浙江省杭州市杭州学军中学2014届高三第二次月考数学(理)试题

合集下载

2014年浙江省高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年浙江省高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年浙江省普通高等学校招生统一考试数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,] .【分析】画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设B P′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,,∴q>0,∴q=2.由题意知a n>0∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+D .,a b R ∃∈,a b a b -≥+2.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆2222x y a b+=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D 为椭圆的短轴端点,动点M 满足MA MB=2,△MAB 面积的最大值为8,△MCD 面积的最小值为1,则椭圆的离心率为( ) A .23B .33C .22D .323.将一块边长为cm a 的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为3722cm ,则a 的值为( )A .6B .8C .10D .124.命题“(0,1),ln xx ex -∀∈>”的否定是( )A .(0,1),ln x x e x -∀∈≤B .000(0,1),ln x x e x -∃∈> C .000(0,1),ln x x ex -∃∈<D .000(0,1),ln x x ex -∃∈≤5.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A 43B .43C 23D .236.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( ) A .(,0)(0,1)-∞ B .(,0)(1,)-∞⋃+∞ C .(,0)-∞D .(0,1)(1,)⋃+∞7.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的取值范围是( )A .[]5,3-B .[]2,3C .[)2,+∞D .(],3-∞8.若1(1)z a i =+-(a R ∈),|2|z =a =( )A .0或2B .0C .1或2D .19.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( )A .(,1]-∞B .(,1)-∞C .(1,)+∞D .[1,)+∞10.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .1111.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦ B .1,2⎛⎫+∞ ⎪⎝⎭C .1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭12.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .45二、填空题:本题共4小题,每小题5分,共20分。

2024年浙江省杭州市学军中学数学高三第一学期期末教学质量检测试题含解析

2024年浙江省杭州市学军中学数学高三第一学期期末教学质量检测试题含解析

2024年浙江省杭州市学军中学数学高三第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.曲线(2)xy ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .82.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .3403.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=04.已知椭圆2222:19x y C a a+=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .22⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭5.已知函数()(1)xf x x a e =--,若22log ,a b c ==则( )A .f (a )<f (b ) <f (c )B .f (b ) <f (c ) <f (a )C .f (a ) <f (c ) <f (b )D .f (c ) <f (b ) <f (a )6.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( )A .{}1,3-B .{}2,3-C .{}1,2,3--D .{}37.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭图象上每一点的横坐标变为原来的2倍,再将图像向左平移3π个单位长度,得到函数()y g x =的图象,则函数()y g x =图象的一个对称中心为( )A .,012π⎛⎫ ⎪⎝⎭B .,04π⎛⎫ ⎪⎝⎭C .(),0πD .4,03π⎛⎫⎪⎝⎭8.己知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为( )A 1B 2C 1D 29.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( ) A .12B .1C .32D .210.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 11. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( ) A .15B .25C .35D .4512.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则12n x x ⎛⎫- ⎪⎝⎭的展开式中2x 项的系数为( ) A .60B .80C .90D .120二、填空题:本题共4小题,每小题5分,共20分。

2024届浙江杭州学军中学高三下学期模拟测试数学试题(解析版)

2024届浙江杭州学军中学高三下学期模拟测试数学试题(解析版)

