初中数学专题-四边形练习(一)
(易错题精选)初中数学四边形专项训练解析含答案(1)
(易错题精选)初中数学四边形专项训练解析含答案(1)一、选择题1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.2.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.3.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD1③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为1故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.6.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=43,⑤S△DOC=S四边形EOFB中,正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.9.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】 【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,可添加的条件不正确的是( )A .AB ∥CDB .∠B =∠DC .AD =BC D .AB =CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.15.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个 【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。
中考数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若一个多边形的内角和是720︒,则该多边形是()A.四边形B.五边形C.六边形D.八边形2.下列哪个度数可能成为某个多边形的内角和()A.240°B.600°C.1980°D.21800°3.下列说法中错误..的是()A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等C.菱形的对角线互相垂直平分D.矩形的对角线互相垂直且相等4.有两张宽为3,长为9的矩形纸片如图所示叠放在一起,使重叠的部分构成一个四边形,则四边形的最大面积是A.27B.12C.15D.185.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∥DAC=∥ACD6.每一个外角都等于36︒,这样的正多边形边数是()A.9B.10C.11D.127.如图,点O是ABCD对角线的交点,EF过点O分别交AD,BC于点E,F.下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠8.对角线互相平分且相等的四边形一定是( )A .等腰梯形B .矩形C .菱形D .正方形 9.如图,在平行四边形ABCD 中,∥B =70°,AE 平分∥BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∥1=( )A .45°B .55°C .50°D .60° 10.下列说法正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是正方形D .对角线相等的菱形是正方形 11.如图,ABC 的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为Q ,ACB ∠的平分线垂直于AD ,垂足为P ,若10BC =,则PQ 的长为( )A .32B .52C .3D .412.有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF (如图∥);再沿过点D 的折痕将角A 翻折,使得点A 落在EF 的H 上(如图∥),折痕交AE 于点G ,则EG 的长度为( )A .6 B .3 C .8﹣D .4﹣13.下列说法错误的是( )A .对角线互相垂直的平行四边形是正方形B .四条边都相等的四边形是菱形C .四个角都相等的四边形是矩形D .一组对边平行一组对角相等的四边形是平行四边形14.已知:如图,四边形ABCD 中,90,60A B C ∠=∠=︒∠=︒,2,3CD AD AB ==.在AB 边上求作点P ,则PC PD +的最小值为( )A .4B .6C .8D .10 15.如图,矩形ABCD 的两条对角线相交于点O ,602AOD AD ∠==°,,则AB 的长是( )A .2B .4C .D .16.如图,菱形ABCD 的对角线12AC =,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD PE +的最小值为( )A.4 B .C . D .617.如图,ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且8AB =,17BC =,15CA =,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9 18.如图,点E 在边长为5的正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作FE 的垂线,垂足为点H ,与BC 交于点.G 若2CG =,则CE 的长为( )A .54B .154C .4D .9219.如图,菱形ABCD 的对角线AC =12,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD +PE 的最小值为( )A .4B .C .D .6 20.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A.2B.53C.54D二、填空题21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB的中点M,N,量得50mMN=,则池塘的宽度AB为______m.22.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR 的中点.如果DR=5,AD=12,则EF的长为_____.23.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点则四边形EFGH的周长等于___cm.24.如图,已知矩形ABCD中,8AB=,5πBC=.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为________(用含π的式子表示)25.如图,四边形ABCD的对角线AC BD=,E,F,G,H分别是各边的中点,则四边形是___________(平行四边形,矩形,菱形,正方形中选择一个)26.如图,在△ABC 中,4BC =,D ,E 分别是AB ,AC 的中点,G ,H 分别是AD ,AE 的中点,则GH =______.27.已知O 是平行四边形ABCD 两条对角线的交点,24AB =,36AD =,则OBC △的周长比AOB 的周长大___________.28.平行四边形ABCD 中,∥A 比∥B 小20°,那么∥C =_____.29.如图,在ABCD 中,对角线AC 、BD 相交于点O ,BC =6,AC +BD =14,那么∥BOC 的周长是_____.30.如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =6,∥CAB =30°,则图中阴影部分的面积为 _____.(结果保留π)31.如图,ABCD 的顶点A ,B ,C 的坐标分别是(0,1),(2,2)--,(2,2)-,则顶点D 的坐标是_________.32.判断题,对的画“√”错的画“×”(1)对角线互相垂直的四边形是菱形( )(2)一条对角线垂直另一条对角线的四边形是菱形( )(3)对角线互相垂直且平分的四边形是菱形( )(4)对角线相等的四边形是菱形( )33.如图,在菱形ABCD 中,2A B ∠=∠,2AB =,点E 和点F 分别在边AB 和边BC 上运动,且满足AE CF =,则DF CE +的最小值为_______.34.如果一个梯形的上底长为2cm ,中位线长是5cm ,那么这个梯形下底长为__________cm .35.如图,正方形ABCD 的边长是3cm ,在AD 的延长线上有一点E ,当BE 时,DE 的长是_____cm .36.如图,在菱形ABCD 中,∥BAD =110°,AB 的垂直平分线交AC 于点N ,点M 为垂足,连接DN ,则∥CDN 的大小是______.37.如图,在▱ABCD 中,BM 是∥ABC 的平分线,交CD 于点M ,且DM =2,平行四边形ABCD 的周长是16,则AB 的长等于______.38.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN ,∥MCE =35°,∥ANM 的度数______.39.如图,在边长为8的正方形ABCD 中,E 、F 分别是边AB 、BC 上的动点,且EF =6,M 为EF 中点,P 是边AD 上的一个动点,则CP +PM 的最小值是_____.40.如图,在ABC 中,M 是BC 边上的中点,AP 是BAC ∠的平分线,BP AP ⊥于点P ,已知16AB =,24AC =,那么PM 的长为________.三、解答题41.如图,在ABCD 中,AE CF =.求证:ABE CDF ∠=∠.42.已知,如图长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求EF 的长.43.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.44.如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为()6,4,E 为AB 的中点,过点()8,0D 和点E 的直线分别与BC 、y 轴交于点F ,G .(1)求直线DE 的函数关系式;(2)函数2y mx =-的图象经过点F 且与x 轴交于点H ,求出点F 的坐标和m 值; (3)在(2)的条件下,求出四边形OHFG 的面积.45.如图,AMN 是边长为2的等边三角形,以AN ,AM 所在直线为边的平行四边形ABCD 交MN 于点E 、F ,且30EAF ∠=︒.(1)当F 、M 重合时,求AD 的长;(2)当NE 、FM )NE FM EF +=; (3)在(2)的条件下,求证:四边形ABCD 是菱形. 46.如图,在ABC 中,90ACB ∠=︒,30CAB ∠=︒,线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形;(2)若4AB =,求平行四边形BCFD 的面积.47.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点D ,交AC 于点E .已知,3,5CD BE CD BE ⊥==,求BC DE +的值. 小明发现,过点E 作//EF DC ,交BC 的延长线于点F ,构造∆BEF ,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.48.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将A ,B 两点向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标;(2)若点P 在直线BD 上运动,连接PC ,PO .∥若点P 在线段BD 上(不与B ,D 重合)时,求S △CDP +S △BOP 的取值范围;∥若点P 在直线BD 上运动,试探索∥CPO ,∥DCP ,∥BOP 的关系,并证明你的结论.49.Rt∥ABC 中,∥BAC =90°,(1)如图1,分别以AB 、AC 、BC 为边向外作正方形ABFG 、ACPE 、BCDE ,其面积分别记为S 1,S 2,S 3,∥若AB =5,AC =12,则S 3= ;∥如图2,将正方形BCDE 沿C 折,点D 、E 的对应点分别记为M 、M ,若点从M 、N 分别在直线FG 和PH 上,且点M 是GO 中点时,求S 1∥S 2∥S 3;∥如图3,无论Rt∥ABC 三边长度如何变化,点M 必定落在直线FG 上吗? 请说明理由;(2)如图4,分别以AB ,AC ,BC 为边向外作正三角形ABD ,ACF ,BCE ,再将三角形BCE沿BC翻折,点E的对应点记为P,若AB=保持不变,随着AC的长度变化,点P也随之运动,试探究AP的值是否变化,若不变,直接写出AP的值;若改变,直接写出AP的最小值.50.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)∥请直接写出图1中线段BG、线段DE的数量关系及所在直线的位置关系;∥将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断∥中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4~6),且,试判断(1)∥中得到的结论哪个成立,哪个不成立?(写出你的判断,不必证明.)(3)在图5中,连结DG、BE,且,则.参考答案:1.C【分析】根据多边形内角和定理进行求解即可.【详解】解;设这个多边形的边数为n ,由题意得;()1802720n ︒⋅-=︒,解得6n =,∥这个多边形是六边形,故选C .【点睛】本题主要考查了多边形内角和定理,熟知对于n 边形其内角和为()1802n ︒⋅-是解题的关键.2.C【分析】本题可根据多边形的内角和为(n ﹣2)×180°来确定解决本题的方法,即判断哪个度数可能是多边形的内角和,就看它是否能被180°整除,从而根据这一方法解决问题.【详解】判断哪个度数可能是多边形的内角和,我们主要看它是否能被180°整除. ∥只有1980°能被180°整除.故选C .【点睛】本题考查了多边形的内角和的计算公式.熟练掌握多边形内角和公式是解答本题的关键.3.D【分析】根据平行四边形的性质,正方形的性质,菱形的性质,矩形的性质对每个选项进行分析,即可得出答案.【详解】解:∥平行四边形的对边相等,∥选项A 不符合题意;∥正方形的对角线互相垂直平分且相等,∥选项B 不符合题意;∥菱形的对角线互相垂直平分,∥选项C 不符合题意;∥矩形的对角线相等但不一定互相垂直,∥选项D 符合题意;故选:D.【点睛】本题考查了平行四边形的性质,正方形的性质,菱形的性质,矩形的性质,熟练掌握平行四边形的性质,正方形的性质,菱形的性质,矩形的性质是解决问题的关键.4.C【分析】根据一组邻边相等的平行四边形是菱形判断出四边形的形状;当两张纸条如图所示放置时,菱形面积最大,然后根据勾股定理求出菱形的边长,然后根据菱形的面积公式计算即可.【详解】解:重叠的四边形的两组对边分别平行,那么可得是平行四边形,再根据宽度相等,利用面积的不同求法可得一组邻边相等,那么重叠的四边形应为菱形;如图,此时菱形ABCD的面积最大.设AB=x,EB=9-x,AE=3,则由勾股定理得到:32+(9-x)2=x2,解得x=5,S最大=5×3=15.故选C.【点睛】本题考查菱形的判定和性质,解题的关键是怎样放置纸条使得到的菱形的面积最大和最小,然后根据图形列方程.5.D【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∥,故B正确;∴AD BC∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6.B【分析】根据多边形外角和为360°,然后除以36°即可得到正多边形的边数.【详解】每一个外角都等于36︒,这样的正多边形边数为360°÷36°=10,故选B【点睛】本题考查有关于多边形外角和的计算,记住多边形的外角和是360°是解题关键. 7.A【分析】首先可根据平行四边形的性质推出△AEO∥∥CFO,从而进行分析即可.【详解】∥点O是ABCD对角线的交点,∥OA=OC,∥EAO=∥CFO,∥∥AOE=∥COF,∥△AEO∥∥CFO(ASA),∥OE=OF,A选项成立;∥AE=CF,但不一定得出BF=CF,则AE不一定等于BF,B选项不一定成立;∠=∠,则DO=DC,若DOC OCD由题意无法明确推出此结论,C选项不一定成立;由△AEO∥∥CFO得∥CFE=∥AEF,但不一定得出∥AEF=∥DEF,则∥CFE不一定等于∥DEF,D选项不一定成立;故选:A.【点睛】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.8.B【详解】分析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,判断即可.详解:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故选B.点睛:考查矩形的判定:对角线相等的平行四边形是矩形.9.B【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∥1的度数即可.【详解】:解:∥AD∥BC,∥B=70°,∥∥BAD=180°-∥B=110°.∥AE平分∥BAD∥∥DAE=12∥BAD=55°. ∥∥AEB=∥DAE=55°∥CF∥AE∥∥1=∥AEB=55°.故选B .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键. 10.D【分析】根据矩形、正方形、菱形的判定即可判断出正确答案.【详解】A 、对角线相等的四边形有可能是等腰梯形,故本选项错误;B 、对角线相互垂直的四边形有可能是等腰梯形或者是针形;故本选项错误;C 、对角线相等且垂直且相互平分的四边形是正方形,故本选项错误;D 、对角线相等的菱形是正方形,故本选项正确.故选D【点睛】本题考查了矩形、正方形、菱形的判定,熟记和掌握矩形、正方形、菱形的判定是解题关键.11.C【分析】首先判断BAE 、CAD 是等腰三角形,从而得出BA BE =,CA CD =,由ABC 的周长为26,及10BC =,可得6DE =,利用中位线定理可求出PQ .【详解】解:由题意得:BQ AE ⊥,BQ 平分ABE ∠,∥ABQ EBQ ∠=∠,90AQB BQE ∠=∠=︒,又∥BQ BQ =,∥()ASA ABQ EBQ ≌,∥,AB BE AQ QE ==,∥BAE 是等腰三角形,Q 为AE 的中点,同法可得:CA CD =,CAD 是等腰三角形,P 为AD 的中点,∥ABC 的周长2026AB BC AC BE BC CD BC BC DE DE =++=++=++=+=, ∥6DE =, ∥132PQ DE ==; 故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,以及三角形的中位线定理.根据已知条件,证明三角形全等,是解题的关键.12.B【分析】由于正方形纸片ABCD的边长为2,所以将正方形ABCD对折后AE=DF=1,由翻折不变性的原则可知AD=DH=2,AG=GH,在Rt△DFH中利用勾股定理可求出HF的长,进而求出EH的长,再设EG=x,在Rt△EGH中,利用勾股定理即可求解.【详解】∥正方形纸片ABCD的边长为2,∥将正方形ABCD对折后AE=DF=1,∥∥GDH是△GDA沿直线DG翻折而成,∥AD=DH=2,AG=GH,在Rt△DFH中,HF==在Rt△EGH中,设EG=x,则GH=AG=1-x,∥GH2=EH2+EG2,即(1-x)2=(2+x2,解得.故选B.【点睛】考查的是图形翻折变换的性质,解答此类题目最常用的方法是设所求线段的长为x,再根据勾股定理列方程求解.13.A【分析】根据正方形、菱形、矩形及平行四边形的判定定理对各选项逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项说法错误,符合题意,B.四条边都相等的四边形是菱形,故该选项说法正确,不符合题意,C.四个角都相等的四边形是矩形,故该选项说法正确,不符合题意,D.一组对边平行一组对角相等的四边形是平行四边形,故该选项说法正确,不符合题意,故选A.【点睛】本题考查了正方形、菱形、矩形及平行四边形的判定,注意正方形是特殊的菱形或者矩形.熟练掌握各特殊四边形的判定定理是解题关键.14.B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E∥BC于E,则EB=D'A=AD,先根据等边对等角得出∥DCD'=∥DD'C,然后根据平行线的性质得出∥D'CE=∥DD'C,从而求得∥D'CE=∥DCD',得出∥D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD 的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E∥BC于E,则EB=D'A=AD.∥CD=2AD,∥DD'=CD,∥∥DCD'=∥DD'C.∥∥DAB=∥ABC=90°,∥四边形ABED'是矩形,∥DD'∥EC,D'E=AB=3,∥∥D'CE=∥DD'C,∥∥D'CE=∥DCD'.∥∥DCB=60°,∥∥D'CE=30°,∥D'C=2D'E=2AB=2×3=6,∥PC+PD的最小值为6.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.15.C【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD,然后判断出△AOD是等边三角形,再根据等边三角形的性质求出OD=AD,然后求出BD,再利用勾股定理列式计算即可得解.【详解】在矩形ABCD中,OA=OC,OB=OD,AC=BD,∥OA=OB=OD,∥∥AOD=60°,∥∥AOD是等边三角形,∥OD=AD=2,∥BD=2OD=4,由勾股定理得,AB=.故选:C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理的应用,熟记性质并判断出△AOD是等边三角形是解题的关键.16.C【分析】如图,连接BD交AC于O,连接PB.因为AC与BD互相垂直平分,推出PD=PB,推出PE+PD=PE+PB,因为PE+PB≥BE,推出当E、P、B共线时,PE+PD的值最小,最小值为BE的长,求出BE即可解决问题;【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC 与BD 互相垂直平分,∥PD =PB ,∥PE +PD =PE +PB ,∥PE +PB ≥BE ,∥当E 、P 、B 共线时,PE +PD 的值最小,最小值为BE 的长,∥∥ABE 是等边三角形,∥BE =AB∥PD +PE 的最小值为故选:C .【点睛】本题考查轴对称-最短问题,等边三角形的判定和性质、菱形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.17.D【分析】先根据勾股定理的逆定理判定ABC 是直角三角形,再利用正方形的判定确定四边形OFAE 是正方形,进而利用圆的切线性质可知线段的关系,进而求出阴影部分的面积.【详解】解:∥8AB =,17BC =,15CA =,∥222AB CA BC +=,∥ABC 为直角三角形,90A ∠=︒,∥O 与AB AC ,分别相切于点F 、E ,∥OF AB ⊥ ,OE AC ⊥,OF OE =,∥四边形OFAE 是正方形,设OE r =,则AE AF r ==,∥ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,∥8BD BF r ==-,15CD CE r ==-,∥81517r r -+-=, ∥8151732r +-==, ∥阴影部分的面积是:239=,故选:D .【点睛】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等,三角形的内心到顶点的连线平分这个内角;勾股定理的逆定理和切线性质等相关知识点.熟练运用知识点是解决问题的关键.18.B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ∥ABF △,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154, 故选:B . 【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.C【分析】如图,连接BD交AC于O,连接PB,由菱形的性质可得AC与BD互相垂直平分,可得PD=PB,于是PE+PD=PE+PB,因为PE+PB≥BE,故当E、P、B共线时,PE+PD的值最小,最小值为BE的长,所以求出BE即可解决问题,而根据菱形的面积、菱形的性质和勾股定理即可求出AB的长,再根据等边三角形的性质即得答案.【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥四边形ABCD是菱形,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC与BD互相垂直平分,∥PD=PB,∥PE+PD=PE+PB,∥PE+PB≥BE,∥当E、P、B共线时,PE+PD的值最小,最小值为BE的长,∥∥ABE是等边三角形,∥BE=AB=∥PD+PE的最小值为故选:C.【点睛】本题考查了菱形的性质、菱形的面积公式、等边三角形的性质、勾股定理以及轴对称﹣最短问题,正确添加辅助线、熟练掌握上述知识是解题的关键.20.B【分析】由折叠的性质可得∥DCA=∥ACF,由平行线的性质可得∥DCA=∥CAB=∥ACF,可得FA=FC,设BF=x,在Rt∥BCF中,根据CF2=BC2+BF2,可得方程(8﹣x)2=x2+42,可求BF=3,AF=5,即可求解.【详解】解:设BF=x,∥将矩形沿AC折叠,∥∥DCA=∥ACF,∥四边形ABCD是矩形,∥CD∥AB,∥∥DCA=∥CAB=∥ACF,∥FA=FC=8﹣x,在Rt∥BCF中,∥CF2=BC2+BF2,∥(8﹣x)2=x2+42,∥x=3,∥BF=3,∥AF=5,∥AF:BF的值为53,故选:B.【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.100【分析】根据三角形中位线的性质定理解答即可.【详解】解:∥点M、N是OA、OB的中点,∥MN是∥ABO的中位线,∥AB=2MN.又∥MN=50m,∥AB=100m.故答案是:100.【点睛】此题考查了三角形中位线的性质定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.22.6.5【分析】根据题意,连接AR,在直角∥ADR中,DR=5,AD=12,根据勾股定理可得AR.AR=13,又因为E、F分别是PA、PR的中点,即为∥PAR的中位线,故EF=12【详解】∥∥D=90°,DR=5,AD=12,∥AR,∥E、F分别是PA、PR的中点,AR=6.5,∥EF=12故答案为6.5.【点睛】本题考查了三角形中位线长度的求取,本题的解题关键是不要因为动点问题的包装而把题目想的复杂,根据中位线的性质解题即可.23.16.【分析】连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,∥四边形ABCD是矩形,∥AC=BD=8cm,∥E、F、G、H分别是AB、BC、CD、DA的中点,AC=4cm,∥HG=EF=12BD=4cm,EH=FG=12∥四边形EFGH的周长=HG+EF+EH+FG=4cm+4cm+4cm+4cm=16cm,故答案为:16.【点睛】本题考查了矩形的性质,三角形的中位线的应用,解题的关键是能求出四边形的各个边的长.矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.24.4π【分析】根据阴影面积=三角形面积-2个扇形的面积即可求解.【详解】∥S △ABD =5π×8÷2=20π;设ABD n ∠=︒,S 扇形BAE =64360n π⨯;S 扇形DFM =()9064360n π-⨯; ∥阴影面积=20π-()649064360n n ππ⨯+-⨯=20π-16π=4π.故答案为:4π▱ 【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积解题关键是找到所求的量的等量关系.25.