蜗杆传动设计

合集下载

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动的计算和设计流程一般包括以下几个步骤:
1. 确定传动比:根据传动的要求,确定所需的传动比。

传动比可以通过计算Worm轮的齿数与Worm杆的螺旋线数之比来确定。

2. 确定蜗杆的参数:在确定传动比的基础上,确定蜗杆的螺旋线的角度、蜗杆的喉圆距离等参数。

这些参数可以通过蜗杆的传动比、齿数和齿距等来计算。

3. 确定蜗轮的参数:根据蜗杆的参数和传动比,确定蜗轮的齿数和齿形。

根据蜗杆和蜗轮的参数,可以使用蜗轮的设计公式来计算蜗轮的参数。

4. 验证传动性能:根据设计的参数,利用传动计算公式,
验证蜗轮蜗杆传动的传动效率、载荷分配、齿面接触应力
等性能指标,确保传动的可靠性和合理性。

5. 进行材料选择:根据传动性能和使用要求,选择合适的
材料来制造蜗轮和蜗杆,确保传动的强度和耐磨性等要求。

6. 进行结构设计:根据蜗轮和蜗杆的参数和材料,进行结
构设计,包括蜗杆的螺纹加工、蜗轮的齿形加工等。

7. 进行制造和装配:根据结构设计,进行蜗轮和蜗杆的制造,并进行装配。

在制造和装配的过程中,要注意工艺控
制和质量检验,确保传动件的质量和精度。

8. 完成传动系统的调试和测试:在装配完成后,进行传动
系统的调试和测试,检查传动的运行情况,验证设计的正
确性和合理性。

总之,蜗轮蜗杆传动的计算和设计流程就是根据传动要求确定传动比、确定蜗杆和蜗轮的参数,验证传动性能,选择材料,进行结构设计,制造和装配,最后进行调试和测试,以确保传动系统的性能和可靠性。

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程1. 背景介绍蜗轮蜗杆传动是一种常见的传动方式,具有传动比大、传动效率高等优点,广泛应用于机械传动系统中。

本文将介绍蜗轮蜗杆传动的计算和设计流程,帮助读者了解和掌握该传动方式的设计和计算方法。

2. 设计目标在进行蜗轮蜗杆传动的计算和设计之前,需要明确设计目标。

主要包括: - 传动比:根据实际需求确定传动比,以满足工作要求。

- 载荷:确定传动系统的工作载荷,包括转矩和速度等。

- 工作环境:考虑传动系统所处的工作环境,如温度、湿度等。

3. 计算和设计流程蜗轮蜗杆传动的计算和设计流程主要包括以下步骤:3.1 确定传动比传动比是蜗轮蜗杆传动中一个重要的参数,决定了输出轴的转速与输入轴的转速之间的关系。

根据实际需求和要求,确定传动比的大小。

3.2 确定功率和转矩根据传动系统的工作需求和工作环境,确定传动系统所需的功率和转矩。

功率和转矩将作为设计的重要依据。

3.3 选择蜗杆材料根据传动系统所需的载荷和工作环境,选择合适的蜗杆材料。

材料的选择要考虑到强度、耐磨性和耐腐蚀性等因素。

3.4 计算蜗杆参数根据确定的传动比、功率和转矩,计算蜗杆的基本参数。

主要包括蜗杆的模数、蜗杆齿数、蜗杆的效率等。

3.5 计算蜗轮参数根据传动比、蜗杆参数和工作环境等要求,计算蜗轮的基本参数。

主要包括蜗轮的模数、蜗轮齿数、蜗轮的效率等。

3.6 进行强度校核根据蜗轮蜗杆传动的设计参数,进行强度校核。

主要包括蜗杆的弯曲强度、蜗轮的弯曲强度和齿面强度等。

3.7 进行传动效率计算根据蜗轮蜗杆传动的参数和工作条件,计算传动的效率。

可以根据计算结果对传动系统进行优化和调整。

4. 结论蜗轮蜗杆传动是一种重要的传动方式,在机械传动系统中得到了广泛的应用。

通过本文介绍的计算和设计流程,读者可以了解和掌握蜗轮蜗杆传动的设计方法及其在机械传动中的应用。

为了保证传动的性能和可靠性,设计者需要综合考虑传动比、转矩、功率等因素,并进行强度校核和传动效率计算,确保设计满足实际工作要求。

蜗轮蜗杆传动设计

蜗轮蜗杆传动设计

蜗轮蜗杆传动设计
一、设计原理:
二、设计步骤:
1.确定传动参数:包括传动比、转速比、传递功率等。

传动比决定了蜗轮齿数和蜗杆的螺纹走向,转速比决定了蜗轮和蜗杆的转速。

传递功率则决定了蜗轮和蜗杆的材料和尺寸。

2.选择合适的蜗轮和蜗杆材料:蜗轮和蜗杆一般选择高强度和耐磨损的材料,如合金钢、铸铁等。

3.计算蜗轮和蜗杆的尺寸:根据传动参数和材料性能,计算蜗轮和蜗杆的齿数、模数、齿宽等。

4.计算传动效率:传动效率是指输入输出转矩之比,根据蜗轮和蜗杆的齿数、螺距、入射角等参数计算传动效率。

5.进行设计验证和优化:通过有限元分析、实验验证等方法对蜗轮蜗杆传动进行验证和优化。

三、设计注意事项:
1.蜗轮蜗杆传动的啮合精度要求高,齿轮和螺距的误差不能超过一定范围,否则会导致传动效率下降和噪音增加。

2.蜗轮和蜗杆的材料选择要根据传递功率和工作环境来确定,要保证材料的强度和耐磨损性能。

3.蜗杆的螺纹走向要和蜗轮的齿数匹配,以保证蜗轮能够完全啮合在蜗杆上。

4.设计时要考虑传动效率和传动噪音,通过选用合适的齿轮参数和优化传动结构来提高传动效率和降低噪音。

5.在设计过程中要进行强度校核,包括弯曲强度、齿面接触应力、表面损伤强度等,以保证传动的安全可靠性。

总结:蜗轮蜗杆传动是一种常用的传动方式,设计蜗轮蜗杆传动需要确定传动参数、选择材料、计算尺寸、计算效率、验证优化等步骤,同时要注意啮合精度、材料选择、螺纹走向、传动效率和强度校核等问题。