2024届浙江省杭州学军中学高三下学期模拟测试数学试题一、单选题1.设集合A =x ,y |x +y =2 ,B =x ,y |y =x 2 ,则A ∩B =()A.1,1B.-2,4C.1,1 ,-2,4D.∅【答案】C【分析】由题意可知A ∩B 实质是求交点,进而联立组成方程组求解即可.【详解】解:集合A 与集合B 均为点集,A ∩B 实质是求x +y =2与y =x 2的交点,所以联立组成方程组得x +y =2y =x 2 ,解得x =1y =1 ,或x =-2y =4 ,从而集合A ∩B =1,1 ,-2,4 ,故选:C .【点睛】本题考查集合的交集运算,属于基础题.2.已知a +bi (a ,b ∈R )是1-i1+i的共轭复数,则a +b =A.-1 B.-12 C.12 D.1【答案】D【解析】首先计算1-i1+i ,然后利用共轭复数的特征计算a ,b 的值.【详解】1-i 1+i =(1-i )2(1+i )(1-i )=-2i2=-i ,∴a +bi =-(-i )=i ,∴a =0,b =1,∴a +b =1.故选:D .【点睛】本题考查复数的计算,属于基础题型.3.设向量a =(1,1),b =(-1,3),c =(2,1),且(a -λb )⊥c ,则λ等于()A.3B.2C.-2D.-3【答案】A【分析】由向量线性关系及垂直的坐标表示列方程求参即可.【详解】由题意得a -λb =(1+λ,1-3λ),又(a -λb )⊥c,所以(a-λb )⋅c =2(1+λ)+1-3λ=0,可得λ=3.故选:A4.已知点A 为曲线y =x +4x x >0 上的动点,B 为圆x -2 2+y 2=1上的动点,则AB 的最小值是()A.3B.4C.32D.42【答案】A【分析】数形结合分析可得,当A 2,4 时能够取得|AB |的最小值,根据点到圆心的距离减去半径求解即可.【详解】圆x -2 2+y 2=1的圆心为2,0 ,半径为1,由对勾函数的性质,可知y =x +4x≥4,当且仅当x =2时取等号,结合图象可知当A 点运动到2,4 时能使点A 到圆心的距离最小,最小值为4,从而AB 的最小值为4-1=3.故选:A5.2+x 10的展开式各项的系数中最大的是()A.x 2的系数B.x 3的系数C.x 4的系数D.x 5的系数【答案】B【分析】利用二项式通项的性质和组合数的性质计算出符合条件的k 值即可.【详解】通项公式为T k +1=C k 10⋅2k ⋅x 10-k ,因为C k 10⋅2k ≥C k -110⋅2k -1⇒2C k 10≥C k -110,所以2×10×9×⋯×11-k k !≥10×9×⋯×12-k k -1 !⇒211-k k ≥1⇒k 3k -22 ≤0⇒k ≤223同理C k 10⋅2k ≥C k +110⋅2k +1⇒C k 10≥2C k +110,所以10×9×⋯×11-k k !≥2×10×9×⋯×10-k k +1 !⇒210-k k +1≤1⇒3k -19 k +1 ≥0⇒k ≥193,所以k =7,所以展开式各项的系数中最大的是第八项,为T 8=C 710⋅27⋅x 3,即x 3的系数最大.故选:B6.某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是()A.理科男生多于文科女生B.文科女生多于文科男生C.理科女生多于文科男生D.理科女生多于理科男生【答案】C【分析】将问题转化为不等式问题,利用不等式性质求解.【详解】根据已知条件设理科女生有x 1人,理科男生有x 2人,文科女生有y 1人,文科男生有y 2人;根据题意可知x 1+x 2>y 1+y 2,x 2+y 2<x 1+y 1,根据异向不等式可减的性质有x 1+x 2 -x 2+y 2 >y 1+y 2 -x 1+y 1 ,即有x 1>y 2,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证.故选:C .7.已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,AB =2,BC =3,SA 和BC 所成的角为π3,则该三棱锥外接球的表面积是()A.12πB.16πC.24πD.32π【答案】B【分析】将三棱锥S -ABC 放入长方体ABCD -EFGH 中,并建立适当的空间直角坐标系,由已知表示出各个点的坐标,进一步结合OA =OS=R ,列出方程组求出R 即可进一步求解.【详解】将三棱锥S -ABC 放入长方体ABCD -EFGH 中,S 在棱EH 上面,并以A 为原点,AB ,AD ,AE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系:由题意∠SAB =∠ABC =π2,SB =4,AB =2,BC =3,所以SA =16-4=23,因为SA 和BC 所成的角为π3,AD ⎳BC ,所以AE =23sin π3=3,ES =23cos π3=3,而底面三角形外接圆圆心为AC 中点O 1,设球心O 到平面ABC 的距离为h ,则A 0,0,0 ,B 2,0,0 ,C 2,3,0 ,S 0,3,3 ,O 11,32,0 ,O 1,32,h ,所以OA =-1,-32,-h ,OS =-1,32,3-h ,则由OA =OS =R ⇒R 2=34+1+h 2=34+1+3-h 2,解得h =32,R 2=4,从而S =4πR 2=16π,即该三棱锥外接球的表面积是16π.故选:B .8.已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有f (x )-f (y ) <12x -y .若对所有x ,y ∈[0,1],f (x )-f (y ) <k ,则k 的最小值为A.12B.14C.12πD.18【答案】B【详解】试题分析:不妨令0≤x <y ≤1,则f x -f y <12x -y 法一:2f x -f y =f x -f 0 +f x -f y -f y -f 1 ≤f x -f 0 +f x -f y +f y -f 1<12x -0 +12x -y +12y -1 =12x +12y -x +12y -1 =12,即得f x -f y<1 4,另一方面,当u∈0,1 2时,f x ={ux,0≤x≤12-u1-x,12<x≤1,符合题意,当u→12时,f12-f0=u2→14,故k≤1 4法二:当x-y≤12时,f x -f y<12x-y≤14,当x-y>12时,f x -f y=f x -f0-f y -f1≤f x -f1+f y -f0<12x-1+12y-0=121-x+12y=12+12y-x<14,故k≤1 4【解析】1.抽象函数问题;2.绝对值不等式.二、多选题9.我国于2015年10月宣布实施普遍二孩政策,为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄群体中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制的不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述正确的是()A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关C.调查样本中倾向选择生育二胎的群体中,男性人数与女性人数相同D.倾向选择不生育二胎的群体中,农村户籍人数多于城镇户籍人数【答案】AB【分析】根据题中数据结合比例图逐项分析判断.【详解】由不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,知:在A中,城镇户籍倾向选择生育二胎的比例为40%,农村户籍倾向选择生育二胎的比例为80%,所以是否倾向选择生育二胎与户籍有关,故A正确;在B中,男性倾向选择生育二胎的比例为60%,女性倾向选择生育二胎的比例为60%,所以是否倾向选择生育二胎与性别无关,故B正确;在C中,男性倾向选择生育二胎的比例为60%,人数为120×60%=72人,女性倾向选择生育二胎的比例为60%,人数为80×60%=48人,所以倾向选择生育二胎的人员中,男性人数与女性人数不相同,故C错误;在D 中,倾向选择不生育二胎的人员中,农村户籍人数为100×1-80% =20人,城镇户籍人数为100×1-40% =60人,所以倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,故D 错误.故选:AB .10.双曲线具有以下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知F 1,F 2分别为双曲线C :x 23-y 2=1的左,右焦点,过C 右支上一点A x 0,y 0 x 0>3 作双曲线的切线交x 轴于点M ,交y 轴于点N ,则()A.平面上点B 4,1 ,AF 2 +AB 的最小值为37-23B.直线MN 的方程为xx 0-3yy 0=3C.过点F 1作F 1H ⊥AM ,垂足为H ,则OH =2(O 为坐标原点)D.四边形AF 1NF 2面积的最小值为4【答案】ABD【分析】对A ,利用双曲线定义将AF 2 转化为AF 1 -2a 可得解;对B ,设出直线MN 的方程为y -y 0=k x -x 0 与双曲线联立,根据Δ=0化简运算得解;对C ,由双曲线的光学性质可知,AM 平分∠F 1AF 2,延长F 1H 与AF 2的延长线交于点E ,则AH 垂直平分F 1E ,即AF 1 =AE ,H 为F 1E 的中点,进而得OH =12F 2E 得解;对D ,求出N 点坐标,根据S AF 1NF 2=S △AF 1F 2+S △NF 1F 2,结合基本不等式可求解.【详解】对于A ,由双曲线定义得AF 1 -AF 2 =2a =23,且F 1-2,0 ,则AF 2 +AB =AF 1 +AB -23≥BF 1 -23=4--22+1-23=37-23,所以AF 2 +AB 的最小值为37-2 3.故A 正确;对于B ,设直线MN 的方程为y -y 0=k x -x 0 ,k ≠±33,联立方程组y -y 0=k x -x 0 x 2-3y 2=3,消去y 整理得,1-3k 2 x 2+6k 2x 0-6ky 0 x -3k 2x 20+6kx 0y 0-3y 20-3=0,∴Δ=0,化简整理得9y 20k 2-6x 0y 0k +x 20=0,解得k =x 03y 0,可得直线MN 的方程为y -y 0=x03y 0x -x 0 ,即x 0x -3y 0y =3,故B 正确;对于C ,由双曲线的光学性质可知,AM 平分∠F 1AF 2,延长F 1H 与AF 2的延长线交于点E ,则AH 垂直平分F 1E ,即AF 1 =AE ,H 为F 1E 的中点,又O 是F 1F 2中点,所以OH =12F 2E =12AE -AF 2 =12AF 1 -AF 2 =a =3,故C 错误;对于D ,由直线MN 的方程为x 0x -3y 0y =3,令x =0,得y =-1y 0,则N 0,-1y 0,S AF 1NF 2=S △AF 1F 2+S △NF 1F 2=12×F 1F 2 ×y 0 +1y 0≥12×4×2y 0 ⋅1y 0=4,当且仅当y 0 =1y 0,即y 0=±1时等号成立,所以四边形AF 1NF 2面积的最小值为4,故D 项正确.故选:ABD ..【点睛】关键点睛:C 项中,结合已知给出的双曲线的光学性质,即可推出AH 垂直平分F 1E ,OH =12F 2E .11.数列a n 满足a n +1=14a n -6 3+6(n =1,2,3⋯),则()A.当a 1=3时,a n 为递减数列,且存在M ∈R ,使a n >M 恒成立B.当a 1=5时,a n 为递增数列,且存在M ≤6,使a n <M 恒成立C.当a 1=7时,a n 为递减数列,且存在M ≥6,使a n >M 恒成立D.当a 1=9时,a n 递增数列,且存在M ∈R ,使a n <M 恒成立【答案】BC【分析】首先由数学归纳法求出数列的通项,再令a 1=3,5,7,9时代入通项中,求出具体通项公式,最后结合指数函数的性质逐一判断即可.【详解】由题意可知a n +1-6=14a n -6 3,∴a 2-6=14a 1-6 3,a 3-6=14a 2-6 3=1414a 1-6 3 3=14×143×a 1-6 32,归纳猜想:a n -6=141+3+32+⋯+3n -2a 1-6 3n -1=141-3n -11-3a 1-6 3n -1=223n -1a 1-6 3n -1,A :当a 1=3时,a n -6=-2×32 3n -1,则a n 为递减数列,无边界,故A 错误;B :当a 1=5时,a n -6=-2×123n -1,则a n 为递增数列,有边界,由指数函数的单调性可知,当n →∞时,a n →6,故存在M ≤6,使a n <M 恒成立,故B 正确;C :当a 1=7时,a n -6=2×123n -1,则a n 为递减数列,有边界,由指数函数的单调性可知,当n →∞时,a n →6,故存在M ≥6,使a n >M 恒成立,故C 正确;D :当a 1=9时,a n -6=2×323n -1,则a n 为递增数列,无边界,故D 错误;故选:BC .【点睛】关键点点睛:(1)当所给递推数列较为复杂时,(不为用常见的累加累乘等)可考虑先写出几项,然后用数学归纳法求出通项公式.(2)判断数列是否存在边界或数列不等式恒成立问题可结合指数函数的单调性判断.三、填空题12.已知cos a +π6 -sin α=435,则sin α+11π6=.【答案】-45【分析】由题意可得cos α+π6 -sin α=32cos α-32sin α=-3sin α-π6 =435,结合诱导公式可得结果.【详解】由cos α+π6 -sin α=32cos α-32sin α=-3sin α-π6 =435,∴sin α-π6 =-45而sin α+11π6 =sin α-π6+2π =sin α-π6 =-45.故答案为-45【点睛】本题考查三角函数的恒等变换,考查两角和与差正弦公式、诱导公式,考查计算能力,属于常考题型.13.设随机试验每次成功的概率为p ,现进行3次独立重复试验.在至少成功1次的条件下,3次试验全部成功的概率为413,则p =.【答案】23【分析】利用条件概率直接求解.【详解】在至少成功1次的条件下,3次试验全部成功的概率为413,则p 31-1-p3=413,解得p =23或-2(舍去).故答案为:2314.若函数f x =e x +cos x +a -1 x 存在最小值,则a 的取值范围是.【答案】-∞,1【分析】从a =1,a >1,及a <1进行分析求解.【详解】注意到,当a =1时,f x =e x +cos x ,由于e x >0,-1≤cos x ≤1,显然f x min →-1,没有最小值;当a >1时,e x +cos x >-1且无限接近-1,y =a -1 x 为增函数,则x →-∞,e x +cos x +a -1 x →-∞,x →+∞,e x +cos x +a -1 x →+∞,此时没有最小值;当a <1时,y =a -1 x 为减函数,则x →-∞,e x +cos x +a -1 x →+∞,x →+∞,由于y =e x 增长变化速度远大于y =a -1 x 减少速度,此时e x +cos x +a -1 x →+∞,由于函数定义域为R ,函数连续不断,所以f x =e x +cos x +a -1 x 存在最小值.故答案为:-∞,1四、解答题15.在△ABC 中,∠A =90°,点D 在BC 边上.在平面ABC 内,过D 作DF ⊥BC 且DF =AC .(1)若D 为BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC ;(2)若∠ABC =45°,且BD =3CD ,求cos ∠CFB .【答案】(1)∠ABC =60°(2)51751【分析】(1)由两三角形的面积相等可得12AB ⋅AC =12CD ⋅DF ,再由DF =AC 可得CD =AB ,从而结合已知可得BC =2AB ,进而可求得∠ABC ;(2)设AB =k ,则AC =k ,CB =2k ,BD =324k ,DF =k ,然后在△BDF ,△CDF 中分别利用勾股定理求出CF ,BF ,再在△CBF 中利用余弦定理可求得结果.【详解】(1)如图所示在△ABC 中,∠A =90°,点D 在BC 边上.在平面ABC 内,过D 作DF ⊥BC 且DF =AC ,所以S △ABC =12AB ⋅AC ,S △CDF =12CD ⋅DF ,且△CDF 的面积等于△ABC 的面积,由于DF =AC ,所以CD =AB ,因为D 为BC 的中点,故BC =2AB ,所以cos ∠ABC =AB BC =AB 2AB=12,因为∠ABC 为锐角,所以∠ABC =60°.(2)如图所示:设AB =k ,由于∠A =90°,∠ABC =45°,BD =3DC ,DF =AC ,所以AC =k ,CB =2k ,BD =324k ,DF =k ,由于DF ⊥BC ,所以CF 2=CD 2+DF 2,则CF =324k .且BF 2=BD 2+DF 2,解得BF =344k ,在△CBF 中,利用余弦定理得cos ∠CFB =CF 2+BF 2-BC 22CF ⋅BF =98k 2+178k 2-2k 22×324k ⋅344k=5175116.如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥底面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 成45°角.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.【答案】(1)证明见解析;(2)-33.【分析】(1)要证EF 为异面直线AD 与SC 的公垂线,即证AD ⊥EF ,EF ⊥SC ,通过线面垂直即可证明;(2)以A 为坐标原点,AB ,AD ,AS 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求出平面BSC 和平面SCD 的法向量,计算求解即可.【详解】(1)连接AC ,BD 交于点G ,连接EG ,FG ,因为四边形ABCD 为矩形,且E ,F 分别为AD ,SC 的中点,所以GE ⎳CD ,且GF ⎳SA ,又SA ⊥底面ABCD ,所以GF ⊥底面ABCD ,又AD ⊂平面ABCD ,所以GF ⊥AD ,又AD ⊥GE ,GE ∩GF =G ,GF ,GE ⊂面GEF ,所以AD ⊥平面GEF ,EF ⊂面GEF ,所以AD ⊥EF ,因为EF 与平面ABCD 成45°角,所以∠FEG =45°,所以GF =GE ,由SA =2FG ,AB =2GE ,所以SA =AB ,取SB 的中点H ,连接AH ,FH ,由F ,H 分别为SC ,SB 的中点,知FH ⎳BC ,FH =12BC ,又AE ⎳BC ,AE =12BC ,所以FH ⎳AE ,FH =AE ,所以四边形AEFH 为平行四边形,又SA =AB ,所以AH ⊥SB ,又BC ⊥平面SAB ,AH ⊂平面SAB ,所以BC ⊥AH ,又BC ∩SB =B ,BC ,SB ⊂面SBC ,所以AH ⊥平面SBC ,而AH ⎳EF ,所以EF ⊥平面SBC ,又SC ⊂平面SBC ,所以EF ⊥SC ,所以EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,设BC =2,则EF =1,则GE =GF =22,所以SA =AB =2,以A 为坐标原点,AB ,AD ,AS 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则B 2,0,0 ,D 0,2,0 ,S 0,0,2 ,C 2,2,0 ,从而SC =2,2,-2 ,BC =0,2,0 ,CD =-2,0,0 ,设平面BSC 的法向量为n 1 =x 1,y 1,z 1 ,则n 1 ⋅SC=0n 1 ⋅BC =0 ,即2x 1+2y 1-2z 1=02y 1=0,令z 1=1,可得n 1 =1,0,1 ,设平面SCD 的法向量为n 2 =x 2,y 2,z 2 ,则n 2 ⋅SC=0n 2 ⋅CD =0 ,即2x 2+2y 2-2z 2=0-2x 2=0,令z 2=2,可得n 2 =0,1,2 ,所以cos n 1 ,n 2 =n 1 ⋅n 2n 1 n 2 =22⋅3=33,由图可知二面角B -SC -D 的平面角为钝角,所以二面角B -SC -D 的余弦值为-33.17.A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)如果a =25,求甲的康复时间比乙的康复时间长的概率;(2)当a 为何值时,A ,B 两组病人康复时间的方差相等?【答案】(1)1049(2)a =11或18【分析】(1)列举出符合条件的方法,利用古典概率计算即可;(2)利用方差的意义求出即可.【详解】(1)从两组中随机选取一人,共有49种方法;其中甲的康复时间比乙的康复时间长的方法如下:13,12 ,14,12 ,14,13 ,15,12 ,15,13 ,15,14 ,16,12 ,16,13 ,16,15 ,16,14 ,共有10种方法,所以概率为1049.(2)把B 组数据调整为:12,13,14,15,16,17,a ,或a ,12,13,14,15,16,17,根据方差的意义为反应样本波动性的大小可知,a =11或18.18.已知抛物线y =ax 2(a >0)与双曲线y =1x交于点T ,两条曲线的公切线分别与抛物线、双曲线切于点P ,Q .(1)证明:△PQT 存在两条中线互相垂直;(2)求△PQT 的面积.【答案】(1)证明见解析;(2)274.【分析】(1)设出切点P ,Q 的坐标,利用导数的几何意义求出公切线方程,进而求出三边的中点坐标即可推理得证.(2)利用(1)的结论,结合三角形重心定理求出面积.【详解】(1)设P (x P ,ax 2P ),Q x Q ,1x Q,由y =ax 2、y =1x ,求导得y =2ax、y =-1x 2,则抛物线y =ax 2(a >0)在点P 处切线方程为y -ax 2P =2ax P (x -x P ),双曲线y =1x 在点Q 处切线方程为y -1x Q =-1x 2Q(x -x Q ),由直线PQ 是两条曲线的公切线,得2ax P =-1x 2Q -ax 2P =2x Q ,解得x P =4x Q ,且-ax 2P =2x Q ,令x Q =-12t ,则x P =-2t ,P -2t ,4t ,Q -12t,-2t ,且a =t 3,t >0,由y =ax 2y =1x,解得x =1t ,y =t ,即点T 1t ,t ,则边PQ 中点M -54t ,t ,边PT 的中点K -12t ,5t 2 ,边QT 的中点L 14t ,-t 2 ,显然直线MT :y =t ,直线KQ :x =-12t,则直线MT ⊥KQ ,所以△PQT 存在两条中线互相垂直.(2)由(1)知,KQ =9t 2,MT =94t ,令△PQT 的重心为H ,所以△PQT 的面积S △PQT =2S KQT =2⋅12KQ ⋅TH =23KQ ⋅MT =23⋅9t 2⋅94t =274.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点(x 0,f (x 0))(x 0∈D )处的切线方程为:y -f (x 0)=f (x 0)(x -x 0).19.已知函数f x =x +7x +a关于点-1,1 中心对称.(1)求函数f x 的解析式;(2)讨论g x =x f x 2在区间0,+∞ 上的单调性;(3)设a 1=1,a n +1=f a n ,证明:2n -22ln a n -ln7 <1.【答案】(1)f x =x +7x +1(2)答案见解析(3)证明见解析【分析】(1)由中心对称函数的性质得出即可;(2)利用导数分析其单调性即可;(3)将要证明的不等式利用对数运算变形为ln a 2n 7<12n -2,再用数学归纳法结合(2)证明即可.【详解】(1)因为函数f x =x +7x +a 关于点-1,1 中心对称,所以f -1-x +f -1+x =2,即-1-x +7a -1-x +-1+x +7-1+x +a =2,取x =2,可得4a -3+8a +1=2,解得a =1或a =7(舍去),所以a =1,f x =x +7x +1.(2)因为g x =x f x 2,x >0,所以g x =x +7 2x +1 2+2x ×x +7x +1×-6x +12 =x +7 x -2 2+3 x +1 3,因为x +7>0,x +1 3>0,x -2 2+3≥3,所以g x >0恒成立,所以g x =x f x 2在区间0,+∞ 上单调递增.(3)证明:要证2n -22ln a n -ln7 <1,即证ln a 2n 7<12n -2,当n =1时,ln a 217 <121-2⇒ln 17 =ln7<ln e 2=2,成立,即证ln a 2n +17 <12n -1,即证ln a 2n +17 <12ln a 2n 7,由题意得a n >0,则即证ln a 2n +17 <ln a n 7,因为a 1=1,a n +1=f a n =a n +7a n +1,a n +1-7=a n +7a n +1-7=a n -7 1-7 a n +1,由a n >0,即a n -7与a n +1-7异号,当a n >7,0<a n +1<7,即证ln 7a 2n +1<ln a n 7,即证7a 2n +1<a n 7,即证a n a 2n +1>77,即证a n 7+a n 1+a n2>77,由(2)可知,当a n >7,g a n >g 7 =77成立.当a n +1>7,0<a n <7,即证ln a 2n +17<ln 7a n ,即证a 2n +17<7a n,即证a n a 2n +1<77,即证a n 7+a n 1+a n2<77,由(2)可知,当0<a n <7,g a n <g 7 =77成立.综上,得证.【点睛】关键点点睛:(1)若函数f x 满足f m -x +f m +x =2n ,则对称中心为m ,n ;(2)判断符合函数的单调性时,常用导数判断;(3)证明数列不等式,可用数学归纳法证明,分别取当n =1时的特例和n >1的一般情况证明.。