菱形 【分析】根据三角形中位线定理可得1122EH BD EH BD FG BD FG BD ==∥∥,,,,进一步可得EH FG EH FG =∥,,同理可得EF HG EF HG =∥,,又根据AC BD =即可得EF HG ==EH FG =,进一步即可得证.【详解】解:∥E ,F ,G ,H 分别是各边的中点, ∥1122EH BD EH BD FG BD FG BD ==∥∥,,,, ∥EH FG EH FG =∥,,同理可证EF HG EF HG =∥,,又∥AC BD =,∥EF HG ==EH FG =,∥四边形EFGH 是菱形.故答案为:菱形.【点睛】本题考查了菱形的判定和三角形中位线定理,解决本题的关键是掌握三角形中位线定理.26.1【分析】利用三角形中位线定理求得GH =12DE ,DE =12BC .【详解】解:∥D ,E 分别是AB ,AC 的中点,∥DE 是△ABC 的中位线,∥DE= 12BC=12×4=2,∥G,H分别是AD,AE的中点,∥GH是△ADE的中位线,∥GH=12DE=12×2=1,故答案为:1.【点睛】本题考查了三角形的中位线,熟记三角形的中位线等于第三边的一半是解题的关键.27.12【分析】根据平行四边形的性质可以得到OA=OC,BC=AD,然后根据AB=24,AD=36,即可计算出∥OBC的周长与∥AOB的周长之差.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD=BC,∵AB=24,AD=36,∴BC=36,∴C△OBC﹣C△AOB=(OB+OC+BC)﹣(OB+OA+AB)=OB+OC+BC﹣OB﹣OA﹣AB=BC﹣AB=36﹣24=12,故答案为:12.【点睛】本题考查平行四边形的性质,解答本题的关键是明确△OBC的周长与△AOB的差就是BC与AB的差.28.80°【分析】根据平行四边形的性质分别求出∥A和∥B的度数,然后根据平行四边形对角相等的性质可得∥C=∥A,即可求解.【详解】∥四边形ABCD为平行四边形,∥18020A BB A∠∠∠∠+=︒⎧⎨-=︒⎩,解得:80100AB∠∠=︒⎧⎨=︒⎩,∥∥C=∥A=80°.故答案为80°.【点睛】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.29.13 【分析】先根据平行四边形的性质可得11,22OC AC OB BD ==,从而可得7OB OC +=,再根据三角形的周长公式即可得. 【详解】解:四边形ABCD 是平行四边形,11,22OC AC OB BD ∴==, 14AC BD +=,()172OB OC BD AC ∴+=+=, 又6BC =, BOC ∴的周长为7613OB OC BC ++=+=,故答案为:13.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.30.32π 【分析】利用矩形的性质求得OA =OC =OB =OD =3,再利用扇形的面积公式求解即可.【详解】解:∥矩形ABCD 的对角线AC ,BD 交于点O ,且BD =6,∥AC=BD =6,∥OA =OC =OB =OD =3, ∥22303236032AOE S S ππ⨯⨯===阴影扇形, 故答案为:32π. 【点睛】本题考查了矩形的性质,扇形的面积等知识,解答本题的关键是明确题意,利用数形结合的思想解答.31.()41,【分析】首先根据B 、C 两点的坐标确定线段BC 的长,然后根据A 点向右平移线段BC 的长度得到D 点,即可由A 点坐标求得点D 的坐标.【详解】解:∥B ,C 的坐标分别是(−2,−2),(2,−2),∥BC=2−(−2)=2+2=4,∥四边形ABCD是平行四边形,∥AD=BC=4,∥点A的坐标为(0,1),∥点D的坐标为(4,1).故答案为:(4,1).【点睛】本题主要考查了平行四边形的性质及坐标与图形性质的知识,解题的关键是求得线段BC的长,难度不大.32.××√×【分析】根据菱形的判定定理即可解答.【详解】(1)错误,对角线相互垂直且平分的四边形是菱形.(2)错误,对角线相互垂直且平分的四边形是菱形.(3)正确,对角线相互垂直且平分的四边形是菱形.(4)错误,对角线相互垂直且平分的四边形是菱形.【点睛】本题考查菱形的判定定理,熟悉掌握是解题关键.33.4【分析】由“SAS”可证∥ABF∥∥CBE,可得AF=CE,则DF+CE=DF+AF=DF+FH,即当点F,点D,点H三点共线时,DF+CE的最小值为DH的长,由勾股定理可求解.【详解】解:连接AC,作点A关于BC的对称点H,连接AH,交BC于N,连接FH,如图所示:∥四边形ABCD为菱形,∥,∥AB=BC=CD=AD=2,AD BC∥180BAD ABC ∠+∠=︒,∥∥BAD =2∥B ,∥∥B =60°,∥∥ABC 是等边三角形,∥点A ,点H 关于BC 对称,∥AH ∥BC ,AN =NH ,∥FH =AF ,又∥∥ABC 是等边三角形,∥BN =NC =112BC =,AN ∥AH =2AN=∥AE =CF ,AB =BC ,∥BE =BF ,∥在∥ABF 和∥CBE 中AB BC B B BF BE ⎧⎪∠∠⎨⎪⎩===,∥∥ABF ∥∥CBE (SAS ),∥AF =CE ,∥DF +CE =DF +AF =DF +FH ,∥当点F ,点D ,点H 三点共线时,DF +CE 的最小值为DH 的长,∥AH ∥BC ,∥90HNC ∠=︒,∥AD BC ∥,∥90HAD HNC ∠=∠=︒,∥4DH ==, 即DF CE +的最小值为4.故答案为:4.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,勾股定理,轴对称的性质,证明三角形全等是解题的关键.34.8。
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
四边形专项训练题(培优)
四边形专项训练题(培优)一.选择题(共10小题)1.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.2.如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC3.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形4.如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.25.如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F 的坐标为(2,3),则图象最低点E的坐标为()A.(,2)B.(,)C.(,)D.(,2)6.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,与AD相交于点E,若AD=8,BC=6,则的值为()A.B.C.D.7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF 的边长为()A.2mm B.2mm C.2mm D.4mm8.如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E9.依据所标数据,下列一定为平行四边形的是()A.B.C.D.10.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形二.填空题(共10小题)11.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.12.正十二边形的一个内角的度数为.13.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ长度的最小值为.14.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).15.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB 中点,F为AD中点,连接EF,则EF的长为.16.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.17.七边形一共有条对角线.18.小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是.(填一种即可)19.如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加一个条件,使AB=CD.(填一种情况即可)20.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)三.解答题(共8小题)21.同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.22.如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.23.小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC ⊥BD ,OB =OD .求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC ⊥BD ,OB =OD ,∴AC 垂直平分BD .∴AB =AD ,CB =CD ,∴四边形ABCD 是菱形.小洁: 这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.24.如图,已知五边形ABCDE 是正五边形,连接AC 、AD .证明:∠ACD =∠ADC .25.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与点A ,C 重合),连接DE 并延长交射线AB 于点F ,连接BE .(1)求证:△DCE ≌△BCE ;(2)求证:∠AFD =∠EBC .26.如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.27.如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.28.如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.。
中考数学模拟题汇总《四边形》专项练习(附答案解析)
中考数学模拟题汇总《四边形》专项练习(附答案解析)一、单选题1.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .42.如图,正方期ABCD 的边长为4,点E 在对角线BD 上,且22.5,BAE EF AB ︒∠=⊥为F ,则EF 的长为( )A .2BC .D .4-3.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③∠GDB =45°;④S △BEF =725.在以上4个结论中,正确的有( )A .1B .2C .3D .44.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE //CD 于点E ,PF //BC 于点F ,连接AP ,EF.给出下列结论:①PD =;②四边形PECF 的周长为8;③APD 一定是等腰三角形;④AP EF =;⑤EF 的最小值为其中正确结论的序号为( )A .①②④⑤B .①③④⑤C .②④⑤D .②③⑤5.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF 给出结论:①DE EF =;②45CDF ∠=︒;③75AM DF =;④若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是( )A .①②③B .①②④C .①③④D .②③④6.如图,E 、F 分别是正方形ABCD 的边BC 、CD 的中点,连接AF 、DE 交于点P ,过B 作BG ∥DE 交AD 于G ,BG 与AF 交于点M .对于下列结论:①AF ⊥DE ;②G 是AD 的中点;③∠GBP =∠BPE ;④S △AGM :S △DEC =1:4.正确的个数是( )A .1个B .2个C .3个D .4个7.如图,在正方形ABCD 中,点E 是边BC 上的点,且CE =2BE ,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于点F ,下列结论:①∠AED +∠EAC +∠EDB =90°;②AP =FP ;③AE =10AO ;④若四边形OPEQ 的面积为2,则该正方形的面积为36;⑤CE ·EF =EQ ·DE .其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,四边形ABCD 是边长为2的正方形,点P 为线段AB 上的动点,E 为AD 的中点,射线PE 交CD 的延长线于点Q ,过点E 作PQ 的垂线交CD 于点H 、交BC 的延长线于点F ,则以下结论:①AEP CHF ;②EHQ CHF ;③当点F 与点C 重合时3PA PB ;④当PA PB =时,CF =( )A .①③④B .②③④C .①③D .②④二、填空题9.如图,已知矩形ABCD 中,3AB =,4BC =,点M ,N 分别在边AD ,BC 上,沿着MN 折叠矩形ABCD ,使点A ,B 分别落在E ,F 处,且点F 在线段CD 上(不与两端点重合),过点M 作MH BC ⊥于点H ,连接BF .当四边形CDMH 为正方形时,NC =______;若13DF DC =,则折叠后重叠部分的面积为______.10.如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFC的位置,则图中阴影部分的面积为_______.11.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠AEB=75°,③EG=FG且∠AGE=90°,④BE=FG⑤S△ABE=1 2S△CEF.其中正确结论是_____(填序号).12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________ .13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为_________.14.如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为______.15.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG其中正确的结论是_____.(填2入正确的序号)16.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,BC=______.连接CO,如果AC=4,CO=三、解答题17.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE⊥FG,求证:BF=AE+AG;(2)如图2,DE⊥DF,P为EF中点,求证:BE=2PC;(3)如图3,EH交FG于O,∠GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.18.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH⊥AE于H,设直线DH交AC于点N.(1)如图1,当M在线段BO上时,求证:OM=ON;(2)如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;(3)在(2)的条件下,若正方形边长为4,求EC的长.19.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF =45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ .(1)求证:EA 是∠QED 的平分线; (2)已知BE =1,DF =3,求EF 的长.20.如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .(1)求证AE =MN ;(2)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(3)如图3,若该正方形ABCD 边长为10,将正方形沿着直线MN 翻折,使得BC 的对应边B ′C ′恰好经过点A ,过点A 作AG ⊥MN ,垂足分别为G ,若AG =6,请直接写出AC ′的长________.21.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .θ=︒时,求点A的坐标;(1)若30(2)设MBN△的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论;22.在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC,CD,CF之间的数量关系为:.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明,(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=,CD=1,请求出GE的长.23.如图1,已知正方形ABCD 顶点A ,B 分别在y 轴和x 轴上,边CD 交x 轴的正半轴于点E .(1)若()20,45A a a -+,且2a =,求A 点的坐标.(2)在(1)的条件下,若34AO EO =,D 点的坐标.(3)如图2,连结AC 交x 轴于点F ,点H 是A 点上方轴上一动点,以AF ,AH 为边作平行四边形AFGH ,使G 点恰好落在AD 边上.求证:22224HG DG BF +=.24.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.25.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.26.基础探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE=DF.应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.若正方形ABCD的边长为12,DE=5,则四边形EFCG的面积为_______.参考答案与解析一、单选题1.【答案】D【分析】证明△ABE≌△DCE,可得结论①正确;由正方形的性质可得AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE≌△DCE,△ABG≌△CBG,可得∠BCF=∠CDE,由余角的性质可得结论②;证明△DCE≌△CBF可得结论③,证明△CHF∽△CBF即可得结论④正确.【详解】解:∵四边形ABCD是正方形,点E是BC的中点,∴AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS)∴∠DEC=∠AEB,∠BAE=∠CDE,DE=AE,故①正确,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴∠BAE=∠BCF,∴∠BCF=∠CDE,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故②正确,∵∠CDE=∠BCF,DC=BC,∠DCE=∠CBF=90°,∴△DCE≌△CBF(ASA),∴CE=BF,∵CE=12BC=12AB,∴BF=12 AB,∴AF=BF,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC ∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF∽△CBF∴CH CE BC CF=∵BC=2CE,∴2BC CE CE CE CHCF CF==∴22CE CH CF=⋅故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.2.【答案】D【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【详解】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴,解得x=4故选:D.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,难点在于作辅助线构造出等腰直角三角形并根据正方形的边长AB列出方程.3.【答案】C【解析】试题解析:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=12×6×8=24,S△BEF=EFEGS△GBE=62410⨯=725,④正确.故选C.考点:正方形综合题.4.【答案】A【分析】①根据正方形的对角线平分对角的性质,得PDF是等腰直角三角形,在Rt DPF中,2222222DP DF PF EC EC EC=+=+=,求得DP=;②根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P的任意性可以判断APD△不一定是等腰三角形;④由PECF为矩形,则通过正方形的轴对称性,证明AP EF=;⑤当AP最小时,EF最小,EF的最小值等于【详解】①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵PE ⊥BC ,PF ⊥CD ,∠BCD=90°, ∴四边形PECF 为矩形,∴PF=CE , ∵GF ∥BC ,∴∠DPF=∠DBC ,∵四边形ABCD 是正方形, ∴∠DBC=45°∴∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC=DF ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴. 故①正确;②∵四边形PECF 为矩形,∴四边形PECF 的周长=2CE+2PE=2CE+2BE=2BC=8, 故②正确;③∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45︒, ∴当∠PAD=45︒或67.5︒或90︒时,△APD 是等腰三角形, 除此之外,△APD 不是等腰三角形, 故③错误;④∵四边形PECF 为矩形, ∴PC=EF ,由正方形为轴对称图形, ∴AP=PC , ∴AP=EF , 故④正确;⑤=由EF=PC ,∴当PC 最小时,EF 最小,则当PC ⊥BD 时,即PC=12BD=12⨯=EF 的最小值等于故⑤正确;综上所述,①②④⑤正确,故选:A.【点评】本题考查了正方形的性质,等腰三角形的判定和性质,勾股定理的应用.本题难度较大,综合性较强,在解答时要认真审题.5.【答案】B【分析】①延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,即可判断;②由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,即可判断;③由连接AC,过点E作EP⊥AD于点P,过点F作FN⊥EP于N,交CD于G,连接CF,由梯形中位线定理可求PE=12(AM+CD),由“AAS”可证△APE≌△ENF,可得AP=NE=12AD,即可求AM=2DG=2,即可判断;④由垂线段最短,可得当CF⊥DF时,CF有最小值,由等腰直角三角形的性质可求CF的最小值,即可判断.【详解】①如图,延长AE交DC的延长线于点H,∵点E是CM的中点,∴ME=EC,∵AB∥CD,∴∠MAE=∠H,∠AME=∠HCE,∴△AME≌△HCE(AAS),∴AE=EH,又∵∠ADH=90°,∴DE=AE=EH,∵AE绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∴AE=DE=EF,故①正确;②∵AE=DE=EF,∴∠DAE=∠ADE,∠EDF=∠EFD,∵∠AEF+∠DAE+∠ADE+∠EDF+∠EFD=360°,∴2∠ADE+2∠EDF=270°,∴∠ADF=135°,∴∠CDF=∠ADF−∠ADC=135°−90°=45°,故②正确;③∵EP⊥AD,AM⊥AD,CD⊥AD,∴AM∥PE∥CD,∴AP ME=PD EC=1,∴AP=PD,∴PE是梯形AMCD的中位线,∴PE=12(AM+CD),∵∠FDC=45°,FN⊥CD,∴∠DFG=∠FDC=45°,∴DG=GF,DF,∵∠AEP+∠FEN=90°,∠AEP+∠EAP=90°,∴∠FEN=∠EAP,又∵AE=EF,∠APE=∠ENF=90°,∴△APE≌△ENF(AAS),∴AP =NE =12AD , ∵PE =12(AM +CD )=NE +NP =12AD +NP , ∴12AM =NP =DG ,∴AM =2DG =2DF ,∴AMDF,故③错误; ④如图,连接AC ,过点E 作EP ⊥AD 于点P ,过点F 作FN ⊥EP 于N ,交CD 于G ,连接CF ,∵EP ⊥AD ,FN ⊥EP ,∠ADC =90°, ∴四边形PDGN 是矩形, ∴PN =DG ,∠DGN =90°, ∵∠CDF =45°, ∴点F 在DF 上运动,∴当CF ⊥DF 时,CF 有最小值, ∵CD =2,∠CDF =45°,∴CF故选:B .【点评】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定和性质,旋转的性质,平行线分线段成比例,梯形中位线的定理等知识,灵活运用这些性质解决问题是本题的关键. 6.【答案】C【分析】根据正方形性质得出AD BC DC ==;12EC DF BC ==;ADF DCE ∠=∠,证ADF ≌()DCE SAS ,推出AFD DEC ∠=∠,求出90DGF ∠=︒即可判断①;证明四边形GBED 为平行四边形,则可知②正确;由平行线的性质可得③正确;证明AGM ∽AFD ,可得出AGMS:1DECS=:5.则④不正确.【详解】解:∵正方形ABCD ,E ,F 均为中点 ∴AD =BC =DC ,EC =DF =12BC , ∵在△ADF 和△DCE 中,AD DC ADF DCE DF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△DCE (SAS ), ∴∠AFD =∠DEC , ∵∠DEC +∠CDE =90°, ∴∠AFD +∠CDE =90°=∠DGF , ∴AF ⊥DE ,故①正确, ∵//BG DE ,//GD BE , ∴四边形GBED 为平行四边形, ∴GD =BE , ∵BE =12BC , ∴GD =12AD , 即G 是AD 的中点,故②正确, ∵//BG DE , ∴∠GBP =∠BPE , 故③正确.∵//BG DG ,AF ⊥DE , ∴AF ⊥BG ,∴∠ANG =∠ADF =90°, ∵∠GAM =∠FAD , ∴△AGM ∽△AFD ,设AG =a ,则AD =2a ,AF,∴21()5AGM AFDS AG SAF ==. ∵△ADF ≌△DCE , ∴S △AGM :S △DEC =1:5. 故④错误. 故选:C .【点评】本题主要考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,平行线的性质,平行四边形的判定与和性质等知识,熟练掌握正方形的性质是解题的关键. 7.【答案】B【分析】①先根据正方形的性质证得∠AOP 是直角,再利用三角形的外角的性质即可判定;②直接利用四点共圆可证∠AFP=∠ABP=45°;③设BE=a 则EC=2a ,然后利用勾股定理得到AE 和OA 的长,即可得出结论;④利用相似得到BP 与DP 的比导出BP 与OP 的比,同理求出OQ 与QC 的比,设△BEP 的面积为S ,再利用同高时面积比即为底的比求出△OPE 和△OQE 的面积,表示出四边形OPEQ 的面积,求出S 的值,再通过正方形面积是24S 即可求出结果;⑤如果当E 是BC 边中点时可得△FPE ∽DCE ,可得结论,因为已知中EC=2BE 时,所以△FPE 与△DCE 不相似,所以错误.