通过合理的设计和优化,可以实现高效、可靠的蜗轮蜗杆传动。

蜗杆传动设计基础

蜗杆传动设计基础
i n1 z 2 n2 z1
n1、n2分别为蜗杆和蜗轮的转速,r/min
蜗杆传动的传动比不等于蜗杆和蜗 轮分度圆直径的反比。
蜗杆头数z1的选择,主要与传动比、传动效率和制造难易程度 有关。 一般取蜗杆头数z1=1~4。要求自锁或希望得到大的传动比时, 可取z1=1,但此时传动效率较低。为提高传动效率,可采用多头蜗 杆,z1=2或4,但蜗杆的制造加工精度要求较高。
(2)蜗杆传动的失效形式
蜗杆传动的主要失效形式包括胶合、 磨损、点蚀。
(3)蜗杆传动的常用材料 材料需要足够的强度,更重要的是应该具 有良好的减摩性、耐磨性和抗胶合性。
蜗杆常用材料为碳素钢和合金钢。 高速重载且载荷变化较大时常用20Cr、 20CrMnTi等低碳钢渗碳淬火;高速重载但 载荷变化不大时常用45、45Cr等中碳钢表面 淬火;一般蜗杆常用40、45等碳素钢调质处 理;低速或人力传动时,蜗杆可不经热处理, 甚至可以采用铸铁。
当模数m一定时,增大q值,可增大蜗杆 分度圆直径,从而提高了蜗杆的刚度。 对于模数较小的蜗杆,应尽可能取大的 q值,以保证蜗杆具有足够的刚度和强度。
当蜗杆头数一定时,增加q会减少导程 角γ,降低蜗杆传动的效率。
直径系数q必须在保证蜗杆具有足够 刚度的前提下,尽可能取小值,以提高蜗 杆传动的效率。
3)传动比i、蜗杆头数z1和蜗轮齿数z2
由于在切制蜗轮轮齿时,所用滚刀的几何参数(m、α、z1)、 分度圆直径d1必须和蜗杆相同。 加工分度圆直径不同的蜗轮时,就要用一把滚刀加工。为了 减少滚刀的数量,规定蜗杆分度圆直径d1应该与模数m相对应, 如表10-1,即对于每一标准模数都规定了一定数量的蜗杆分度圆 直径d1。 蜗杆分度圆直径d1和模数m的比值, 用q表示,称为直径系数,即:

华科 机械设计 第4章-蜗杆传动设计

华科 机械设计 第4章-蜗杆传动设计
推荐α0=20~24°,常取α0=23°
2、齿廓圆弧半径ρ
推荐ρ=(5~5.5)m z1=1~2时,取ρ=5m ; z1=4时 ,取ρ=5.5m 3、蜗轮变位系数χ2 推荐χ2 =0.7~1.2 , 应使χ2≤1.5,以免齿顶变尖 χ2 的计算方法同普通圆柱蜗杆传动 几何尺寸计算与普通圆柱蜗杆传动相仿,详见表 4-2

-向外 z2
-向里 Fa4 Fa3

输出 z4
Ft 4
n3 n4 z3
中间轴
Ft 2 n2

Ft 3
Ft 1 z1
Fa2 n1
径向力均指 向各自轮心
蜗杆、蜗轮 均为右旋
Fa1 输入
机械设计
第四章 蜗杆传动设计-强度条件
二、普通圆柱蜗杆传动齿面接触疲劳强度计算 特点:1)强度计算主要针对蜗轮轮齿(材料原因)
Fa1-轴向力
3、力的方向(蜗杆主动)
Ft1 Fa 2
Fa1 Ft 2
Fr1 Fr 2
圆周力: 蜗杆上Ft 1与转向相反 同 齿 蜗轮上Ft 2与转向相同 径向力: Fr1和Fr2指向各自的轮心 轮 轴向力: 蜗杆上Fa1用主动轮左右手定则判定 左旋蜗杆用左手定则 右旋蜗杆用右手定则
机械设计
第四章 蜗杆传动设计
§4-1 概述 一、蜗杆传动的特点 用于空间交错轴间的传动,通常Σ=90° 从运动关系看,相当于螺杆与螺母运动 传动比大, i = 10~80,故结构紧凑; 传动平稳,噪声小;
可实现自锁; 摩擦发热大、传动效率低; 制造成本较高(蜗轮常用青铜合金制造)
机械设计
第四章 蜗杆传动设计-概述
减摩性好
蜗杆为细长轴零件,选材时应保证足够的强度和刚度

机械设计基础蜗杆传动

机械设计基础蜗杆传动
分度圆直径是蜗杆和蜗轮设计的重要参数,与传动比、中心距等密切相关。
类型与特点
圆柱蜗杆传动
圆柱蜗杆传动具有结构紧 凑、传动比大、工作平稳 、噪音小等优点。常用于 减速装置中。
环面蜗杆传动
环面蜗杆传动的特点是承 载能力高、传动效率高, 但制造和安装精度要求较 高。
锥蜗杆传动
锥蜗杆传动具有较大的传 动比和较紧凑的结构,但 制造和安装精度也较高。
降低摩擦系数
加强冷却和润滑
通过采用先进的表面处理技术或添加减摩 剂等措施,降低蜗杆和蜗轮之间的摩擦系 数,从而减少摩擦损失。
采用有效的冷却和润滑措施,控制传动的工 作温度,以降低热损失和摩擦损失。
05
蜗杆传动的结构设计与制造工艺
结构设计要点
选择适当的蜗杆类型
根据传动要求选择合适的蜗杆类型,如圆柱 蜗杆、环面蜗杆等。
04
蜗杆传动的效率与润滑Biblioteka 效率分析1 2 3
蜗杆传动效率的计算公式
效率 = (输出功率 / 输入功率) × 100%。由于蜗 杆传动中存在滑动摩擦和滚动摩擦,因此其效率 通常低于齿轮传动。
影响蜗杆传动效率的因素
包括蜗杆头数、导程角、摩擦系数、中心距、传 动比等。其中,蜗杆头数和导程角对效率影响较 大。
首先根据蜗杆和蜗轮的相对位置及运动关系,确定作用在蜗杆和蜗轮上的外力 ;然后分析这些外力在蜗杆和蜗轮上产生的内力,包括弯矩、扭矩和轴向力等 。
蜗杆传动的受力特点
由于蜗杆和蜗轮的螺旋角不同,使得作用在蜗杆和蜗轮上的外力产生不同的分 力,这些分力在蜗杆和蜗轮上产生的内力也不同。因此,蜗杆传动的受力分析 较为复杂。
装配顺序与方法
按照先内后外、先难后易的原则进行 装配,注意保证蜗杆和蜗轮的正确啮 合。