浙江省杭州市学军中学2014届高三数学第九次月考试题 理 新人教A版

浙江省杭州市学军中学2014届高三数学第九次月考试题 理 新人教A版

浙江省杭州市学军中学2014届高三数学第九次月考试题 理 新人教A 版本试题卷分选择题和非选择题两部分.全卷满分150分, 考试时间120分钟. 请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(选择题部分 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,{|21}x A y y ==+,{|ln 0}B x x =<,则()U C A B =( )A .∅B .1{|1}2x x <≤ C .{|1}x x <D .{}01x x <<2. 已知0m >,且cos sin )m αααϕ-=+,则tan ϕ为( )A.12-B. 12C. 2D. 2-3. 若右边的程序框图输出的S 是126,则条件①可为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤ 4. 对于不重合的两平面βα,,给定下列条件: ①存在平面;都垂直于,使得γβαγ, ②存在平面;都平行于,使得γβαγ, ③存在直线m l m l //,,使得βα⊂⊂;④存在异面直线βαβα//,//,//,//,,m m l l m l 使得俯视图其中可以判定βα,平行的条件有( )A . ① ③B .② ④C . ②D .①④5. 已知a R ∈,则“0a ≥”是“函数2()||f x x x a =+-在(,0]-∞上是减函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件6.一个几何体的三视图如图所示,则这个几何体的体积为 ( )ABCD7.若nxx )12(32-展开式各项系数和为1281-,则展开式中常数项是第( )项A .4B .5C .6D .78.将1,2,…,9这9个数平均分成三组,则每组的三个 数都成等差数列的概率是( ) A .561 B .701 C .3361D .4201 9. 抛物线24y x =的焦点为F ,准线l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB l ⊥,垂足为B ,则四边形ABEF 的面积等于( )A.B. C. D.10.函数223,0()2ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩,直线y m =与函数()f x 的图像相交于四个不同的点,交点横坐标从小到大依次记为,,,a b c d ,下列说法中错误的是 ( )A .[)3,4m ∈B .)40,abcd e ⎡∈⎣C .562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭D .若关于x 的方程()=f x x m +恰有三个不同实根,则m 的取值唯一第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题, 每小题4分, 共28分. 11. 已知复数3i1iz -=+(i 是虚数单位),则z 的虚部是______12. 若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是______.13. 已知双曲线()22122:10,0x y C a b a b-=>>一条渐近线为l ,抛物线2C :24y x =的焦点为F ,点P 为直线l 与抛物线2C 异于原点的交点,则PF =_____14. 某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.则被申请大学的个数X 的数学期望E (X )=______ 15.已知直线1:0l x y +=,2:0l x y +-=,⊙C 的圆心到12,l l 的距离依次为12,d d 且 212d d =,⊙C 与直线2l 相切,则直线1l 被⊙C 所截得的弦长为______.16.点,E F 是正ABC ∆的边BC 上的点,且BE EF FC ==,则tan EAF ∠= . 17. 已知△ABC 中,A(0,1),B(2,4),C(6,1),P 为平面上任一点,点M 、N 满足()()11,23PM PA PB PN PA PB PC =+=++,给出下列命题: ①MN ∥BC ; ②直线MN 的方程是3x+10y-28=0;③直线MN 必过△ABC 的外心; ④起点为A 的向量λ(AC AB +)(λ∈R +)所在射线必过N , 其中正确的命题是________.(将正确命题的序号全填上)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18. (本题满分14分)已知函数()c x x x f ++=ωωcos sin 3(R x ∈>,0ω,c 是实数常数)的图像上的一个最高点⎪⎭⎫⎝⎛1,6π,与该最高点最近的一个最低点是⎪⎭⎫⎝⎛-3,32π, (Ⅰ)求函数()x f 的解析式及其单调增区间;(Ⅱ)在△ABC 中,角A 、B 、C 所对的边分别为c b a ,,,且ac 21-=⋅,角A 的取值范围是区间M ,当M x ∈时,试求函数()x f 的取值范围. 19. (本题满分14分)数列{}n a 满足112a =,112n na a +=-(*)n N ∈ (Ⅰ)求证:1{}1n a -为等差数列,并求出{}n a 的通项公式;(Ⅱ)设11n nb a =-,数列{}n b 的前n 项和为n B ,对任意2n ≥都有320n n m B B ->成立,求整数m 的最大值.20. (本题满分15分)如图,四棱锥S ABCD -中, SAB ∆是正三角形,四边形ABCD 为正方形,平面SAB ⊥平面ABCD ,4AB BC ==,E 为SB 中点,点F 在线段BC 上.(Ⅰ)当EF BD ⊥时,求BF 的长度;(Ⅱ)设二面角E AF B --的大小为θ,当点F 在线段BC 中点时,求tan θ.22721.(15C 1O F AB 432P 4AB AB AOB x y x F +==∆本题满分分)已知椭圆:,为坐标原点,为右焦点,为长为的动弦,为直线上的动点.若过点 (求直线的方程; (判断直线PA,PF,PB的斜率是否依次成等差数列,说明理由;((Ⅰ)ⅰ))求面积的取ⅱ)Ⅱ值范围.22.(本题满分14分)已知函数2()ln(1)4,f x x ax x =+--+.a R ∈ (Ⅰ)若0x =是()f x 的极小值点,M 是()f x 的极大值。

