高数精彩试题下(2)
【大学高数下册试题及答案】 高数2试题及答案
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母) 1.设有直线及平面,则直线( A ) A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处( C ) A.连续、偏导数存在;B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=( B ) A.;B.;C. D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=( D )A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式( B ) A.;B.;C.;D.. 二、填空题(每小题3分,本大题共15分) 1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则 0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数;5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 .三、(本题7分)设由方程组确定了,是,的函数,求及与. 解方程两边取全微分,则解出从而四、(本题7分)已知点及点,求函数在点处沿方向的方向导数. 解,从而五、(本题8分)计算累次积分). 解依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、(本题8分)计算,其中是由柱面及平面围成的区域. 解先二后一比较方便,七.(本题8分)计算,其中是抛物面被平面所截下的有限部分. 解由对称性从而八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线. 解在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、(本题8分)计算,其中为半球面上侧. 解补取下侧,则构成封闭曲面的外侧十、(本题8分)设二阶连续可导函数,适合,求.解由已知即十一、(本题4分)求方程的通解. 解解对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解设点的坐标为,则问题即在求最小值。
高等数学试题及其参考答案(2)
高等数学试题及其参考答案一、填空题(每小题2分,共10分)________ 11.击数y=arcsin√1-x2+──────的定义域为_________√1-x2_______________。
2.击数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h=_____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x4二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的括号内,1~10每小题3分,共30分)(一)每小题1分,共10分11.设击数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧④下降的凹弧5.设F'(x) = G'(x),则 ( )① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0d d④ ──∫F(x)dx = ──∫G(x)dxdx dx16.∫ │x│dx = ( )-1① 0 ② 1 ③ 2 ④ 37.方程2x+3y=1在空间表示的图形是 ( )①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3 + y3 + x2 ytg── ,则f(tx,ty)= ( )y①tf(x,y) ②t2f(x,y)1③t3f(x,y) ④ ──f(x,y)t2an +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( )n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。
高等数学2(下册)试题答案以及复习要点汇总(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高等数学第二学期练习题二.doc
高等数学练习题二一、填空题:1•设z=f(x.y),其中/具有连续的二阶偏导数,则2-将二次积分 I = j (V2 dy^ /(x, y)dx + j\〉/(x, y)dx 变为423•设幕级数在"0处收敛,而在“2处发散,则幕级数w=0岸的收敛域为[-1,1).;?=04.函数/(兀)= —关于兀的幕级数展开式为x + 无一25・微分方程dx- (xcos )' + sin 2y)dy = 0满足y(-2) = 0的特解为x = -2(1 4-sin y)・二、单项选择题:请将正确结果的字母写在括号内。
