 错误; B 选项中
“ EFGH 是菱形”不正确; C 选项中“ HE ∥平面 ADC ”不正确.
4.D .借助正方体这一模型加以排除错误选项.取AB 为 a,B1C1为 b,当任一点取A1时,AB ∥平面A1B1C1,但A1平面A1B1C1.于是A不正确.而A1与 B1C1上任一点的连线均在平面 A1B1C1内,所以这些直线与AB 均无交点,所以 B 不正确.用反证法说明 C 不正
确,若过任一点有直线与a、b 都平行,则由公理 4 知 a∥b,这与 a、 b 异面矛盾.5.∵E、 F、 G 是平面 ABC 与平面的公共点,
∴E、 F、 G 共线,
∵BC∥,∴ BC∥ EF,
∴EF FG AG ,∴EF BC AG
5 7 415
BC CD AD AD77
图答 9- 13
7.如图答9- 14,
同理可证 c∥ .
图答 9- 14
8.取 BD 中点 G,连结 EG,GD1.可证EFD1G为平行四边形(还有其他证法).9.( 1)∵ AB l ,AB 与l 共面于,∴AB 与l 相交,设AB∩ l= D,连结CD,则CD =平面 ABC,这是因为 D ∈AB,D∈ l ,∴ D ∈平面ABC,D∈,∴ D 为平面ABC
与平面与平面的一个公共点,∴平面的
另一个公共点,且平面
ABC 与平面的交线是过D
ABC 与平面的交线是过
的一条直线,又 C 是平面 ABC
C 的一条直线,所以平面
平面 ABC=CD.
图答9- 15
( 2)在平面内过 C 作CE∥ l,则CE=平面ABC.∵AB∥ l, AB,l,∴AB∥平面.∵平面ABC 与平面有一个公共点C,∵平面ABC与相交于过 C 的一条直线m.∵AB平面ABC ,平面ABC= m,AB∥,∴AB∥ m.∵AB∥ l,
∴l ∥m.于是在内过C作l的平行线即为所求的交线.
11.如图答 9- 16,连结 PM 并延长交AB 于 D,连结 PN 并延长交BC 于 E,连结 DE .在
2,同理在△ PBC 中有P N 2 ,在△PDE PAB 中,∵M 是PAB 的重心,∴PM
MD NE
PM PN
中,∵
MD NE,∴ MN∥DE,∵MN平面 ABC, DE平面 ABC,∴ MN∥平面 ABC.
图答 9- 16。

相关文档
最新文档