蜗轮蜗杆的传动设计原理

蜗轮蜗杆的传动设计原理

蜗轮蜗杆的传动设计原理蜗轮蜗杆传动是一种常见的机械传动方式,具有传动比大、承载能力强、传动平稳等优点,常用于工业机械设备中。

其传动原理是通过蜗轮和蜗杆之间的啮合来实现转矩和转速的传递。

蜗轮蜗杆传动由蜗轮(也称为蜗杆齿轮)和蜗杆组成,蜗轮的外形为螺旋状,蜗杆的外形为带有螺旋槽的杆状。

当蜗轮和蜗杆啮合时,通过蜗轮的旋转使蜗杆产生旋转运动,从而实现传递动力。

蜗轮和蜗杆之间的啮合形成斜面传动,有效地提高了传动的效率。

蜗轮蜗杆传动的设计原理主要包括以下几个方面:一、蜗杆的螺旋角度:蜗轮的螺旋角度对传动效率和稳定性有重要影响。

螺旋角度越小,蜗杆旋转一周所实现的传动比越大,但摩擦力和损耗也会增加。

因此,在设计中需要合理选择螺旋角度,以平衡传动比和效率。

二、蜗轮和蜗杆的材质和硬度:蜗轮通常选择高强度、耐磨损的材料制造,如合金钢。

蜗杆则通常选择高硬度、耐磨损的材料制造,如硬化钢或淬火淬硬钢。

选用合适的材质和硬度能够提高蜗轮蜗杆传动的承载能力和使用寿命。

三、蜗轮蜗杆的啮合准确度:蜗轮蜗杆的啮合准确度直接影响传动的稳定性和传动效率。

要求蜗轮蜗杆的啮合面光洁平整,啮合角度准确,否则容易产生额外的摩擦和磨损,降低传动效率,甚至导致传动失效。

四、润滑和散热:蜗轮蜗杆传动需要进行充分的润滑,以减少摩擦和磨损。

常见的润滑方式包括润滑油膜润滑、浸油润滑和油浸润滑等。

同时,蜗轮蜗杆传动还需要考虑散热问题,以保证传动过程中温度的稳定性。

五、传动比的选择:蜗轮蜗杆传动的传动比通常为大于1的数值,决定了输入和输出之间的速度和转矩的比例。

传动比的选择需要根据实际应用需求和机械设备的工作特性来确定。

六、传动效率和传动精度的考虑:蜗轮蜗杆传动的效率通常较低,为60%~90%,且传动精度也会受到蜗轮蜗杆啮合面质量的影响。

因此,在设计中需要综合考虑传动效率和传动精度的要求,以满足实际应用的需要。

综上所述,蜗轮蜗杆传动的设计原理包括蜗杆的螺旋角度、蜗轮和蜗杆的材质和硬度、啮合准确度、润滑和散热、传动比的选择,以及传动效率和传动精度的考虑等方面。

蜗杆传动教案设计

蜗杆传动教案设计

蜗杆传动教案设计一、教学目标让学生理解蜗杆传动的原理、特点和应用,掌握蜗杆传动的相关计算,培养学生的空间想象能力和分析问题的能力。

二、教学重难点重点:蜗杆传动的特点和主要参数。

难点:蜗杆传动的受力分析。

三、教学准备多媒体课件、蜗杆传动模型。

四、教学过程师:同学们,咱们今天来学习一种新的传动方式,叫蜗杆传动。

大家先看看这个模型,有什么发现呀?生:看着像齿轮,但又不太一样。

师:对啦,这就是蜗杆传动。

那大家想想,蜗杆传动和我们之前学的齿轮传动有什么区别呢?生:好像形状不太一样。

师:非常好,这只是其中一个方面哦。

那蜗杆传动有什么特点呢?生:不知道。

师:蜗杆传动的特点呀,有传动比大、传动平稳、可以自锁等等。

那大家知道蜗杆传动都用在哪些地方吗?生:不太清楚。

师:像一些减速装置呀,就会用到蜗杆传动。

接下来咱们重点来学习一下蜗杆传动的主要参数。

大家看课件,这个是什么呀?生:是蜗杆的直径系数。

师:没错,那它有什么作用呢?生:……师:它呀,会影响蜗杆的尺寸和强度哦。

然后还有蜗杆的头数、蜗轮的齿数这些参数。

那蜗杆传动的受力分析怎么看呢?大家结合这个图来思考一下。

生:有点难理解。

师:别着急,咱们一起来分析分析。

看这里,这个力是怎么来的呢?生:好像是因为转动产生的。

师:对啦,非常棒!那这个力又有什么特点呢?……师:好啦,今天的内容就学到这里,大家都理解了吗?生:差不多理解了。

五、教学反思通过本次教学,学生对蜗杆传动有了初步的认识和理解,但在受力分析部分还需要进一步加强练习和巩固。

在今后的教学中,要更加注重引导学生思考和分析问题,培养学生的自主学习能力。

同时,要多准备一些实例,让学生更好地理解和应用所学知识。

1级蜗杆传动课程设计

1级蜗杆传动课程设计

1级蜗杆传动课程设计一、课程目标知识目标:1. 理解蜗杆传动的基本原理,掌握蜗杆传动的分类、特点及应用范围;2. 学会分析蜗杆传动系统的受力情况,掌握蜗杆传动强度的计算方法;3. 了解蜗杆传动的制造工艺及装配要求,掌握蜗杆传动系统的维护保养方法。

技能目标:1. 能够正确绘制蜗杆传动系统的结构示意图,并进行简单的设计计算;2. 能够运用所学知识,分析并解决蜗杆传动系统在实际应用中遇到的问题;3. 能够熟练操作蜗杆传动实验设备,进行蜗杆传动性能测试。

情感态度价值观目标:1. 培养学生对蜗杆传动技术研究的兴趣,激发学生探索机械传动领域的热情;2. 增强学生的团队协作意识,培养学生在传动系统设计过程中勇于创新、严谨求实的科学态度;3. 通过对蜗杆传动技术在实际工程中的应用案例分析,提高学生对我国制造业发展的自豪感,树立正确的价值观。

本课程针对一年级学生特点,注重理论与实践相结合,以实际应用为导向,培养学生的传动系统设计能力和实践操作技能。

在教学过程中,要求学生积极参与讨论,敢于提出问题,充分调动学生的学习积极性,提高教学效果。

通过本课程的学习,使学生能够掌握蜗杆传动的基本知识,具备传动系统设计和分析的能力,为后续相关课程的学习打下坚实基础。

二、教学内容1. 蜗杆传动基本概念:蜗杆、蜗轮的结构特点,蜗杆传动的类型及分类依据;2. 蜗杆传动原理:蜗杆传动的工作原理,蜗杆与蜗轮的啮合条件,蜗杆传动的传动比计算;3. 蜗杆传动受力分析:蜗杆传动系统的受力情况,蜗杆、蜗轮的受力计算;4. 蜗杆传动强度计算:蜗杆传动的强度条件,蜗杆、蜗轮的材料选择及强度校核;5. 蜗杆传动设计与制造:蜗杆传动设计步骤,制造工艺及装配要求;6. 蜗杆传动应用案例分析:分析实际工程中蜗杆传动系统的应用,探讨其优缺点;7. 蜗杆传动实验:蜗杆传动性能测试,实验操作步骤及注意事项。