浙江省杭州市学军中学届高三选考前适应性练习化学试题含答案

浙江省杭州市学军中学届高三选考前适应性练习化学试题含答案

浙江省杭州市学军中学高三选考前适应性练习化学试题可能用到的相对原子质量:H1 C12 N14 O16 Cl35.5Br80S32 Si28 Na23Mg24Fe56Ca40 Cu64选择题部分一、选择题(本大题共25 小题,每小题2 分,共50 分。

每个小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1、下列属于碱性氧化物的是A.COB.BaOC.Mn2O7D.SiO22.仪器名称为“容量瓶”的是A. B. C. D.3.下列属于电解质的是A.二氧化硫B.蔗糖C.铜D.氯化铝4.日常生活中许多现象与氧化还原反应有关,下列现象与氧化还原反应无关的是A.铜质奖章上出现铜绿[Cu2(OH)2CO3] B.充有H2 的气球遇明火发生爆炸C.轮船底部生锈D.大理石雕像被酸雨腐蚀毁坏5.下列物质的水溶液因水解而呈酸性的是A.KHSO4B.NaHSO3C.H2SO4D.NH4Cl6.下列说法不正确的是A.氯气可用于自来水的消毒B.镁可用于制造信号弹和焰火C.氢氧化铁胶体能用于净水D.二氧化硫不可用于漂白纸浆7.下列表示正确的是A.CO2的电子式:B.乙炔的结构式:CH≡CHC.CH4的球棍模型:D.Cl-离子的结构示意图:8.下列有关钠的说法中,不正确的是A.工业上通过电解氯化钠溶液制取金属钠B.高压钠灯常用于道路和广场的照明C.钠钾合金可在快中子反应堆中作热交换剂D.钠可用于从钛、铌等金属的氯化物中置换出金属单质9.下列说法正确的是A.向SO2 水溶液中滴加BaCl2溶液,有白色沉淀BaSO3生成B.明矾水解形成的Al(OH)3胶体能吸附水中悬浮物,可用于水的净化C.Fe(OH)3溶于氢碘酸的离子方程式为:Fe(OH)3+3H+=Fe3++3H2OD.等质量的NaHCO3和Na2CO3分别与足量盐酸反应,在同温同压下,生成的CO2体积相同10.下列家庭化学实验不能达到预期目的的是A.用灼烧并闻气味的方法区别纯棉织物和纯羊毛织物B.用湿润的淀粉-KI 试纸检验HCl气体中是否混有Cl2C.向Ca(ClO)2 溶液中加入硫酸溶液,来证明S、Cl 的非金属性强弱D.用鸡蛋白、食盐、水完成蛋白质的溶解、盐析实验11.下列说法不正确的是A.12C70、14C60和石墨互为同素异形体B.乙酸和硬脂酸(C17H35COOH)互为同系物C.丙烷与氯气反应,可得到沸点不同的3 种一氯代物D.(CH3)3CCH2CH3的名称是2,2-二甲基丁烷12.X(g)+3Y(g)2Z(g) ΔH=-akJ·mol-1,一定条件下,将1molX 和3molY 通入2L 的恒容密闭容器中,反应10min,测得Y 的物质的量为2.4 mol。

2014届浙江省杭州市杭州学军中学高三第二次月考语文卷

2014届浙江省杭州市杭州学军中学高三第二次月考语文卷

2014届杭州高三第二次月考语文试卷一、语言文字运用(共24分,其中选择题每小题3分)1.下列词语中加点的字,注音全都正确的一项是A.缫.(cháo)丝荨.(qián)麻给.(jǐ)予虚与委蛇.(yǐ)B.焙.(bâi)干渊薮.(sǒu)巨擘.(bò)奉为圭臬.(gǎo)C.棠棣.(dì)接种.(zhòng)咯.(kǎ)血硕果累累..(lãi lãi)D.颔.首(hàn)游弋.(yì)楔.(qì)子久假.(jiǎ)不归2.下列各句中,没有错别字的一项是A.古人云“万变不离其中”,透过欧洲杯弥漫的硝烟,我们可以看到各支球队求新求变、革故鼎新的决心和勇气,更看到它们恪守传统、振奋进取的意志和品质。

B.这篇文章描写的当年爆发的革命情景的文字十分出彩,革命者面临的困境可谓层见叠出,但是凭借他们的坚忍不拔和无所畏惧的精神,渡过了一道又一道难关。

C.交朋结友需要真心真情,像冯小刚一样非诚勿扰,以“诚”相待;像潘石屹一样吵而不散,以“知”相和;像王刚一样既往不究,以“度”相处。

D.中国古典文学之中,失意文人的自我慰藉常常是寄情田园,放浪山水,甚至青灯古佛,六根清静,“独善其身”的出世姿态可视为特殊的反讽。

3.下列各句中,加点的词语运用正确的一项是A.对于降准,央行显得颇为踌躇,尤其是8月份以来央行令市场对降准的预期再三..落空,而以逆回购滚动操作来平抑资金压力。

B.古代学者皓首穷年研治一经,书虽读得少,读一部却就是一部,口吐珠玑....,咀嚼烂熟,透入身心,变成一种精神的原动力,一生都受用不尽。

C.一切世俗的价值,包括权力、财富、名声等,都具有表现人的才能、品格、情怀的效应,彰显了乃至夸大..了其拥有者的善和恶。

D.他之所以难以复制,乃是因为他有一个品质极好的灵魂,在中国当代作家中,他的那种无师自通的哲学悟性,那种浑然天成....的宗教情怀,几乎无人可及。

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

学军中学新高一分班考数学卷一、选择题:本大题有8个小题,每小题3分,共24分。

1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧。

其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中年高考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A. 28,28,1B. 28,27.5,3C. 28,28,3D. 28,27.5,13. 已知方程组{3x−2y=3a−42x−3y=2a−1的解满足x>y,则a的取值范围是()A. a>1B. a<1C. a>5D. a<54. 如图,在直角△BAD中,延长斜边BD到点C,使BD=2DC,连接AC,tanB=53,则tan∠CAD的值是()A. 33B. 35C. 13D. 155. 如图,在Rt△ABC中,AC=4,BC=3,∠ACB=90°,四边形DEFG、GHIJ均为正方形,点E在AC上,点I在BC上,J为边DG的中点,则GH的长为()A. 1921B. 1 C. 6077D. 1802596. 如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且BP⊥PQ,BP=PQ,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是()A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线7. 如图,以点M(-5,0)为圆心,4为半径的圆与x轴交于A,B两点,P是☉M上异于A,B的一动点,直线PA,PB分别交y轴于点C,D,以CD为直径的☉N与x轴交于点E,F则EF的长为()A. 42B. 43C. 6D. 随P点位置而变化8. 已知二次函数图象的对称轴为x=1,且过点A(3,0)与B(0,1.5),则下列说法中正确的是()①当0≤x≤22+1时,函数有最大值2;②当0≤x≤22+1时,函数有最小值-2;③P是第一象限内抛物线上的一个动点,则△PAB面积的最大值为32;④对于非零实数m,当x>1+1m 时,y都随着x 的增大而减小。

浙江杭州学军中学2024年高二下学期6月月考数学试题(解析版)

浙江杭州学军中学2024年高二下学期6月月考数学试题(解析版)