【详解】解:如图,连接OE 、 AF , ∵ABCD 是正方形, ∴AC ⊥BD ,∴∠AOP=90°,∵∠AED+∠EDB=∠APO,∴∠AED+∠EAC+∠EDB=∠APO+∠EAC=90°,故①正确;∵PF⊥AE,∴∠APF=∠ABF=90°,即A、P、B、F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;设BE=a,则EC=2a,则a,a,∴3AEAO,∴,故③错误;连接OE,∵CE=2BE,∴BE:EC:BC==1:2:3∵AD//BC∴△BEP∽△DAP,△EQC∽△DQA,∴BP:DP=1:3,CQ:AQ=2:3,∴BP:OP=1:1,OQ:CQ=1:4,∴设S△BEP=S,则S△OPE=S,则S△BEO=2S,S△ECO=4S,∴S△OEQ =45S,S△BCO=2S+4S=6S,∵四边形OPEQ的面积是2,∴S+45S=2,∴S=109,∴正方形ABCD的面积=4S△BCO =24S=803,故④错误;∵BE=2EC∴∠PEB≠∠CED,且PE EC PF CD∴△FPE不一定与△DCE相似,∴EF PEED EC≠,又∵EQ≠PE,∴CE·EF≠EQ·DE,故⑤错误;共有2个正确.故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,综合性强,难度大,灵活运用所学知识解决问题是解答本题的关键.8.【答案】C【点评】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理等知识,解题的关键是学会利用全等三角形解决问题.二、填空题 9.【答案】32 5512【分析】根据正方形的性质证明MHN BCF △△,令HN x =,则3CN x =-,1FN BN x ==+,求得FGN MHN △△,得到2GN =,再证明MEO NCF △△,得到43EO =,即可得到结果;【详解】解:∵四边形CDMH 为正方形, ∴3MH HC ==, ∴1BH =, ∵MHN BCF △△,∴MH BCHN CF=, 令HN x =,则3CN x =-,1FN BN x ==+,∴CF ==∴3x =∴132x =,23x =(不符合题意,舍去), ∴12HN HC =,即N 为HC 的中点, ∴1322NC CH ==,∵13DF DC =,3AB CD ==,∴1DF =,2CF =,∴BF ===∴BG GF == ∵MHN BCF △△,∴MH BCHN CF=, ∴32HN =, ∴FGN MHN △△,∴GN =,∴52FN ===,∴32CN ===, ∴334122BH BC HN NC =--=--=,∵EMO CNF ∠=∠,90MEO NCF ∠=∠=︒, ∴MEO NCF △△, ∴ME NCEO CF=, ∴43EO =, ∴折叠后重叠部分的面积为:()1122MEO MEFN S S ME FN ME EO +=+-⨯△梯形,151455*********⎛⎫=+⨯-⨯⨯= ⎪⎝⎭. 故答案为:32;5512. 【点评】本题主要考查了正方形的性质,相似三角形的判定与性质,准确分析计算是解题的关键.10.【分析】过点M 作MH DE ⊥于点H ,利用正方形的性质和旋转的性质可证得△ADE 为等边三角形,由等腰三角形的判定可得△MDE 为等腰三角形,继而求得12DH EH ==,然后设MH x =,则2DM x =,根据勾股定理列方程求解可得MH =,进而由三角形面积公式即可求解. 【详解】如图,过点M 作MH DE ⊥于点H , ∵四边形ABCD 为正方形,∴1AB AD ==,90B BAD ADC ∠=∠=∠=︒,∵正方形ABCD 绕点A 逆时针旋转30°到正方形AEFG 的位置, ∴1AE AB ==,30BAE ∠=︒,90AEF B ∠=∠=° ∴60DAE ∠=︒∴△ADE 为等边三角形,∴60AED ADE ∠=∠=︒,1DE AD == ∴30MED MDE ∠=∠=︒, ∴△MDE 为等腰三角形, ∴12DH EH ==. 在Rt MDH 中,设MH x =,则2DM x =,∴221(2)4x x =+解得:16x =,26x =-(舍去),∴MH =, ∴1.2MDE S DE MH ∆=⨯⨯1126=⨯⨯12=.故答案为:12【点评】本题考查了旋转的性质,正方形的性质,等边三角形判定与性质,解直角三角形,利用等边三角形和等腰三角形的性质求出12DH EH ==,30MED MDE ∠=∠=︒是解题的关键.11.【答案】①②③⑤.【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE =∠DAF ,BE =DF ,∠AEB =75°;由正方形的性质就可以得出EC =FC ,得AC 垂直平分EF ,得EG =FG 且∠AGE =90°;设EC =x ,BE =y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和2S △ABE ,再通过比较大小就可以得出结论. 【详解】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,AE AFAB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE =DF , 所以故①正确;∵∠BAE =∠DAF ,∠BAE +∠DAF =30°, ∴∠BAE =∠DAF =15°, ∴∠AEB =75°, 所以②正确; ∵BC =CD ,∴BC ﹣BE =CD ﹣DF ,即CE =CF , ∵AE =AF , ∴AC 垂直平分EF , ∴EG =FG 且∠AGE =90°, 所以③正确;设EC =x ,由勾股定理,得EF ,∴AE =EF ,∴FG =BG =CG =2x , ∵∠EAG =30°,AG ,∴AC =AG +CG +2x ,∴AB=2x ,∴BE =BC ﹣CE ﹣x =, ∴BE ≠FG , 所以④错误; ∵S △CEF =12CE 2=12x 2,S △ABE =12AB •BE =12•2x =14x 2,∴S △ABE =12×12x 2=12S △CEF , 所以⑤正确.综上所述,①②③⑤正确, 故答案为:①②③⑤.【点评】本题考查正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.12.【答案】72【分析】由直角三角形的中线,求出DE 的长度,利用三角形中位线定理和勾股定理,求出BE 的长度,即可求出答案.【详解】解:∵四边形ABCD 是正方形, ∴∠DCE=90°,OD=OB , ∵DF=FE , ∴CF=FE=FD ,∵EC+EF+CF=18,EC=5, ∴EF+FC=13, ∴DE=13,∴12=, ∴BC=CD=12, ∴BE=BC-EC=7, ∵OD=OB ,DF=FE ,∴OF=12BE=72;故答案为:72. 【点评】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】2【分析】过E 作EM AB ⊥于M ,根据正方形性质得出AO BD ⊥,AO OB OC OD ===,由勾股定理求出AO OB ==Rt BME ∆中,由勾股定理得:222ME BE =,求出即可. 【详解】解:过E 作EM AB ⊥于M ,四边形ABCD 是正方形,AO BD ∴⊥,AO OB OC OD ===,则由勾股定理得:222AO BO AB +=, ∴AO OB ==EM AB ⊥,BO AO ⊥,AE 平分CAB ∠,∴,90OAE MOE AOE AME ∠=∠∠=∠=︒, ∵AE=AE,∴AOE AME ≅△△,EMEO ,AM AO ==四边形ABCD是正方形,∴∠=︒=∠,MBE MEB45∴==,BM ME OE在Rt BME∆中,由勾股定理得:22=,2ME BE即22=,2(2BEBE=,2故答案为:2.【点评】本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.14.【答案】【分析】连接BE,DF,过E作EN⊥BF于点N,证明△DCE≌△BCE和△BEF为等腰三角形,设AF=x,用x表示DE与EF,由根据四边形ADEF的面积为4,列出x的方程求得x,进而求得四边形ADEF的周长.【详解】解:如图,连接BE,DF,过E作EN⊥BF于点N,∵四边形ABCD为正方形,∴CB=CD ,∠BCE=∠DCE=45°, 在△BEC 和△DEC 中,DC BC DCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴DE=BE ,∠CDE=∠CBE , ∴∠ADE=∠ABE ,∵∠DAB=90°,∠DEF=90°, ∴∠ADE+∠AFE=180°, ∵∠AFE+∠EFB=180°, ∴∠ADE=∠EFB , ∴∠ABE=∠EFB , ∴EF=BE , ∴DE=EF ,设AF=x ,则BF=3-x ,∴FN=BN=12BF=32x -,∴AN=AF+FN=32x+, ∵∠BAC=∠DAC=45°,∠ANF=90°,∴EN=AN=32x+,∴=∵四边形AFED 的面积为4, ∴S △ADF +S △DEF =4,∴12×3x+12×24=⎝⎭, 解得,x=-7(舍去),或x=1, ∴AF=1,DE=EF=2= ∴四边形AFED 的周长为:故答案为:4+【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理,等腰三角形的性质,解题的关键是由面积列出x 的方程,属于中考选择题中的压轴题. 15.【答案】①②③【分析】依据四边形AEGF 为平行四边形,以及AE GE =,即可得到平行四边形AEGF 是菱形;依据1AE =,即可得到HED 的面积)11111122DH AE =⨯=+=边形AEGF 是菱形,可得267.5135AFG GEA ∠=∠=⨯︒=︒;根据四边形AEGF 是菱形,可得1FG AE ==,进而得到11BC FG +=+=. 【详解】解:正方形ABCD 的边长为1,90BCD BAD ∴∠=∠=︒,45CBD ∠=︒,BD =,1AD CD ==.由旋转的性质可知:90HGD BCD ∠==︒,45H CBD ∠=∠=︒,BD HD =,GD CD =,1HA BG ∴==,45H EBG ∠=∠=︒,90HAE BGE ∠=∠=︒,HAE ∴和BGE 1的等腰直角三角形,AE GE ∴=.在Rt AED 和Rt GED 中, DE DEAD GD =⎧⎨=⎩, Rt AED ∴≌()Rt GED HL ,()118067.52AED GED BEG ∴∠=∠=︒-∠=︒,AE GE =, 1801804567.567.5AFE EAF AEF AEF ∴∠=︒-∠-∠=︒-︒-︒=︒=∠, AE AF ∴=.AE GE =,AF BD ⊥,EG BD ⊥, AF GE ∴=且//AF GE ,∴四边形AEGF 为平行四边形, AE GE =,∴平行四边形AEGF 是菱形,故①正确;21HA =,45H ∠=︒,1AE ∴=,HED ∴的面积)11111122DH AE =⨯=+=②正确; 四边形AEGF 是菱形,267.5135AFG GEA ∴∠=∠=⨯︒=︒,故③正确; 四边形AEGF 是菱形,1FG AE ∴==,11BC FG ∴+==④不正确. 故答案为:①②③.【点评】本题考查旋转的性质,正方形的性质,全等三角形的判定和性质,菱形的判定和性质,等腰直角三角形的性质等知识,解题的关键是掌握旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 16.【答案】8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC . ∵根据题意,四边形ABED 为正方形, ∴∠4=∠5=45°,∠EBA=90°, ∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边, ∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO , 在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO , ∴CO =GO=7=∠6, ∵∠7+∠8=90°, ∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形, ∴,∵CG=CB+BG ,∴CB=CG -BG=12-4=8, 故答案为8.【点评】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键. 三、解答题17.【答案】(1)见解析;(2)见解析;(3 【分析】(1)作GM ⊥BC 于M .证△DAE ≌△GMF ,得AE =FM ,AG =BM .所以BF =AE+AG . (2)作EQ ∥CP 交BC 于Q .证EQ =2CP ,EQ可得BE .(3)作BM ∥GF 交AD 于M ,作BN ∥EH 交CD 于N ,得BM =GF ,BF =MG =1,BN =EH ,延长DC 到P ,使CP =AM =2,证△BAM ≌△BCP 得∠ABM =∠CBP ,BM =BP ,再证△MBN ≌△PBN 得MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2求得x =43,再在△BCN 中利用勾股定理求解可得.【详解】解:(1)如图1,过点G作GM⊥BC于M,则∠GMB=∠GMF=90°,∵四边形ABCD是正方形,∴AD=AB,∠A=∠B=90°,∴四边形ABMG是矩形,∴AG=BM,∵DE⊥GF,∴∠ADE+∠DGF=∠ADE+∠AED=90°,∴∠AED=∠DGF,又∠DGF=∠MFG,∴∠AED=∠MFG,∴△DAE≌△GMF(AAS),∴AE=MF,则BF=BM+MF=AG+AE;(2)如图2,过点E作EQ∥PC,交BC于点Q,∵P是EF的中点,∴PC是△EQF的中位线,则EQ=2PC,QC=CF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,又∵∠A=∠DCF=90°,AD=CD,∴△ADE≌△CDF(ASA),∴AE=CF=QC,∵AB=BC,∴BE=BQ,则∠BEQ=45°,∴EQ,则2PC BE,∴BE;(3)如图3所示,作BM∥GF交AD于M,作BN∥EH交CD于N,则四边形BFGM和四边形BEHN是平行四边形,∴BM=GF,BF=MG=1,BN=EH,∵DG=1,CD=AD=4,∴AM=2,延长DC到P,使CP=AM=2,∵BA=BC,∠A=∠BCP=90°,∴△BAM≌△BCP(SAS),∴∠ABM=∠CBP,BM=BP,∵∠GOH=45°,BN∥EH,BM∥GF,∴∠MBN=45°,∴∠ABM+∠CBN =45°,∴∠CBP+∠CBN =45°,即∠PBN =45°, ∴△MBN ≌△PBN (SAS ), ∴MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2可得22+(4﹣x )2=(x+2)2,解得x =43,则EH =BN =3,. 【点评】本题考查正方形背景中的线段和差,线段倍分,求线段长问题,掌握垂线的性质,平行线的性质,全等三角形的性质与判定,勾股定理等知识,引垂线构造全等,转化线段的相等关系,利用平行线,构造中位线与等腰直角三角形,确定倍数关系,利用勾股定理解决线段的长度问题.18.【答案】(1)见解析;(2)见解析;(3)8-.【分析】(1)先证明:ODN NAH ∠=∠, 再证明:DON AOM ≌,可得结论;(2)利用正方形的性质证明:AC BD ⊥, 45CDO ∠=︒, 结合:DON AOM ≌,利用全等三角形的性质证明:45NMO ∠=︒, 可得://,ED MN 结合://EN BD , DH AE ⊥, 从而可得结论;(3)利用正方形的性质先求解AC = 再利用菱形的性质可得:AH 是DN 的垂直平分线,证明4AN AD ==,求解4NC =, 再证明:,CN EN = 利用勾股定理可得答案. 【详解】(1)证明:∵DH ⊥AE , ∴∠DHA =90°, ∴∠NAH +∠ANH =90°,∵∠ODN +∠DNO =90°,∠ANH =∠DNO , ∴∠ODN =∠NAH , 在DON △和AOM 中,ODN HAN DON AOM OD OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DON AOM ≌(AAS ), ∴OM =ON ;(2)证明: 正方形ABCD ,AC BD ∴⊥, 45CDO ∠=︒,由(1)可知,DON AOM ≌, ∴OM =ON ,∴∠NMO =45°=∠CDO , ∴ED ∥NM , ∵EN ∥DM ,∴四边形DENM 是平行四边形, ∵DN ⊥AE ,∴平行四边形DENM 是菱形;(3)∵四边形ABCD 为正方形,AD =4, ∴AC= ∵四边形DENM 是菱形,∴AH 是DN 的垂直平分线, ∴AN =AD =4, ∴NC=4, ∵EN ∥DM ,∴∠ENC =∠DOC =90°, ∵∠ECN =45°,∴EC=8==-【点评】本题考查的是三角形全等的判定与性质,垂直平分线的性质,勾股定理的应用,平行四边形的判定,菱形的判定,正方形的性质,掌握以上知识是解题的关键. 19.【答案】(1)见解析;(2【分析】(1)直接利用旋转的性质得出△AQE ≌△AFE (SAS ),进而得出∠AEQ =∠AEF ,即可得出答案;(2)由全等三角形的性质可得QE =EF ,∠ADF =∠ABQ ,再结合勾股定理得出答案. 【详解】证明:(1)∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ , ∴QB =DF ,AQ =AF ,∠BAQ =∠DAF , ∵∠EAF =45°, ∴∠DAF +∠BAE =45°, ∴∠QAE =45°, ∴∠QAE =∠FAE , 在△AQE 和△AFE 中,AQ AF QAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AQE ≌△AFE (SAS ), ∴∠AEQ =∠AEF , ∴EA 是∠QED 的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,∠ADF=∠ABQ,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴∠ABQ=45°,∴∠QBE=∠ABQ+∠ABD=90°,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2=1+9=10,∴EF.【点评】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,证明△AQE≌△AFE是解题关键.20.【答案】(1)见解析;(2)∠AEF=45°;(3)10﹣【分析】(1)过点B作BF∥MN交CD于点F,则四边形MBFN为平行四边形,得出MN=BF,BF ⊥AE,由ASA证得△ABE≌△BCF,得出AE=BF,即可得出结论;(2)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,则四边形ABIH为矩形,得出HI ⊥AD,HI⊥BC,HI=AB=AD,证△DHQ是等腰直角三角形,得HD=HQ,AH=QI,由HL证得Rt △AHQ≌Rt△QIE,得∠AQH=∠QEI,证∠AQE=90°,得△AQE是等腰直角三角形,即可得出结果;(3)延长AG交BC于E,则EG=AG=6,得AE=12,由勾股定理得BE=,则CE=BC﹣BE=10﹣,由折叠的性质即可得出结果.【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC,AB∥CD,过点B作BF∥MN交CD于点F,如图1所示:∴四边形MBFN 为平行四边形, ∴MN =BF ,BF ⊥AE , ∴∠ABF +∠BAE =90°, ∵∠ABF +∠CBF =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中,90BAE CBF AB BC ABE BCF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ABE ≌△BCF (ASA ), ∴AE =BF , ∴AE =MN ;(2)解:连接AQ ,过点Q 作HI ∥AB ,分别交AD 、BC 于点H 、I ,如图2所示:∵四边形ABCD 是正方形, ∴四边形ABIH 为矩形,∴HI ⊥AD ,HI ⊥BC ,HI =AB =AD ,∵BD 是正方形ABCD 的对角线, ∴∠BDA =45°,∴△DHQ 是等腰直角三角形, ∴HD =HQ ,AH =QI , ∵MN 是AE 的垂直平分线, ∴AQ =QE ,在Rt △AHQ 和Rt △QIE 中,AQ QEAH QI =⎧⎨=⎩, ∴Rt △AHQ ≌Rt △QIE (HL ), ∴∠AQH =∠QEI , ∴∠AQH +∠EQI =90°, ∴∠AQE =90°,∴△AQE 是等腰直角三角形,∴∠EAQ =∠AEQ =45°,即∠AEF =45°; (3)解:延长AG 交BC 于E ,如图3所示:则EG =AG =6, ∴AE =12,在Rt △ABE 中,BE ==∴CE=BC﹣BE=10﹣,由折叠的性质得:AC'=CE=10﹣,故答案为:10﹣.【点评】本题是四边形综合题,主要考查了正方形的性质、平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、折叠的性质、垂直平分线的性质、勾股定理、平行线的性质等知识;熟练掌握正方形的性质和折叠的性质是解题的关键.21.【答案】(1)(2,);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,∴A的坐标是(2,(2)P值无变化.证明:延长BA交y轴于E点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS ) ∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS ) ∴MN=ME=AM+AE , ∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点评】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.22.【答案】(1)①BC ⊥CF ;②BC =CF+CD ;(2)BC ⊥CF 成立;BC =CD+CF 不成立,CD =CF+BC ,见解析;(3.【分析】(1)①由题意易得∠BAC =∠DAF =90°,则有∠BAD =∠CAF ,进而可证△DAB ≌△FAC ,然后根据三角形全等的性质可求解;②由△DAB ≌△FAC 可得CF =BD ,然后根据线段的数量关系可求解;(2)由题意易证△DAB ≌△FAC ,则可得∠ACB =∠ABC =45°,进而可得BC ⊥CF ,然后根据线段的数量关系可求解;(3)过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,则有DH =CH+CD =3,进而可求四边形CMEN 是矩形,然后可得△ADH ≌△DEM ,则可证△BCG 是等腰直角三角形,最后根据勾股定理可求解.【详解】解:(1)①∵正方形ADEF 中,AD =AF ,∠DAF =90°, ∴∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,在△DAB 与△FAC 中,AD AFBAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△FAC (SAS ),。
中考数学复习 四边形专题训练
中考数学复习四边形专题训练一、选择题(每小题3分,共24分)1.在下列命题中,正确的是()(A)一组对边平行的四边形是平行四边形.(B)有一个角是直角的四边形是矩形.(C)有一组邻边相等的平行四边形是菱形.(D)对角线互相垂直平分的四边形是正方形.2.如图,在周长为20cm的□ABCD中,AB<AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()(A)4cm.(B)6cm.(C)8cm.(D)10cm.(第2题)(第3题)(第4题)3.如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF.若CD=6,则AF等于()(A)43(B)33(C)42(D)8.4.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()(A)3对.(B)4对.(C)5对.(D)6对.5.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,则梯形中位线的长等于()(A).(B)7cm.(C).(D)6cm.6.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( )(A )10x =,14y =. (B )14x =,10y =. (C )12x =,15y =. (D )15x =,12y =.(第6题) (第7题) (第8题)7.2002年8月在召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较大直角边为a ,较短直角边为b ,则34a b +的值为( )(A )35. (B )43. (C )89. (D )97. 8.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( ) (A )0. (B )1. (C )2. (D )3. 二、填空题(每小题3分,共18分)9.阳光广告公司为某种商品设计的商标图案如图所示,图中阴影部分为红色.若每个小长方形的面积都1,则红色的面积是___.(第9题) (第10题) (第11题)10.如图,梯形纸片ABCD ,已知AB ∥CD ,AD =BC ,AB =6,CD =3.将该梯形纸片沿对角线AC 折叠,点D 恰与AB 边上的E 点重合,则∠B =____________.11.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是____________. 12.在等腰梯形ABCD 中,AD ∥BC ,如果AD =4,BC =8,∠B =60o ,那么这个等腰梯形的周长等于_____________.13.现有一X 长为40cm ,宽为20cm 的长方形纸片,要从中剪出长为18cm ,宽为12cm 的长方形纸片,则最多能剪出____________X .14.在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图所示),看不清所印的字,请问被墨迹遮盖了文字应是______________. 三、解答题(每小题5分,共20分)15.如图,在□ABCD 中,∠BAD 的平分线交BC 边于点E .求证:BE =CD .16.如图,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60o ),菱形ABCD的边长为2,E 是AD 的中点,沿CE 将菱形ABCD 剪成①、②两部分,用这两部分分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上,在下面的菱形斜网格中画出示意图.ABCDE(直角三角形)(等腰梯形)(矩形)17.如图,在梯形ABCD中,AB∥CD,AD⊥AB,∠B=45o,延长CD到点E,使DE=DA,连接AE.(1)求证:AE∥BC;(2)若AB=3,CD=1,求四边形ABCE的面积.18.如图,在梯形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAD的平分线AE交BC 于E,F,G分别是AB,AD的中点.(1)求证:EF=EG;(2)当AB与EC满足怎样的数量关系时,EG∥CD?并说明理由.四、解答题(每小题6分,共24分)19.如图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE=BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).20.如图,矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角形的直角顶点放在P点处,并使它的一条直角边过A点,另一条直角边交CD于E点,写出图中与P A相等的线段,并说明理由.21.用长为12m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2.问当x取什么值时,S最大?并求出S的最大值.22.如图①,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点P是对角线BD上的一点,PQ∥BA交AD于点Q,PS∥BC交DC于点S,四边形PQRS是平行四边形.(1)当点P与点B重合时,图①变为图②,若∠ABD=90o,求证:△ABR≌△CRD;(2)对于图①,若四边形PRDS也是平行四边形,此时,你能推出四边形ABCD还应满足什么条件?图①图②五、解答题(每小题7分,共14分)23.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.24.如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30o.点M、N同时以相同速度分别从点A、点D开始在AB、AD上运动.(1)设ND的长为x,用x表示点N到AB的距离,并写出x的取值X围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.参考答案一、选择题1.C 2.D 3.A 4.D 5.C 6.D 7.B 8.D 二、填空题9.5 10.60o 11.AD =BC 12.20 13.3 14.菱形 三、解答题15.略. 16.略. 17.(1)略;(2)6. 18.(1)略;(2)AB =2EC . 四、解答题19.FC =AE ,证明略. 20.PE =P A ,证明略. 21.4x =,max S = 22.(1)略;(2)BC ∥AD . 五、解答题23.(1)4;(2)作FM ⊥DC ,连结GE ,S =6x -;(3)若S =1,则5x =,HG AE 6=>,点E 不在边AB 上,故不可能等于1.24.(1)()1202x -,015x ≤≤; (2)10x =时,五边形的面积最小,此时三角形为等腰三角形.。