教学内容按照教材章节进行组织,共计7个部分。

在教学过程中,注重理论与实践相结合,循序渐进地引导学生掌握蜗杆传动的相关知识。

蜗杆蜗轮传动设计计算

蜗杆蜗轮传动设计计算

蜗杆蜗轮传动设计计算.txt蜗杆蜗轮传动设计计算一、简介蜗杆蜗轮传动是一种常见的传动方式,常用于机械设备中。

本文将介绍蜗杆蜗轮传动的设计计算方法。

二、设计计算1. 轴心距计算:蜗杆蜗轮传动中,轴心距的确定直接影响到传动性能。

一般可根据设备要求和材料选择来确定轴心距的大小。

2. 蜗杆蜗轮参数计算:- 蜗杆参数计算:蜗杆的参数包括蜗杆齿轮模数、齿数、蜗杆导程等。

根据蜗杆传动的工作要求,可通过相关公式计算得到蜗杆的参数。

- 蜗轮参数计算:蜗轮的参数包括蜗轮齿数、齿轮模数等。

蜗轮参数的确定需要考虑到蜗杆蜗轮传动的匹配性,一般可通过公式计算得到蜗轮的参数。

3. 力学计算:- 扭矩计算:根据传动功率和旋转速度,可以计算传动中所需的扭矩。

- 轴强度计算:蜗杆蜗轮传动的轴强度是设计中需要考虑的重要因素之一。

根据传动扭矩、材料强度等参数,可以进行轴强度的计算。

4. 效率计算:蜗杆蜗轮传动的效率影响着传动的能量损失。

通过相关公式和参数,可以计算蜗杆蜗轮传动的效率。

三、注意事项在进行蜗杆蜗轮传动设计计算时,需要注意以下几点:1. 使用合理的参数值和公式,确保计算结果准确可靠。

2. 考虑到材料的强度和耐磨性等因素,在选择蜗杆和蜗轮的材料时要谨慎。

3. 需要根据实际情况对设计参数进行适当调整,以满足工作要求和设备性能。

四、总结蜗杆蜗轮传动设计计算是机械设备设计中的重要内容,通过合理的设计计算能够确保传动的准确性和可靠性。

要注意选择合适的参数和材料,并根据实际情况对设计参数进行调整。

以上为蜗杆蜗轮传动设计计算的简要介绍,希望对您有所帮助。

第六章 蜗杆传动设计

第六章 蜗杆传动设计

常用的蜗轮材料为铸造锡青铜(ZCuSn10P1、 ZCuSn5Pb5Zn5),铸造铝铁青铜 (ZCuAl1010Fe3)及灰铸铁(HT150、HT200) 等。锡青铜耐磨性最好,但价格较高,用于滑 动速度大于3m/s的重要传动;铝铁青铜的耐磨 性较锡青铜差一些,但价格便宜,一般用于滑 动速度小于4m/s的传动;如果滑动速度不高 (小于2m/s),对效率要求也不高时,可以采 用灰铸铁。为了防止变形,常对蜗轮进行时效 处理。 v1 2 2 相对滑动速度为: v s v1 v2
3、蜗杆头数z1 蜗杆头数z1可根据要求的传动比和 效率来选定。单头蜗杆传动的传动比可 以较大,但效率较低。如果要提高效率, 应增加蜗杆的头数。但蜗杆头数过多, 又会给加工带来困难。所以,通常蜗杆 头数取为1、2、4、6。
4、导程角γ 蜗杆的直径系数q和蜗杆头数z1选定之后,蜗 杆分度圆柱上的导程角γ也就确定了,如图7-8 z1 pa z1m z1m z1 pz 所示。 tan d1 d1 d1 d1 q 显然有: 其中:p z 为蜗杆的导程, pa 为蜗杆的轴向齿距
因此,在相同的尺寸下,其承载能 力可提高1.5~3倍(小值适于小中心距, 大值适于大中心距);若传递同样的功 率,中心距可减小20%~40%。它的缺 点是:制造工艺复杂,不可展齿面难以 实现磨削,故不宜获得精度很高的传动。 只有批量生产时,才能发挥其优越性, 其应用现在已日益增加。
3.锥蜗杆传动 锥蜗杆传动中的蜗杆为一等导程的 锥形螺旋,涡轮则与一曲线齿圆锥齿轮 相似(如图6-2c)。 由于普通圆柱蜗杆传动加工制造简 单,用的最为广泛,所以我们主要介绍 以阿基米德蜗杆为代表的普通圆柱蜗杆 传动。
★必须指出:蜗杆传动的传动比不 等于蜗轮蜗杆的直径之比,也不等于蜗 杆与蜗轮的分度圆直径之比。 ★一般圆柱蜗杆传动减速装置的传 动比的公称值按下列选择:5、7.5、10、 12.5、15、20、25、30、40、50、60、 70、80。其中10、20、40和80为基本 传动比,应优先选用。

《机械设计基础》第12章 蜗杆传动

《机械设计基础》第12章 蜗杆传动
2、重合度大,传动平稳,噪声低;
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。