2023学年第二学期高二数学学科测试卷(五)1.已知集合一.单选题:本题共8小题,每小题5分,共40分(){}{}2ln 1,11M y y x N x x ==−=−<<,则()A.M N =B.[]1,0M N ∩=−C.()1,0M N =− D.()()1,RM N =−+∞ 【答案】D 【解析】【分析】由对数型函数的值域结合集合运算判定选项即可.【详解】由题意可得()22110ln 10x x≥−>⇒−≤,即(],0M =−∞,所以M N ≠,(]1,0M N ∩=−,()()R 1,M N ∞∪=−+ ,即A 、B 、C 三选项错误,D 正确.故选:D2.已知角α的终边上一点()4,3A ,且()tan 2αβ+=,则()tan 3πβ−=( )A.12B.12−C.52D.52−【答案】B 【解析】【分析】先通过三角函数的定义求出tan α,代入()tan tan tan 1tan tan αβαβαβ++=−求出tan β,继而求出()tan 3πβ−的值.【详解】 角α的终边上一点()4,3A ∴3tan 4α=()3tan tan tan 4tan 231tan tan 1tan 4βαβαβαββ+++===−−,解得1tan 2β=.∴()1tan 3tan 2πββ−=−=−.故选:B.3. 函数()2ln 23y x x =−−+的单调递减区间为( ) A. (),1∞−− B. ()1,∞−+ C. ()1,1− D. ()1,∞+【答案】C 【解析】【分析】先求出定义域,再利用复合函数同增异减求出函数的单调递减区间. 【详解】令2230x x −−+>得31x −<<, 故()2ln 23y x x =−−+的定义域为()3,1−,ln y t =在()0,t ∞∈+上单调递增,由复合函数单调性满足同增异减可得,只需求出223t x x =−−+在()3,1−上的单调递减区间,()222314t x x x =−−+=−++在()1,1−上单调递减,故数()2ln 23y x x =−−+的单调递减区间为()1,1−.故选:C4. 下列图像中,不可能成为函数()3mx x x=−的图像的是( ).A. B. C. D.【答案】C 【解析】【分析】利用导数讨论函数的单调性和讨论函数值的正负得到答案. 【详解】因为()3m f x x x =−,{}|0x x ≠,所以()223mf x x x′=+ 当0m =时()30mf x x x=−=,{}|0x x ≠无解,且()2230m f x x x ′=+>此时()f x 在(),0∞−,()0,∞+单调递增,D 选项符合此种情况.当0m >时()430m x m f x x x x−=−==有两个解,且()2230m f x x x ′=+>此时()f x 在(),0∞−,()0,∞+单调递增,B 选项符合此种情况.当0m <时()43m x mf x x x x−=−=当0x <时易知()0f x <,0x >时()0f x >所以函数图像不可能是C. 故选:C5. 已知向量a ,b 满足1a = ,()1,1b = ,a b +=a 在b 上的投影向量的坐标为( ) A. 11,22B.C. ()1,1D. 【答案】A 【解析】【分析】根据投影向量的定义以及向量的坐标运算求解即可.【详解】因为(1,1)=b ,所以222||112b =+= ,又||1,a =把||a b +两边平方得22||||25a b a b ++⋅= ,即125a b +⋅= ,解得1a b ⋅= ,所以a 在b 的投影向量坐标为2111(1,1),222||a b b b ⋅⋅==, 故选:A.6. “欢乐颂”是尊称为“乐圣”“交响乐之王”的神圣罗马帝国音乐家贝多芬一生创作的重要作品之一.如图,以时间为横轴、音高为纵轴建立平面直角坐标系,那么写在五线谱中的音符就变成了坐标系中的点,如果这些点在函数()4sin 0,2y x πωϕωϕ=+><的图象上,且图象过点,224π,相邻最大值与最小值之间的水平距离为2π,则是函数的单调递增区间的是( )A. ,34ππ−−B. 75,2424ππ−C. 53,248ππD. 53,84ππ【答案】B 【解析】【分析】由题意求出最小正周期,从而求出ω,再利用特殊点求出ϕ的值,从而得到函数的解析式,利用正弦函数的单调性求解单调增区间,即可得到结果. 【详解】因为函数图象相邻最大值与最小值之间的水平距离为2π,所以函数的周期为22ππ×=,所以22πωπ==,又图象过点(224)π,,所以4sin 2224πϕ×+=,可得1sin 122πϕ += ,则有2126k ππϕπ+=+或52,126k k Z ππϕπ+=+∈, 即212k πϕπ=+或32,4k k Z πϕπ=+∈, 又2πϕ<,所以12πϕ=,所以4sin 212yx π+,令2222122k x k πππππ−+≤+≤+,解得75,2424k x k k Z ππππ−+≤≤+∈, 所以函数的单调区间为75,,2424k k k Z ππππ−++∈,当0k =时,函数的单调递增区间为75,2424ππ−,故选项B 正确. 故选:B .7. 已知函数()2ln 1212x x x f x mx mx x +>= −+≤,,,若()()g x f x m =−有三个零点,则实数m 的取值范围是( ) A. 71,4B. (]1,2C. 41,3D. []1,3【答案】C 【解析】【分析】由题可知1x >时,函数()()g x f x m =−至多有一个零点,进而可得1x ≤时,要使得()()222mg x f x m x mx =−=−−有两个零点,然后根据二次函数的性质结合条件即得. 【详解】当1x >时,()ln f x x x =+单调递增且()ln 1f x x x =+>,此时()()g x f x m =−至多有一个零点,若()()g x f x m =−有三个零点,则1x ≤时,函数有两个零点;当1x >时,()ln 1f x x x =+>,故1m >; 当1x ≤时,要使()()222mg x f x m x mx =−=−−有两个零点, 则2Δ80214202m m mm m =−−><−−≥, 所以403m <≤,又1m >, 所以实数m 的取值范围是41,3.故选:C.8. 张衡是中国东汉时期伟大的天文学家、数学家, 他曾在数学著作《算罔论》中得出结论:圆周率的平方除以十六约等于八分之五. 已知在菱形ABCD中,AB BD ==, 将ABD △沿BD 进行翻折,使得AC =. 按张衡的结论, 三棱锥A BCD −外接球的表面积约为( ) A. 72B.C.D. 【答案】B 【解析】【分析】由球的性质确定三棱锥A BCD −外接球的球心位置和球的半径,由此可求球的表面积. 【详解】如图1,取BD 的中点M ,连接AM CM ,.由AB AD BD ===ABD △为正三角形,且3AM CM ===,所以1cos 3AMC ∠=−,则sin AMC ∠==, 以M 为原点,MC 为x 轴,MD 为y 轴,过点M 且与平面BCD 垂直的直线为z 轴建立空间直角坐标系如图2,则(3,0,0)C , (10A −,.设O 为三棱锥A BCD −的外接球球心,则O 在平面BCD 的投影必为BCD △的外心,则设(10)O h ,,.由222||||R OA OC ==可得22222220)20h h ++−=++,解得h =,所以22||6R OC ==.由张衡的结论,2π5168≈,所以π≈则三棱锥A BCD −的外接球表面积为24πR ≈ 故选:B .二. 多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对得3分,有选错的得0分.9. ABC 中,D 为边AC 上的一点,且满足12AD DC =,若P 为边BD 上的一点,且满足()0,0AP mAB nAC m n =+>>,则下列结论正确的是( )A. 21m n +=B. mn 的最大值为112C.41m n+的最小值为6+ D. 229m n +的最小值为12【答案】BD 【解析】【分析】根据平面向量共线定理可知A 错误;根据()133mnm n =⋅,利用基本不等式可求得最大值,知B 正确; 由()41413m n m n m n+=++,利用基本不等式可求得最小值,知C 错误; 利用基本不等式可得()222392m n m n++≥,知D 正确.【详解】对于A ,3AP mAB nAC mAB nAD =+=+,,,B P D 三点共线,31m n ∴+=,A 错误;对于B ,31m n += ,()21131333212m n mn m n + ∴=⋅≤×=(当且仅当3m n =时取等号),B 正确;对于C ,(414112777n m m n m n m n m n +=++=++≥+=+ (当且仅当12n m m n =,即m =时取等号),C 错误; 对于D ,()22231922m n m n ++≥=(当且仅当3m n =时取等号),D 正确. 故选:BD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:一正二定三相等. (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10. 对于数列{}n a ,若存在正数M ,使得对一切正整数n ,都有n a M ≤,则称数列{}n a 是有界的.若这样的正数M 不存在,则称数列{}n a 是无界的.记数列{}n a 的前n 项和为n S ,下列结论正确的是( )A. 若1n a n=,则数列{}n a 是无界的B. 若1sin 2nn a n =,则数列{}n S 是有界的 C. 若()1nn a =−,则数列{}n S 是有界的D. 若212n a n =+,则数列{}n S 是有界的 【答案】BC 【解析】【分析】利用有界数列与无界数列的定义,结合放缩法与等比数列的前n 项和公式即可得解. 【详解】对于A ,111n a n n==≤ 恒成立, ∴存在正数1M =,使得n a M ≤恒成立, ∴数列{}n a 是有界的,A 错误;对于B ,1sin 1n −≤≤ ,111sin 222n n nn a n∴−≤=⋅≤,212111221111111222212nn nn n S a a a− ∴=+++<+++==−<− , 2121111112222n nn n S a a a=+++>−+++=−+>−,所以存在正数1M =,使得n S M ≤恒成立,∴则数列{}n S 是有界的,B 正确;对于C ,因为()1nn a =−,所以当n 为偶数时,0n S =;当n 为奇数时,1n S =−;1n S ∴≤,∴存在正数1M =,使得n S M ≤恒成立,∴数列{}n S 是有界的,C 正确;对于D ,()()22144114421212121n n n n n n =<=− −+−+,2221111111121241233352121nS n n n n n ∴=++++⋅⋅⋅≤+−+−+⋅⋅⋅+− −+182241222212121n n n n n n n=+−=+=−++++; 221y x x =−+ 在()0,∞+上单调递增,21,213n n∴−∈+∞ +, ∴不存在正数M ,使得n S M ≤恒成立, ∴数列{}n S 是无界的,D 错误.故选:BC.11. 已知函数()f x 及其导函数()f x ′的定义域均为R ,若()f x 是奇函数,()()210f f =−≠,且对任意x ,R y ∈,()()()()()f x y f x f y f x f y ′′+=+,则( )A. ()112f ′=B. ()90f =C.()2011k f k ==∑D.()2011k f k =′=−∑【答案】BD 【解析】【分析】根据赋值法,结合原函数与导函数的对称性,奇、偶函数的定义、函数周期性进行求解即可.【详解】令1xy ==,得()()()2211f f f =′,因为()()210f f =−≠, 所以()112f ′=−,所以A 错误; 令1y =,得()()()()()111f x f x f f x f +=′′+①,所以()()()()()111f x f x f f x f −=′−′−+, 因为()f x 是奇函数,所以()f x ′是偶函数,所以()()()()()111f x f x f f x f −′′=−+②,由①②, 得()()()()()()12111f x f x f f x f x f x +==−−′+−−, 即()()()21f x f x f x +=−+−, 所以()()()()()()()32111f x f x f x f x f x f x f x +=−+−+=++−+=, 所以()f x ,()f x ′是周期为3的函数,所以()()900f f ==,()()()()()()2011236120k f k f f f f f = =++×++= ∑,所以B 正确,C 错误; 因为()()()12112f f f =−=′=−′′,在①中令0x =得()()()()()10101f f f f f ′=+′,所以()01f ′=,()()()()()()2011236121k f k f f f f f =′ =++×++′=− ′′′′∑,所以D 正确. 故选:BD .【点睛】对于可导函数()f x 有: 奇函数的导数为偶函数 偶函数的导数为奇函数若定义在R 上的函数()f x 是可导函数,且周期为T ,则其导函数()f x ′是周期函数,且周期也为T三. 填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 满足()()12i 1i z =++(其中i 为虚数单位),则z =_____________.【解析】【分析】根据复数的乘法运算求出复数z ,即可求得答案. 【详解】由题意得()()12i 1i 13i z =++=−+,故z =,13. 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答). 【答案】:35【解析】【分析】三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为32332A A ×,若两个空中只插入1节艺术课,则排法种数为31133233()216A A A A = ,三门文化课中相邻排列,则排法种数为3434144A A =,而所有的排法共有66720A =种,由此求得所求事件的概率.