初中数学四边形专项训练解析附答案
初中数学四边形专项训练解析附答案一、选择题1.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO =22100368AB OB -=-=,∴AC =16,BD =12, ∴菱形面积=12162⨯=96, 故选:D .【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得 226810BD =+=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.4.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.5.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.6.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .1313【答案】B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF 中,222313BE + ∴313cos 13BF EBF BE ∠=== 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.7.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.8.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183-πC .32316π-D .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3843⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=2120(43)84332316360ππ⨯⨯-=-. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形 ∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.11.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S ,即可得S△PEB=S△PFD,从而得到阴影的面积.矩形MPFD【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v3v=3v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.【答案】D【解析】【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质17.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.18.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12 BC,∴AE=BE=12 BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=12AB•AC,故②错误;∵BE=EC,∴E为BC中点,O为AC中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.19.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∴∠ACB=90°,∴∠AED=90°,∴AC⊥DF,∴平行四边形ADCF为菱形故选:D.【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。
初中数学专题训练--四边形--中心对称和中心对称图形
典型例题一例01. 下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( ).A .正方形、菱形、矩形、平行四边形B .正三角形、正方形、菱形、矩形C .正方形、矩形、菱形D .平行四边形、正方形、等腰三角形 分析 A 中平行四边形不是轴对称图形,B 中正三角形不是中心对称图形,D 中平行四 边形不是轴对称图形.正选C .解答 本题主要考查轴对称和中心对称图形的判定,易错点是弄错图形的对称性,解题关键是要熟悉所学过的图形的对称性.典型例题二例02.如图,已知:四边形ABCD 关于O 点成中心对称图形. 求证:四边形ABCD 是平行四边形.分析:因为四边形ABCD 是中心对称图形,所以A 点与C 点,B 点与D 点是对称点. 所以线段AC 过O 点,线段BD 也过O 点,且两条线段都被O 点平分,故四边形ABCD 是平行四边形.证明:连结AC 、BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 上,也在BD 上,并且OD OB OC OA ==,∴ 四边形ABCD 是平行四边形.说明:要应用轴对称或中心对称解决问题,应该判断清楚图形的对称的特点,找到对称点.典型例题三例03.如图,已知:矩形ABCD 和D C B A '''关于点A 对称. 求证:四边形D B BD ''是菱形.分析:根据题意知点B 与B '关于点A 对称,点D 和点D '关于点A 对称,又四边形ABCD 和D C B A '''是矩形,由中心对称的性质及矩形的性质即可证明.证明:∵矩形ABCD 和D C B A '''关于点A 成中心对称图形.∴ D A AD '=,B A AB '=(关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分).∴ 四边形D B BD ''是平行四边形.又∵四边形ABCD 是矩形,∴︒=∠90DAB ∴四边形D B BD ''是菱形.典型例题四例04.(西安市,2000)已知:如图,AD 是ABC ∆中A ∠的平分线,AC DE //交AB 于E ,AB DF //交AC 于F .求证:点E ,F 关于直线AD 对称.证明:∵AE DF AF DE //,//,∴四边形AEDF 是平行四边形.∵DAF DAE ∠=∠,EDA DAF ∠=∠, ∴EDA DAE ∠=∠. ∴ED AE = ∴AEDF 是菱形.∴点E ,F 关于直线AD 对称. 说明 证明菱形是关键典型例题五例05.(南昌市,1999)按要求画一个图形:所画图形中同时要有正方形和圆,并且这个图形既是中心对称图形又是轴对称图形.分析 这是一道具有开放特色的考题,题中给定的两个图形都既是轴对称图形,也是中心对称图形,故按要求画出的图形只要让两个图形的对称中心重合即可.这样的图形观出很多.解答 具体作法是:先作出正方形,连结对角线找出对角线交点,再以对角线交点为圆心,以任意长为半径画图,所得图形都满足题设要求.举例如下:说明 本题考查轴对称图形和中心对称图形的应用,解题关键是要探索出两个图形的对称中心重合.选择题1.(四川省,2000)下列图形中,既是轴对称图形又是中心对称图形的是( )A .角B .等边三角形C .线段D .平行四边形 2.下列多边形中,是中心对称图形而不是轴对称图形的是( )A .平行四边形B .矩形C .菱形D .正方形 3.已知下列命题:(1)关于中心对称的两个图形一个不全等;(2)关于中心对称的两个图形是全等的图形;(3)两个全等的图形一定关于中心对称,其中真命题的个数是( )A .0B .1C .2D .34.在平面上一个菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转角度至少是( )A .︒180B .︒90C .︒270D .︒3605.下列命题:(1)如果ABC ∆与C B A '''∆关于中心对称,则C B A ABC '''∆≅∆;(2)如果C B A ABC '''∆≅∆,则ABC ∆与C B A '''∆关于中心对称;(3)相交的两条直线是中心对称图形;(4)等边三角形是中心对称图形;(5)菱形是中心对称图形. 其中正确的命题的个数是()A .1B .2C .3D .4 6.(威海市,2001;北京市东城区,2002)下列四个图形中,既是轴对称图形又是中心对称图形的是()A .①②③④B .①②③C .①③D .③ 7.下列图形中,是中心对称图形而不是轴对称图形的是(). A .平行四边形 B .矩形 C .菱形 D .正方形8.下列图形中,既是轴对称图形,又是中心对称图形的是().A .等腰三角形B .等边三角形C .平行四边形D .矩形9.下列说法中正确的是().A .矩形的每一条对角线都是矩形的对称轴B .平行四边形对角线的交点是平行四边形的对称中心C .菱形是轴对称图形,但不是中心对称图形D .中心对称图形就是中心对称参考答案:1.C 2.A 3.B 4. A 5.C 6.D 7.A 8.D 9.B填空题1.在平行四边形,菱形,等边三角形中,轴对称图形有_____种,中心对称图形有______种.2.既是中心对称图形,又是轴对称图形,且只有两条对称轴的四边形是_______. 3.关于中心对称的两个图形,对应线段_______. 4.(徐州市,2000)在下面四个图形中,图形①与图形_______成轴对称;图形①与图形________成中心对称(填写符合要求的图形所对应的序号)参考答案: 1.3,32.矩形或菱形 3.平行且相等 4.④,③解答题1.如图,已知线段AB 及AB 外一点P ,求作线段B A '',使B A ''与AB 关于点P 对称.2.如图,已知ABC ∆及点P ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点P 对称.3.如图,已知ABC ∆及其内部一点O ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点O 对称.4.如图,已知:矩形ABCD 和矩形D C B A '''关于A 点对称. 求证:四边形D B BD ''是菱形.5.已知ABCD ,作四边形D C B A '''',使它与已知平行四边形关于顶点A 对称,并证明四边形C B BC ''是平行四边形.6.如图,四边形ABCD 关于O 点成中心对称图形, 求证:四边形ABCD 是平行四边形.7.(山西省,2000)如图,矩形ABCD 是篮球场地简图,请你画图找出它们的对称中心O .8.(南昌市,2001)如图,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形. 试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 与______对应;B 与______对应;C 与______对应;D 与______对应.9.(遵义市,2000)如图,请画出把下列矩形的面积两等分的直线,并填空. (一个矩形只画一条直线,不写画法)在一个矩形中,把此矩形面积两等分的直线最多有______条,这些直线都必须经过该矩形______点.10.(聊城市,2000)如图,已知矩形ABCD 中,3=AB ,4=BC ,将矩形折叠使C 点与A 点重合.(1)作出折痕EF ,并写出作法(E 点在BC 边上,F 点在AD 边上);(2)翻折后点D 落在D '上,求此时B 、D '之间的距离.11.(济南市,2001)如图是未完成的上海大众汽车的标志图案. 该图案应该是以直线l 为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分(要求用尺规作图,保留痕迹,不写作法).12.(荆州市,2002)有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).13.(盐城市,2002)已知:如图,矩形ABCD . (1)作出点C 关于BD 所在直线的对称点C '(用尺规作图,不写作法,保留作图痕迹) (2)连结B C ',D C ',若BD C '∆与ABD ∆重叠部分的面积等于ABD ∆面积的32,求CBD ∠的度数.14.(福州市,2002)已知:图(1),图(2)分别是66⨯正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S ,B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:B A S S :的值是_______;(2)请在图(3)的网格上画出一个面积为8个平方单位的中心对称图形.参考答案:1.略 2.略 3.略4.因矩形ABCD 和矩形D C B A '''关于A 点对称,∴ B A AB '=,D A DA '= ∴ 四边形D B BD ''是平行四边形. ∵ B B D D '⊥',∴D B BD ''是菱形 5. 图略,证法同第4题. 6.证明:连结AC ,BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 和BD 上,且OD OB OC OA ==,. ∴ 四边形ABCD 是平行四边形. 7.连结AC ,BD 交于O 8.M ,P ,Q ,N9.略 10.略 11.图略 12.略13.(1)略;(2)连结C B ',C D ',设C B '与AD 相交于E . 证AE BE EB ED 2,==,求得︒=∠30ABE ,∴ ︒=∠30CBD14.(1)119:=B A S S ;(2)略。
(易错题精选)初中数学四边形经典测试题附答案(1)
(易错题精选)初中数学四边形经典测试题附答案(1)一、选择题1.下列说法中正确的是( )A .有一个角是直角的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直平分的四边形是正方形D .两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】 根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.4.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 5.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.6.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A.a B.45a C2D3【答案】C【解析】【分析】根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=DM CNDE CE,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =7.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为31故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).∴△BOC≌△EOD.综上所述,B、C、D均正确.故选A.9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD∵BD=2AD∴BO=DO=AD=BC,且点E是OC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF∥DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD∥AB∴BG=EF=GE,EF∥CD∥AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选D.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH ⊥CB于点H,则OH的长为( )A.5cm B.52 cmC.125cm D.245cm【答案】C 【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC =+=+=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .15【答案】B【解析】【分析】根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO 12=BD =4, ∴AO =3,∴AC =2AO =6,∴四边形ABCD 的面积12=⨯6×8=24, 故选:B .【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z++的值为( ) A .1B .23C .12D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.14.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.15.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.17.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形OBCD 的边OB 固定在x 轴上,开始时30DOB ∠=︒,现把菱形向左推,使点D 落在y 轴正半轴上的点D ¢处,则下列说法中错误的是( )A .点C '的坐标为()4,4B .60CBC '∠=︒ C .点D 移动的路径长度为4个单位长度D .CD 垂直平分BC '【答案】C【解析】【分析】 先证明四边形OBC′D′是正方形,且边长=4,即可判断A ;由平行线的性质得∠OBC 的度数,进而得到60CBC '∠=︒,即可判断B ;根据弧长公式,求出点D 移动的路径长度,即可判断C ;证明CD ⊥BC ′,BC′=BC=2BE ,即可判断D .【详解】∵四边形OBCD 是菱形,∴OB=BC=CD=OD ,∴OB=BC ′=C ′D ′=OD ′,∵∠BOD′=90°,∴四边形OBC′D′是正方形,且边长=4,∴点C '的坐标为()4,4,故A 不符合题意.∵30DOB ∠=︒,OD ∥BC ,∴∠OBC=180°-30°=150°,∵∠OBC ′=90°,∴60CBC '∠=︒,故B 不符合题意.∵点D 移动的路径是以OD 长为半径,圆心角为∠DOD ′=90°-30°=60°的弧长,∴点D 移动的路径长度=604180π⨯=43π,故C 符合题意. 设CD 与BC′交于点E ,∵在菱形OBCD 中,∠C=30DOB ∠=︒,∵60CBC '∠=︒,∴∠BEC=180°-60°-30°=90°,即CD ⊥BC ′,∴BC′=BC=2BE ,∴CD 垂直平分BC ',故D 不符合题意.故先C .【点睛】本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.19.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。
初中数学经典四边形习题50道(附答案)
初中数学经典四边形习题50道(附答案)经典四边形习题1、已知:在等腰梯形abcd中,ab∥dc,ad=bc,e、f分别为ad、bc的中点,bd_d_c 平分∠abc交ef于g,eg=18,gf=10求:等腰梯形abcd的周长。
_g_e_f_a_b2、从平行四边形四边形abcd的各顶点作对角线的垂线ae、bf、cg、dh,垂足分别是e、f、g、h,求证:ef∥gh。
_d_c_e_f_o_h_g_a_b_a_d3、未知:梯形abcd的对角线的交点为e若在平行边的一边bc的延长线上取一点f,_e并使s?abc=s?ebf,澄清:df∥ac。
4、在正方形abcd中,直线ef平行于对角线ac,与边ab、bc的交点为e、f,在da 的延长线上取一点g,使ag=ad,若eg与df的交点为h,澄清:ah与正方形的边长成正比。
5、若以直角三角形abc的边ab为边,在三角形abc的外部作正方形abde,af就是bc边的高,缩短fa并使ag=bc,澄清:bg=cd。
6、正方形abcd,e、f分别是ab、ad延长线上的一点,且ae=af=ac,ef交bc于g,交ac于k,交cd于h,求证:eg=gc=ch=hf。
_a_g_b_a_c_f_d_e_h_b_f_g_c_e_d_a_b_f_d_h_c_f_c_k_jg__b7、在四边形abcd中,ab=cd,p、q分别就是ad、bc中点,m、n分别就是对角线ac、bd的中点,澄清:pq?mn。
8、平行四边形abcd中,ad=2ab,ae=ab=bf求证:ce?df。
9、在正方形abcd中,p就是bd上一点,过p惹来pe?bc交bc于e,过p惹来pf?cd 于f,澄清:ap?ef。
10、过正方形abcd的顶点b引对角线ac的平行线be,在be上取一点f,并使af=ac,若作菱形café,澄清:ae及af三等分∠bac。
11、以?abc的三边ab、bc、ca分别为边,在bc的同侧作等边三角形abd、bce、caf,求证:adef是平行四边形。
2020年中考数学专题《四边形》复习综合训练及答案解析
2020年中考数学专题《四边形》复习综合训练及答案解析2020年中考数学总复习《四边形》专题一、选择题1.下列命题中,不正确的是().A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分2.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A. 6B. 5C. 8D. 73.如图,在?ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A. 45°B. 55°C. 65°D. 75°4.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A. 13B. 15C. 13或15D. 15或16或175.如图,若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD6.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB 的周长多10,则AB长为()A. 20B. 15C. 10D. 57.如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A. 7 个B. 8个C. 9个D. 11个8.如图,在七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1,∠2,∠3,∠4的角度和为220°,则∠BOD的度数为( )A. 40°B. 45°C. 50°D. 60°9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是()A. 6cmB. 5cmC. cmD. 7.5cm10.能够铺满地面的正多边形组合是()A. 正三角形和正五边形B. 正方形和正六边形C. 正方形和正五边形D. 正五边形和正十边形二、填空题11.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是________ .12.如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF 是平行四边形,还需增加的一个条件是________13.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________.14.如图:矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AD=________ cm.15.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来________盆红花.如果一条对角线用了25盆红花,还需要从花房运来________盆红花.16.在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是________ .17.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为________cm2.18.梯形ABCD的底AB的长度等于底CD的2倍,也等于腰AD 的2倍,设对角线AC的长为3,腰BC的长为4,则梯形ABCD的高为________.19.如图,在?ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD 的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________ .(结果保留π)20.如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE 和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF ⊥CD.三、解答题21.如图,已知?ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.22.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.23.如图,平行四边形ABCD的对角线AC和BD相交于点O ,E ,F分别为OB ,OD的中点,过点O任作一直线分别交AB ,CD 于点G ,H.试说明:GF∥EH.24.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE ∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.25.如图,正方形ABCD的边长为8cm,E、F、G分别是AB、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.26.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)如果∠B+∠C=120°,则∠AED的度数=________.(直接写出结果)(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.27.如图1,△ABD和△BDC都是边长为1的等边三角形。
中考数学四边形专题训练50题含参考答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。
初中数学沪教版(五四制)八年级下册第二十二章 四边形第一节 多边形-章节测试习题(1)
