红外光谱定性分析指导(1)-课件讲义PPT(演示稿)

合集下载

红外光谱法PPT教学课件

红外光谱法PPT教学课件

方法名称
原子发射光谱法 原子荧光光谱法 分子荧光光谱法 分子磷光光谱法 化学发光法 X射线荧光分析
激发方式
电弧、火花、等离子炬等 高强度紫外、可见光 紫外、可见光 紫外、可见光 化学能 X射线(0.01—2.5nm)
作用物质或机理
气态原子的外层电子
检测信号
紫外、可见光
气态原子的外层电子
原子荧光
分子
荧光(紫外、可见光)
分子
磷光(紫外、可见光)
分子
可见光
原子内层电子的逐出,外层能级电 子跃入空位(电子跃迁)
特征X射线(X射线荧光)
荧光光谱法
当一种吸收物质吸收电磁辐射后跃迁到高能态,它的 寿命约为10-10~10-9秒,在一般情况下,受光激发的粒子与 系统中的其它粒子有一系列碰撞并将激发能转化为热,此 为无辐射跃迁。某些情况下,被电磁辐射激发到高激发态 的粒子很快通过碰撞失去振动能到达第一电子激发态的最 低振动能级,然后发射电磁辐射回到基态。
∆E=hc/λ 所以各种粒子吸收线的波长或频率不同。因此.对吸收线波长 及强度的研究,可以提供样品的性质,结构及含量的信息。 根据吸收光谱所在的光谱区域及吸收粒子的差别,主要可分为: 紫外—可见吸收光谱法、原子吸收光谱法及红外光谱法,此外还有 核磁共振波谱法及X射线吸收光谱法。
各类吸收光谱法的主要特点
可见光
光学分析方法分类
光学分析法分为光谱法和非光谱法两类。 光谱法是电磁波与物质作时,引起分子或原子内部量子化能级跃 迁而产生发射、吸收、散射或荧光,通过检测这些光谱的特征波长 和强度来进行定性定量分析。这类方法包括:原子吸收、原子发射、 原子荧光、紫外可见、红外光谱、分子荧光、分子磷光、核磁共振 等等。 非光谱法则是通过测量电磁波与物质作用时,电磁波的某些其他 性质,如反射、折射、散射、干涉、衍射和偏振等变化而建立。这 类方法有折射法、干涉法、散射浊度法、旋光法、圆二向色性法、X 射线衍射法和电子衍射法等。

FTIR红外光谱原理及图谱解析完整版本课件 (一)

FTIR红外光谱原理及图谱解析完整版本课件 (一)

FTIR红外光谱原理及图谱解析完整版本课件(一)FTIR红外光谱原理及图谱解析完整版本课件简介FTIR红外光谱是一种常用的物质分析方法,广泛应用于化学、生物、环境等领域。