蜗杆蜗轮传动设计计算

蜗杆蜗轮传动设计计算

蜗杆蜗轮传动设计计算介绍蜗杆蜗轮传动是一种常用的传动方式,适用于需要减速大扭矩输出的机械设备。

本文档将介绍蜗杆蜗轮传动的设计计算方法。

设计计算步骤1. 确定传动比:传动比是蜗杆蜗轮传动的一个重要参数,用于确定输出转速与输入转速之间的比值。

根据实际应用需求和传动效率,选择合适的传动比。

2. 计算传动效率:传动效率是蜗杆蜗轮传动的重要性能指标,影响传动的能量损失情况。

根据蜗杆和蜗轮的材料、齿数、齿形等参数,采用标准公式计算传动效率。

3. 确定蜗轮和蜗杆的参数:根据传动比、输入转速、输出转矩等要求,选择适当的蜗轮和蜗杆的参数。

包括蜗轮的模数、齿数、导程系数等,以及蜗杆的摩擦系数、喉圆直径等关键参数。

4. 进行强度校核:根据所选材料、载荷情况等,进行蜗轮蜗杆传动系统的强度校核。

包括静态强度、疲劳强度等方面考虑,保证传动系统的安全稳定运行。

设计计算示例以一个减速器设计为例,输入转速为1000 rpm,输出扭矩为5000 Nm,要求传动比为10。

假设蜗杆材料为45号钢,蜗轮材料为ZCuSn10Pb1。

1. 计算传动效率:传动效率 = (传动比 x 蜗杆效率 x 蜗轮效率)/ 100%,根据实际参数计算传动效率为80%。

2. 确定蜗轮和蜗杆的参数:蜗轮模数 m = (输出扭矩 x 1000)/ (传动比 x 输入转速 x 齿数) = (5000 x 1000)/ (10 x 1000 x 100) = 5 mm;蜗杆摩擦系数μ = 0.1,喉圆直径 d = (输出扭矩 x 输入转速)/ ( x 传动比 x 齿数x μ) = (5000 x 1000)/ ( x 10 x 20 x 0.1) = 8 mm。

3. 进行强度校核:根据蜗杆和蜗轮的尺寸、材料强度等参数,进行静态强度和疲劳强度的校核。

确保蜗杆蜗轮传动系统的强度满足设计要求。

结论本文档介绍了蜗杆蜗轮传动的设计计算步骤,并以一个减速器设计为例进行了示例计算。

蜗杆传动设计一般步骤

蜗杆传动设计一般步骤

蜗杆传动设计一般步骤例题:设计一混料机用的闭式普通圆柱蜗杆传动。

已知:蜗杆输入功率p1=10kw,蜗杆转速n1=1460r/min,传动比i=20,单向转动载荷平稳,批量生产。

解:1、选择材料确定许用应力考虑到蜗杆传动传递的功率不大,速度也不太高,蜗杆选用45钢制造,调质处理,齿面硬度220~250hbs;蜗轮轮缘选用铸铝磷青铜zcusn10p1,又因批量生产,采用金属模铸造。

由表8-21得:[σh]=2000 mpa,[σf]=70 mpa。

2、按齿面接触疲劳强度确定模数m和蜗杆分度圆直径d1确定蜗杆、蜗轮的齿数:由表8—17取z1=2,则z2=iz1=20×2=40。

蜗轮转矩t2:由表8—24估计η′=0.8,则确定载荷系数:查表8—10,取k=1.1。

将各参数代入式(8—53)1 查表8—18,按m2d1≥4611mm3,选取m=8 mm,d1=80 mm3.验算效率蜗杆导程角γ由式(8—46)得所以滑动速度:当量摩擦角ρv:查表8—23,得ρv=1°34′效率:现取η=0.85扭矩t2:与初估误差较大,故重新计算查表8—18可知原设计合用4.验算蜗轮疲劳弯曲强度齿形系数yf:蜗轮的当量齿数2 由表8—26查取yf =1.52弯曲强度足够5.计算蜗杆和蜗轮的主要几何尺寸(略)。

6.热平衡计算。

所需散热面积:取t0=20℃,t=70 ℃,ks=15 w/(m2·℃) ,根据式8—57,所需的最小散热面积7.选择精度等级:因为这是一般动力传动,v2=1.22m/s<3 m/s,故取8级精度。

8.蜗杆和蜗轮的结构设计,绘制蜗杆和蜗轮的零件工作图绘制(略)。

3 。

蜗杆的传动设计原理及应用

蜗杆的传动设计原理及应用

蜗杆的传动设计原理及应用1. 引言蜗杆是一种常见的传动装置,它具有传动比大、传动平稳等优势,因此在工业生产中得到广泛应用。

本文将介绍蜗杆的传动原理、设计要点以及在实际应用中的一些案例。

2. 蜗杆的传动原理蜗杆传动是通过蜗杆和蜗轮的啮合来实现的,蜗轮是一种带有螺旋形齿轮的圆柱体,蜗杆则是与蜗轮啮合的螺旋形圆柱体。

蜗杆的传动原理是利用蜗杆的螺旋线特点,通过摩擦阻力将运动传递给蜗轮,实现传动效果。

3. 蜗杆的设计要点蜗杆的设计需要考虑以下几个要点:3.1 蜗杆的材料选择蜗杆的材料应具备足够的强度和耐磨性,常见的材料有高速钢、合金钢等。

选择合适的材料可以提高蜗杆的使用寿命。

3.2 蜗杆的啮合角蜗杆的啮合角是指蜗杆螺旋线与蜗轮齿槽线之间的夹角,这个角度决定了传动比和传动效率。

合理选择蜗杆的啮合角可以提高传动效果。

3.3 蜗杆的润滑方式蜗杆传动由于工作时摩擦较大,因此需要采用适当的润滑方式来减少摩擦和磨损。

常见的润滑方式有润滑油和固体润滑剂。

4. 蜗杆的应用案例蜗杆传动在工业生产中有着广泛的应用,以下是一些蜗杆传动的应用案例:4.1 输送机械蜗杆传动可以用于各种输送机械中,如蜗杆输送机、蜗杆提升机等。