章节测试题1.【答题】若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A. 6B. 7C. 8D. 9【答案】B【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.选B.2.【答题】一个n边形共有20条对角线,则n的值为()A. 5B. 6C. 8D. 10【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设这个多边形是n边形,则=20,∴n2−3n−40=0,(n−8)(n+5)=0,解得n=8,n=−5(舍去).故选C.3.【答题】从五边形的一个顶点,可以引几条对角线()A. 2B. 3C. 4D. 5【答案】A【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】根据n边形从一个顶点出发可引出(n-3)条对角线可直接得到从五边形的一个顶点可以引:5−3=2条对角线。
选A.4.【答题】多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A. 8B. 9C. 10D. 11【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设多边形有n条边,则n−2=11,解得n=13.故这个多边形是十三边形。
故经过这一点的对角线的条数是13−3=10.选C.5.【答题】十五边形从一个顶点出发有()条对角线.A. 11B. 12C. 13D. 14【答案】B【分析】本题主要涉及多边形对角线的问题,熟练掌握多边形对角线的计算公式是解题的关键;连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,n边形过一个顶点有(n-3)条对角线.【解答】n边形(n>3)从一个顶点出发可以引(n−3)条对角线,所以十五边形从一个顶点出发有:15−3=12条对角线。
【精编版】数学中考专题训练——四边形的综合
中考专题训练——四边形的综合1.四边形ABCD为平行四边形,点P为平面内一点(1)若AP=BC,连AP、DP;①如图1,点P在边BC上,求证:PD平分∠APC;②如图2,过P作PD的垂线交DC的延长线于点F,FP交AB于点E,求证:DF=2AE.(2)如图3,∠ABC=60°,点P在对角线DB上,点M在边AD上,MP=CD且∠AMP =∠ABD,AB=5,BP=3,直接写出平行四边形ABCD的面积.2.在正方形ABCD中,AB=6,E为直线AB上一点,EF⊥AB交对角线AC于F,点G为AF中点,连接CE,点M为CE中点,连接BM并延长交直线AC于点O.(1)如图1,E在边AB上时,=,∠GBM=;(2)将(1)中△AEF绕A逆时针旋转任意一锐角,其他条件不变,如图2,(1)中结论是否仍然成立?请加以证明.(3)若BE=2,则CO长为.3.平面直角坐标系中,菱形ABCD.(1)若点A坐标是(0,2),点B坐标(﹣2,0),求∠ABC及菱形边长:(2)在(1)的条件下,连接OD,过C点向OD作垂线,垂足为E,求CE;(3)如图3所示,∠ABO=60°,在y轴负半轴上取一点P,使得∠BPO=15°,延长BD至Q,使得DQ=CD,连接AQ,若AP=BQ=a,求线段AQ的长(用含a的式子表示).4.矩形ACBD对角线AC、BD相交于点O,点P是对角线BD上的一个动点(不与B,D 重合),∠AOB=α,过P点作PF∥AC,交AB于F,连接AP.将AP绕P点逆时针旋转α得到EP,连接BE.(1)若点P在BD上,∠AOB=50°①求证:AF=BE;②求∠ABE=.(2)若点P在OD上,求∠ABE(用α表示);(3)若BC=8,将A绕点P顺时针方向旋转(180°﹣α)得到EP,连接DE,当DP=3OP时,DE=.5.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N,连接CN.(1)如图1,求证:E,N、C三点在同一直线上;(2)如图1,若△CMN的面积与△CDN的面积比为3:1,求的值.(3)如图2,已知点P、Q、T分别是CM、CN、MN上的动点,若AN=3,BM=1,试直接写出PT+QT的最小值.6.已知平行四边形ABCD中,N是边BC上一点,延长DN、AB交于点Q,过A作AM⊥DN于点M,连接AN,则AD⊥AN.(1)如图①,若tan∠ADM=,MN=3,求BC的长;(2)如图②,过点B作BH∥DQ交AN于点H,若AM=CN,求证:DM=BH+NH.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2.动点P以每秒2个单位长度的速度从点A出发,沿A→C→B的方向向终点B运动(点P不与△ABC的顶点重合).点P 关于点C的对称点为点D,过点P作PQ⊥AB于点Q,以PD、PQ为边作▱PDEQ.设▱PDEQ与△ABC.重叠部分的面积为S,点P的运动时间为t(s)(1)当点P在AC上运动时,用含t的代数式表示PD的长;(2)当点E落在△ABC的直角边上时,求t的值;(3)当▱PDEQ与△ABC重叠部分的图形是四边形时,求S与t之间的函数关系式.8.在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.9.如图,四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,将AC绕着点A顺时针旋转60°得AE,连接BE,CE.(1)求证:△ADC≌△ABE;(2)求证:AC2=DC2+BC2;(3)若AB=2,点Q在四边形ABCD内部运动,且满足AQ2=BQ2+DQ2,求点Q运动路径的长度.10.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:或::2)11.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.12.如图,在平面直角坐标系中,已知A(﹣2,0),B(0,m)两点,且线段AB=2,以AB为边在第二象限内作正方形ABCD.(1)求点B的坐标.(2)在x轴上是否存在点Q,使△QAB是以AB为腰的等腰三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由;(3)如果在坐标平面内有一点P(a,3),使得△ABP的面积与正方形ABCD的面积相等,求a的值.13.如图,矩形ABCD中,AB=a,AD=b,点P是对角线BD上的一个动点(点P不与B、D重合),连接AP并延长交射线BC于点Q,(1)当AP⊥BD时,求△ABQ的面积(用含a、b的代数式表示);(2)若点M为AD边的中点,连接MP交射线BC于点N,证明:点N也为线段BQ的中点;(3)如图,当为何值时,△ADP与△BPQ的面积之和最小.14.如图1,AC⊥CH于点C,点B是射线CH上一动点,将△ABC绕点A逆时针旋转60°得到△ADE(点D对应点C)(1)延长ED交CH于点F,求证F A平分∠CFE;(2)如图2,当∠CAB>60°时,点M为AB的中点,连接DM,请判断DM与DA、DE的数量关系,并证明;(3)如图3,作▱ABGE,连接DG,点N为DG的中点,连接EN.若AC=EN=3,直接写出四边形ADGE的面积.15.【操作】如图①,在矩形ABCD中,E为对角线AC上一点(不与点A重合).将△ADE 沿射线AB方向平移到△BCF的位置,E的对应点为点F,易知△ADE≌△BCF(不需要证明)【探究】过图①的点E作BG∥BC交FB延长线于点G,连接AG,其它条件不变,如图②.求证:△EGA≌△BCF【拓展】将图②中的△BCF沿BC翻折得到△BCF′,连接GF′,其它条件不变,如图③当GF′最短时,若AB=4,BC=2,直接写出FF′的长和此时四边形BFCF′的周长.16.如1,在矩形ABCD中,AB=6,AD=10,E为AD上一点且AE=6,连接BE.(1)将△ABE绕点B逆时针旋转90°至△ABF(如图2),且A、B、C三点共线,再将△ABF沿射线BC方向平移,平移速度为每秒1个单位长度,平移时间为t(s)(t≥0),当点A与点C重合时运动停止.①在平移过程中,当点F与点E重合时,t=(s).②在平移过程中,△ABF与四边形BCDE重叠部分面积记为S,求s与t的关系式.(2)如图3,点M为直线BE上一点,直线BC上有一个动点P,连接DM、PM、DP,且EM=5,试问:是否存在点P,使得△DMP为等腰三角形?若存在,请直接写出此时线段BP的长;若不存在,请说明理由.17.如图1,△ABC和△CDE均为等边三角形,BC=a,CD=b(a>b).(1)当B、C、D共线时,BA、DE交于点M,①判断四边形ACEM的形状,并说明理由.②a、b为方程x2﹣(m﹣1)x+m2﹣2m﹣8=0的两根,F为AE的中点,求CF的长.(2)将△CDE绕点C旋转(如图3所示),点E在△ABC内部,连接AE,∠BEC=105°,若=n,直接写出n的最小值.18.如图1,四边形ABCD中,对角线AC平分∠DCB,且AD=AB,CD<CB (1)求证:∠B+∠D=180°;(2)如图2,在AC上取一点E,使得BE∥CD,且BE=CE,点F在线段BC上,连接AF,且AB=AF,求证:AE=CF;(3)如图3,在(2)的条件下,若BE与AF交于点G,BF:AB=2:7,求tan∠BGF 的值.19.已知四边形ABCD中,AD∥BC,∠D=90°,AC平分∠BAD,∠ACD=30°(1)如图1,求证:△ABC是等边三角形;(2)如图2,点E在边BA的延长线上,在边BC上取一点F,连接EC、EF且EC=EF,求证:BF=AE;(3)如图3,在(2)的条件下,连接AF,取AF的中点G,连接BG并延长交线段EC 于M,交线段AD于R,过点A作AN∥EC交线段BR于N,若GN=2,EM=5,求CM 的长.20.阅读材料题:浙教版九上作业本①第18页有这样一个题目:已知,如图一,P是正方形ABDC内一点,连接P A、PB、PC,若PC=2,P A=4,∠APC=135°,求PB的长.小明看到题目后,思考了许久,仍没有思路,就去问数学老师,老师给出的提示是:将△P AC绕点A顺时针旋转90°得到△P'AB,再利用勾股定理即可求解本题.请根据数学老师的提示帮小明求出图一中线段PB的长为.【方法迁移】:已知:如图二,△ABC为正三角形,P为△ABC内部一点,若PC=1,P A=2,PB=,求∠APB的大小.【能力拓展】:已知:如图三,等腰三角形ABC中∠ACB=120°,D、E是底边AB上两点且∠DCE=60°,若AD=2,BE=3,求DE的长.21.问题发现:(1)如图①,四边形ABCD中,∠DAB=∠BCD=90°,CB=CD,对角线AC的长为6,则四边形ABCD的面积为.问题探究:(2)如图②,Rt△ABC中,∠CAB=90°,AC=5,AB=12,点D和E都是边BC上的动点,且满足CD=BE,连接AD、AE.求AD+AE的最小值;问题解决:(3)某校准备组织八年级同学开展一次去大明宫遗址公园的考古研学活动.小凯和小鹏在去之前先做了一个模拟“藏宝图”的游戏,为了使宝物隐藏得更神秘,小凯利用学过的数学知识,设计了如下方案,让小鹏破解.如图③,点B在点A的正东方向12m处,点P和Q都为平面内的动点,且满足P A=8m,PB=BQ,∠PBQ=90°,当线段AQ长度最大时,点Q的位置即为藏宝地.请你帮助小鹏破解,藏宝地在点A的什么方向?距离点A多远?22.已知:如图,正方形ABCD,点E是DC边上的一动点,过点C作AE的垂线交AE延长线于点F,过D作DH⊥CF,垂足为H,点O是AC中点,连HO.(1)如图1,当∠CAE=∠DAE时,证明:AE=2CF;(2)如图2,当点E在DC上运动时,线段AF与线段HO之间是否存在确定的数量关系?若存在,证明你发现的结论:若不存在,请说明理由;(3)当E为DC中点时,AC=2,直接写出AF的长.23.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设P的运动时间为t,△PCE的面积为S,求S与t的关系式,直接写出t的取值范围;(3)在(2)的条件下,当P A=PE时,在平面直角坐标系中是否存在点Q,使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.24.在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.(1)如图①,证明:BE=BF.(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA 之间的数量关系,并对结论给予证明.参考答案与试题解析1.四边形ABCD为平行四边形,点P为平面内一点(1)若AP=BC,连AP、DP;①如图1,点P在边BC上,求证:PD平分∠APC;②如图2,过P作PD的垂线交DC的延长线于点F,FP交AB于点E,求证:DF=2AE.(2)如图3,∠ABC=60°,点P在对角线DB上,点M在边AD上,MP=CD且∠AMP =∠ABD,AB=5,BP=3,直接写出平行四边形ABCD的面积.【分析】(1)①如图1中,由AP=AD,推出∠ADP=∠APD,再证明∠ADP=∠DPC 即可解决问题.②如图2中,取DF的中点M,连接MA、MP.想办法证明四边形AEFM是平行四边形即可解决问题.(2)在BD上取点K,使AB=AK,作DF⊥BA交BA的延长线于F.证明△ADK≌△PDM (AAS),推出DP=DA,设DP=DA=x,则AF=AD=x.DF=AF=x,在Rt△BDF中,根据BD2=BF2+DF2,构建方程求出x即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是平行四边形,∴AD=BC,∵AP=BC,∴AP=AD,∴∠APD=∠ADP∵AD∥BC,∴∠ADP=∠DPC,∴PD平分∠APC.②如图2中,取DF的中点M,连接MA、MP.∵PD⊥PF,∴∠DPF=90°,∴PM=DM=MF,∵AP=AD,∴AM为线段PD的垂直平分线,∴AM∥EF,∵EF⊥PD,∵AE∥FM,∴四边形AEFM为平行四边形,∴AE=MF,∴DF=2AE.(3)在BD上取点K,使AB=AK,作DF⊥BA交BA的延长线于F.∵AB=AK,∵∠AMP=∠ABD,∴∠AMP=∠AKB,∴∠DMP=∠DKA,∵∠ADK=∠PDM,PM=CD=AB=AK,∴△ADK≌△PDM(AAS),∴DP=DA,设DP=DA=x,∵AD∥BC,∴∠F AD=∠ABC=60°,∴AF=AD=x.DF=AF=x,在Rt△BDF中,∵BD2=BF2+DF2,∴(3+x)2=(5+x)2+(x)2,解得x=16,∴S平行四边形ABCD=AB•DF=5××16=.2.在正方形ABCD中,AB=6,E为直线AB上一点,EF⊥AB交对角线AC于F,点G为AF中点,连接CE,点M为CE中点,连接BM并延长交直线AC于点O.(1)如图1,E在边AB上时,=,∠GBM=45°;(2)将(1)中△AEF绕A逆时针旋转任意一锐角,其他条件不变,如图2,(1)中结论是否仍然成立?请加以证明.(3)若BE=2,则CO长为或3.【分析】(1)连接EG、GM.想办法证明△GBM是等腰直角三角形即可解决问题.(2)成立.延长GM到H,使得MH=GM,连接BH,HC,延长HC交AF的延长线于I,设AI交CD于J.利用全等三角形的性质证明△GBM是等腰直角三角形即可解决问题.(3)分两种情形①点E在线段AB上.②点E在AB的延长线上,分别求解即可解决问题.【解答】解:(1)连接EG、GM.∵四边形ABCD是正方形,∴∠ABC=90°,∠CAB=∠ACB=45°,∵EF⊥AB,∴∠AEF=90°,∴∠EAF=∠EF A=45°,∵AG=GF,∴EG⊥AF,∴∠EGC=90°∵EM=MC,∴GM=BM=CE,∴∠MCG=∠MGC,∠MBC=∠MCB,∴∠BMG=∠BME+∠GME=2∠BMC+2∠GCM=2∠ACB=90°.故△GMB为等腰直角三角形.∴=.故答案为,45°.(2)成立.理由:延长GM到H,使得MH=GM,连接BH,HC,延长HC交AF的延长线于I,设AI交CD于J.∵EM=MC,GM=MH,∠EMG=∠HMC,∴△EMG≌△CMH(SAS),∴EG=CH,∠EGM=∠MHC,∴EC∥CH,∴∠AGE=∠AIH=90°,∵AG=EG,∴AG=CH,∵∠D=∠I=90°,∠AJD=∠CJI,∴∠ICD=∠IAD,∵∠BAG+∠IAD=90°,∠BCH+∠ICF=90°∴∠BCH=∠BAG,∵BA=BC∴△BAG≌△BCH(SAS),∴BG=DH,∠ABG=∠CBH,∴∠∠GBH=∠ABC=90°故△GBH是等腰直角三角形,∴=,∠GBM=45°.(3)当E在B上方时,如图3﹣1中,延长BO交CD于T.∴BE∥CT,∴∠MEB=∠MCT,∵∠EMB=∠CMT,EM=CM,∴△EMB≌△CMT(ASA),∴BE=CT=2,∵CT∥AB,∴==,∵AC=6,∴OC=×6∴CO=当E在B下方时同法可得CO=.综上所述,OC的长为或3.故答案为或3.3.平面直角坐标系中,菱形ABCD.(1)若点A坐标是(0,2),点B坐标(﹣2,0),求∠ABC及菱形边长:(2)在(1)的条件下,连接OD,过C点向OD作垂线,垂足为E,求CE;(3)如图3所示,∠ABO=60°,在y轴负半轴上取一点P,使得∠BPO=15°,延长BD至Q,使得DQ=CD,连接AQ,若AP=BQ=a,求线段AQ的长(用含a的式子表示).【分析】(1)在Rt△AOB中,解直角三角形求出AB,∠ABO即可.(2)根据S△ODC=•OD•CE=•OC•OA求解即可.(3)设菱形ABCD的边长为2x,过Q点作QM⊥AD交AD的延长线于M,过DN⊥x轴于N,根据AP=BQ=a,构建方程求解即可.【解答】解:(1)如图1中,∵A(0,2),B(﹣2,0),∴OA=2,OB=2,∴tan∠ABO==,∴∠ABC=60°,∴∠OAB=90°﹣60°=30°,∴AB=2OB=4,∴菱形的边长为4.(2)如图2中,∵四边形ABCD是菱形,AB=AD=CD=BC=4,∴C(2,0),D(4,2),∴OD==2,∵CE⊥OD,∴S△ODC=•OD•CE=•OC•OA,∴EC==.(3)设菱形ABCD的边长为2x,过Q点作QM⊥AD交AD的延长线于M,过DN⊥x 轴于N,在△QDM中,∠QDM=30°,DQ=2x,∴QM=DQ=x,DM=x,AM=2x+x=(2+)x,又QM⊥AM,利用勾股定理可求AQ=(+)x,BD=2x,∵AP=BQ=a,∴2x+2x=a,得x=,继而得AQ=(+)x=a.4.矩形ACBD对角线AC、BD相交于点O,点P是对角线BD上的一个动点(不与B,D 重合),∠AOB=α,过P点作PF∥AC,交AB于F,连接AP.将AP绕P点逆时针旋转α得到EP,连接BE.(1)若点P在BD上,∠AOB=50°①求证:AF=BE;②求∠ABE=50°.(2)若点P在OD上,求∠ABE(用α表示);(3)若BC=8,将A绕点P顺时针方向旋转(180°﹣α)得到EP,连接DE,当DP=3OP时,DE=2或4.【分析】(1)①证明△APF≌△EPB(SAS)可得结论.②利用全等三角形的性质以及三角形内角和定理解决问题即可.(2)如图2中,证明△FP A≌△BPE(SAS),推出∠F AP=∠PEB,由∠F AP+∠P AB=180°,推出∠P AB+∠PEB=180°,推出∠ABE+∠APE=180°可得结论.(3)分两种情形:如图3中,当点P在OD上时,如图3所示,过点P作PF∥OA,交AD于点F,如图4所示,当点P在OB上时,过点P作PF∥OA,交DA的延长线于点F,分别求解即可解决问题.【解答】(1)①证明:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵PF∥OA,∴=,∠FPB=∠AOB=α,∴PF=PB,∠EPB=∠FPB﹣∠FPE=α﹣∠FPE,∵AP=EP,∠APE=α,∴∠APF=α﹣∠FPE,∴∠APF=∠EPB,∴△APF≌△EPB(SAS),∴AF=BE.②∵△APF≌△EPB,∴∠AFP=∠EBP,∵∠AFP=∠FPB+∠OBA,∠EBP=∠ABE+∠OBA,∴∠ABE=∠FPB,∴∠ABE=α=50°.故答案为50°.(2)如图2中,∵P A=PE,∠APE=α,同法可证PF=PB,∠FPB=α,∴∠FPB=∠APE,∴∠FP A=∠BPE,∴△FP A≌△BPE(SAS),∴∠F AP=∠PEB,∵∠F AP+∠P AB=180°,∴∠P AB+∠PEB=180°,∴∠ABE+∠APE=180°,∴∠ABE=180°﹣α.(3)如图3中,当点P在OD上时,如图3所示,过点P作PF∥OA,交AD于点F,∵DP=3OP,即OD=4OP,∴===,∴AF=AD=BC=2.类比(1)①得:△APF≌△EPD,∴DE=AF=2.如图4所示,当点P在OB上时,过点P作PF∥OA,交DA的延长线于点F,∵DP=3OP,即OD=2OP,∴===,∴AF=AD=BC=4.类比(1)①得:△APF≌△EPD,∴DE=AF=4.综上所述,DE的长为2或4.故答案为2或4.5.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N,连接CN.(1)如图1,求证:E,N、C三点在同一直线上;(2)如图1,若△CMN的面积与△CDN的面积比为3:1,求的值.(3)如图2,已知点P、Q、T分别是CM、CN、MN上的动点,若AN=3,BM=1,试直接写出PT+QT的最小值2.【分析】(1)证明∠ENM+∠CNM=∠DNM+∠ANM=180°,可得结论.(2)如图1中,首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案,(3)如图2中,由(1)得出△CMN是等腰三角形,而TQ+TA最小就是点T到等腰三角形的两腰的距离之和最小就是等腰三角形腰上的高.【解答】(1)证明:如图1中,由折叠的性质可得:∠ENM=∠DNM,即∠ENM=∠ENA+∠ANM,∠DNM=∠DNC+∠CNM,∵∠ENA=∠DNC,∴∠ANM=∠CNM,∴∠ENM+∠CNM=∠DNM+∠ANM=180°,∴E,N、C三点在同一直线上.(2)解:如图1中,过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.(3)如图2中,∵CM=CN∴△CMN是等腰三角形,要使PT+QT的最小值,也就是等腰三角形的底边上一点到两腰上距离之和最短,即:TQ⊥CN,TP⊥CM,而等腰三角形的底边上一点到两腰的距离之和等于腰上的高,过点N作NH⊥BC,∴PT+QT的最小值就是NH=AB,由折叠得,AM=CM=AN=3,∴BM=AN=1在Rt△ABM中,根据勾股定理得,AB==2.∴NH=2,即:PT+QT的最小值为2.故答案为2.6.已知平行四边形ABCD中,N是边BC上一点,延长DN、AB交于点Q,过A作AM⊥DN于点M,连接AN,则AD⊥AN.(1)如图①,若tan∠ADM=,MN=3,求BC的长;(2)如图②,过点B作BH∥DQ交AN于点H,若AM=CN,求证:DM=BH+NH.【分析】(1)如图①中,设AM=3k,DM=4k,则AD=5k,由△ADM∽△NDA,可得AD2=DM•AN,由此构建方程即可解决问题.(2)如图②中,连接CH,在DM上取一点K,使得DK=BH.证明△ADK≌△CBH (SAS),推出AK=CH,再证明Rt△AMK≌Rt△CNH(HL),推出MK=HN即可解决问题.【解答】(1)解:如图①中,∵AM⊥DN,∴∠AMD=90°,∵tan∠ADM==,∴可以假设AM=3k,DM=4k,则AD=5k,∵AD⊥AN,∴∠DAN=90°=∠AMD,∵∠ADM=∠ADN,∴△ADM∽△NDA,∴AD2=DM•AN,∴(5k)2=4k(4k+3),解得k=,∴AD=,∵四边形ABCD是平行四边形,∴BC=AD=.(2)证明:如图②中,连接CH,在DM上取一点K,使得DK=BH.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADK=∠BNQ,∵BH∥DQ,∴∠CBH=∠BNQ,∴∠ADK=∠CBH,∵DK=BH,DA=BC,∴△ADK≌△CBH(SAS),∴AK=CH,∵AM⊥DQ,AN⊥AD,AD∥BC,∴AN⊥BC,∴∠AMK=∠CNH=90°,∵AM=CN,∴Rt△AMK≌Rt△CNH(HL),∴MK=NH,∴DM=DK+MK=BH+HN.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2.动点P以每秒2个单位长度的速度从点A出发,沿A→C→B的方向向终点B运动(点P不与△ABC的顶点重合).点P 关于点C的对称点为点D,过点P作PQ⊥AB于点Q,以PD、PQ为边作▱PDEQ.设▱PDEQ与△ABC.重叠部分的面积为S,点P的运动时间为t(s)(1)当点P在AC上运动时,用含t的代数式表示PD的长;(2)当点E落在△ABC的直角边上时,求t的值;(3)当▱PDEQ与△ABC重叠部分的图形是四边形时,求S与t之间的函数关系式.【分析】(1)由题意,可先写出AP的长,再写出CP的长,由对称的性质即可写出PD 的长;(2)①如图2﹣1,当点E落在BC边上时,过点Q作QH⊥AD于H,证明CE=HQ=AP=CD,即可列出关于t方程,求出t的值;②如图2﹣2,当点E落在AC边上时,过点Q作QG⊥BC于G,证明CE=GQ=BP=CD,即可列出关于t的方程,求出t的值即可;(3)如图3﹣1,当0<t≤时,求出梯形PQMC的面积即可;如图3﹣2,当≤t≤2时,求出梯形PQCN的面积即可.【解答】解:(1)由题意,得AP=2t,CP=2﹣2t,∴PD=2CP=4﹣4t;(2)①如图2﹣1,当点E落在BC边上时,过点Q作QH⊥AD于H,由题意知,△AQP和△CED为等腰直角三角形,∴CE=HQ=AP,CE=CD,∵HQ=AP=t,CD=PC=2﹣2t,∴t=2﹣2t,∴t=;②如图2﹣2,当点E落在AC边上时,过点Q作QG⊥BC于G,由题意知,△BQP和△CED为等腰直角三角形,∴CE=GQ=BP,CE=CD,∵GQ=BP=(4﹣2t)=2﹣t,CD=PC=2t﹣2,∴2﹣t=2t﹣2,∴t=,综上所述,点E落在△ABC的直角边上时,t的值为或;(3)如图3﹣1,当0<t≤时,S=S梯形PQMC=t(2﹣2t+2﹣t)=﹣t2+2t;如图3﹣2,当≤t≤2时,S=S梯形PQNC=(2﹣t)(2t﹣2+t)=﹣t2+4t﹣2,综上所述,S=.8.在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.【分析】(1)①证△ADC和△ABC是等边三角形,再证△BAP≌△CAE,推出∠ACE=30°,由∠ACE+∠CAD=90°即可证明结论;②如图1,设AC与BD交于点O,证∠BCE=90°,由勾股定理求出CE,BP的长,由锐角三角函数等分别求出OA,OP的长,由勾股定理即可求出AP的长,即AE的长;(2)如图2,连接AE,过点A作AH⊥BF于点H,证∠HAF=∠BAD=60°,再证△DEF为等边三角形,即可求出HF,AH的长,进一步求出△AEF的面积,证△ADF≌△AEF即可.【解答】(1)①证明:在菱形ABCD中,∠ABC=60°,∴∠ADC=60°,且AB=BC=DA=DC,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=∠CAD=60°,又∵△APE是等边三角形,∴AE=AP,∠EAP=60°,∴∠BAC+∠CAP=∠P AE+∠CAP,即∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴∠ACE=∠ABP=∠ABC=30°,∵∠CAD=60°,∴∠ACE+∠CAD=90°,∴CE⊥AD;②解:如图1,设AC与BD交于点O,由①知,∠ACE=30°,且∠ACB=60°,∴∠ACE+∠ACB=∠BCE=90°,∵在Rt△BCE中,BC=AB=,BE=,∴CE==4,由①知,△BAP≌△CAE,∴BP=CE=4,在Rt△BOC中,∠ACB=60°,∴BO=BC=,CO=AO=BC=,∴OP=BP﹣BO=,∴在Rt△AOP中,AP===,∴AE=AP=;(2)解:如图2,连接AE,过点A作AH⊥BF于点H,∵点D关于AP的对称点为E,∴AP垂直平分DE,∴AD=AE,FD=FE,∴∠EAF=∠DAF=∠EAD,∠DF A=∠EF A=∠DFE,又∵在菱形ABCD中,AB=AD,∴AB=AE,∴AH垂直平分BE,∴EH=BH=BE=,∠BAH=∠EAH=∠BAE,∴∠HAF=∠EAH+∠EAF=∠BAD,∵∠ABC=60°,∴∠BAD=180°﹣∠ABC=120°,∴∠HAF=60°,∴∠AFH=90°﹣∠HAF=30°,∴∠DFE=60°,∴△DEF为等边三角形,∴EF=DE=5,∴HF=HE+EF=+5=,在Rt△AHF中,∠AFH=30°,∴AH=HF=,∴S△AEF=EF•AH=×5×=,∵AD=AE,FD=FE,AF=AF,∴△ADF≌△AEF(SSS),∴△ADF的面积为.9.