6・函数z = /(x,y)在点(心,沟)处两个偏导数(兀o ,)b ),/;(勺‘沟)存在是f^y)在该点可微分的【B ](A)充分条件(B)必要条件极坐标系下的二次积分后可得心加&加(厂COS& 4,rsin 0)rdrOOZ /?=0(-1严。
舁+132zdxd y(C)充分必要条件(D)既非充分也非必要条件7•设厶是曲线>' = -71^7上点A(l,0)与点3(0,-1)间的一段弧,则曲线积分[/(x, y)ds =(A) J ;;f (cos&,sin 0)d0T(C) Jo 2/ (cos 0,sin &)d& 8.下列级数中条件收敛的是oo(C) zn=l 9.曲面2” + y2 + 3z2 = 6在点(1,1,_1)处的切平面方程为(D) x+ y-3z = 610.微分方程嘤-3字+ 2尸(兀+1)0的一个特解可设为【D ]ax" dx(A) Axe 2x(B) (Ax-\-B)e 2x(C) Ax 2e 2x(D) (Ax+B)xe-X三、计算下列各题:11・求原点到曲面z 2 =xy-^x-y-^4的最短距离。
【解】设点M (兀,y,z)为曲面 z 2=xy + x- y + 4上任一点,则该点与原 点距离的平方和为:f(x,y\z) = d 2=x 2 + y 2 + z 2只要求距离的平方和最小即可,约束条件: xy + x-y + 4-z 2=0 设 F(x,y,z) = x 2+ y 2+z 2+2(小 + 兀一 y + 4-z?)⑻Jl 一兀$ 側(D) J jd&J ;/(厂cos0,厂sin&)厂d 厂(A ) £(-ir//=! n n+\(—1)"(A) x + 2y-3z = 6(B) x + 4y-3z = 6(D ) £(-irn=]xy + x-y^A-z 1=0故,原点到曲面 z 2 =xj + x-y + 4的最短距离为:V3 ■原式訂MM ::;牛2血M几兀(、(7、=—(4cos 2(p-sec 2^jsin (pd(p = — --2^213.计算曲面积分 / = JJ 2xz 2dydz + y(z? +1)dz</r + (9-z 3)dxdy ,其中工是曲面z = x 2 + r+i 被平面*2所截下部分的下侧。
高等数学(下)模拟试题(二)
高等数学(下)模拟试题(二)一、 一、 计算下列各题(每小题6分,共30分)1. 设y z xz xy y x z ∂∂∂∂+=,,322求。
2. 设()xy x z sin 2= 求: d z 。
3. 设y x ux u xz y x u ∂∂∂∂∂+=2222,,求。
4. 设()x x x z z xy y x f z ,,5求+=。
5.x zxyz xyz ∂∂=+求 ,02)cos( 。
二、 二、 解下列各题 (每小题6分,共24分)1.更换积分次序:()⎰⎰xxdyy x f dx 320,。
2. 求x yxy z ++=12在点P (1,2)沿点P 到点M (2,4)的方向上的方向导数。
3. 求曲线325,4,3t z t y t x ===在t = 1处的切线及法平面方程。
4. 求曲面x 2 - 3 y 2 + z 2 = -1在点P (1,1, 1)切平面方程与法线方程。
三、计算下列积分(每小题6分,共12分) 1.y dxd y x D⎰⎰+)2(D :由y = x , x= 0, y = 2 所围成 。
2. ⎰⎰⎰++V dxdydzz y x )( V :-2≤x ≤2 , 0≤y ≤1 , 0≤z ≤4 . 四、计算下列积分应用题(每小题6分,共12分)1. 一均匀物体(密度ρ为常量)占有闭区域Ω由曲面 Z=X 2+Y 2和平面Z =4所围成,求 该物体的质量M 。
2. 求物体的体积V ,该物体是柱体x 2 + y 2≤ 1被平面z=0,z=3所截得的在第一卦限的部分。
五、(8分)求微分方程0|,02=='=-x yx y e y 满足初始条件 的特解。
六、(8分)求微分方程()()022=-++dy y x dx y x的通解。
七、(6分)求一曲线,使其每点处的切线斜率为2x+y,且过点(0,0)。
高等数学(下)模拟试题(二)答案三、 一、 计算下列各题(每小题6分,共30分)1. 已知xy x y zy xy xzxy y x z 6,32,32222+=∂∂+=∂∂+=。
大学高等数学(下)试题二含答案
D 2 2
5 若级数 un 收敛,则 列级数中 n1
收敛
A (un 0.001) n1
B
u n 1 0 0 0
n1
C un n1
D 1000 u n1 n
6 微 方程 2y'' y' y 0 的通解是
A y c1e x c2e2x 计算与求解 49
B y c1ex c2e x / 2
二 选择题 18
1 设 z f (x, y, z), f 可微,则 z x
f
A
x
B f
x f
C f (1 f )
x
z
D (f f y ) (1 f )
x y x
z
y
2 设 n 是曲面 2x2 3y 2 z 2 6 在点 P(1,1,1)处指向外侧的法向量,则u P 沿方向 n 的方向导数为
6x2 8y 2 在点 z
A0
11
B
7
7
C
11
D2
3 设 D (x, y) : x2 y2 a2 ,则当 a
时, a2 x2 y 2 dxdy 2
D
A1
B2
C 33
D
3
3
2
4 如果 L 为圆周 x2 y 2 1,则 (x2 y 2 )ds L