【详解】解:把语文、数学、外语三门文化课排列,有33A 种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为32133272A A A =, ②若两个空中只插入1节艺术课,则排法种数为31133233()216A A A A = , ③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为一个整体, 然后和三门艺术课进行排列,则排法种数为3434144A A =,而所有的排法共有66720A =种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为7221614437205++=,故答案为:35. 【点睛】本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.14. 已知()221:21O x y +−= ,()()222:369O x y −+−= ,过x 轴上一点P 分别作两圆切线,切点分别是M ,N ,求PM PN +的最小值为_____________.【解析】【分析】根据圆的切线的几何性质可推出PM PN +=可看作点(0)Pt,到((0,,A B 的距离的和,结合几何意义即可求得答案. 【详解】由题意知()221:21O x y +−= 的圆心为(0,2),半径11r =,()()222:369O x y −+−= 的圆心为(36),,半径23r =,的设(0)P t,,则||PM =,PN ===则PM PN +==,设((0,,A B ,则||||||||||PM PNPA PB AB +≥=+, 当且仅当,,P A B 三点共线时取等号,此时PM PN +的最小值为AB ==,四. 解答题:本题共577分,其中第15题13分,第16题和第17题每题15分,第18题和第19题每题17分,解答题应写出文字说明、证明过程或演算步骤.15. 已知ABC 的角,,A B C 的对边分别为 ,,a b c ,且sin (cos cos )sin sin sin A c B b C c B c C b B +−=+,(1)求角A ;(2)若AD 平分BAC ∠交线段BC 于点D ,且2,2AD BD CD ==,求ABC 的周长. 【答案】(1)23A π=(2)9+ 【解析】【分析】(1)先利用余弦定理化简cos cos c B b C +,然后代入已知式子中利用正弦定理统一成边的形式,再利用余弦定理可求出角A ,(2)由ABCBAD CAD S S S =+ 结合AD 平分BAC ∠,23A π=可得22bc b c =+,作AE BC ⊥于E ,则由ABD ACD S S 结合已知条件可得2c b=,解方程组可求得,b c ,再利用余弦定理可求出a ,从而可求出三角形的周长.【小问1详解】由余弦定理得222222cos cos 22a c b a b c c B b C c b a ac ab+−+−+=×+×=所以sin (cos cos )sin sin sin A c B b C c B c C b B +−=+可化为sin sin sin sin a A c B c C b B −=+ 再由正弦定理,得222a cb c b −=+,得222c b a bc +−=−,所以2221cos 22b c a A bc +−==−. 因(0,)A π∈, 所以23A π= 【小问2详解】因为AD 平分BAC ∠,所以3BAD CAD π∠=∠=. 由1211sin sin sin 232323ABC BAD CAD S S S b c c AD b AD πππ=+⇒⋅=⋅+⋅ , 得22bc b c =+. 作AE BC ⊥于E ,则1sin2321sin 23ABD ACD c AD S c BD S b DC b AD ππ⋅==⇒==⋅ .由222bc b c c b =+= ,解得6,3,c b == 由余弦定理,得2222cos 63a b c bc A =+-=,所以a =故ABC的周长为9+16. 如图,在正方体1111ABCD A B C D −中,E .F 分别是棱1DD ,11A D 的中点.为(1)证明:1B E ⊥平面ACF . (2)求二面角B AF C −−的余弦值. 【答案】(1)证明见解析 (2【解析】分析】(1)法一:建立空间直角坐标系,得到10AF EB ⋅= ,10AC EB ⋅=,所以1AF EB ⊥,1AC EB ⊥,证明出线面垂直;法二:作出辅助线,先由线面垂直得到1AC EB ⊥,再根据三角形全等得到1AF A E ⊥,进而得到AF ⊥平面11A B E ,得到1AF EB ⊥,从而证明出1B E ⊥平面ACF ; (2)利用空间向量求解二面角余弦值. 【小问1详解】法一:以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系.设正方体1111ABCD A B C D −的棱长为2,则()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,0,2F ,()0,0,1E ,()12,2,2B . ()1,0,2AF =−,()2,2,0AC =−,()12,2,1EB =.因为10AF EB ⋅=,10AC EB ⋅=,所以1AF EB ⊥,1AC EB ⊥. 【的因为AF AC A = ,,AF AC ⊂平面ACF ,所以1B E ⊥平面ACF . 法二:连接1A E ,BD ,11B D .在正方体1111ABCD A B C D −中,1B B ⊥平面ABCD ,所以1B B AC ⊥.因为BD AC ⊥,1B B BD B ∩=,1,B B BD ⊂平面11B BDD ,所以AC ⊥平面11B BDD . 因为1EB ⊂平面11B BDD ,所以1AC EB ⊥.因为11A B ⊥平面11ADD A ,AF ⊂平面11ADD A ,所以11A B AF ⊥.在正方形11ADD A ,E ,F 分别是边1DD ,11A D 的中点,可得111A AF D A E ≌△△,所以111A AF D A E ∠∠=,1111190EA A A AF EA A D A E ∠∠∠∠+=+=,所以1AF A E ⊥.因为1111A B A E A = ,111,A B A E ⊂平面11A B E ,所以AF ⊥平面11A B E . 因为1EB ⊂平面11A B E ,所以1AF EB ⊥.因为AC AF A ∩=,,AF AC ⊂平面ACF ,所以1B E ⊥平面ACF . 【小问2详解】结合(1)可得1EB为平面ACF 的一个法向量.()0,2,0AB =.设平面ABF 的法向量为(),,n x y z = ,则()()()()0,2,0,,201,0,2,,20AB n x y z y AF n x y z x z ⋅=⋅== ⋅=−⋅=−+=, 解得0y =,令2x =,得1z =,所以()2,0,1n =,111cos ,E nB n EB n EB ⋅==⋅. 由图可知二面角B AF C−−为锐角,故二面角BAF C −−.17. 已知某系统由一个电源和并联的,,A B C 三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)电源电压X (单位:V )服从正态分布()404N ,,且X 的累积分布函数为()()F x P X x =≤,求()()4438F F −.(2)在统计中,指数分布常用于描述事件发生的时间间隔.已知随机变量T (单位:天)表示某元件的使用寿命,T 服从指数分布,其累积分布函数为()()001104tt G t P T t t <=≤= −≥ ,,.(ⅰ)设120t t >>,证明:()()1212P T t T t P T t t >>=>−;(ⅱ)若第n 天只有元件A 发生故障,求第1n +天系统正常运行条件概率. 附:若随机变量Y 服从正态分布()2N µσ,,则()0.6827P Y −µ<σ=,()20.9545P Y −µ<σ=,()30.9973P Y −µ<σ=.【答案】(1)0.8186 (2)(ⅰ)证明见解析(ⅱ)716【解析】【分析】(1)根据正态分布的对称性即可结合()()F x P X x =≤的定义求解;(2)(ⅰ)根据条件概率的计算公式集合()()Fx P X x =≤的定义以及()G t 的定义域即可求解,(ⅱ)根据独立事件的概率公式求解即可..【小问1详解】由题设得()738420.682P X =<<,()536440.954P X =<<,所以()()()()()()4438443840443840F F F X F X F X F X −=≤−≤=≤≤+≤≤1(0.68270.9545)0.81862=+= 【小问2详解】(ⅰ)由题设得:120t t >>的()[]12111122222()()()1()1()()()1()1()P T t T t P T t P T t G t P T t T t P T t P T t P T t G t >∩>>−≤−>>====>>−≤−112122111(1)444111(1)44t t t t t t −=−−==−−, ()()2112121211()4t t P T t t P T t t G t t −>−=−≤−=−−=,所以()()1212P T t T t P T t t >>=>−. (ⅱ)由(ⅰ)得()()1111(1)1(1)4P T n T n P T P T G >+>=>=−≤=−=,所以第1n +天元件,B C 正常工作的概率均为14. 为使第1n +天系统仍正常工作,元件,B C 必须至少有一个正常工作, 因此所求概率为2171(1)416−−=.18. 已知双曲线()2222Γ:10,0x y a b a b−=>>的实轴长为2O 的方程为222x y +=,过圆O 上任意一点P 作圆O 的切线l 交双曲线于A ,B 两点.(1)求双曲线Γ的方程; (2)求证:π2AOB ∠=; (3)若直线l 与双曲线的两条渐近线的交点为C ,D ,且AB CD λ=,求实数λ的范围.【答案】(1)2212y x −=(2)证明见解析 (3)λ∈【解析】【分析】(1)由题意列式求出212a ,c===,即可得答案;(2)分类讨论,求出00y =和00x =时,结论成立;当000x y ≠时,利用圆222x y +=在()00,P x y 处的切线方程为002x x y y +=,联立双曲线方程,可得根与系数的关系式,计算OA OB ⋅的值,即可证明结论; (3)求出弦长AB 以及CD的表达式,可得λ=. 【小问1详解】由题意知双曲线()2222Γ:10,0x y a b a b−=>>的实轴长为2故22222a c a c ab == =+,解得212a ,c===,故双曲线Γ的方程为2212y x −=;【小问2详解】证明:设()00,P x y ,则22002x y +=,当00y =时,不妨取)P ,此时不妨取,AB,则0OA OB ⋅= ,即π2AOB ∠=; 同理可证当00x =时,有π2AOB ∠=; 当000x y ≠时,圆222x y +=在()00,P x y 处的切线方程为()0000x y y x x y −=−−, 即002x x y y +=; 由2200122y x x x y y −= += 可得()222000344820x x x x x −−+−=, 因为切线l 交双曲线于A ,B 两点,故2002x <<,()()22220000340,Δ16434820x x x x −≠=−−−>, 设()()1122,,,A x y B x y ,则20012122200482,3434x x x x x x x x −+=⋅=−−,故()()121212*********OA OB x x y y x x x x x x y ⋅=+=+−−⋅ ()212012012201422x x x x x x x x x =+−++ − ()22220000222200082828143423434x x x x x x x x −− =+−+−−−−22002200828203434x x x x −−=−=−−, 故OA OB ⊥,综合上述可知π2AOB ∠=; 【小问3详解】由(2)可得当000x y ≠时,2002x <<,AB ==2212y x −=的渐近线方程为y =,联立002y x x y y=+=,得C,同理可得C ,则CD =022*******234|y ||y ||x y ||x |=−−,由于AB CD λ=,故234AB CDx λ==−由于2002x<<,则λ; 当00y =时,不妨取)P ,则4|AB ||=,此时λ=; 当00x =时,不妨取(P ,则2|AB ||=,此时λ=综合上述可知λ∈. 19. 给定常数0c >,定义函数()24f x x c x c =++−+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =−−,求2a 及3a ; (2)求证:对任意*1,n n n N a a c +∈−≥,; (3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由. 【答案】见解析 【解析】【详解】(1)因为0c >,1(2)a c =−+,故2111()242a f a a c a c ==++−+=,3122()2410a f a a c a c c ==++−+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()24f x x c x c x c x c ≥+⇔++−+≥+即只需证明24+x c x c x c ++≥++若0x c +≤,显然有24+=0x c x c x c ++≥++成立;若0x c +>,则24+4x c x c x c x c x c ++≥++⇔++>+显然成立第21页/共21页综上,()f x x c ≥+恒成立,即对任意的*n ∈N ,1n n a a c +−≥ (3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +++−+++即8d c =+ 故21111()248a f a a c a c a c ==++−+=++, 即111248a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11448a c a c ++=⇒=−−, 此时,230,8,,(2)(8)n a a c a n c ==+=−+ 也满足题意; 综上,满足题意的1a 的取值范围是{}[,)8c c −+∞∪−−.【考点定位】考查数列与函数的综合应用,属难题.。