它们之间的运动传递主要通过蜗杆传动来实现。

4.2 齿轮箱蜗杆传动也常用于齿轮箱中,通过与其他齿轮的配合,实现不同传动比的变速功能。

4.3 电动机蜗杆传动可以连接电动机和工作机械,将电动机的转速和力传递给工作机械,实现工作机械的运动。

4.4 工厂生产线在工厂生产线中,蜗杆传动被广泛应用于各种传动链条中,如搅拌机、包装机等,保证了生产线的稳定运行。

5. 总结蜗杆传动具有传动比大、传动平稳等优势,因此在工业生产中得到广泛应用。

本文介绍了蜗杆的传动原理、设计要点以及在实际应用中的一些案例。

在实际设计中,需要合理选择蜗杆的材料、啮合角以及润滑方式,以提高蜗杆传动的使用效果。

随着工业技术的发展,蜗杆传动在未来的应用前景将更加广阔。

蜗杆传动 教学设计

蜗杆传动 教学设计

蜗杆传动教学设计蜗杆传动是一种常见的机械传动方式,通过蜗轮和蜗杆之间的啮合来实现动力传递。

在教学中,可以通过以下步骤来进行设计教学:1. 引入知识:首先,介绍蜗杆传动的基本概念和结构,包括蜗轮、蜗杆的定义和特点。

可以通过图片和动画的方式呈现,让学生对蜗杆传动有一个直观的认识。

2. 工作原理:接下来,解释蜗杆传动的工作原理。

蜗杆传动是一种经济、实用、平稳且传动比较大的传动方式,适用于低速大扭矩的传动。

可以通过示意图和实物来演示蜗杆传动的工作原理,让学生能够更好地理解。

3. 啮合角和传动比:介绍蜗杆传动中的啮合角和传动比的概念。

啮合角是指蜗轮和蜗杆的啮合面的夹角,决定了蜗杆传动的传动比。

传动比是指输出轴转速与输入轴转速之间的比值。

通过计算实例和图表,帮助学生掌握如何计算和应用传动比。

4. 优缺点:介绍蜗杆传动的优缺点。

蜗杆传动具有传动比大、结构简单、噪音小等优点,但也存在传动效率低、制造成本高等缺点。

通过讨论和比较,让学生对蜗杆传动的优缺点有一个全面的了解。

5. 应用案例:引入蜗杆传动的应用实例。

讲解蜗杆传动在工程和日常生活中的应用,如工厂中的输送带、电动车的巡航控制等。

通过实例分析,让学生能够将理论知识与实际应用相结合。

6. 实验设计:设计相关实验来加深学生对蜗杆传动的理解。

可以设计拆卸蜗杆传动装置、测量传动比的实验,让学生亲自操作并观察实验结果,加深对蜗杆传动的理解和掌握。

7. 综合评价:对学生进行综合评价,可以设计小组或个人作业来检验学生对蜗杆传动的理解与应用能力。

例如,设计蜗杆传动机械装置,计算传动比和效率等。

同时,可以要求学生写出关于蜗杆传动的优缺点的论述。

以上是一个大致的教学设计,可以根据具体的教学需求进行调整和完善。

通过这样的教学设计,能够帮助学生全面了解蜗杆传动,并掌握相关的计算和应用能力。

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程1. 引言蜗轮蜗杆传动是一种常见的传动方式,其作用是将蜗杆的旋转运动转化为蜗轮的旋转运动。

在机械设计中,蜗轮蜗杆传动常用于需要减速和扭矩放大的场合,如工程机械和输送设备等。

本文将介绍蜗轮蜗杆传动的计算和设计流程,以帮助读者理解和应用该传动方式。

2. 蜗轮蜗杆传动基本原理蜗轮蜗杆传动是由蜗轮和蜗杆两个主要部分组成的。

蜗轮是一种圆柱面上的齿轮,其齿数通常为13到50个不等。

蜗杆则是一种螺旋形的轴,其表面有一条或多条螺旋齿。

蜗杆的螺旋齿与蜗轮的齿轮齿咬合,通过蜗杆的旋转运动将扭矩传递给蜗轮。

传动比是蜗轮蜗杆传动中一个重要的参数,它定义了蜗轮每转动一周所需的蜗杆转动圈数。

传动比越大,蜗轮的转速越慢,扭矩放大效果越好。

传动比的计算依赖于蜗轮和蜗杆的几何参数,如齿数、螺距等。

3. 蜗轮蜗杆传动的计算和设计流程下面将介绍蜗轮蜗杆传动的计算和设计流程,包括几何参数的选择、传动比的计算和校核等。

3.1 选择蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数选择是蜗轮蜗杆传动设计的首要步骤。

蜗轮的齿数和蜗杆的螺旋齿数直接影响传动比的计算和传动效果。

通常情况下,蜗轮的齿数要求为13到50个,而蜗杆的螺旋齿数则较少,通常为1到4个。

3.2 计算传动比传动比的计算是蜗轮蜗杆传动设计的核心步骤。

传动比的计算公式为:传动比=蜗轮齿数/蜗杆螺旋齿数。

由于蜗杆的螺旋齿数较少,所以传动比通常较大,一般在10到100之间。

3.3 蜗轮和蜗杆的啮合校核为了保证蜗轮和蜗杆能够顺利啮合并传递扭矩,需要进行蜗轮和蜗杆的啮合校核。

啮合校核主要包括齿面接触和齿面强度的计算。

齿面接触校核考虑了蜗轮和蜗杆的啮合情况,确保齿面接触压力和接触面积处于合适的范围。

齿面强度校核则考虑了蜗轮和蜗杆的齿廓变形和强度问题,确保传动过程中不会发生过大的变形和破坏。

3.4 蜗轮蜗杆传动的轴的设计蜗轮蜗杆传动中的轴承和轴的设计也是非常重要的一步。

轴承要能够承受蜗轮蜗杆传递的扭矩和径向力,并保证传动的正常运转。

机械设计第章蜗杆传动设计

机械设计第章蜗杆传动设计

Mpa
式中 Zρ-蜗杆传动的接触线长度和曲率半径对接触应力的影响系数,简称接触系数,查图 8.3.3 蜗杆传动的强度计算
蜗轮齿面接触疲劳强度计算
蜗轮齿根接触疲劳强度的验算公式为:
σH≤[σ]H
MPa
式中:
[σ]H-蜗轮齿面的许用接触应力。 设计公式为:
mm根弯曲疲劳强度的验算公式为:
da1=d1+2ha1=d1+2ha*m df1=d1-2hf1=da-2(ha*m+c)
c=c*m
db1=d1.tgr/tgrb=mz1/tgrb
ha1=ha*m=1/2(da1-d1) hf1=(ha*+c*)m=1/2(da1-df1)
h1=hf1+ha1=1/2(da1+df1) tgr=mz1/d1=z1/q
2011-03-18
第8章 蜗杆传动设计
Page 6 of 16
(5)传动比I
传动比
i=n主动1/n从动2
蜗杆为主动的减速运动中
i=n1/n2=z2/z1 =u 式中:n1 -蜗杆转速;n2-蜗轮转速。 减速运动的动力蜗杆传动,通常取5≤u≤70,优先采用15≤u≤50;增速传动5≤u≤ 15。
普通圆柱蜗杆基本尺寸和参数及其与蜗轮参 数的匹配表。
各力的大小可按下式计算:
Ft1=Fa2=2T1/d1
Ft2=Fa1=2T1/d2
Fr1=Fr2=Fa1tanα
Fn= Fa1/cosαncosγ=Fa2/cosαncosγ=2T2/d2cosαncosγ
2011-03-18
第8章 蜗杆传动设计
Page 10 of 16
式中:T1、T2-蜗杆与蜗轮上的转矩 N.mm。