本文介绍FTIR红外光谱的原理和图谱解析方法。

一、红外光谱原理FTIR红外光谱的原理是基于物质分子振动的吸收和散射行为。

当分子中的化学键振动时,将会吸收红外光谱区域的能量,产生特定的吸收峰。

FTIR光谱分析仪通过红外光源和可变波长的光学器件将可见光波长转化为红外波长,使其能够与物质的振动共振。

经过物质样品后,经过红外光谱检测器,将该区域的光强度转换为物质光谱图。

二、FTIR光谱图谱解析方法1.波数和吸收峰FTIR光谱图中,横坐标为波数,纵坐标为吸收率或透过率。

不同物质的振动特性存在差异,因此所产生的吸收峰位置也不同。

FTIR光谱图分析可以通过峰的波数来推断物质中的官能团,并可定性或定量分析样品中成分的存在。

2.峰形及其宽度FTIR光谱图中峰形和宽度提供了有关振动模式和分子结构的信息。

当样品存在着两种或更多种不同类型的化学键时,产生的峰可能是峰形尖锐的或不对称的,而单一类型的化学键则产生峰形较为平缓的吸收峰。

3.吸收强度FTIR光谱中吸收强度是定量分析制备样品中成分存在的重要指标,吸收峰强度和峰的面积可用于计算样品中成分的含量。

吸收因素可能包括洗涤和处理的语句、溶剂效应、仪器信噪比等因素。

4.干扰峰物质在FTIR光谱测试过程中,可能会产生应力、化学作用、示谐频和空气湿度等干扰峰。

为了避免这些因素影响光谱数据,应采取适当的标准条件、仪器校准等措施来进行分析,避免由于干扰而得到错误的结果。

结语FTIR红外光谱分析是一种重要的化学分析技术。

理解FTIR红外光谱的原理和图谱解析方法,能够帮助我们准确、敏捷地进行样品分析。

傅立叶红外光谱定性分析资料课件

傅立叶红外光谱定性分析资料课件
在食品安全领域,傅立叶红外光谱定性分析将 用于检测食品中的添加剂、农药残留和有害物 质,保障食品安全和消费者健康。
THANKS
谢谢
医药领域
用于药物研发、药物分析和疾病诊断。
傅立叶红外光谱定性分析的基本原理
物质对红外光的选择性吸收
不同化学键或官能团在特定波长范围内对红外光有选择性吸收。
傅立叶变换
通过傅立叶变换将干涉图转换为光谱图,便于分析和解析。
谱图解析
对比已知的红外光谱标准谱图,确定被测物质的化学结构和组成。
02
CHAPTER
数据处理
在进行数据处理时,应选择合适的处理方法 ,避免引入误差。
仪器维护
定期对傅立叶红外光谱仪进行维护和保养, 确保仪器的稳定性和准确性。
安全操作
在实验过程中,应遵循实验室安全操作规程 ,确保实验安全。
03
CHAPTER
傅立叶红外光谱定性分析结 果解读
结果判读方法
特征峰分析
通过对比已知的红外光谱特征峰,确定样品 中可能存在的官能团或物质。
谱图匹配
将未知样品的红外光谱与标准谱图库进行比 对,找出匹配度最高的物质。
峰强分析
根据峰强的大小,判断样品中各组分的相对 含量。
峰形分析
通过观察峰形的变化,判断样品中是否存在 杂质或污染物。
结果解读实例
1 2
实例一
通过傅立叶红外光谱定性分析,确定某未知样品 为聚乙烯塑料,并进一步通过特征峰分析,确定 其中含有一定量的增塑剂。
03
与计算机视觉、人工智能等技术结合,提高傅立叶红
外光谱定性分析的智能化水平。
傅立叶红外光谱定性分析在未来的应用前景
在环保领域,傅立叶红外光谱定性分析将用于 检测空气、水和土壤中的有害物质,为环境监 测和治理提供有力支持。

红外光谱谱图解析Ppt讲课文档

红外光谱谱图解析Ppt讲课文档
(1)两类基本振动形式
伸缩振动 亚甲基:
变形振动
亚甲基
202222//44//1133
第六页,共六十九页。
甲基的振动形式
伸缩振动 甲基:
对称
υs(CH3) 2870 ㎝-1
不对称
υas(CH3) 2960㎝-1
变形振动 甲基
202222//44//1133
对称δs(CH3)1380㎝-1
不对称δas(CH3)1460㎝-1
202222//44//1133
第四页,共六十九页。
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区
25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
202222//44//1133
第二页,共六十九页。
一、认识红外光谱图
202222//44//1133
第三页,共六十九页。
1、红外光谱图
峰强:Vs(Very strong):很
强;s(strong):强;
m(medium):中强;
w(weak):弱。
峰形:表示形状的为宽峰、尖峰、肩峰
、双峰等类型
常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz学会 谱图集、API光谱图集、DMS光谱图集。
202222//44//1133
第十四页,共六十九页。
1、红外光谱信息区
常见的有机化合物基团频率出现的范围:4000 670 cm-1
依据基团的振动形式,分为四个区:
(1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S)

红外光谱分析全解课堂PPT

红外光谱分析全解课堂PPT
红外分光光度计测量分辨率主要决定于狭缝的宽 度,光谱狭缝宽度愈小,仪器的分辨率愈好。所以为 提高仪器的分辨率,应尽可能使狭缝的宽度小。
29
图4-16是聚苯乙烯膜C—H伸缩振动吸收区分辨率与狭 缝宽度的关系。由于狭缝宽不仅分辨率降低,而且谱带形 状和强度也发生变化。
30
2.测量准确度 指仪器记录的样品真实透过度的准确程度。影响测
由于检测器产生的信号很微小,因此,必须将信 号放大,才能记录成红外光谱。
28
三、红外分光光度计的操作性能及影响因素
1.分辨率 分辨率是仪器的重要性能之一,它表示仪器分开
相邻光谱波数(或波长)的能力。普通红外分光光度 计的分辨率至少应为2cm-1或1cm-1,更精密的仪器, 如付里叶变换光谱仪的分辨率可达到0.1cm-1,甚至 更小。
振动光谱分类
定义: 所谓振动光谱是指物质由于吸收了能量而引
起其分子或原子内部基团振动的能量改变所产生 的光谱。 分类:
主要包括红外吸收光谱和激光拉曼光谱。 如果用的光源是红外光谱范围,即0.781000µm,就是红外吸收光谱。如果用的是强单色 光,例如激光,产生的是激光拉曼光谱。
1
第一节 红外光谱的基本原理
9
(5)谱带的划分:
10
11
高岭石{Al4[Si4O10](OH)8 }红外吸收光谱
透过率/%
80 70 60 50 40 30 20 10
0 -10
4000
3500
3000
2500
2000
波 数/cm-1
1500
1000
80 70 60 50 40 30 20 10 0 -10 500
12
三、红外光谱产生的原理
光源 单色器 检测器 电子放大器 记录系统