A 2 B 2
C 2 2
xy
y 2
7
由
x x
2y y
2
z2
3 2y2
z2
3
因此 I 3ds L
3Lds
3 2 3 6
x
0
x
x
四 tf (t x)dtu t x (u x) f (u)du uf (u)du x f (u)du
高等数学试卷含答案下册
高等数学II 试题一、填空题每小题3分,共计15分1.设(,)z f x y =由方程xzxy yz e -+=确定,则 zx ∂=∂ ;2.函数232u xy z xyz =-+在点0(0,1,2)P --沿方向l = 的方向导数最大;3.L 为圆周224x y +=,计算对弧长的曲线积分⎰+L dsy x 22= ;4.已知曲线23,,x t y t z t ===上点P 处的切线平行于平面22x y z ++=,则点P 的坐标为 或 ;5.设()f x 是周期为2的周期函数,它在区间(1, 1]-的定义为210()01x f x x x -<≤⎧=⎨<≤⎩,则()f x 的傅里叶级数在1x =收敛于 ;二、解答下列各题每小题7分,共35分1.设) ,(y x f 连续,交换二次积分1201(,)x I dx f x y dy-=⎰⎰的积分顺序;2.计算二重积分D,其中D 是由y 轴及圆周22(1)1x y +-=所围成的在第一象限内的区域;3.设Ω是由球面z =与锥面z =围成的区域,试将三重积分222()I f x y z dxdydzΩ=++⎰⎰⎰化为球坐标系下的三次积分;4.设曲线积分[()]()xLf x e ydx f x dy--⎰与路径无关,其中()f x 具有一阶连续导数,且(0)1f =,求()f x ;5.求微分方程2xy y y e -'''-+=的通解;三、10分计算曲面积分2y dzdx zdxdy∑+⎰⎰,其中∑是球面2224(0)x y z z ++=≥的上侧;四、10分计算三重积分()x y z dxdydzΩ++⎰⎰⎰,其中Ω由22z x y =+与1z =围成的区域;五、10分求221z x y =++在1y x =-下的极值; 六、10分求有抛物面221z x y =--与平面0z =所围立体的表面积;七、10分求幂级数113n nn x n -∞=∑的收敛区间与和函数;高等数学II 试题解答一、填空题每小题3分,共计15分1.设(,)z f x y =由方程xzxy yz e -+=确定,则 z x∂=∂xz xzxe y zey --++-; 2.函数232u xy z xyz =-+在点0(0,1,2)P --沿方向l =4,0,-12 的方向导数最大; 3.L 为圆周224x y +=,计算对弧长的曲线积分⎰+L ds y x 22=8π;4.已知曲线23,,x t y t z t ===上点P 处的切线平行于平面22x y z ++=,则点P 的坐标为(1,1,1)--或111(,,)3927--;5.设()f x 是周期为2的周期函数,它在区间(1, 1]-的定义为210()01x f x x x -<≤⎧=⎨<≤⎩,则()f x 的傅里叶级数在1x =收敛于32;二、解答下列各题每小题7分,共35分6.设) ,(y x f 连续,交换二次积分1201(,)xI dx f x y dy-=⎰⎰的积分顺序;解:1201122010(,)(,)(,)x y I dx f x y dy dy f x y dx dy f x y dx--==+⎰⎰⎰⎰⎰7.计算二重积分D,其中D 是由y 轴及圆周22(1)1x y +-=所围成的在第一象限内的区域;解:2sin 220169Dd r dr πθθ==⎰⎰8.设Ω是由球面z =与锥面z =围成的区域,试将三重积分222()I f x y z dxdydzΩ=++⎰⎰⎰化为球坐标系下的三次积分;解:9.设曲线积分[()]()xLf x e ydx f x dy--⎰与路径无关,其中()f x 具有一阶连续导数,且(0)1f =,求()f x ;解:[()]x P f x e y =-,()Q f x =-;由[()]()x L f x e ydx f x dy --⎰与路径无关,得x y Q P ''=,即()()0xf x f x e '+-=;解微分方程xy y e '+=,得其通解12x xy ce e -=+;又(0)1f =,得21=c ;故xx e e x f 2121)(+=-10. 求微分方程2xy y y e -'''-+=的通解;解:20y y y '''-+=的通解为12()xy c c x e =+; 设原方程的一个特解*xy ce -=,代入原方程,得14c =;其通解为三、10分计算曲面积分2y dzdx zdxdy∑+⎰⎰,其中∑是球面2224(0)x y z z ++=≥的上侧;解:补上221:0 (4)z x y ∑=+≤下侧; 四、10分计算三重积分()x y z dxdydzΩ++⎰⎰⎰,其中Ω由22z x y =+与1z =围成的区域;解:五、10分求221z x y =++在1y x =-下的极值; 解:222(1)1222z x x x x =+-+=-+令420z x '=-=,得12x =;40z ''=>,12x =为极小值点;故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为32;六、10分求有抛物面221z x y =--与平面0z =所围立体的表面积; 解:221 (0)z x y z =-->的面积为平面0z =部分的面积为π;故立体的表面积为π+;七、10分求幂级数113n nn x n -∞=∑的收敛区间与和函数;解:收敛区间为[3,3)-;设11()3n n n x s x n -∞==∑,1111(())()333n n n nn n x x xs x n x -∞∞==''===-∑∑;故⎪⎩⎪⎨⎧=≠--=0310)3ln(13ln )(x x x x x x s ;。