浙江省杭州市学军中学2014届高三第九次月考理科综合试题

浙江省杭州市学军中学2014届高三第九次月考理科综合试题

一、选择题(本题共17小题。

第小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的)相对原子质量(原子量):H 1 C 12 N 14 O 16 Cl 35.5 Na 23 Al 27 Fe 561.下列有关细胞结构和功能的说法,正确的是A.细胞在癌变的过程中可发生基因突变和基因重组B.同一生物体内非相邻细胞间可以通过信息分子来交流信息C.核膜上的核孔可以选择性地让蛋白质和RNA进出,体现了生物膜的选择透性D.科学家利用小鼠成纤维细胞培养体系培养肝细胞,培养体系中小鼠成纤维细胞的细胞周期大于肝细胞2.某同学持续发烧并伴有咳嗽,诊断是由流感病毒引起的感冒,该病毒感染人体并侵入细胞后,机体会产生一系列的变化,以下叙述正确的是A.吞噬细胞在此过程中只参与了特异性免疫B.效应T细胞接触靶细胞,可以导致靶细胞裂解C.浆细胞通过接触流感病毒,,从而使病毒失去侵染进入人体细胞的能力D.如果通过免疫接种预防流感,刺激免疫系统的疫苗需保持病原微生物的完整性3.某研究性学习小组在对黄化豌豆幼苗茎切段的实验研究中,探究不同浓度的生长素(IAA)对黄化豌豆幼苗茎切段伸长和乙烯产量的影响,得到右图所示实验结果。

下列说法错误的是A.实验中需要设置IAA浓度为0的对照组B.光会影响生长素的分布从而影响实验结果,所以整个实验应在黑暗中进行C.当生长素的浓度增高到一定值后,就会促进乙烯的产生,进而抑制生长素促进切段细胞伸长的作用D.该实验说明生长素作用具有二重性4.下图1是生物膜的流动镶嵌模型及物质跨膜运输示意图,其中离子通道是一种通道蛋白,通道蛋白是横跨质膜的亲水性通道,允许适当大小的离子顺浓度梯度通过。

图2表示磷脂在细胞膜内外两侧分布的百分比。

请据图分析下列叙述错误的是A. 丁的化学成分为糖蛋白B. 由图1和图2可知,膜脂和膜蛋白在细胞膜上的分布是不对称的C. 神经纤维受刺激时,Na+ 通过丙进入细胞导致兴奋的产生识别序列及切割位点Mbo I BamH I 限制酶转录方向质粒抗生素A 抗性基因抗生素B 抗性基因D. 神经递质与突触后膜受体蛋白结合时,使通道蛋白形变5.利用以下提供的酶和质粒,选用合适的酶切后构建了满足筛选需求的目的基因-质粒连接物(标为D ),下列有关叙述中,错误的是A .DNA 上的每个酶切位点只能被一种特定的限制性核酸内切酶剪切B .构建连接物D 时只能用BamH I 剪切质粒,而不能选用 Mbo IC .连接物D 有两种,而其中只有一种能满足基因工程的表达要求D .连接物D 中Mbo I 的酶切位点至少有3个,而BamH I 的切点可能没有6.在调查某林场松鼠的种群数量时,计算当年种群数量与一年前种群数量的比值(λ),并得到如右图所示的曲线。

浙江省杭州市杭州学军中学2014届高三第二次月考地理试卷(带解析)

浙江省杭州市杭州学军中学2014届高三第二次月考地理试卷(带解析)

浙江省杭州市杭州学军中学2014届高三第二次月考地理试卷(带解析)下图为“公转轨道相邻的三大行星相对位置示意图”。

读图回答下题。

1.下面有关这三大行星的说法正确的是A.这①②两颗星的名称分别是火星和木星B.小行星主要分布在地球和①行星轨道之间C.若能在②行星的赤道上看太阳升起是西升东落的D. ①行星外有60多颗卫星绕转2.此时:A.从地球看天空:①行星可能会出现凌日现象②行星可能处于大冲状况,在天空中非常明亮B.地球处于近日点附近,公转速度较快C.我国从南向北白昼变长,黑夜变短D.在地球上看②行星,将在日出的东面天空闪亮3.与①、②行星相比,地球具备生命存在的基本条件之一是:A.适宜的大气厚度和大气成份B.强烈的太阳辐射和充足的水汽C.复杂的地形和岩石圈D.强烈的地震和火山活动【答案】1.C2.C3.A【解析】试题分析:1.根据八大行星距日远近可知,①是火星、②是金星;小行星主要分布在火星与木星轨道之间;金星是逆向自转(即自东向西自转)所以在金星上看日出时西升东落;目前已发现火星有两颗卫星,土星和木星卫星数都已超过60颗。

选项C正确。

2.地内行星有凌日现象,地外行星有冲日现象;此时太阳直射点在北回归线上,位于远日点附近,公转速度较慢;我国自南向北昼渐长夜渐短;此时看②行星,将在太阳表面上经过,为凌日现象。

选项C正确。

3.与金星、火星的其它行星相比地球拥有生命的条件主要有:适宜的温度、适宜的大气、液态水等其中适宜的大气是条件之一。

选项A正确。

考点:该题考查太阳系和地球运动的意义。

4.下列四幅图中,表示北京时间8时整的是(提示:太阳都从一个方向直射;N表示北极)【答案】A【解析】试题分析:北京时间八点整时,太阳直射的经线的度数是180°经线,从图中可知,A图中右侧经线为180°经线,阳光直射,选项A正确。

考点:该题考查地方时间计算。

从罗马到北京的某国际航班经过18小时的飞行,于某星期一的17时10分安全降落在北京机场。

学军中学高三数学试卷

学军中学高三数学试卷

一、选择题(每题5分,共50分)1. 已知函数$f(x)=\sqrt{1-x^2}$,则函数的值域为()A. $[0,1]$B. $[0,+\infty)$C. $[-1,0]$D. $[-1,1]$2. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1+a_5=12$,$S_9=81$,则$a_4$的值为()A. 5B. 6C. 7D. 83. 在平面直角坐标系中,直线$y=2x+1$与圆$x^2+y^2=4$相交于A、B两点,若$\angle AOB=90^\circ$,则线段AB的中点坐标为()A. $(0,1)$B. $(1,0)$C. $(-1,0)$D. $(0,-1)$4. 已知复数$z$满足$|z-1|=|z+1|$,则$z$在复平面上的对应点一定位于()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限5. 已知函数$f(x)=x^3-3x^2+4x-6$,则$f(x)$的极值点为()A. $x=1$B. $x=2$C. $x=3$D. $x=4$6. 若等比数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1+a_3=6$,$a_2+a_4=12$,则$a_1$的值为()A. 2B. 3C. 4D. 67. 在平面直角坐标系中,抛物线$y^2=4x$的焦点为()A. $(0,1)$B. $(0,2)$C. $(1,0)$D. $(2,0)$8. 已知复数$z$满足$|z-1|=|z+1|$,则$z$在复平面上的对应点一定位于()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限9. 若函数$f(x)=x^3-3x^2+4x-6$在区间$[0,3]$上单调递增,则$f(0)$、$f(1)$、$f(2)$、$f(3)$的大小关系为()A. $f(0)>f(1)>f(2)>f(3)$B. $f(0)<f(1)<f(2)<f(3)$C. $f(0)>f(1)<f(2)>f(3)$D. $f(0)<f(1)>f(2)<f(3)$10. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1+a_5=12$,$S_9=81$,则$a_4$的值为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)11. 函数$f(x)=x^2-2x+1$的对称轴方程为______。

浙江省杭州市杭州学军中学2014届高三第二次月考化学试卷(带解析)

浙江省杭州市杭州学军中学2014届高三第二次月考化学试卷(带解析)

浙江省杭州市杭州学军中学2014届高三第二次月考化学试卷(带解析)1.从化学角度分析,下列叙述不正确的是A .化学是以实验为基础的一门学科,定量研究方法是化学发展为一门学科的重要标志B .铝表面有一层致密的氧化物薄膜,故铝制容器可用来腌制咸菜等C .明矾水解时产生具有吸附性的胶体粒子,可以用于饮用水的净化D .高空中臭氧层能够吸收太阳紫外线,为地球上的生物提供了天然的保护屏障。