如图,四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,将AC绕着点A顺时针旋转60°得AE,连接BE,CE.(1)求证:△ADC≌△ABE;(2)求证:AC2=DC2+BC2;(3)若AB=2,点Q在四边形ABCD内部运动,且满足AQ2=BQ2+DQ2,求点Q运动路径的长度.【分析】(1)推出∠DAC=∠BAE,则可直接由SAS证明△ADC≌△ABE;(2)证明△BCE是直角三角形,再证DC=BE,AC=CE即可推出结论;(3)如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,证△ADQ≌△ABF,由勾股定理的逆定理证∠FBQ=90°,求出∠DQB=150°,确定点Q的路径为过B,D,C三点的圆上,求出的长即可.【解答】(1)证明:∵∠CAE=∠DAB=60°,∴∠CAE﹣∠CAB=∠DAB﹣∠CAB,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ADC≌△ABE(SAS);(2)证明:在四边形ABCD中,∠ADC+∠ABC=360°﹣∠DAB﹣∠DCB=270°,∵△ADC≌△ABE,∴∠ADC=∠ABE,CD=BE,∴∠ABC+ABE=∠ABC+∠ADC=270°,∴∠CBE=360°﹣(∠ABC+ABE)=90°,∴CE2=BE2+BC2,又∵AC=AE,∠CAE=60°,∴△ACE是等边三角形,∴CE=AC=AE,∴AC2=DC2+BC2;(3)解:如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,则∠DAQ=∠BAF,AQ=QF,△AQF为等边三角形,又∵AD=AB,∴△ADQ≌△ABF(SAS),∴AQ=FQ,BF=DQ,∵AQ2=BQ2+DQ2,∴FQ2=BQ2+BF2,∴∠FBQ=90°,∴∠AFB+∠AQB=360°﹣(∠QAF+∠FBQ)=210°,∴∠AQD+∠AQB=210°,∴∠DQB=360°﹣(∠AQD+∠AQB)=150°,∴点Q的路径为过B,D,C三点的圆上,如图2,设圆心为O,则∠BOD=2∠DCB=60°,连接DB,则△ODB与△ADB为等边三角形,∴DO=DB=AB=2,∴点Q运动的路径长为:=π.10.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:或::2)【分析】【尝试】(1)如图1所示,若点D恰为AO的中点,证明Rt△OCP≌Rt△ODP,进而得到OD=OC=AD=8,a=16,可得结论;则θ=30°;(2)如图2所示,若点D恰为AB的中点,作辅助线,证明△BDM≌△ADN(ASA),得DM=DN,根据线段垂直平分线的性质可得OM=ON,根据等腰三角形的性质可得∠MOD=∠NOD,所以∠MOD=∠MOC=θ,可得结论;【应用】①如图3,作辅助线,根据点B与点E关于直线l对称,知∠OF A=∠OFB=90°,证明四边形BCOH是平行四边形,得BH=CO=8,OH=CB=6,可得OA的值,即a的值;②作辅助线,如图4,则有∠QAO=∠F AO=45°,QA=F A,从而可得∠QAF=90°.然后根据勾股定理可求出AB、AF、AQ、OF、OB、BF,由折叠可求出EF,从而可求出AE长,在Rt△QAE中,运用勾股定理可求出EQ2长,然后根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长,问题得以解决.【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD=8,∵D为OA的中点,∴OA=a=16,则这个操作过程为FZ[45°,16];故答案为:45°,16;(2)延长MD、OA,交于点N,如图2.∵∠AOC=∠BCO=90°,∴∠AOC+∠BCO=180°,∴BC∥OA,∴∠B=∠DAN.在△BDM和△ADN中,,∴△BDM≌△ADN(ASA),∴DM=DN.∵∠ODM=∠OCM=90°,∴根据线段垂直平分线的性质可得OM=ON,∴根据等腰三角形的性质可得∠MOD=∠NOD.由折叠可得∠MOD=∠MOC=θ,∴∠COA=3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB==8.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°∴AF=OF==7,∴AQ=AF=7.在Rt△OCB中,OB===10.在Rt△OFB中,BF=AB﹣AF=8﹣7=.由折叠可得EF=BF=,∴AE=AF﹣EF=7﹣=6.在Rt△QAE中,EQ2=AE2+AQ2=(6)2+(7)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是.11.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【分析】(1)结论:DE=DG.如图1中,连接EG,延长EG交BC的延长线于M,连接DM.证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE(SAS)即可解决问题.(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.证明方法类似.(3)分两种情形:①如图3﹣1中,当E,F,C共线时.②如图3﹣2中,当E,F,C 共线时,分别求解即可.【解答】解:(1)结论:DE=DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE=DG.(3)①如图3﹣1中,当E,F,C共线时,在Rt△ADC中,AC===5,在Rt△AEC中,EC===7,∴CF=CE﹣EF=6,∴CG=CF=3,∵∠DGC=90°,∴DG===4.∴DE=DG=4.②如图3﹣2中,当E,F,C共线时,同法可得DE=3.综上所述,DE的长为4或3.12.如图,在平面直角坐标系中,已知A(﹣2,0),B(0,m)两点,且线段AB=2,以AB为边在第二象限内作正方形ABCD.(1)求点B的坐标.(2)在x轴上是否存在点Q,使△QAB是以AB为腰的等腰三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由;(3)如果在坐标平面内有一点P(a,3),使得△ABP的面积与正方形ABCD的面积相等,求a的值.【分析】(1)在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长即可;(2)存在,以AB为腰,有两种情况:分别以A、B为顶点作等腰三角形的顶角,根据AB=2,结合图形可得Q的坐标;(3)作辅助线,构建高线PG,分两种情况:P在y轴的左侧和右侧,根据三角函数可得PH的长,从而得a的值.【解答】解:(1)∵A(﹣2,0),∴OA=2,∵AB=2,由勾股定理得:OB==4,∴B(0,4);(2)分两种情况:①以AB为腰,∠BAQ为顶角时,如图1,AB=AQ=2,∴Q1(﹣2﹣2,0),Q2(2﹣2,0),②以AB为腰,∠ABQ为顶角时,如图1,A与Q3关于y轴对称,∴Q3(2,0);综上,点Q的坐标是(﹣2﹣2,0)或(2﹣2,0)或(2,0),(3)分两种情况:①当P在y轴的右边时,如图2,作直线l:y=3,直线l交AB于H,交y轴于E,∵P(a,3),∴点P在直线l上,过P作PG⊥AB于G,∵S△ABP=S正方形ABCD,∴•AB•PG=AB2,PG=2AB=4,∵l∥x轴,∴∠PHG=∠OAB,∴sin∠PHG=sin∠OAB,即,∴,PH=10,∵EH∥OA,∴,即,∴EH=,∴PE=10﹣0.5=9.5,∴P(9.5,3)即a=9.5;②当点P在y轴的左侧时,如图3,同理可得PH=10,∴P(﹣10.5,3),∴a=﹣10.5,综上,a的值是9.5或﹣10.5.13.如图,矩形ABCD中,AB=a,AD=b,点P是对角线BD上的一个动点(点P不与B、D重合),连接AP并延长交射线BC于点Q,(1)当AP⊥BD时,求△ABQ的面积(用含a、b的代数式表示);(2)若点M为AD边的中点,连接MP交射线BC于点N,证明:点N也为线段BQ的中点;(3)如图,当为何值时,△ADP与△BPQ的面积之和最小.【分析】(1)利用相似三角形的性质求出BQ即可解决问题.(2)证明△AMP∽△QNP,△DMP∽△BNP推出,可得,因为点M是AD的中点,所以AM=DM.(3)如图②,过点P作EF⊥AD交AD、BC于E、F.构建一元二次方程,利用根的判别式解决最值问题即可.【解答】(1)解:如图①:。
初中数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。
2022年中考数学《四边形》专题训练及答案
2022年中考数学《四边形》专题训练及答案一.选择题(共17小题)1.如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE 相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH2.数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形3.如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP 形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形4.如图,在矩形ABCD 中,AB =6,BC =10,E 是BC 边上一动点(不含端点B ,C ),连接EA ,F 是CD 边上一点,设DF =a ,若存在唯一的点E ,使∠FEA =90°,则a 的值是( )A .256B .116C .103D .35.如图,E ,F 是正方形ABCD 的边BC 上两个动点,BE =CF .连接AE ,BD 交于点G ,连接CG ,DF 交于点M .若正方形的边长为1,则线段BM 的最小值是( )A .12B .√3−12C .√2−12D .√5−126.如图,在矩形ABCD 中,以对角线AC 为斜边作Rt △AEC ,过点E 作EF ⊥DC 于点F ,连结AF ,若AD =DF ,S △AEF =3,S △ACF =5,则矩形ABCD 的面积为( )A .18B .19C .20D .217.如图,在▱ABCD 中,BD =6,AC =10,BD ⊥AB ,则AD 的长为( )A .8B .√42C .2√5D .2√138.如图,在Rt △ABC 中(AC >BC ),∠ACB =90°,过C 作CD ⊥AB 于点D ,分别以AD ,AC ,BC 为边向上作正方形ADQP,正方形ACEF,正方形CBGH,其中CE与PQ相交于点O,连接PF,QH,EH.若点F,P,Q,H在同一直线上,且△OCQ的面积为1,则六边形ABGHEF的面积为()A.5+3√5B.15+7√5C.20+10√5D.30+14√59.已知四边形ABCD为平行四边形,要使四边形ABCD为矩形,则可增加条件为()A.AB=BC B.AC=BD C.AC⊥BD D.AC平分∠BAD10.如图,矩形ABCD中,AB:AD=2:1,点E为AB的中点,点F为EC上一个动点,点P为DF的中点,连接PB,当PB的最小值为3√2时,则AD的值为()A.2B.3C.4D.611.如图,在矩形ABCD中,点F为边AD上一点,过F作EF∥AB交边BC于点E,P为边AB上一点,PH⊥DE 交线段DE于H,交线段EF于Q,连接DQ.当AF=AB时,要求阴影部分的面积,只需知道下列某条线段的长,该线段是()A.EF B.DE C.PH D.PE12.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,里面放置两个大小相同的正方形CDEF与正方形GHIJ,点F在边BC上,点D,H在边AC上,点G在边DE上,点I,J在斜边AB上,则正方形CDEF的边长为()A .3613B .3013C .2413D .181313.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足( )A .AD =4AEB .AD =2ABC .AB =2AED .AB =3AE14.如图,矩形ABCD 由两直角边之比皆为1:2的三对直角三角形纸片甲、乙、丙拼接而成它们之间互不重叠也无缝隙,则AD AB的值为( )A .23B .34C .45D .2√5515.如图,已知大矩形ABCD 由①②③④四个小矩形组成,其中AE =CG ,则只需要知道其中一个小矩形的面积就可以求出图中阴影部分的面积,这个小矩形是( )A .①B .②C .③D .④16.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中△ABE ,△BCF ,△CDG ,△DAH 全等,△AEH ,△BEF ,△CFG ,△DGH 也全等,中间小正方形EFGH 的面积与△ABE 面积相等,且△ABE 是以AB 为底的等腰三角形,则△AEH 的面积为( )A .2B .169C .32D .√217.一张矩形纸板和圆形纸板按如图方式分别剪得同样大定理特例图(AC =3,BC =4,AB =5,分别以三边为边长向外作正方形),图1中边HI 、LM 和点K 、J 都恰好在矩形纸板的边上,图2中的圆心O 在AB 中点处,点H 、I 都在圆上,则矩形和圆形纸板的面积比是( )A .400:127πB .484:145πC .440:137πD .88:25π二.填空题(共7小题)18.如图,在矩形ABCD 中,点E 在边AB 上,△BEC 与△FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与CE ,CF 交于M ,N 两点.若BM =BE ,MG =1,则BN 的长为 ,sin ∠AFE 的值为 .19.图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d 的值为 ;记图1中小正方形的中心为点A ,B ,C ,图2中的对应点为点A ′,B ′,C ′.以大正方形的中心O 为圆心作圆,则当点A ′,B ′,C ′在圆内或圆上时,圆的最小面积为 .20.如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2√3,则AH的长为.21.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=10,BD=24,则OE的长为.22.如图,在▱ABCD中,P为AB上的一点,E、F分别是DP、CP的中点,G、H为CD上的点,连接EG、FH,若▱ABCD的面积为24cm2,GH=12AB,则图中阴影部分的面积为.23.如图1,某学校楼梯墙面上悬挂了四幅全等的正方形画框,画框下边缘与水平地面平行.如图2,画框的左上角顶点B,E,F,G都在直线AB上,且BE=EF=FG,楼梯装饰线条所在直线CD∥AB,延长画框的边BH,MN得到▱ABCD.若直线PQ恰好经过点D,AB=275cm,CH=100cm,∠A=60°,则正方形画框的边长为cm.24.如图,F是矩形ABCD内一点,AF=BF.连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG 对称.若AD =9,则AB 的长为 .三.解答题(共13小题) 25.【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:△BCE ≌△CDG . 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若HD HF=45,CE =9,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,H 两点,若AB BC=k ,HD HF=45,求DE EC的值(用含k 的代数式表示).26.【证明体验】(1)如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在AB 上,AE =AC .求证:DE 平分∠ADB . 【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB =FC ,DG =2,CD =3,求BD 的长. 【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC .若BC =5,CD =2√5,AD =2AE ,求AC 的长.27.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.28.如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE⊥BC,∠EAF=∠ABC时,①求证:AE=AF;②连结BD,EF,若EFBD =25,求S△AEFS菱形ABCD的值;(2)当∠EAF=12∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.29.如图,在四边形ABCD中,AB∥CD,AD∥BC,过B作BE⊥BD与DA的延长线交于点E.(1)若点A为DE中点,求证:四边形ABCD为菱形.(2)若BA=BE,tan∠EDB=√22,求△ABE与四边形ABCD面积的比值.30.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.31.如图1,在正方形ABCD中,BD为对角线,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于点G,交BD于点H,垂足为F,连结EH.(1)AE与BG相等吗,请说明理由;(2)若BE:AE=n,求证:DH:BH=n+1;(3)在(2)的基础上,如图2时,当EH∥AD时,求n的值.32.如图,在矩形ABCD中,点E在射线CB上,连结AE,∠DAE的平分线AG与CD交于点G,与BC的延长线交于F点.设CEEB =λ(λ>0),ABBC=k(k>0且k≠2).(1)若AB=8,λ=1,k=43,求线段CF的长.(2)连结EG,若EG⊥AF,①求证:点G为CD边的中点;②求λ的值(用k表示).33.在正方形ABCD中,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于G.(1)如图1,AE与BG相等吗?请说明理由;(2)如图2,连接BD,交AG于H,ED于F,连接EH,若BE:AE=n,求DH:BH;(3)在(2)的基础上,如图3,当EH∥AD时,求n的值.34.如图,在△ABC中,AC=BC=2√5,tan∠CAB=12,P为AC上一点,PD⊥AB交AB于点E,AD⊥AC交PD于点D,连结BD,CD,CD交AB于点Q.(1)若CD⊥BC,求证:△AED∽△QCB;(2)若AB平分∠CBD,求BQ的长;(3)连结PQ并延长交BD于点M.①当点P是AC的中点时,求tan∠BQM的值;②当PM平行于四边形ADBC中的某一边时,求BMDM的值.35.在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为 ;在底边长为2的等腰三角形中,底角的勾股差为 ;(2)性质探究:如图1,CD 是△ABC 的中线,AC =b ,BC =a ,AB =2c ,CD =d ,记△ACD 中∠ADC 的勾股差为m ,△BCD 中∠BDC 的勾股差为n ;①求m ,n 的值(用含a ,b ,c ,d 的代数式表示); ②试说明m 与n 互为相反数;(3)性质应用:如图2,在四边形ABCD 中,点E 与F 分别是AB 与BC 的中点,连接BD ,DE ,DF ,若DF AB=34,且CD ⊥BD ,CD =AD ,求DE DF的值.36.【发现问题】小聪发现图1所示矩形甲与图2所示矩形乙的周长与面积满足关系:C 乙C 甲=S 乙S 甲=12.【提出问题】对于任意一个矩形A ,是否一定存在矩形B ,使得C B C A=S B S A=12成立?【解决问题】(1)对于图2所示的矩形乙,是否存在矩形丙(可设两条邻边长分别为x 和7﹣x ),使得C 丙C 乙=S 丙S 乙=12成立.若存在,求出矩形丙的两条邻边长;若不存在,请说明理由; (2)矩形A 两条邻边长分别为m 和1,若一定存在矩形B ,使得C B C A=S B S A=12成立,求m 的取值范围;(3)请你回答小聪提出来的问题.若一定存在,请说明理由;若不一定存在,请直接写出矩形A 两条邻边长a ,b 满足什么条件时一定存在矩形B .37.如图,矩形ABCD 中,AB =7,AD =3,点E 是AD 边上的一点,DE =2AE ,连接EB ,F 是EB 的中点,连接CF ,点M 为DC 边上的一点,当动点P 从点C 匀速运动到点F 时,动点Q 恰好从点M 匀速运动到点C .(1)求tan∠DCF的值;(2)若点P运动到CF的中点时,Q,P,B三点恰好共线,求此时DM的长;(3)连接EM,BM,当∠EMB=90°且DM<CM时,记MQ=x,CP=y.①求y关于x的函数关系式;②当PQ平行于△BEM的某一边时,求所有满足条件的x的值.参考答案与试题解析一.选择题(共17小题)1.【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ∥EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=12•DH•OJ,S△DHG=12•DH•GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=12•CG•DH,S△ADH=12•DH•AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故A选项符合题意;S3=HE•EF≠S1,故B选项不符合题意;AB=AD,EH=GH均不成立,故C选项,D选项不符合题意,故选:A.2.【解答】解:如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.3.【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为直角三角形;当点P到达点C处时,此时△ABP为等边三角形;当P为CD中点时,△ABP为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形, 故选:C .4.【解答】解:∵∠FEA =90°, ∴∠AEB +∠FEC =90°, ∵∠B =90°,∴∠AEB +∠EAB =90°, ∴∠EAB =∠FEC , ∵∠B =∠C =90°, ∴△ABE ∽△ECF , ∴AB EC=BE CF,设BE =x ,则EC =BC ﹣BE =10﹣x , ∵DF =a ,∴FC =DC ﹣DF =6﹣a , ∴x (10﹣x )=6(6﹣a ), ∴x 2﹣10x +36﹣6a =0, 由题意判别式b 2﹣4ac =0, ∴24a ﹣44=0, ∴a =116, 故选:B .5.【解答】解:如图,在正方形ABCD 中,AB =AD =CB ,∠EBA =∠FCD ,∠ABG =∠CBG ,在△ABE 和△DCF 中, {AB =CD∠EBA =∠FCD BE =CF, ∴△ABE ≌△DCF (SAS ), ∴∠BAE =∠CDF , 在△ABG 和△CBG 中,{AB =BC∠ABG =∠CBG BG =BG, ∴△ABG ≌△CBG (SAS ), ∴∠BAG =∠BCG , ∴∠CDF =∠BCG ,∵∠DCM +∠BCG =∠FCD =90°, ∴∠CDF +∠DCM =90°, ∴∠DMC =180°﹣90°=90°, 取CD 的中点O ,连接OB 、OF , 则OF =CO =12CD =12,在Rt △BOC 中,OB =√CB 2+OC 2=√12+(12)2=√52,根据三角形的三边关系,OM +BM >OB , ∴当O 、M 、B 三点共线时,BM 的长度最小, ∴BM 的最小值=OB ﹣OF =√52−12=√5−12. 故选:D .6.【解答】解:过点E 作EG 垂直AD 延长线于点G , ∵EF ⊥DC ,∴S △AEF =12EF •DF =3,S △ACF =12CF •AD =5, ∵DF =AD , ∴EF :CF =3:5,设EF =3b ,CF =5b ,AD =DF =a ,∵∠G =90°,∠EFD =90°,∠GDF =90°, ∴四边形EFDG 是矩形, ∴GE =DF =a ,GD =EF =3b , 在Rt △GEA 中,GE 2+AG 2=AE 2, 在Rt △EFC 中,EF 2+FC 2=EC 2, 在Rt △CEA 中,AE 2+CE 2=AC 2,∴AC 2=GE 2+AG 2+EF 2+FC 2=a 2+(a +3b )2+(3b )2+(5b )2=2a 2+43b 2+6ab , 在Rt △DAC 中,AC 2=AD 2+CD 2=a 2+(a +5b )2=2a 2+25b 2+10ab , ∴2a 2+43b 2+6ab =2a 2+25b 2+10ab , ∴18b 2=4ab ,∵b>0,∴a=92b,∴S△AEF=12EF•DF=12×3b×a=12×3b×92b=3,∴b=2 3,∴a=92×23=3,∴S矩形ABCD=AD•CD=a(a+5b)=3×(3+5×23)=19.故选:B.7.【解答】解:AC与BD相交于点O,∵四边形ABCD是平行四边形,∴2AO=AC,2OB=BD,∵BD=6,AC=10,∴OA=5,OB=3,∵DB⊥AB,在Rt△AOB中,由勾股定理得,AB=√OA2−OB2=√52−32=4,在Rt△ADB中,由勾股定理得,AD=√DB2+AB2=√62+42=2√13,故选:D.8.【解答】解:设CQ=x,∵∠CQO=90°,S△OCQ=1,∴12•CQ•OQ=1,∴OQ=2 x,∵∠CDB=∠CQH=∠BCH=90°,∴∠DCB +∠HCQ =90°,∠HCQ +∠CHQ =90°, ∴∠DCB =∠CHQ , 在Rt △CDB 和△HQC 中, {∠CDB =∠HQC∠DCB =∠CHQ CB =HC, ∴△CDB ≌△HQC (AAS ), ∴BD =CQ =x , ∵QO ∥BD , ∴△QCO ∽△DCB , ∴OQ BD=CQCD, ∴CD =x×x2x=12x 3,∵∠CAD +∠ACD =90°,∠DCB +∠ACD =90°, ∴∠CAD =∠DCB , ∵∠ADC =∠CDB =90°, ∴△ACD ∽△CBD , ∴AD CD=CD BD,∴CD 2=AD •DB , ∴(12x 3)2=(x +12x 3)•x ,解得x 2=1+√5或1−√5(舍弃), ∴CD =1+√52x ,AD =√5+32x , ∴AB =AD +BD =5+√52x , ∴AB 2=(5+√52)2×(1+√5)=20+10√5, ∴S 正方形ACEF +S 正方形BCHG =AB 2=20+10√5, ∵S △ACB =12•AB •CD =12×1+√52x ×5+√52x =5+2√5, ∴S 六边形ABGHEF =S 正方形ACEF +S 正方形CBGH +2S △ABC =20+10√5+2(5+2√5)=30+14√5, 故选:D .9.【解答】解:A 、∵四边形ABCD 是平行四边形,AB =BC , ∴四边形ABCD 是菱形,故A 不符合题意; B 、∵四边形ABCD 是平行四边形,AC =BD , ∴四边形ABCD 是矩形,故B 符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=AC,∴四边形ABCD是菱形,故D不符合题意;故选:B.10.【解答】解:如图,当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE..且当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=12CF,∴点P的运动轨迹是线段P1P2,.∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB:AD=2:1,设AB=2t,则AD=t,∵E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=t,∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角△BCP1中,CP1=BC=t,∴BP 1=√2t =3√2, ∴t =3. 故选:B .11.