2024年硕士研究生考试高数(二)试题
2024年硕士研究生考试高数(二)试题
一、选择题:
1. 设函数f(x)在点x=0处连续,且lim(x→0) f(kx)/x^2 = 2,则k的值为()。
A. 2 B. -2 C. 1/2 D.不存在
2. 设函数f(x)在点x=x0处可导,且f'(x0)存在,则下列结论正确的是()。
A. 函数f(x)在点x=x0处一定有极值B. 函数f(x)在点x=x0处一定有最小值 C. 函数f(x)在点x=x0处一定有最大值 D. 函数f(x)在点x=x0的某邻域内可能无极值
二、填空题:
3. 根据多元函数的极值求解原理,如果z=(x+y)^3+4xy+4,则z取得极大值时,变量x与y应满足_____。
三、解答题:
4. 设函数f(x)在区间[-1,3]上连续,在(-1,3)内可导,且f(-1)=f(3)=0,又f’(x)<f(x),求证:在区间(-1,3)内至少存在一点ξ,使得f’(ξ)=-f’(ξ)。
以上是2024年硕士研究生考试高数(二)试题的部分内容,完整试题请根据考试要求自行编制。
高等数学试卷2及答案
1高等数学(A2)试卷(二)答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1. B,2. D,3. B,4. C,5. D,6. B,7. D,8. B.二、计算题(本大题共4小题,没题7分,共28分)1. 设),(y x z z =是由方程333a xyz z =-确定的隐函数, 求dz . 解: 方程两边对x 求导,得03332='--'x x z xy yz z z (1分)解得 xyz yzz x -='2(3分) 方程两边对x 求导,得 xyz xzz y -='2(5分) 所以, )(2xdy ydx xyz zdz +-= (7分) 2. 求⎰⎰-=Ddxdy y x I 22, D 由1,==x x y 及x 轴围成.解: x y x D ≤≤≤≤0,10:, 故有 ⎰⎰-=1022x dy y x dx I (2分)令t x y cos =, 则有⎰⎰=102022sin πtdt dx x I (6分)12π=(7分) 3. 求函数)1ln()(432x x x x x f ++++=的麦克劳林展开式及收敛区间.解: xx x f --=11ln )(5 (2分)由∑∞=-≤<--=+11)11()1()1ln(i nn t nt t , 可得 (4分) ∑∞=<≤--=-155)11()1ln(i nx n x x (5分) ∑∞=<≤--=-1)11()1ln(i nx nx x (6分) 所以, ∑∑∞=∞=<≤--=151)11()(i ni n x n x n x x f (7分) 4. 求微分方程1cos 1222-=-+'x xy x x y 满足1)0(=y 的特解. 解: 方程两边同乘1)(2122-=⎰=--x e x dxx xμ得 (2分)x y x dxdcos ])1[(2=-, c x y x +=-sin )1(2 (4分) 通解为, 1sin 2-+=x cx y (5分) 由1)0(=y 得1-=c , 所求特解为11sin 2--=x x y (7分) 三、计算题(本题8分)用高斯公式计算⎰⎰∑++=dxdy z dzdx y dydz x I 222, 其中∑为立体c z b y a x ≤≤≤≤≤≤Ω0,0,0:的表面外侧.解: 由高斯公式可得2⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++=++=zdxdydzydxdydz xdxdydz dxdydzz y x I 222)222( (2分)又因,⎰⎰⎰⎰⎰⎰Ω==bcabc a xdx dz dy xdxdydz 0222 (4分) 同理有, ⎰⎰⎰Ω=c ab ydxdydz 22,⎰⎰⎰Ω=22abc ydxdydz (6分) 所以, )(c b a abc I ++= (7分)四、计算题(本题8分)确定b 并求出曲线32121,,:t z t y t x =-==Γ的切线, 使之与平面4:=++∏z by x 垂直.解: 设Γ上点)121,,(302000t t t M -处的切线与平面∏垂直 Γ在0M 处的切向量为, )41,2,1(200t t -=τ (2分)与平面∏的法向量, )1,,1(b n =平行, 即14121120tb t =-=, 解之得 (4分) )1,4,1(),32,4,2(,4,200=±-±=±=τM b t (6分)得切线方程, )4(1324412-=-=-+=-b z y x)4(1324412=+=+=+b z y x (8分)五、证明题(本题8分)证明曲线积分⎰+-=Cdy x dx x xy I 22cos )sin 2(在xoy 面上与路径无关,并计算积分值, 其中C 为椭圆12222=+by a x 的右半平面)0(≥x 部分, 从),0(b A -到),0(b B .