机械设计-蜗杆传动的设计

机械设计-蜗杆传动的设计

Fr 2 Ft 2 tan Fr1
三、4蜗)杆按传螺动旋的作受用力分分析
方向判定:
✓ 蜗轮转向
已知:n1、旋向→n2 螺旋定则:四指代表蜗杆的回转方向,蜗轮的速度方向
与大拇指所指的方向相反。(右旋右手、左旋左手)
2
1
✓ 各分力的方向 Fr:指向各自轮心 Ft
蜗杆与n1反向 蜗轮与n2同向 Ft 2 Fa1
蜗杆传动的设计
01 失效形式和设计准则 02 蜗杆传动的常用材料及结构 03 蜗杆传动的受力分析 04 蜗杆传动的润滑
一、蜗杆传动的失效形式和设计准则 准则
失效形式: ✓ 蜗轮强度较弱,失效主要发生在蜗轮上。 ✓ 与齿轮传动类似:点蚀、胶合、磨损、折断。 设计计算准则: ✓ 开式蜗杆传动:保证齿根弯曲疲劳强度进行设计。 ✓ 闭式蜗杆传动:保证齿面接触疲劳强度进行设计,校核齿根弯曲疲劳强度,热平衡计算
二、蜗杆传动的常用材料、结构
1. 常用材料
蜗杆
高速重载 低速中载
蜗轮
vs≥3 m/s 重要传动 vs≤4 m/s 一般传动 vs<2 m/s 不重要传动
低碳合金钢+渗碳淬火 中碳钢或中碳合金钢+表面淬火 中碳钢+调质
铸造锡青铜 铸造铝铁青铜 灰铸铁
蜗杆常用材料及应用
2.蜗杆传动的结构
蜗杆:蜗杆轴(车制、铣制)
✓ 在箱体外壁增加散热片,以增大散热面积; ✓ 在蜗杆轴端设置风扇,进行人工通风,以增大表面传热系数; ✓ 在箱体油池中装设蛇形冷却管; ✓ 采用压力喷油循环润滑。
加散热器和风扇
加装冷却蛇形水管
冷却器
过滤器
循环润滑
油泵
2.蜗杆传动的润滑
运动粘度: υ40℃↑——抗胶合↑ 润滑方法:

蜗杆的传动设计原理

蜗杆的传动设计原理

蜗杆的传动设计原理
蜗杆传动是一种将旋转运动转换为轴向平移运动的机械传动装置。

其主要由蜗杆、蜗杆轮和传动壳体组成。

蜗杆是一种类似于螺旋的圆柱体,其形状为旋转平面绕轴线前进所产生的曲面。

蜗杆轮则是一种类似于齿轮的圆盘,其表面上有一系列相互并排的螺旋齿。

传动壳体则是将蜗杆和蜗杆轮包围在内的外壳,起到固定和支撑的作用。

蜗杆的传动原理是通过蜗杆与蜗杆轮之间的啮合,将蜗杆的旋转运动转化为蜗杆轮的轴向平移运动。

当蜗杆旋转时,蜗杆的螺旋形状会使蜗杆轮上的螺旋齿逐个接触到蜗杆的螺旋,从而推动蜗杆轮在传动壳体内轴向平移。

蜗杆传动具有传动比大、传动效率高、结构紧凑等优点。

其传动比实际上由蜗杆的螺旋角和蜗杆轮的齿数决定,可以根据需要调整传动比。

此外,蜗杆传动由于螺旋的自锁性,在停机状态下可以实现一定的自锁,使得传动系统更加安全可靠。

蜗杆传动广泛应用于各种机械设备中,如起重机械、输送机械、工具机等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.环面蜗杆传动
3.锥蜗杆传动
8.1.3蜗杆传动的特点
传动比大,结构紧凑
传动平稳,无噪声
具有自锁性
传动效率较低,磨损较严重
蜗杆轴向力较大,致使轴承摩擦损失较大。
8.1.4蜗杆传动的应用
由于蜗杆蜗轮传动具有以上特点,故常用于两轴交错、传动比较大、传递功率不太大或间歇工作的场合。当要求传递较大功率时,为提高传动效率,常取z1=2-4。此外,由于当γ1较小时传动具有自锁性,故常用在卷扬机等起重机械中,起安全保护作用。它还广泛应用在机床、汽车、仪器、冶金机械及其它机器或设备中;
各力的大小可按下式计算:
Ft1=Fa2=2T1/d1
Ft2=Fa1=2T1/d2
Fr1=Fr2=Fa1tanα
Fn=Fa1/cosαncosγ=Fa2/cosαncosγ=2T2/d2cosαncosγ
式中:T1、T2-蜗杆与蜗轮上的转矩N.mm。
确定各力的方向:蜗杆为主动件,蜗杆的圆周力方向与蜗杆上啮合点的速度方向相反;蜗杆为从动件,蜗轮的圆周力方向与蜗轮的啮合点的速度方向相同;蜗杆和蜗轮的轴向力方向分别与蜗轮和蜗杆的周向力方向相反;蜗杆和蜗轮的径向力方向分别指向各自的圆心。
计算准则:
开式传动中主要失效形式是齿面磨损和轮齿折断,要按齿根弯曲疲劳强度进行设计。
闭式传动中主要失效形式是齿面胶合或点蚀而。要按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。此外,闭式蜗杆传动,由于散热较为困难,还应作热平衡核算。
常用材料:
蜗杆材料、蜗轮材料不仅要求具有足够的强度,更重要的是要具有良好的跑合性能、耐磨性能和抗胶合性能。蜗轮传动常采用青铜或铸铁作蜗轮的齿圈,与淬硬并磨制的钢制蜗杆相匹配。
为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即:
q=d1/m
常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。
(3)蜗杆头数z1和蜗轮齿数z2
蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。
因a'=a则z2'=z2-2x2
蜗杆传动变位:
8.2.3普通圆柱蜗杆传动的几何尺寸计算
普通圆柱蜗杆传动基本几何尺寸计算关系式:
名称
代 号
计算关系式
说 明
中心距
a
a=(d1+d2+2x2m)/2
按规定选取
蜗杆头数
z1
按规定选取
蜗轮齿数
z2
按传动比确定
齿形角
a
aa=20。或an=20。
按蜗杆类型确定
模数
(5)传动比I
传动比i=n主动1/n从动2
蜗杆为主动的减速运动中
i=n1/n2=z2/z1=u
式中:n1-蜗杆转速;n2-蜗轮转速。
减速运动的动力蜗杆传动,通常取5≤u≤70,优先采用15≤u≤50;增速传动5≤u≤15。
普通圆柱蜗杆基本尺寸和参数及其与蜗轮参数的匹配表。
8.2.2蜗杆传动变位的特点
蜗杆齿高
h1
h1=hf1+ha1=1/2(da1+df1)
蜗杆导程角
r
tgr=mz1/d1=z1/q
渐开线蜗杆基圆导程角
rb
cosrb=cosr.cosan
蜗杆齿宽
b1
见表11-4
由设计确定
蜗轮分度圆直径
d2
d2=mz2=2a-d1-2x2.m
蜗轮喉圆直径
da2
da2=d2+2ha2
蜗轮齿根圆直径
df2
蜗杆蜗轮传动的特征:
其一,它是一种特殊的交错轴斜齿轮传动,交错角为∑=90°,z1很少,一般z1=1~4;
其二,它具有螺旋传动的某些特点,蜗杆相当于螺杆,蜗轮相当于螺母,蜗轮部分地包容蜗杆。
8.1.2蜗杆传动的类型
按蜗杆形状的不同可分:
1.圆柱蜗杆传动-普通圆柱蜗杆(阿基米德蜗杆、渐开线蜗杆、法向直廓蜗杆、锥面包络蜗杆)和圆弧蜗杆
2.熟练掌握蜗杆和蜗轮的结构特点;
3.掌握蜗杆传动的受力分析、滑动速度和效率;
4.掌握蜗杆传动的热平衡计算;
5.了解蜗杆传动的强度计算特点;
6.了解蜗杆的传动类型;
8.1.1蜗轮蜗杆的形成
蜗杆蜗轮传动是由交错轴斜齿圆柱齿轮传动演变而来的。小齿轮的轮齿分度圆柱面上缠绕一周以上,这样的小齿轮外形像一根螺杆,称为蜗杆。大齿轮称为蜗轮。为了改善啮合状况,将蜗轮分度圆柱面的母线改为圆弧形,使之将蜗杆部分地包住,并用与蜗杆形状和参数相同的滚刀范成加工蜗轮,这样齿廓间为线接触,可传递较大的动力。
i=z2/z1
z1
z2
≈5
6
29—31
7—15
4
29—61
14—30
2
29—61
29—82
1
29—82
(4)导程角γ
蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距pa与蜗杆导程pz的关系为pz=z1pa由下图可知:
tanγ=pz/πd1=z1pa/πd1=z1m/d1=z1/q
导程角γ的范围为3.5°一33°。导程角的大小与效率有关。导程角大时,效率高,通常γ=15°-30°。并多采用多头蜗杆。但导程角过大,蜗杆车削困难。导程角小时,效率低,但可以自锁,通常γ=3.5°一4.5°
8.3.3蜗杆传动的强度计算
蜗轮齿面接触疲劳强度计算
蜗轮齿根接触疲劳强度的验算公式为:
σH≤[σ]HMPa
式中:
[σ]H-蜗轮齿面的许用接触应力。
设计公式为:
mm
蜗轮齿根弯曲疲劳强度计算
蜗轮齿根弯曲疲劳强度的验算公式为:
σF≤[σ]FMPa
式中:
σF-蜗轮齿根的许用弯曲应力。
设计公式为:
mm3
许用应力
8.3.2蜗杆传动的载荷和应力分析
受力分析
以右旋蜗杆为主动件,并沿图示的方向旋转时,蜗杆螺旋面上的受力情况。设Fn为集中作用于节点P处的法向载荷,它作用于法向截面Pabc内。Fn可分解为三个互相垂直的分力,即圆周力Ft、径向力Fr和轴向力Fa。显然,在蜗杆与蜗轮间,载荷Ft1与Fa2、Fr1与Fr2和Fa1与Ft2对大小相等、方向相反的力。
θ
θ=2arcsin(b2/d1)
蜗杆轴向齿厚
sa
sa=1/2(πm)
蜗杆法向齿厚
sn
sn=sa.cosr
蜗轮齿厚
st
按蜗杆节圆处轴向齿槽宽ea'确定
蜗杆节圆直径
d1'
d1'=d1+2x2m=m(q+2x2)
蜗杆节圆直径
d2'
d2'=d2
8.3.1蜗杆传动的失效形式、计算准则及常用材料
失效形式:
点蚀、齿面胶合及过度磨损由于蜗杆传动类似于螺旋传动啮合效率较低、相对滑动速度较大,点蚀、磨损和胶合最易发生,尤其当润滑不良时出现的可能性更大。又由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,蜗轮是该传动的薄弱环节。因此,一般只对蜗轮轮齿进行承载能力计算和蜗杆传动的抗胶合能力计算
m
m=ma=mn/cosr
按规定选取
传动比
i
i=n1/n2
蜗杆为主动,按规定选取
齿数比
u
u=Z2/Z1当蜗杆主动时,i=u
蜗轮变位系数
x2
x2=a/m-(d1+d2)/2m
蜗杆直径系数
q
q=d1/m
蜗杆轴向齿距
pa
pa=πm
蜗杆导程
pz
pz=πmz1
蜗杆分度圆直径
d1
d1=mq
按规定选取
蜗杆齿顶圆直径
da1
da1=d1+2ha1=d1+2ha*m
蜗杆齿根圆直径
df1
df1=d1-2hf1=da-2(ha*m+c)
顶隙
c
c=c*m
按规定
渐开线蜗杆齿根圆直径
db1
db1=d1.tgr/tgrb=mz1/tgrb
蜗杆齿顶高
ha1
ha1=ha*m=1/2(da1-d1)
按规定
蜗杆齿根高
hf1
hf1=(ha*+c*)m=1/2(da1-df1)
蜗杆传动设计
蜗杆传动是在空间交错的两轴间传递运动和动力的一种传动,两轴线间的夹角可为任意值,常用的为90°。这种传动由于具有结构紧凑、传动比大、传动平稳以及在一定的条件下具有可靠的自锁性等优点,它广泛应用在机床、汽车、仪器、起重运输机械、冶金机械及其它机器或设备中。
基本要求
1.熟练掌握蜗杆的传动特点、失效形式和计算准则;
df2=d2-2ha2
蜗轮齿顶高
ha2
ha2=1/2(da2-d2)=m(ha*+x2)
蜗轮齿根高
hf2
hf2=1/2(d2-df2)=m(ha*-x2+c*)
蜗轮齿高
h2
h2=ha2+hf2=1/2(da2-df2)
蜗轮咽喉母圆半径
rg2
rg2=a-1/2(da2)
蜗轮齿宽
b2
由设计确定
蜗轮齿宽角
当蜗轮材料为强度极限σB<300MPa的青铜,蜗轮传动的主要失效形式为蜗轮齿面接触疲劳失效。因此,承载能力取决于蜗轮的接触疲劳强度。则[σ]H=KHN[σ]H',其中[σ]H'为基本许用应力,查表;KHN为接触疲劳强度的寿命系数,KHN=
铸锡青铜蜗轮的基本许用接触应力[σ]H'(Mpa)
蜗 轮 材 料
选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。
相关文档
最新文档