【解答】解:过点P 作PM ⊥EF 于点M ,如图:∵四边形ABCD 为矩形,∴AB ∥DC ,AD ∥BC ,∠C =90°, ∵EF ∥AB , ∴EF ∥DC , ∴∠EDC =∠DEF , ∵PH ⊥DE ,PM ⊥EF , ∴∠PMQ =∠EHQ =90°, 又∵∠PQM =∠EQH , ∴∠QPM =∠DEF =∠EDC , 在△PMQ 和△DCE 中, {∠MPQ =∠EDCPM =CD∠PMQ =∠C,∴△PMQ ≌△DCE (ASA ), ∴PQ =DE ,∴阴影部分的面积=S △PDE ﹣S △QED =12×DE ×PH −12DE ×QH =12DE 2, ∴故选:B .12.【解答】解:在Rt △ABC 中, ∵∠ACB =90°,BC =6,AC =8, ∴AB =√AC 2+BC 2=10.∴sin ∠A =BCAB =35,cos ∠A =ACAB =45. ∵四边形GHIJ 为正方形, ∴GH ∥AB . ∴∠GHD =∠A .∴cos ∠GHD =cos ∠A =45.设正方形CDEF 与正方形GHIJ 的边长为x ,则HI =CD =x .在Rt △AHI 中,∵sin ∠A =HI AH , ∴x AH =35.∴AH =53x .在Rt △GHD 中,∵cos ∠GHD =DH GH , ∴DH x =45. ∴DH =45x .∵AC =CD +DH +AH =8,∴x +45x +53x =8.解得:x =3013. 故选:B .13.【解答】解:设AB =a ,BC =b ,BE =c ,BF =x ,∴S 平行四边形EFGH =S 矩形ABCD ﹣2(S △BEF +S △AEH )=ab ﹣2[12cx +12(a ﹣c )(b ﹣x )] =ab ﹣(cx +ab ﹣ax ﹣bc +cx )=ab ﹣cx ﹣ab +ax +bc ﹣cx=(a ﹣2c )x +bc ,∵F 为BC 上一动点,∴x 是变量,(a ﹣2c )是x 的系数,∵平行四边形EFGH 的面积不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴a ﹣2c =0,∴a =2c ,∴E 是AB 的中点,∴AB =2AE ,故选:C .14.【解答】解:如图所示设丙的短直角边为x,乙的短直角边为y,则HG=2x,DG=2x+y,CG=12DG=2x+y2,∵BF=DH=y,FG=EH=x,∴CF=2BF=2y,CF=CG+FG=2x+y2+x,∴2y=2x+y2+x,∴x=34y,∵AB=DC=√CG2+DG2=√(2x+y2)2+(2x+y)2=√(54y)2+(52y)2=5√54y,AD=√DH2+AH2=√y2+(2y)2=√5y,∴ADAB=√5y5√54y=45.故选:C.15.【解答】解:如图所示:∵四边形ABCD和四边形③是矩形,∴AB=CD,FP=CG,∵AE=CG,∴BE=DG,∴阴影部分的面积=△BFD的面积﹣△BFP的面积=12BF×CD−12BF×FP=12BF×(CD﹣CG)=12BF×DG=12BF×BE=12矩形②面积,故选:B.16.【解答】解:连接EG,向两端延长分别交AB、CD于点M、N,如图,∵△ABE,△BCF,△CDG,△DAH全等,△ABE是以AB为底的等腰三角形,∴AE=BE=CG=DG,∴EG是AB、CD的垂直平分线,∴MN⊥AB,∴EM=GN(全等三角形的对应高相等),∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴四边形AMND是矩形,∴MN=AD=4,设ME=x,则EG=4﹣2x,∵中间小正方形EFGH的面积与△ABE面积相等,∴12(4−2x)2=12×4x,解得,x=1或x=4(舍),∵△ABE,△BCF,△CDG,△DAH全等,△AEH,△BEF,△CFG,△DGH也全等,∴△AEH的面积=S正方形ABCD−5S△ABE4=42−5×12×4×14=32,故选:C.17.【解答】解:在图1中延长CA与GF交于点N,延长CB与EF交于点P,在图2中,连接OH,过O作OQ⊥AC于点Q,则,在图1中,∵四边形ABJK是正方形,∴AB=BJ,∠ABJ=90°,∴∠ABC +∠PBJ =90°=∠ABC +∠BAC ,∴∠BAC =∠JBP ,∵∠ACB =∠BPJ =90°,∴△ABC ≌△BJK (AAS ),∴AC =BP =3,∵AC =MC =3,BC =4,∴DE =MP =3+4+3=10,同理得,DG =HN =4+3+4=11,∴矩形DEFG 的面积为11×10=110,在图2中,OQ =12CB =2,CQ =12AC =1.5,∴HQ =4+1.5=5.5,∴OH =√22+5.52=√1372,∴⊙O 的面积为:π×(√1372)2=137π4, ∴矩形和圆形纸板的面积比是:110:137π4=440:137π,故选:C .二.填空题(共7小题)18.【解答】解:∵BM =BE ,∴∠BEM =∠BME ,∵AB ∥CD ,∴∠BEM =∠GCM ,又∵∠BME =∠GMC ,∴∠GCM =∠GMC ,∴MG =GC =1,∵G 为CD 中点,∴CD =AB =2.连接BF ,FM ,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,∵FM∥GC,∴△FMN∽△CGN,∴CGFM=GNNM,即12−x=1−xx,解得x=2+√2(舍)或x=2−√2,∴EF=BE=2﹣x=√2,∴sin∠AFE=AEEF=√2√2=√2−1.故答案为:2;√2−1.19.【解答】解:如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH ⊥B′C′于H.∵大正方形的面积=12,∴FG=GW=2√3,∵EF=WK=2,∴在Rt△EFG中,tan∠EGF=EFFG=2√3=√33,∴∠EGF=30°,∵JK∥FG,∴∠KJG=∠EGF=30°,∴d=JK=√3GK=√3(2√3−2)=6﹣2√3,∵OF=OW=12FW=√6,C′W=√2,∴OC′=√6−√2,∵B′C′∥QW,B′C′=2,∴∠OC′H=∠FWQ=45°,∴OH=HC′=√3−1,∴HB′=2﹣(√3−1)=3−√3,∴OB′2=OH2+B′H2=(√3−1)2+(3−√3)2=16﹣8√3,∵OA′=OC′<OB′,∴当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8√3)π.故答案为:6﹣2√3,(16﹣8√3)π.20.【解答】解:如图,∵AB⊥AC,AB=2,BC=2√3,∴AC=√(2√3)2−22=2√2,在▱ABCD中,OA=OC,OB=OD,∴OA=OC=√2,在Rt△OAB中,OB=√22+(√2)2=√6,又AH⊥BD,∴12OB •AH =12OA •AB ,即12×√6⋅AH =12×2×√2, 解得AH =2√33. 故答案为:2√33. 21.【解答】解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =5,OB =OD =12BD =12, ∴∠DOC =90°,CD =√OC 2+OD 2=√52+122=13, ∴平行四边形OCED 为矩形,∴OE =CD =13,故答案为:13.22.【解答】解:如图,设EG ,FH 交于点O ,∵四边形ABCD 为平行四边形,且▱ABCD 的面积为24cm 2, ∴S △PCD =12S ▱ABCD =12cm 2,AB =CD ,AB ∥CD , ∵E 、F 分别是DP 、CP 的中点,∴EF 为△PCD 的中位线,∴CD =2EF ,EF ∥CD ∥AB ,∴S △PEF :S △PCD =1:4,∴S △PEF =3,∵GH =12AB ,∴EF =GH ,EF ∥GH ,∴S △OEF =S △OGH =12S △PEF =1.5cm 2,∴S 阴影=3+2×1.5=6cm 2,故答案为6cm 2.23.【解答】解:延长EP ,与CD 交于点K ,如图, ∵AB ∥CD ,BC ∥EK ,∴四边形BCKE 是平行四边形,∴PK=CH=100cm,∵∠A=60°,四边形ABCD是平行四边形,∴∠C=∠A=60°,AB=CD=275cm,∵BC∥EK,∴∠PKD=∠C=60°,∴DK=PKcos60°=200cm,∴BE=CK=CD﹣DK=75cm,∵BE=EF=FG,∴AG=AB﹣3BE=275﹣75×3=50cm,∴GM=AG•sin∠A=50×√32=25√3cm.正方形画框的边长为25√3cm.故答案为:25√3.24.【解答】解:连接EF、EG、EC,如图所示:∵四边形ABCD是矩形,∴BC=AD=9,AD∥BC,∠BAD=∠ABC=90°,∴AB⊥AD,∵AF=BF,点E是AB的中点,∴EF⊥AB,∴EF∥AD∥BC,∴EF是梯形ABGD的中位线,∠EFG=∠CGF,∴EF=12(AD+BG),设BG=x,则CG=9﹣x,EF=12(9+x),∵点C与AB的中点E关于直线DG对称,∴EG=CG,∠CGF=∠EGF,∴EF=CG,∴12(9+x)=9﹣x,解得:x=3,∴BG=3,EG=CG=6,∴BE=√EG2−BG2=√62−32=3√3,∴AB=2BE=6√3;故答案为:6√3.三.解答题(共13小题)25.【解答】(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.∵△BCE≌△CDG,∴CE=DG=9,由折叠可知BC=BF,CE=FE=9,∴∠BCF=∠BFC,∵四边形ABCD是正方形,∴AD∥BC,∴∠BCG=∠HGF,∵∠BFC=∠HFG,∴∠HFG=∠HGF,∴HF=HG,∵HDHF=45,DG=9,∴HD=4,HF=HG=5,∵∠D=∠HFE=90°,∴HF2+FE2=DH2+DE2,∴52+92=42+DE2,∴DE=3√10或﹣3√10(舍弃),∴DE=3√10.(3)如图3中,连接HE.由题意HD HF =45,可以假设DH =4m ,HG =5m ,设DE EC =x .①当点H 在点D 的左侧时,∵HF =HG ,∴DG =9m ,由折叠可知BE ⊥CF ,∴∠ECF +∠BEC =90°,∵∠D =90°,∴∠ECF +∠CGD =90°,∴∠BEC =∠CGD ,∵∠BCE =∠D =90°,∴△CDG ∽△BCE ,∴DG CE =CD BC , ∵CD BC =AB BC =k , ∴9m CE =k 1,∴CE =9m k=FE , ∴DE =9mx k , ∵∠D =∠HFE =90°∴HF 2+FE 2=DH 2+DE 2,∴(5m )2+(9m k )2=(4m )2+(9mx k )2, ∴x =√k 2+93或−√k 2+93(舍弃), ∴DE EC =√k 2+93.②当点H 在点D 的右侧时,如图4中,同理HG =HF ,△BCE ∽△CDG ,∴DG =m ,CE =m k =FE ,∴DE =mx k, ∵HF 2+FE 2=DH 2+DE 2,∴(5m )2+(m k )2=(4m )2+(mx k )2,∴x =√9k 2+1或−√9k 2+1(舍弃),∴DE EC =√9k 2+1.综上所述,DE EC =√k 2+93或√9k 2+1.26.【解答】(1)证明:如图1,∵AD 平分∠BAC ,∴∠EAD =∠CAD ,∵AE =AC ,AD =AD ,∴△EAD ≌△CAD (SAS ),∴∠ADE =∠ADC =60°,∵∠BDE =180°﹣∠ADE ﹣∠ADC =180°﹣60°﹣60°=60°, ∴∠BDE =∠ADE ,∴DE 平分∠ADB .(2)如图2,∵FB =FC ,∴∠EBD =∠GCD ;∵∠BDE =∠CDG =60°,∴△BDE ∽△CDG ,∴BD CD =DE DG ;∵△EAD ≌△CAD ,∴DE =CD =3,∵DG =2,∴BD =CD 2DG =322=92. (3)如图3,在AB 上取一点F ,使AF =AD ,连结CF . ∵AC 平分∠BAD ,∴∠F AC =∠DAC ,∵AC =AC ,∴△AFC ≌△ADC (SAS ),∴CF =CD ,∠FCA =∠DCA ,∠AFC =∠ADC ,∵∠FCA +∠BCF =∠BCA =2∠DCA ,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴CDBC=CECF,∠DEC=∠BFC,∵BC=5,CF=CD=2√5,∴CE=CD2BC=(2√5)25=4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴AEAD=ADAC=12,∴AC=2AD,AD=2AE,∴AC=4AE=43CE=43×4=163.27.【解答】解:[探究1]如图1,设BC=x,∵矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,∴点A,B,D'在一条线上,∴AD'=AD=BC=x,D'C'=AB'=AB=1,∴D'B=AD'﹣AB=x﹣1,∵∠BAD=∠D'=90°,∴D'C'∥DA,又∵点C'在DB的延长线上,∴△D'C'B∽△ADB,∴D′C′AD=D′BAB,∴1x=x−11,解得x1=1+√52,x2=1−√52(不合题意,舍去),∴BC=1+√5 2.[探究2]D'M=DM.证明:如图2,连接DD',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;[探究3]关系式为MN2=PN•DN.证明:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A∽△NAD,∴PNAN=ANDN,∴AN2=PN•DN,∴MN2=PN•DN.28.【解答】(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADC,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠ABE+∠BAE=∠EAF+∠DAF=90°,∵∠EAF=∠ABC,∴∠BAE=∠DAF,∴△ABE≌△ADF(ASA),∴AE=AF;②解:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC,AC⊥BD,由①知,△ABE≌△ADF,∴BE=DF,∴CE=CF,∵AE=AF,∴AC⊥EF,∴EF∥BD,∴△CEF∽△CBD,∴ECBC=EFBD=25,设EC=2a,则AB=BC=5a,BE=3a,∴AE=√AB2−BE2=√(5a)2−(3a)2=4a,∵AEAB=AFBC,∠EAF=∠ABC,∴△AEF∽△BAC,∴S△AEFS△BAC=(AEAB)2=(4a5a)2=1625,∴S△AEFS菱形ABCD=S△AEF2S△BAC=12×1625=825;(2)解:∵四边形ABCD是菱形,∴∠BAC=12∠BAD,∵∠EAF=12∠BAD,∴∠BAC=∠EAF,∴∠BAE=∠CAM,∵AB∥CD,∴∠BAE=∠ANC,∴∠ANC=∠CAM,同理:∠AMC=∠NAC,∴△MAC∽△ANC,∴ACCN=AMNA,△AMN是等腰三角形有三种情况:①当AM=AN时,如图2所示:∵∠ANC =∠CAM ,AM =AN ,∠AMC =∠NAC , ∴△ANC ≌△MAC (ASA ),∴CN =AC =2,∵AB ∥CN ,∴△CEN ∽△BEA ,∴CE BE =CN AB =24=12, ∵BC =AB =4,∴CE =13BC =43;②当NA =NM 时,如图3所示:则∠NMA =∠NAM ,∵AB =BC ,∴∠BAC =∠BCA ,∵∠BAC =∠EAF ,∴∠NMA =∠NAM =∠BAC =∠BCA ,∴△ANM ∽△ABC ,∴AM AN =AC AB =12, ∴AC CN =AM NA =12, ∴CN =2AC =4=AB ,∴△CEN ≌△BEA (AAS ),∴CE =BE =12BC =2;③当MA =MN 时,如图4所示:则∠MNA =∠MAN =∠BAC =∠BCA ,∴△AMN ∽△ABC ,∴AM AN =AB AC =42=2, ∴CN =12AC =1,∵△CEN ∽△BEA ,∴CE BE =CN AB =14, ∴CE =15BC =45;综上所述,当CE 为43或2或45时,△AMN 是等腰三角形.29.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵BE⊥BD,∴∠EBD=90°,∵A为DE的中点,∴AB=AD=12DE,∴四边形ABCD是菱形;(2)解:过B作BF⊥DE于F,tan ∠EDB =√22=BE BD, 设BE =√2x ,BD =2x ,由勾股定理得:DE =√BE 2+BD 2=√(√2x)2+(2x)2=√6x , ∵S △BDE =12×BE ×BD =12×DE ×BF , ∴12×√2x ×2x =12×√6x ×BF , 解得:BF =2√33x , ∴△ABE 与四边形ABCD 面积的比值是(12×√2x ×2x ):(√62x •2√33x )=√2x 2:√2x 2=1:1. 30.【解答】(1)证明:如图,连接BD , ∵四边形ABCD 是菱形,∴AC ⊥DB ,AD =AB ,∵EM ⊥AC ,∴ME ∥BD ,∵点E 是AB 的中点,∴点M 是AD 的中点,AE =12AB ,∴AM =12AD ,∴AM =AE .(2)解:①由(1)得,点M 是AD 的中点, ∴AM =MD ,∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠F =∠AEM ,∠EAM =∠FDM ,∴△MDF ≌△MAE (AAS ),∴AE =DF ,∵AB =2AE ,DF =2,∴AB =4,∴菱形ABCD 的周长为4AB =4×4=16.②如图,连接CM ,记EF 与AC 交点为点G ,∵AM=AE,△MAE≌△MDF,∴DF=DM,MF=ME,∴∠DMF=∠DFM,∴∠ADC=2∠DFM,∵∠ADC=2∠MCD,∴∠MCD=∠DFM,∴MF=MC=ME,∠EMC=2∠FDM=∠MDC,∵ME⊥AC,AM=AE,∴∠MGC=90°,ME=2MG,∴MC=2MG,∴∠GMC=60°,∴∠ADC=60°,∴∠MCD=30°,∴∠DMC=90°,∴△DMC为直角三角形,∵DF=2,∴DM=2,CD=4,∴CM=√DM2+CM2=√22+42=2√3,∴ME=2√3.31.【解答】(1)解:相等,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE =BG .(2)解:∵△ADE ≌△BAG ,∴BG =AE ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴△ADH ∽△GBH ,∴DH BH =AD BG ,∵BE :AE =n ,BG =AE ,AD =AB ,∴DH BH =AD AG =AB AE =AE+BE AE =AE+nAE AE =n +1.(3)解:设BG =AE =k ,则BE =nk ,∵EH ∥AD ,∴∠BEH =∠BAD =90°,∠EHB =∠ADB =45°,∵∠ABD =45°,∴∠EHB =∠ABD ,∴BE =EH =nk ,∵EH ∥AD ,∴△AEH ∽△ABG ,∴AE AB =EH BG , ∴k k+nk =nk k, ∵n >0,∴n =√5−12.32.【解答】解:(1)∵AB BC =k ,k =43, ∴BC =6,∵CE EB =λ,λ=1,∴CE =EB ,∴点E 为BC 的中点,∵在矩形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =8,∠B =90°,点E 为BC 的中点,∴BE =EC =3,∴AE =√AB 2+BE 2=√73,∴EF =√73,∴CF =EF ﹣EC =√73−3;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中,{∠D =∠GCF ∠AGD =∠FGC AG =FG,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;②设CD =2a ,则CG =a ,∵AB BC =k (k >0且k ≠2).AB =CD ,AD =BC ,∴CF =AD =BC =2a k ,∵EG ⊥AF ,∠GCF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴EC GC =GC FC ,∵GC =a ,FC =2a k , ∴GC FC =k 2, ∴EC GC =k 2,∴EC =k 2•a =ka 2,BE =BC ﹣EC =2a k −ka 2=4−k 22k a ,∴λ=CEEB=k24−k2.33.【解答】解:(1)AE=BG,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE=BG;(2)∵△ADE≌△BAG,∴BG=AE,∵四边形ABCD是正方形∴AD∥BC∴△ADH∽△GBH∴DHBH=ADBG,∵BE:AE=n,BG=AE,AD=AB,∴DHBH=ADAE=ABAE=AE+BEAE,∵BE:AE=n,∴DHBH=AE+nAEAE=n+1;(3)设BG=AE=k,则BE=nk,∵EH∥AD,∴∠BEH=∠BAD=90°,∠EHB=∠ADB=45°,∵∠ABD=45°,∴∠EHB=∠ABD,∴BE=EH=nk,∵EH∥AD,AD∥BC,∴EH∥BC,∴△AEH∽△ABG,∴AEAB=EHBG,∴kk+nk=nkk,∵n>0,∴n=√5−1 2.34.【解答】(1)证明:∵AD⊥AC,CD⊥BC,PD⊥AB,∴∠DAP=∠DEA=∠BCQ=90°,∵∠P AE+∠DAE=90°,∠ADE+∠DAE=90°,∴∠P AE=∠ADE,∵CA=CB,∴∠CAB=∠CBA,∴∠ADE=∠QBC,∴△AED∽△QCB;(2)解:过点C作CH⊥AB于H,∵tan∠CAB=CHAH=12,∴设CH=a,则AH=2a,∴AC=√AH2+CH2=√5a=2√5,∴a=2,∴CH=2,AH=4,∵CA=CB,CH⊥AB,∴AH=BH=4,∠CAB=∠CBA,∴AB=8,∵AB平分∠CBD,∴∠CBA=∠DBA,∴∠CAB=∠DBA,∴AC∥BD,∵AD⊥AC,∴AD⊥BD,∴tan∠ABD=ADBD=tan∠CAB=12,∴AB=√5AD=8,∴AD=8√55,BD=2AD=16√55,∵△AQC∽△BQD,∴AQBQ=ACBD=√516√55=58,∴BQAB=813,∴BQ=813AB=6413;(3)解:①作QG⊥AD于G,∵点P是AC的中点,∴AP=12AC=√5,∵∠CAB=∠CBA=∠ADP,tan∠CAB=1 2,∴AD=2AP=2√5,∴AC=AD,∠ACD=∠ADC=45°,设AG=x,则QG=2x,DG=QG=2x,∴x+2x=2√5,解得:x=2√5 3,∴AQ=√5x=10 3,在Rt△APE中,AP=√5,PE=1,AE=2,∴EQ=AQ﹣AE=103−2=43,∴tan∠BQM=PEEQ=143=34;②作CH⊥AB于H,则CH ∥PD ,∴△CHQ ∽△DEQ ,∴CQ DQ =CH DE =QH EQ ,由(2)知,CH =2,AH =4,若PM ∥BC ,∴BM DM =CQ DQ ,∵CH ∥PD ,∴QH EQ =CH DE =CQ DQ ,∠PQA =∠CBA =∠CAB ,设PE =x ,∵tan ∠CAB =12,∴AE =QE =2x ,DE =4x ,∴QH =4﹣4x ,又∵QH EQ =CH DE , ∴24x =4−4x 2x , ∴x =34,∴BM DM =CQ DQ =CH DE =12x =23; 若PM ∥AD ,如图,∴BMMD=BQAQ,PCAP=CQDQ,∵CH∥PD,∴△CHQ∽△EDQ,∴CHDE=CQDQ=HQEQ,∴PCAP=CHDE,∵∠CAB=∠ADE,∴tan∠CAB=tan∠ADE=1 2,∵CH=2,AH=4,设PE=x,则AE=2x,DE=4x,由勾股定理得:AP=√5x,∴PC=2√5−√5x=√5(2﹣x),∵PCAP=CHDE,∴√5(2−x)√5x=24x,∴x=3 2,∵PM∥AD,AD⊥AC,∴PM⊥AC,∴∠EPQ=∠CAB,∴EQ=12PE=34,∴AQ=AE+EQ=3+34=154,BQ=8−154=174,∴BMMD=BQAQ=1715,综上所述,若PM∥BC,BMDM =23,若PM∥AD,BMDM =17 15.35.【解答】解:(1)∵一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差,∴直角的勾股差为两直角边的平方和与斜边的平方的差.∴等腰三角形的底角的勾股差为腰的平方+底边的平方+另一腰的平方.∵等腰三角形的两个腰相等,∴等腰三角形的底角的勾股差为底边的平方=22=4.故答案为:两直角边的平方和与斜边的平方的差;4;(2)①∵CD是△ABC的中线,AB=2c,∴AD=BD=c.依据勾股差的定义可得:m=c2+d2﹣b2,n=c2+d2﹣a2;②过点C作CM⊥AB于点M,如图,在Rt△ACM中,由勾股定理得:b2=CM2+AM2,同理可得:a2=CM2+BM2,CM2=d2﹣MD2.∴a2+b2=2CM2+AM2+BM2.∵AD=BD=c,∴AM=AD﹣MD=c﹣MD,BM=BD+MD=c+MD.∴a2+b2=2(d2﹣MD2)+(c﹣MD)2+(c+MD)2=2d2﹣2MD2+c2﹣2cMD+MD2+c2+2cMD+MD2=2d2+2c2.由(1)知:m=c2+d2﹣b2,n=c2+d2﹣a2,∴m+n=c2+d2﹣b2+c2+d2﹣a2=2c2+2d2﹣(a2+b2)=0.∴m与n互为相反数.(3)∵DF AB =34, ∴设DF =3m ,AB =4m .∵F 是BC 的中点,CD ⊥BD ,∴DF =12BC .∴BC =2DF =6m .∵点E 与F 分别是AB 与BC 的中点,∴CF =DF =BF =3m ,BE =AE =2m .∵点E 与F 分别是AB 与BC 的中点,∴利用(2)中的结论可得:BF 2+DF 2﹣BD 2+CF 2+DF 2﹣CD 2=0,BE 2+DE 2﹣BD 2+AE 2+DE 2﹣AD 2=0.∴4DF 2=BD 2+CD 2,2AE 2+2DE 2=BD 2+AD 2.∵CD =AD ,∴BD 2+CD 2=BD 2+AD 2.∴4DF 2=2AE 2+2DE 2.∴2×(3m )2=(2m )2+DE 2.解得:DE =√14m .∴DE DF =√14m 3m √143. 36.【解答】解:(1)不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立.理由: 假定存在矩形丙,∵C 丙C 乙=S 丙S 乙=12, ∴矩形丙的两个邻边之和为7,它的面积为24.设两条邻边长分别为x 和7﹣x ,由题意得:x (7﹣x )=24.∴x 2﹣7x +24=0.∵Δ=(﹣7)2﹣4×1×24=﹣47<0,∴此方程没有实数根,∴不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立. (2)∵矩形A 两条邻边长分别为m 和1,∴若存在矩形B ,使得C BC A =S B S A =12成立,则矩形B 的邻边之和为m+12. 设矩形B 的一边为x ,则另一边为m+12−x ,由题意得: x (m+12−x )=m×12. 化简得:2x 2﹣(m +1)x +m =0.由题意方程2x 2﹣(m +1)x +m =0一定有实数根.∴Δ=[﹣(m +1)]2﹣4×2m ≥0.解得:m ≥3+2√2或m ≤3﹣2√2.∵m 为矩形A 的边长,∴m >0.∴m 的取值范围为:0<m ≤3﹣2√2或m ≥3+2√2.(3)由(2)可知:对于任意一个矩形A ,不一定存在矩形B ,使得C BC A =S B S A =12成立. 当矩形A 两条邻边长a ,b 满足0<b a ≤3﹣2√2或b a≥3+2√2时,一定存在矩形B . 37.【解答】解:(1)如图1,∵AD =3,DE =2AE ,∴AE =1,DE =2,取AB 的中点G ,连接GF ,并延长交CD 于H ,∵F 是BE 的中点,∴FG =12AE =12,FG ∥AD ,在矩形ABCD 中,AB ∥CD ,∠A =90°,∴四边形AGHD 是平行四边形,∴▱AGHD 是矩形,。
初中数学章节专项《四边形》练习题