证明: 因为22sin 2)sin 2(x x x xy yy P -=-∂∂=∂∂22sin 2)(cos x x x xx Q -=∂∂=∂∂ 所以曲线积分I 在xoy 面上与路径无关 (4分)又因)cos (cos sin 2222x y d dy x dx x xy =+- (6分)所以b x y x y d I b b C2|cos )cos (),0(),0(22===-⎰(8分)六、计算题(本题8分)若)(22y x f z +=满足方程02222=∂∂+∂∂yzx z , 求z , 其中)(r f 有连续的二阶导数.解: 记22y x r +=, 则有3222222)()(,)(r x r r f r x r f x z r x r f x z -'+''=∂∂'=∂∂ 3222222)()(,)(ry r r f r y r f x z r y r f y z -'+''=∂∂'=∂∂ 代入方程得 0)(1)(='+''r f rr f (4分) 解之得 rcr f =')( (6分) 0ln )(c r c r f z +== (8分)3七、应用题(本题8分)要建造一个上部为半球型下部为圆柱型的不锈钢储水罐, 要求容积为A , 问球体和圆柱半径r 与圆柱高h 为何时, 可以使用料最省?解: 当所求储水罐的表面积最小时, 可以使用料最省, 用),(h r S 表示储水罐的表面积, 则有)0,0(23),(2>>+=h r rh r h r S ππ (2分) 由要求容积为A , 得h r ,的约束关系A h r r =+2332ππ, 解之得)32(132r A r h ππ-=(4分)代入),(h r S 得 rAr r h r S r 238))(,()(2+==πϕ令 02316)(2=-='r A r r πϕ, 解得驻点310)83(πAr = (6分) 又因0)(0>''r ϕ, 故)(r ϕ在0r 处取得极小值. 由于只有唯一极小值点,所以即为所求最小值点, 此时有002r h = (8分) 故r ,h 分别取00,h r 时, 可以使用料最省.。
重庆大学高数(下)期末试题二(含答案)
重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。
高等数学2(下册)试题答案以及复习要点(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则2直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
大学高等数学下考试题库(附答案)
《高等数学》试卷1(下)一。
选择题(3分10)1。
点到点的距离( ).A.3 B。
4 C。
5 D.62.向量,则有().A。
∥B。
⊥ C. D。
3.函数的定义域是( ).A. B.C。
D4。
两个向量与垂直的充要条件是( ).A. B. C. D.5.函数的极小值是( ).A。
2 B。
C。
1 D。
6。
设,则=()。
A. B. C. D。
7.若级数收敛,则()。
A. B。
C。
D.8。
幂级数的收敛域为().A. B C。
D。
9。
幂级数在收敛域内的和函数是( ).A. B。
C。
D。
10。
微分方程的通解为().A. B. C。
D。
二.填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________.2。
函数的全微分是______________________________.3.设,则_____________________________。
4.的麦克劳林级数是___________________________.5。
微分方程的通解为_________________________________.三。
计算题(5分6)1.设,而,求2。
已知隐函数由方程确定,求3.计算,其中.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。
5.求微分方程在条件下的特解。
四.应用题(10分2)1.要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2。
曲线上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点,求此曲线方程.《高数》试卷2(下)一。
选择题(3分10)1.点,的距离( )。
A. B. C. D.2.设两平面方程分别为和,则两平面的夹角为().A。
B。
C. D。
3。
函数的定义域为()。
A. B.C。
D.4。
点到平面的距离为( )。
A。
3 B.4 C。
5 D.65.函数的极大值为()。
A.0B.1C.D.6。
高数下试题及答案
高数下试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 在区间[-1, 1]上的最大值是()。