红外光谱最全最详细明了分解ppt课件

红外光谱最全最详细明了分解ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.3.2 分子结构对基团吸收谱带位置的影响
(1)诱导效应(I效应):基团邻近有不同电负性的取代 基时,由于诱导效应引起分子中电子云分布的变化,从而 引起键力常数的改变,使基团吸收频率变化。
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm;
室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年; 硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
(2)共轭效应(C效应): 共轭效应要求共轭体系有共平面性。
(3)瞬间偶极矩大,吸收峰强;键两端原子电 负性相差越大(极性越大),吸收峰越强; (4)由基态跃迁到第一激发态,产生一个强的 吸收峰,基频峰; (5)由基态直接跃迁到第二激发态,产生一个 弱的吸收峰,倍频峰.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响。
同一种基团,由于其周围的化学环境不同,其特征吸 收频率会有所位移,不是在同一个位置出峰。
基团的吸收不是固定在某一个频率上,而是在一个范围 内波动。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

课件:红外光谱的定性分析

课件:红外光谱的定性分析
(1) RC=CR’ 1620 1680 cm-1 强度弱, R=R’(对称)时,无红外活性。
(2)单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
苯衍生物在 1650 2000 cm-1 出现 C-H和C=C键的 面内变形振动的 泛频吸收(强度 弱),可用来判 断取代基位置。
7 X—Y,X—H 变形振动区 < 1650 cm-1
指纹区(1350 650cm-1 ) ,较复杂。 C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。 精细结构的区分。
基团 甲基
亚甲基 烯烃C=C双键
不饱和C-H 炔烃碳碳叁键
苯环
特征基团频率
振动方式 反对称伸缩振动 对称伸缩振动 面外弯曲振动 面内弯曲振动 反对称伸缩振动 对称伸缩振动 面外弯曲振动
伸缩振动 伸缩振动 伸缩振动 C=C骨架振动 C-H伸缩振动
C-H面外弯曲振动
吸收峰位置/cm-1 2962±10 2872±10 1450±10 1385~1370 2926±5 2853±10 1465±20 1680~1600 3100~3000 2140~2100
1650~1450 2~4个峰 3100~3000 900~650
缩振动。 1377cm-1:CH3的弯曲振动; 1156cm-1: ω(CH3)(面外摇摆); 969cm-1: δ(CH ) (面内摇摆)。
2 聚甲基丙烯酸甲酯(有机玻璃)
100
1730 1558 1477 1383 1238 1150 994 914
3379
80
δ(CH3)
60
%T
40
20
-0 4000
比值(峰面积或峰高)。 每一种物质、每一吸收带的相对强度是一定的,它同样 是

红外吸收光谱分析法PPT课件

红外吸收光谱分析法PPT课件
14 c
红外光谱的吸收强度
❖ 红外吸收谱带的强度取决于分子振动时偶极矩的变化,而 偶极矩与分子结构的对称性有关。振动的对称性越高,振 动中分子偶极矩变化越小,谱带强度也就越弱。
❖ 极性较强的基团(如C=0,C-X等)振动,吸收强度较大; 极性较弱的基团(如C=C、C-C、N=N等)振动,吸收较 弱。
化学键键强越强(即键的力常数k越大)原子折合质量越小,化学键
的振动频率越大,吸收峰将出现在高波数区。
9c
振动的基本类型
振动类型
伸缩振动 变形振动
对称性伸缩振动 V S 反对称性伸缩振动 V aS
面内变形振动
剪式振动δ S 平面摇摆ρ
面外变形振动
非平面摇摆ω 扭曲振动τ
伸缩振动的k比变形振动k大;因此伸缩振动出现在红外吸收
变长—k 降低—特征频率减小(移向低波数)。
25 c
3)氢键效应(X-H)
形成氢键使电子云密度平均化(缔合态),使体系能量下 降,基团伸缩振动频率降低,其强度增加但峰形变宽。
如羧酸 RCOOH(C=O=1760cm-1 ,O-H=3550cm-1); (RCOOH)2(C=O=1700cm-1 ,O-H=3250-2500cm-1)
HH 690 cm-1
单取代:770-730, 710-690 邻位取代:770-735 间位取代:810-750,725-680 对位取代:860-800
21 c
苯衍生物的红外光谱图
下图为不同的苯环取代类型在2000~ 1667cm-1和900~600cm-1区域 的光谱。
22 c
影响基团频率位移的因素
H-Br H-I H-O H-S H-N H-C
分子 HF HCl