四边形练习题姓名: 日期: 教师:练习一1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD 中,若∠A -∠B =40°,则∠A =______,∠B =______.4.若平行四边形周长为54cm ,两邻边之差为5cm ,则这两边的长度分别为______. 5.若□ABCD 的对角线AC 平分∠DAB ,则对角线AC 与BD 的位置关系是______. 6.如图,□ABCD 中,CE ⊥AB ,垂足为E ,如果∠A =115°,则∠BCE =______.6题图7.如图,在□ABCD 中,DB =DC 、∠A =65°,CE ⊥BD 于E ,则∠BCE =______.7题图8. 如图所示,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F .若AE=3cm ,AF=4cm ,•AD=8cm ,求CD 的长.9. 平行四边形的周长为60cm ,若相邻的两边差为6cm ,则这个平行四边形相邻的两边长分别为多少?10. 如右图,ABCD 的对角线相交于O ,两条对角线的和为36cm ,AB 的长为5cm ,求△OCD 的周长OA DB C练习二:1、如右图,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F. 求证OE=OF.2、已知:如图,□ABCD 中,DE ⊥AC 于E ,BF ⊥AC 于F .求证:DE =BF .3、如图,在□ABCD 中,∠ABC 的平分线交CD 于点E ,∠ADE 的平分线交AB 于点F ,试判断AF 与CE 是否相等,并说明理由.4、已知:如图,E 、F 分别为□ABCD 的对边AB 、CD 的中点.求证:DE =FB ;5、如图所示,已知ABCD 和EBFD 的顶点A ,E ,F ,C 在一条直线上,•求证:•AE=CF . O AD BCE F第1题练习三1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形; ③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形. 从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”) 2.四边形ABCD 中,若∠A +∠B =180°,∠C +∠D =180°,则这个四边形______(填 “是”、“不是”或“不一定是”)平行四边形.3. 四边形ABCD 中,AC 、BD 为对角线,AC 、BD 相交于点O ,BO =4,CO =6,当AO =______,DO =______时,这个四边形是平行四边形.4.如图,四边形ABCD 中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.5.如图, ABCD 中,E 、F 分别是AB 、DC 上的点,求证:四边形AECF 是平行四边形(用三种方法证)6、如图, ABCD 中,E 、F 分别是CD 、AB 上的点,求证:四边形AFCE 是平行四边形(用三种方法证)F ED C BA D E C BF A7、如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE. 求证:四边形ABCD是平行四边形(用两种方法证)8中,P1,P2分别是对角线BD的三等分点,求证:四边形AP1CP2是平行四边形9、已知,如图,AE⊥BC,CF⊥AD,∠BAE=∠DCF,BE=DF,∠EAD=∠FCB求证:四边形ABCD是平行四边形E F D CB AE FD CBAP1P2DCBA1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________ ________________________.2. △ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3,AE =2,则△ABC 的周长为______.3. 如图,在△ABC 中,D 、E 分别为AB 、AC 的中点,延长DE 到F ,使CF//AB,AB=10,BC=8,求四边形BCFD 的周长.4、如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.5、已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的点求证:四边形EFGH 是平行四边形练习五EF C BD A G FE HD C BA(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.2.矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则AB =______cm ,BC =______cm . 3.在△ABC 中,∠C =90°,AC =5,BC =3,则AB 边上的中线CD =______.4、如果一个矩形较短的边长为5cm .两条对角线所夹的角为60°,则这个矩形的面积是_____cm 2.5、矩形的一条对角线是矩形一条边长的2倍,求矩形两条对角线所成是锐角是60°,求矩形较短的边长6、矩形一条对角线长8cm ,两条对角线所乘的锐角是60°.求矩形较短的边长7、在矩形ABCD 中,BE=DF.求证:AF=CEE FA D CB8、如图矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,求证:BE=CF.FEOD CBA练习六1、 如图,M 是ABCD 的中点,且MB=MC,求证:这个平行四边形是矩形2、已知:如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,若∠OAB=∠OBA.求证:四边形ABCDA 为矩形3、如图,△ABC 中,AB=AC ,AD ⊥BC 于D ,AE 是∠BAC 外角平分线,DE ∥AB 交AE 于E ,求证:四边形ADCE 是矩形4、已知:如图,□ABCD 中,AC 与BD 交于O 点,∠OAB =∠OBA .(1)求证:四边形ABCD 为矩形;(2)作BE ⊥AC 于E ,CF ⊥BD 于F ,求证:BE =CF .练习七1.菱形的定义:__________________的平行四边形叫做菱形.2.菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的______:还有:菱形的四条边______;E C DB AO D CB A 第1题图______________________________.3. 若菱形的两条对角线长分别是6cm,8cm,则它的周长为______cm,面积为______cm2.4. 如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是5. 如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4.求:(1)∠ABC的度数;(2)菱形ABCD的面积.6、菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积7、如图,已知四边形ABCD是菱形,点E、F分别是边CD、AD的中点,求证:AE=CF练习八1、下列命题中,正确的是( ).(A)两邻边相等的四边形是菱形(B)一条对角线平分一个内角的平行四边形是菱形EF DCBAOE F A(D)对角线垂直的四边形是菱形2、如图,在□ABCD 中,E ,F 分别为边AB ,CD 的中点,连结DE ,BF ,BD .(1)求证:△ADE ≌△CBF .(2)若AD ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.3、如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.4、已知:如图,DE 是平行四边形ABCD 的∠ADC 的平分线,EF ∥AD 交DC 于F.求证:四边形AEFD 是菱形5、如图,AD 是△ABC 的角平分线,EF 垂直平分AD ,平分线交AB 于E ,交AC 于F ,求证:四边形AEDF 是菱形21D F CB E A6、如图,已知平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O.求证:四边形AFCE 是菱形7、如图,在□ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别交于E 、F 。
中考数学四边形专题训练50题(含答案)
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。
四边形练习题及答案
四边形练习题及答案一、选择题1. 以下哪个不是四边形的性质?A. 四边形的内角和为360度B. 四边形的对角线互相平分C. 四边形的对边平行D. 四边形的对角线相等答案:C2. 在平行四边形中,下列说法正确的是:A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对边相等答案:C3. 菱形的四个角的度数之和是多少?A. 180度B. 360度C. 540度D. 720度答案:B4. 矩形的对角线具有什么性质?A. 相等B. 互相垂直C. 互相平分D. 互相垂直且相等答案:D5. 梯形中,以下哪个说法是错误的?A. 只有一组对边平行B. 非平行边相等的梯形是等腰梯形C. 梯形的对角线相等D. 梯形的内角和为360度答案:C二、填空题1. 四边形ABCD中,若AB平行于CD,则四边形ABCD是________。
答案:梯形2. 若四边形ABCD的对角线互相平分,则四边形ABCD是________。
答案:平行四边形3. 菱形的对角线互相________。
答案:垂直4. 矩形的四个角都是________度。
答案:905. 等腰梯形的两个非平行边相等,且两底平行,其对角线________。
答案:相等三、简答题1. 请简述矩形和正方形的共同性质。
答案:矩形和正方形都是平行四边形,它们的共同性质包括:对边平行且相等,对角线互相平分且相等,四个角都是直角。
2. 什么是等腰梯形?请简述其性质。
答案:等腰梯形是两腰相等的梯形。
其性质包括:两腰相等,两底平行,底角相等,对角线相等。
四、计算题1. 已知四边形ABCD是平行四边形,AB=5cm,BC=7cm,∠ABC=60度,求对角线AC的长度。
答案:由于ABCD是平行四边形,AB平行于CD,BC平行于AD。
根据平行四边形的性质,我们可以知道∠ACD=∠ABC=60度。
由于AB=5cm,BC=7cm,我们可以将三角形ABC视为一个30-60-90度的特殊三角形,其中AC是斜边,根据30-60-90度三角形的性质,斜边AC=AB*√3=5√3cm。
中考数学第一轮复习四边形专项练习
中考数学第一轮复习四边形专项练习一、单选题1.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC⊥AB,AC=6,BD=8,则AB的长为()A.10B.2√7C.5D.√72.如图,在直角坐标系xOy中,菱形ABCD的周长为16,点M是边AB的中点,⊥BCD=60°,则点M的坐标为()A.(- √3,-2)B.(- √3,-1)C.(-1,- √3)D.(- √3,2)3.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.√5B.√6C.√7D.√84.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若⊥CEF的周长为18,则OF的长为()A.3.2B.3.5C.3.6D.3.75.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.26.一个多边形的内角和等于1080°,这个多边形的边数为()A.6B.7C.8D.97.如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,P,Q两点同时从点O 出发,以厘米/秒的速度在菱形的对角线及边上运动.P,Q的运动路线:点P为O−A−D−O,点Q为O−C−B−O.设运动的时间为x秒,P,Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,则菱形ABCD的面积为()图1 图2A.2√3cm2B.2cm2C.√3cm2D.√2cm28.如图,▱ABCD中,E,F分别是AB,CD的中点,则图中有()个平行四边形.A.7个B.8个C.9个D.10个9.顺次连接菱形四边中点得到的四边形是()A.矩形B.菱形C.正方形D.等腰梯形10.如图,在矩形ABCD中,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为()A.2B.3C.4D.511.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定12.已知等边ΔABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边ΔCDE,连接BE和AE,下列结论:①AE=BD;②AE与AB的所夹锐角为60°;③当D在线段AB或BA延长线上时,总有∠BED−∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的结论序号有()A.①②B.①②③C.①②④D.①②③④二、填空题13.若一个正多边形的外角与其相邻的内角之比为1:5,则该正多边形的内角和的度数为.14.一个n边形的内角和是1080°,那么n=.15.如图,在⊥ABC中,AB=AC,延长CB至点E,点D在AC边上,以CE,CD为边作▱DCEF.若⊥F=70°,则⊥A的度数为度.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 √5cm,且tan⊥EFC= 34,那么矩形ABCD的周长为cm.17.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m+n=.18.如图,对折矩形纸片ABCD,使AD与BC重合得到折痕EF,将纸片展平,再一次折叠,使点A落到EF上的点G处,并使折痕经过点B,交EF于点H,交AD于点M.已知AB=2,则线段HG的长度为.三、综合题19.如图,在矩形ABCD中,点O为对角线AC的中点,点E是CD上一点,连接EO并延长交AB于点F,连接AE、CF.(1)求证:ΔCOE≅ΔAOF;(2)当∠DEA=2∠CAB时,试判断四边形AECF的形状,并说明理由.20.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.21.如图,以BC为底的等腰△ABC的三个顶点都在⊙O上,过点A作AD//BC交BO的反向延长线于点D.(1)求证:AD是⊙O的切线;(2)若四边形ADBC是平行四边形,且BC=12,求⊙O的半径.22.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= k x,直线AC解析式为y2=ax+b.(1)求反比例函数解析式;(2)当y1<y2时,求x的取值范围;(3)求⊥CDE的面积.23.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF平行BE,交线段ED的延长线于点F,连接AE、CF .(1)求证:AF=CE;(2)若AF=CF=4,∠AFD=30°,求EF的长.24.在Rt△ABC中,∠ACB=90°点D是边AB上的一个动点,连接CD.作AE∥DC,CE∥AB,连接ED.(1)如图1,当CD⊥AB时,求证:AC=ED;(2)如图2,当D是AB的中点时,①四边形ADCE的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE的面积为.答案解析部分1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】A10.【答案】C11.【答案】C12.【答案】C13.【答案】1800°14.【答案】815.【答案】4016.【答案】3617.【答案】318.【答案】2√3319.【答案】(1)证明:∵四边形ABCD是矩形∴AB//CD,∠D=90°∴∠OCE=∠OAF,∠OEC=∠OFA ∵点O是对角线AC的中点∴OC=OA在△COE和△AOF中,{∠OCE=∠OAF ∠OEC=∠OFA OC=OA∴△COE≅△AOF(AAS);(2)解:四边形AECF是菱形,理由如下:由(1)已证:△COE≅△AOF∴OE=OF,CE=AF又∵AB//CD,即CE//AF∴四边形AECF是平行四边形∵AB//CD∴∠DEA=∠BAE=∠CAB+∠CAE∵∠DEA=2∠CAB∴∠CAE=∠CAB,即OA是∠EAF的角平分线∴OA⊥EF(等腰三角形的三线合一)∴平行四边形AECF是菱形∵点E是CD上一点,∠D=90°∴∠DEA≠90°,即∠CEA≠90°∴菱形AECF不是正方形综上,四边形AECF是菱形.20.【答案】(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,∵G为BC的中点,∴BG=CG,∵四边形ABCD是矩形,∴⊥ABG=⊥DCB=90°,∴⊥ABG=⊥MCG=90°,在⊥ABG和⊥MCG中,{∠ABG=∠MCGBG=CG∠AGB=∠MGC,∴⊥ABG⊥⊥MCG(ASA),∴GA=GM,∵F为AE的中点,∴FA=FE,∴FG是⊥AEM的中位线,∴FG⊥EM,∴⊥HGE=⊥MEC,在⊥DCE和⊥MCE中,{CD=CM∠DCE=∠MCECE=CE,∴⊥DEC⊥⊥MEC(SAS),∴⊥DEC=⊥MEC,∵⊥HGE=⊥MEC,∴⊥HEG=⊥HGE,∴HE=HG(2)答:PQ =√2PB理由:过点B作BQ⊥BP交DE于Q,则⊥QBP=90°,∵AP⊥DE,四边形ABCD是矩形,∴⊥APE=⊥ABE=90°,∵⊥APO+⊥AOP+⊥BAP=180°,⊥EOB+⊥ABE+⊥BEP=180°,⊥AOP=⊥EOB,∴⊥BEQ=⊥BAP,∵⊥QBP=⊥ABE=90°,∴⊥EBQ=⊥ABP=90°﹣⊥ABQ,在⊥ABP和⊥EBQ中,{∠BAP=∠BEQAB=EB∠ABP=∠EBQ,∴⊥BEQ⊥⊥BAP(ASA),∴BQ=BP,PA=QE,∴⊥PBQ是等腰直角三角形,∴PQ =√2PB.21.【答案】(1)证明:如图,连接OA,∵ΔABC是以BC为底的等腰三角形;∴AB=AC,∴BC⊥OA,∵AD//BC,∴AD⊥OA,∵OA是⊙O的半径,∴AD是⊙O的切线(2)解:如图,设OA与BC交于E,∵四边形ADBC是平行四边形,∴AC//OD,∴∠C=∠CBO,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠CBO,∵OA⊥BC,∴BA=BO,∵AO=BO,∴ΔABO是等边三角形,∵BC=12,∴BE=12BC=6,,∴OB=BEsin60°=4√3∴⊙O的半径为4√322.【答案】(1)解:∵A(0,﹣3),B(4,0),∴AB= √32+42 =5=BC ,∴C (4,5),∵反比例函数y 1= k x图象经过点C , ∴k=4×5=20,∴反比例函数解析式为y 1= 20x(2)解:把A (0,﹣3),C (4,5)代入y 2=ax+b 得, {b =−34a +b =5 ,解得 {a =2b =−3直线AC 解析式为y 2=2x ﹣3,解 {y =2x −3y =20x 得 {x 1=4y 1=5 , {x 2=−52y 2=−8, ∴E (﹣ 52,﹣8) 当y 1<y 2时,x >4或﹣ 52<x <0 (3)解:S ⊥CDE =S ⊥ADE +S ⊥ADC = 12 ×× 5×52+ 12 ×5×4= 654 23.【答案】(1)证明: ∵D 点为 AC 的中点, ∴AD =CD ,∵AF//BE ,∴∠FAD =∠ECD ,在 △ADF 和 △CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE(AAS) ,∴AF =CE(2)解: ∵AF//BE ,AF =CE , ∴四边形 AFCE 为平行四边形, ∵AF =CF =4 ,∴四边形 AFCE 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD=30°,∴AD=12AF=2,∴FD=√AF2−AD2=√42−22=2√3,∴EF=2FD=4√3 24.【答案】(1)证明:∵AE//DC,CE//AB,∴四边形AECD是平行四边形,又∵CD⊥AB,⊥⊥ADC=90°,⊥四边形AECD是矩形,⊥AC=ED;(2)菱形;6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学专题-四边形练习(一)
一、选择题
1.以下条件中,不能判断四边形ABCD是平行四边形的是( ).
A.AB=CD,AD=BC B.AB=CD,AB∥CD
C.AB=CD,AD∥BC D.AB∥CD,AD∥BC
2.在□ABCD中,若对角线AC、BD相交于点O,则下列关系中一定成立的是( ).A.AC⊥BD B.AO=CO C.AC=BD D.AO=DO
3.如图11-1,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD 为平行四边形,若∠NDC=∠MDA,则□ABCD的周长是( ).
图11-1
A.24 B.18 C.16 D.12
4.如图11-2,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连结BE、AF,若它们相交于点G,则下列结论不正确的是( ).
图11-2
A.BE=AF B.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE
5.如图11-3,在□ABCD中,AD=5,AB=3,若AE平分∠BAD交BC边于点E,则线段BE、EC的长度分别为( ).
图11-3
A.2和3 B.3和2 C.4和1 D.1和4
6.若菱形的两条对角线的长度分别为6cm、8cm,则它的面积为( ).A.6cm2B.12cm2C.24cm2D.48cm2
7.正方形具有而菱形不一定具有的性质是( ).
A.对角线相等B.四条边相等
C.对角线互相垂直平分D.对角线平分一组对角
8.下列命题中,假命题是( ).
A.四条边都相等的四边形是菱形
B .有三个角是直角的四边形是矩形
C .对角线互相垂直平分且相等的四边形是正方形
D .一组对边平行,另一组对边相等的四边形是等腰梯形 9.如图11-4,在2×2的方格中,小正方形的边长为1,连结小正方形的三个顶点,可得
△ABC ,则AC 边上的高等于( ).
图11-4
A .
223 B .5103 C .553 D .55
4 10.如图11-5,在平面直角坐标系中,将矩形OABC 纸片沿OB 对折,点A 的落点记为A ′,
若1,3==AB OA ,则点A ′的坐标是( ).
图11-5
A .)23,23(
B .)3,23(
C .)23,23(
D .)2
3,21( 二、填空题
11.如果一个多边形的内角和等于外角和的三倍,那么这个多边形的边数是______.
12.已知四边形ABCD 中,AB =BC =CD =DA ,对角线AC 、BD 相交于O 点,要使这个四
边形ABCD 为正方形,则还需增加的一个条件是______.
13.如图11-6,矩形纸片ABCD 中,AB =8cm .把矩形纸片沿直线AC 折叠,点B 落在点
E 处,AE 交DC 于点
F ,若cm 4
25=AF ,则AD 的长为______.
图11-6
14.如图11-7,正方形ABCD 的边长为4,MN ∥BC 分别交AB 、CD 于点M 、N ,在MN
上任取两点P 、Q ,那么图中阴影部分的面积是______.
图11-7
15.如图11-8,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若∠B =45°,AE +AF
=23,则这个□ABCD 的周长为______.
图11-8
16.顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是______________.
17.如图11-9,在菱形ABCD 中,∠B =60°,点E ,F 同时分别从点B ,D 出发以同样的
速度沿边BC ,DC 向点C 运动.给出以下四个结论:①AE =AF ;②∠CEF =∠CFE ;③当点E 、F 分别为边BC 、DC 的中点时,△AEF 是等边三角形;④当点E 、F 分别为边BC 、DC 的中点时,△AEF 的面积最大.上述结论中正确的序号有______.
图11-9
(把你认为正确的序号都填上)
18.如图11-10,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C
的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为______.
图11-10
19.如图11-11,在菱形ABCD 中,∠B =60°,AB =4,若点D 与点B 关于AC 直线对称,
则在以AC 为边的正方形内的阴影面积为______.
图11-11
20.如图11-12,在菱形ABCD 中,DE ⊥AB 于点E ,若DE =6,4
3tan A ,则菱形ABCD
的周长为______,面积为______.
图11-12
三、解答题
21.已知:如图11-13,□ABCD中,∠BAD的平分线AE分别交BC的延长线于点E,交CD于点F,AB=5,BC=2.
求:CF的长.
图11-13
22.已知:如图11-14,□ABCD的对角线AC的垂直平分线与边AB、DC分别相交于E、F点.
求证:四边形AECF是菱形.
图11-14
23.如图11-15,现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC 的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.
图11-15
(1)请用尺规,在图中作出△AEB′(保留作图痕迹);
(2)试求B′、C两点之间的距离.
24.如图11-16,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E 是AB的中点,连结CE并延长交AD于F.
图11-16
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图11-17,将纸片ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
图11-17
参考答案
四边形(一)
1.C . 2.B . 3.D . 4.C . 5.B . 6.C . 7.A . 8.D . 9.C . 10.A .
11.八. 12.如∠ABC =90°或AC =BD 等. 13.6cm . 14.8.
15.12. 16.矩形. 17.①、②、③. 18.(2,4)或(3,4)或(8,4).
19..3416- 20.40,60. 21.CF =3. 22.略.
23.(1)略;(2)⋅5
18提示:过B ′作AD 的垂线,分别交AD 、BC 于M 、N ,则△AMB ′∽ △B ′NE ,可得⋅='=
25
72,2521N B EN 24.(1)①在△ABC 中,∠ACB =90°,∠CAB =30°,∴∠ABC =60°.
在等边△ABD 中,∠BAD =60°,∴∠BAD =∠ABC =60°.
∵E 为AB 的中点,∴AE =BE .
又∵∠AEF =∠BEC ,∴△AEF ≌△BEC . ②在△ABC 中,∠ACB =90°,E 为AB 的中点,,2
1,21AB BE AB CE ==∴ ∴∠BCE =∠EBC =60°.
又∵△AEF ≌△BEC ,∴∠AFE =∠BCE =60°.
又∵∠D =60°,∴∠AFE =∠D =60°.∴FC ∥BD .
又∵∠BAD =∠ABC =60°,∴AD ∥BC ,即FD ∥BC .
∴四边形BCFD 是平行四边形.
(2)∵∠BAD =60°,∠CAB =30°,∴∠CAH =90°.
在Rt △ABC 中,∠CAB =30°,设BC =a ,则 AB =2BC =2a ,∴AD =AB =2a . 设AH =x ,则HC =HD =AD -AH =2a -x .
在Rt △ABC 中,AC 2=(2a )2-a 2=3a 2.
在Rt △ACH 中,AH 2+AC 2=HC 2,即x 2+3a 2=(2a -x )2. 解得a x 4
1=,即a AH 41=. ∴.474122a a a x a HC =-=-= ⋅===∠∴714
741sin a a HC AH ACH。