A. 0B. 1C. 4D. -13. 已知函数f(x) = 2x - 3,求f(5)的值是()。
A. 7B. 4C. 2D. 14. 若函数f(x) = x^3 + ax^2 + bx + c的导数为f'(x) = 3x^2 + 2ax + b,当a = 1时,b的值是()。
A. 0B. -1C. 1D. 25. 定积分∫<sub>0</sub><sup>1</sup> x dx的值是()。
B. 1/3C. 1/4D. 1/66. 级数∑<sub>n=1</sub><sup>∞</sup> 1/n^2 的和是()。
A. π^2/6B. eC. 1D. 27. 函数f(x) = ln(x)的原函数是()。
A. e^xB. x^2C. x ln(x)D. x8. 函数y = x^3 - 6x^2 + 9x的拐点是()。
A. x = 0B. x = 1C. x = 3D. x = 29. 函数f(x) = x^2 + 2x + 1的极小值点是()。
A. x = -1B. x = 0C. x = 1D. x = 210. 函数f(x) = sin(x) + cos(x)的图像与x轴的交点个数是()。
A. 0C. 2D. 3二、填空题(每题2分,共20分)1. 函数f(x) = x^3 - 3x^2 + 2x的二阶导数是______。
2. 函数y = ln(x)的定义域是______。
3. 函数f(x) = x^2 - 4x + 4的最小值是______。
高等数学下册试题及答案解析
高等数学(下册)试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。
高等数学试题及答案二
高等数学试题及答案二高数试题一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an 发散,则级数∑ an_______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2a+1n∞≥0,且lim───── =9.设an()p,则级数∑ann→∞ an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程 ④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是 ( )①y=ex②y=x3+1 ③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0②1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ an xn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发有关散④收敛性与ansinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
高等数学2(下册)试题答案以及复习要点汇总(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高数下试题及答案解析
高数下试题及答案解析一、选择题(每题4分,共40分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C解析:函数f(x)=x^2-4x+3可以因式分解为f(x)=(x-1)(x-3),因此有两个零点x=1和x=3。
2. 极限lim(x→0) (1+x)^(1/x)等于()。
A. 0B. 1C. eD. -e答案:C解析:根据极限的定义,lim(x→0) (1+x)^(1/x)等于自然对数的底数e。
3. 函数f(x)=x^3-3x^2+2在x=1处的导数为()。
A. -1B. 0C. 1D. 2答案:C解析:首先求导数f'(x)=3x^2-6x,然后将x=1代入得到f'(1)=3(1)^2-6(1)=-3,因此答案为C。
4. 曲线y=x^2+2x-3在点(1,0)处的切线斜率为()。
A. 1B. 2C. 3D. 4答案:B解析:首先求导数y'=2x+2,然后将x=1代入得到y'(1)=2(1)+2=4,因此答案为D。
5. 函数f(x)=sin(x)+cos(x)的周期为()。
A. πB. 2πC. π/2D. 1答案:B解析:函数f(x)=sin(x)+cos(x)可以化简为f(x)=√2sin(x+π/4),因此周期为2π。
6. 函数f(x)=x^3-6x^2+11x-6的单调增区间为()。
A. (-∞, 1)∪(3, +∞)B. (1, 3)C. (-∞, 1)∪(3, +∞)D. (1, +∞)答案:B解析:首先求导数f'(x)=3x^2-12x+11,令f'(x)>0,解得x<1或x>3,因此单调增区间为(1, 3)。
7. 函数f(x)=x^2-4x+3的极值点为()。