红外光谱测定注意事项及定性分析1 ppt课件

红外光谱测定注意事项及定性分析1 ppt课件
14
X-H伸缩振动区:4000-2500cm-1
O-H N-H
C-H
3650~3200 3500~3100
3000 左右
醇、酚、酸等
3650~3580 低浓度(峰形尖锐)
3400~3200 高浓度(强宽峰)
胺、酰胺等,可干扰 O-H 峰
饱和(3000 以下)与不饱和(3000 以上)
饱和-C-H
-CH3(2960,2870)
20
10、影响红外光谱吸收强度的因素
振动中偶极矩的变化幅度越大,吸收强度越大
极性大的基团,吸收强度大。分子对称度高,振动偶极矩 小,产生的谱带就弱;如C=C,C-C因对称度高,其振动峰 强度小;而C=X,C-X,因对称性低,其振动峰强度就大。 使基团极性降低的诱导效应使吸收强度减小,使基团极性 增大的诱导效应使吸收强度增加。 共轭效应使π电子离域程度增大,极化程度增大,吸收强 度增加。 振动耦合使吸收增大,费米振动使倍频或组频的吸收强度 显著增加。 氢键使参与形成氢键的化学键伸缩振动吸收显著增加。
21
二、傅立叶红外光谱仪
22
1、红外光谱仪
目前有两类红外光谱仪:色散型和傅立叶变换型 色散型:与双光束UV-Vis仪器类似,目前已少用
23
2、傅立叶红外光谱仪20世纪70年代引入我国
它是利用光的相干性原理而设计的干涉型红外分光光度仪。
仪器组成为:
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
光阑
样品池 参比池
关联峰
10
7、影响红外光谱吸收频率的因素
影响基本振动跃迁的波数或频率(基团频率)的直接
因素为化学键力常数 k 和原子质量。 k 大,化学键的振动波数高,如:

红外光谱定性分析指导(1)课件

红外光谱定性分析指导(1)课件
B. 除缔合的羟基在3300cm-1出现较宽的吸收,另一强吸收C-O在 1050cm-1,又在950cm-1出现一较宽的OH面外弯曲振动,是醇类 。
C. 除缔合的羟基在3300cm-1出现较宽的吸收,另一中强吸收在 1250cm-1,并在3020cm-1有苯环的振动,又在1600cm-1~1500cm1有骨架振动,则为酚。
Wavenumber cm-1
1500
Cl O
1000
▪ 羰基振动类型
醛羰基在1690cm-1~ 1740cm-1区是最强的吸收峰,特征峰在 2820cm-1和2740cm-1左右的双峰。
A. 芳香醛:若在1690cm-1为第一强峰,2800cm-1为一中强峰,
B. 在3020cm-1有苯环的C-H伸缩振动,在1600cm-1、 1500cm1有
在实际工作中,我们往往把肯定法和否定法,以及直接法联合使用,以 便正确快速的作出判断。
Transmittance [%] 20 30 40 50 60 70 80 90
2962.78 1260.92 1022.19 800.02
4000
3500
3000
2500
2000
1500
1000
500
Wavenumber cm-1
2500
2000
Wavenumber cm-1
1500
1000
500
肯定法
如果谱图不能直接辨认,则必须对它进行详细分析,一般分析谱图是 从红外谱图中最强的吸收带开始的,这种谱带往往对应于化合物中主要官 能团,因而也就可能较大程度的反映了化合物的特征,然后再分析其它较 特征的谱带,对于一些弱的谱带往往是不好解释的。
相对强度
在分子中极性较强的基团产生强的吸收带。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档