A. x=1B. x=2C. x=3D. x=4答案:B解析:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2,因此极值点为x=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数试题 2008.7一、选择题(本大题5小题,每小题4分,共20分) 1.设直线1724:121x y z l -+-==-,26,:23,x y l y z -=⎧⎨+=⎩则l 1 与l 2 的夹角为[ ]. (A )2π;(B )3π;(C )4π;(D )6π. 2.函数 z = xe 2y 在点P (1, 0)出沿从P (1, 0)到Q (2, -1)方向的方向导数为[ ].()(()(A B C D -3.函数2222221sin ,0,(,)0,0,xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点[ ].(A ) 偏导数连续;(B ) 偏导数不存在; (C )偏导数存在但不可微; (D )可微但偏导数不连续。
4.积分11xdx =⎰⎰[ ]. 1111()()()()341224A B C D 。
5.设Ω是由x 2 + y 2 + z 2 = 1所围成的区域,则三重积分||z e dv Ω=⎰⎰⎰[ ]. 3()()()()2.22A B C D ππππ;;; 二、填空题(本大题5小题,每小题4分,共20分)1.过点(0,2,4)且与两平面x + 2z = 1和y – 3z = 2都平行的直线方程是2.设2224,:x y z z ⎧++=⎪Γ⎨=⎪⎩则2x ds Γ=⎰3. 满足微分方程初值问题20d (1)d 1 xx y y ex y =⎧=+⎪⎨⎪=⎩ 的解为y = .4.设z = ln(1 + x 2 + y 2), 则(1,2)dz =三、(9分)求微分方程4cos y y x x ''+=的通解.四、(9分)求函数f (x , y ) = xy 在闭区域x 2 + y 2 ≤ 1上的最大值和最小值。
. 五、(9分)某物体的边界由曲面z = x 2 + y 2和平面z = 0, |x | = a ,|y | = a 围成, 其密度函数为ρ = x 2 + y 2, 求该物体的质量.六、(9分)设直线0,:30,x y b L x ay z ++=⎧⎨+--=⎩在平面π 上,而平面π 与曲面z = x 2 + y 2相切于(1, -2, 5),求a , b 的值。
.七、(9分)计算曲面积分333()()()x y z dydz x y z dzdx x y z dxdy ∑++++++++⎰⎰其中∑为由圆锥面x 2 + y 2 = z 2与上半球面x 2 + y 2 + z 2 = R 2 (R > 0)围成曲面的外侧. 八、(8分)设函数Q (x , y )在xOy 平面上具有一阶连续偏导数,第二类曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,且对任意t ,有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰,求Q (x , y ).九、(6分)设当1x >-时,可微函数()f x 满足1()()()d 01xf x f x f t t x '+-=+⎰, (0)1f =.1. 求()f x ';2. 证明:当0x ≥时,()xf x e -≥. 答案 一、1.B ;2.A ;3.D ;4.C ;5.D .二、1.24231x y z --==-;2.1233dz dx dy =+;3. tan(1)4xy e π=+-;4. 10(1)(2)3n nn n x ∞+=--∑;三、1212cos 2sin 2cos sin 39y C x C x x x x =+++.四、max min 11,22f f ==-.五、611245a , 六、a = -5,b = -2.七、59(25R π.八、Q (x , y ) = x 2 + 2y – 1.高数试题 2009.7一、选择题(本大题4小题,每小题4分,共16分) 1. 函数(,)z f x y =在00(,)x y 处可微的充分条件是[ ] (A)(,)f x y 在点00(,)x y 处连续; (B) (,)f x y 在点00(,)x y 处存在偏导数;(C) 00000lim[(,)(,)]0x y z f x y x f x y x ρ→∆-∆-∆=,ρ=(D) 00000(,)(,)lim0x y z f x y x f x y xρρ→∆-∆-∆=.2. 圆心在原点半径分别为R 和r 的()R r >的两个圆所围成的均匀圆环形薄板(面密度为μ)关于原点的转动惯量为[ ].(A) 44()R r πμ-; (B)441()2R r πμ-; (C) 441()4R r πμ-; (D) 441()6R r πμ-.3. 微分方程xx e xe y y y 3265+=+'-''的特解形式为( )(A)x x cxe e b ax x y 32)(*++=; (B )xx e c x b ae y 32)(*++=;(C )x xce eb ax y 32)(*++=; (D) x x cxe e b ax y 32)(*++=4. 设Ω是由球面2222(0)x y z a a ++=>所围成的闭区域,则Ω= [ ](A)443a π; (B) 44a π; (C) 4a π; (D) 412a π. 二、填空题(本题共6小题,每小题4分,共计24分) 1. 已知3a =,26b =,72a b ⨯=,则a b ⋅= 2.函数),(y x f 22y xy x +-=在点)1,1(处的梯度为3. 已知曲线Γ为连接(1,1,1)和(2,2,2)两点的直线段,则曲线积分(23)x y z ds Γ++⎰=4. 由曲面2243()z x y =-+与曲面22z x y =+所围立体的体积为 .5. 设∑为平面1234x y z++=在第一卦限中的部分,则4(2)3z x y dS ∑++⎰⎰=6. 以y 1 = cos2x , y 2 = sin2x 为特解的常系数齐次线性微分方程为____.三、计算下列各题 (本题共5小题,每小题6分,共计30分) 1.求点0(1,1,1)P 到直线723123x y z ---==的距离. 2.已知一平面通过球面x 2 + y 2 +z 2 = 4(x - 2y - 2z )的中心,且垂直于直线L :00x y z =⎧⎨+=⎩, 求(1)该平面的方程;(2)该平面与球面的交线在xOy 平面上的投影。
3.设函数f 具有二阶连续的偏导数,),(y x xy f u +=求yx u∂∂∂2.4.计算二重积分D⎰⎰,其中D 是由两条抛物线y =2y x =所围成的闭区域. 5求解微分方程的初值问题:2(1)2(0)1,(0) 3x y xy y y '''⎧+=⎨'==⎩.四、 (8分)计算积分222(cos cos cos )I x y z dS αβγ∑=++⎰⎰, ∑是抛物线z = x 2 + y 2被z = 4割下的有限部分的下侧, cos α, cos β , cos γ是∑上各点法线方向余弦.五、(8分)设f (x ) 为连续可微函数,且(1)2f =,对任一闭曲线L 有34()0Lx ydx f x dy +=⎰。
求曲线积分34()Lx ydx f x dy +⎰的值.其中L 是圆周4)2()2(22=-+-y x 上由(2,0)A 经(4,2)D 到(2,4)B 的一段弧. 六、(8分)经过点1(2,1,)3P 作一平面,使该平面在第一卦限与3个坐标面所围成的四面体的体积最小,求该平面方程.七、(6分) 设函数f (x )在[1, +∞)上连续,由曲线y = f (x ),直线x = 1, x = t (t > 1)与x 轴所围成平面图形绕x 轴旋转一周形成旋转体的体积为2()[()(1)]3V t t f t f π=-,又已知2(2)9f =,求f (x ).答案 一、1.D ;2.B ;3.A ;4.C .二、1.±30;2.(1, 1); 4.2π;5. 6. y ''+ 4y = 0. .三、1. 2.-y + z = 0, 22241600.x y x y z ⎧+-+=⎨=⎩; 3.f 1 + xf 11 + (x + y )f 12 + f 22 ; 4. 655; 5. y = x 3 + 3x + 1.四、643π.五、68, 六、163x y z ++=.七 31xy x =+.高数试题 2010.7一、选择题(本大题4小题,每小题4分,共16分)1. 函数222)2(),(x y x y x f -+=在闭区域(x – 1)2 + y 2 ≤ 1上的最小值为[ ] (A)0; (B)1; (C) 2; (D) 3。
2. 设函数f (x , y )连续,则二次积分=⎰⎰ydx y x f dy 01),( [ ].(A)⎰⎰110),(ydx y x f dy ; (B)⎰⎰ydx x y f dy 01),(; (C)⎰⎰11),(xdy y x f dx ; (D)⎰⎰xdy y x f dx 01),(.3. 设Ω为平面x + y + z = 1与三个坐标面所围成的闭区域,则⎰⎰⎰Ω++dv z y x )(= [ ](A)61; (B) 81; (C) 121; (D) 241.4. 设y 1 , y 2是二阶线性方程y " + P (x )y ' + Q (x )y = 0的两个解, 那么y = C 1y 1 + C 2y 2 (C 1, C 2是任意常数)是该方程通解的充分必要条件是[ ].(A) 12210''+=y y y y ; (B) 12210''+≠y y y y ; (C) 12210''-=y y y y ; (D) 12210''-≠y y y y .二、填空题(本题共5小题,每小题4分,共计20分)1. 已知1||=a ,2||=b ,a 与b 的夹角为4π,则=+||b a2.设Ω是由曲面221y x z --=与z = 0围成的立体,则Ω的形心坐标为 3. 设曲线Γ为连接(1,1,1)和(2,3,4)两点的直线段,则曲线积分⎰Γ++ds z y x )(=4. 设∑为锥面22y x z +=被平面z = 1截下的有限部分,则曲面积分=⎰⎰∑zdS .5. 若方程y ' + y tan x = -2cos2x 有一个特解y = f (x ), 且f (0) = 0, 则0()lim→=x f x x____. 三、计算下列各题 (本题共5小题,每小题7分,共计30分)1.求过点)5,2,3(-M 且与两平面x –4z = 3和2x – y – 5z = 1的交线垂直的平面方程.2.求函数u = x 2 + 3yz 在点(1, 1, 1)处沿椭球面x 2 + 2y 2 + 3z 2 = 6在该点的外法线方向的方向导数。