但低空的臭氧是污染气体,会给人体造成伤害 【答案】B 【解析】试题分析:铝制容器可用来腌制咸菜,产生酸性溶解氧化物薄膜,然后铝合金产生原电池,加快铝的溶解,B 错。

考点:化学与STS 问题。

2.分类方法在化学学科的发展中起到重要的作用,下列分类标准合理的是 A .根据纯净物的元素组成,将纯净物分为单质和化合物B .根据溶液导电能力强弱,将电解质分为强电解质、弱电解质C .根据是否具有丁达尔效应,将分散系分为溶液、浊液和胶体D .根据反应中的能量变化,将化学反应分为氧化还原反应、非氧化还原反应 【答案】A 【解析】试题分析:B 项中,根据溶液电离程度强弱,将电解质分为强电解质、弱电解质,而不是导电能力强弱,错;C 项中,根据是否具分散质微粒的半径大小,将分散系分为溶液、浊液和胶体,原说法错误;D 项在,根据反应中的是否得失电子,将化学反应分为氧化还原反应、非氧化还原反应,D 错。

考点:物质分类和反应分类方法。

3.下列有关化学用语表示正确的是 A .二氧化硅的分子式:SiO 2B .质子数为53,中子数为78CD【答案】B 【解析】试题分析:A 中,二氧化硅是原子晶体,SiO 2是化学式;C 中甲基的电子式:;D 中,H C H H考点:化学式、电子式、结构简式等化学用语的表示方法。

4.用N A表示阿伏加德罗常数,下列说法正确的是A.0.1 mol的D37Cl分子中的中子数是2N AB.46g乙醇所含的羟基的电子数是7N AC.2.3gNa与足量O2反应,生成Na2O和Na2O2的混合物,钠共失去0.1N A个电子D.18g葡萄糖分子中含有共用电子对数为2.2N A【答案】C【解析】试题分析:A中,D37Cl的D有1个中子,37Cl有20个中子,故0.1 mol的D37Cl分子中的中子数是2.1N A;B中,46g乙醇是1mol,所含的羟基(每个是9个电子)的电子数是9N A;D.18g葡萄糖是0.1mol0.1mol葡萄糖中含有共用电子对数为2.4N A。

2014年高考杭州二中数学模拟试卷(含答案)

2014年高考杭州二中数学模拟试卷(含答案)

绝密★考试结束前2014年普通高等学校招生适应性考试数 学(理科)姓名 准考证号 本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分 (共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式: 球的表面积公式 柱体的体积公式 S =4πR 2 V =Sh球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高 V =34πR 3 台体的体积公式 其中R 表示球的半径 V =31h (S 1+21S S +S 2) 锥体的体积公式 其中S 1, S 2分别表示台体的上、下底面积, V =31Sh h 表示台体的高其中S 表示锥体的底面积,h 表示锥体的高如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )一、选择题(本大题共10小题,每小题5分,共50分) 1.(5分)设复数,其中a 为实数,若z 的实部为2,则z 的虚部为( )2.(5分)命题“若α=,则tan α=1”的逆否命题是( ),,α≠5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数4.(5分)设a=(3x2﹣2x)dx,则(ax2﹣)6的展开式中的第4项为()B={y|框图中输出的y值};当x=﹣1时,(∁uA)∩B=()6.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,B7.(5分)某几何体的三视图如图所示,则该几何体的体积为()8.(5分)某工厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.若生产该产品900千克,则该工厂获得最大利润时的9.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,B10.(5分)已知x∈R,符号[x]表示不超过x的最大整数,若关于x的方程(a ...D.二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分)(一)必考题(11-14题)11.(5分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为_________.12.(5分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为_________(结果用数值表示).13.(5分)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=_________.14.(5分)在圆中有如下结论:“如图1,AB是圆O的直径,直线AC,BD是圆O过A、B的切线,P是圆O上任意一点,CD是过P的切线,则有PC•PD=PO2”.类比到椭圆:“如图2,AB是椭圆的长轴(其中O为椭圆的中心,F1、F2为椭圆的两个焦点),直线AC,BD是椭圆过A、B的切线,P是椭圆上任意一点,CD是过P的切线,则有PC•PD=_________.选考题(在第15、16两题中任选一题作答)选修4-1:几何证明选讲15.(5分)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF 的长为_________.选修4-4:坐标系与参数方程16.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=_________.三、解答题(本大题共6小题,共75分)17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.18.(12分)已知数列{a n}是正项数列,{b n}是等差数列,b n,,b n+2成等比数列,且a1=3,a3=15.(1)求数列{b n}的通项公式;(2)设数列{}的前n项和为S n,证明S n<.19.(12分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC 的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的正弦值.20.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.21.(13分)在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.22.(14分)已知函数f(x)=lnx,g(x)=k•.(Ⅰ)求函数F(x)=f(x)﹣g(x)的单调区间;(Ⅱ)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;(Ⅲ)设正实数a1,a2,a3,…,a n满足a1+a2+a3+…+a n=1,求证:ln(1+)+ln(1+)+…+ln (1+)>.详细解答一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)设复数,其中a为实数,若z的实部为2,则z的虚部为()求解虚部.Z=Z===的虚部为=2.(5分)命题“若α=,则tanα=1”的逆否命题是(),,α≠α≠3.(5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数4.(5分)设a=(3x2﹣2x)dx,则(ax2﹣)6的展开式中的第4项为()=4﹣的通项为﹣=5.(5分)已知全集U=Z,Z为整数集,如图程序框图所示,集合A={x|框图中输出的x值},B={y|框图中输出的y值};当x=﹣1时,(∁uA)∩B=()6.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,BsinAsinBcosC+sinCsinBcosA==sinB=B=7.(5分)某几何体的三视图如图所示,则该几何体的体积为()=8.(5分)某工厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.若生产该产品900千克,则该工厂获得最大利润时的﹣)﹣))+5﹣9.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,B,即,>同样地,当,即所以双曲线的离心率的范围是10.(5分)已知x∈R,符号[x]表示不超过x的最大整数,若关于x的方程(a为常数)有且仅有3个不等的实根,则a的取值范围是()...D.的方程等价于有且仅有的方程=0故<,且,则≥<,且=<<,有,若综上所述,<或≤.二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分)(一)必考题(11-14题)11.(5分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为.,解得,,故答案为:12.(5分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).人中只有男同学或只有女同学的概率为:,﹣.故答案为:.13.(5分)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.代入向量的数量积=||||cos∴|OAP=2|OAP=2||=6由向量的数量积的定义可知,=||||cos14.(5分在圆中有如下结论:“如图1,AB是圆O的直径,直线AC,BD是圆O过A、B 的切线,P是圆O上任意一点,CD是过P的切线,则有PC•PD=PO2”.类比到椭圆:“如图2,AB是椭圆的长轴(其中O为椭圆的中心,F1、F2为椭圆的两个焦点),直线AC,BD 是椭圆过A、B的切线,P是椭圆上任意一点,CD是过P的切线,则有PC•PD=PF1•PF2.选考题(在第15、16两题中任选一题作答)选修4-1:几何证明选讲15.(5分如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.故答案为:.选修4-4:坐标系与参数方程16在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.化成直角坐标方程,再代入曲线三、解答题(本大题共6小题,共75分)17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.2=1),解不等式x+,sinx﹣cosx+sinx==)=2.sinxsinx+x+≥+x+,+18.(12分)已知数列{a n}是正项数列,{b n}是等差数列,b n,,b n+2成等比数列,且a1=3,a3=15.(1)求数列{b n}的通项公式;(2)设数列{}的前n项和为S n,证明S n<.,并将其裂成,求出前,∴19.(12分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC 的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的正弦值.=1.得坐标是的法向量是得∴夹角的正弦值为20.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望..21.(13分)在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.且圆利用直线与圆相切可得;同理可得,由此可得且圆∴∴,整理得∴由∴同理可得⑤==22.(14分)已知函数f(x)=lnx,g(x)=k•.(Ⅰ)求函数F(x)=f(x)﹣g(x)的单调区间;(Ⅱ)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;(Ⅲ)设正实数a1,a2,a3,…,a n满足a1+a2+a3+…+a n=1,求证:ln(1+)+ln(1+)+…+ln (1+)>.(,对于分子)恒成立,令(,的两正根为)在单调递减,时,单调递增区间为.)在)在在(∴∴∴。

浙江省杭州市余杭第二高级中学2024届高三下学期第二次联考数学试题

浙江省杭州市余杭第二高级中学2024届高三下学期第二次联考数学试题

浙江省杭州市余杭第二高级中学2024届高三下学期第二次联考数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( ) A .33B .233C .3D .232.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( )A .(1,3⎤⎦B .)3,⎡+∞⎣C .(1,5⎤⎦D .)5,⎡+∞⎣3.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .4.设函数()()ln 1f x x =-的定义域为D ,命题p :x D ∀∈,()f x x ≤的否定是( ) A .x D ∀∈,()f x x > B .0x D ∃∈,()00f x x ≤ C .x D ∀∉,()f x x > D .0x D ∃∈,()00f x x >5.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]6.若复数21z m mi =-+(m R ∈)在复平面内的对应点在直线y x =-上,则z 等于( ) A .1+iB .1i -C .1133i --D .1133i -+7.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.358.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5B .3C .-12D .-139.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )A .1?S >-B .0?S <C .–1?S <D .0?S >10.如图所示,已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||2||BF AF =,则双曲线C 的离心率是( ).A 3B 7C 3D 711.已知圆224210x y x y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称,则双曲线C 的离心率为( ) A 5B .5C 5D .5412.我们熟悉的卡通形象“哆啦A 梦”2.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米D .600米二、填空题:本题共4小题,每小题5分,共20分。

浙江省杭州市杭州学军中学2013学年高三第二次月考试题数学(文)

浙江省杭州市杭州学军中学2013学年高三第二次月考试题数学(文)

学军中学2013年高三第二次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={0,1,2,3},N ={x |12<2x <4},则集合M ∩(C R N )等于( ) A .{0,1,2}B .{2,3}C .O /D .{0,1,2,3}2.已知))(sin()(R x x f ∈+=ϕϕ,则“2πϕ=”是“)(x f 是偶函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( D ) A.xy 1=B.xe y -= C. ||lg x y = D.12+-=x y 4.已知sin cos αα-=,α∈(0,π),则sin 2α=( )A . 2-B -1C 2D 1 5.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于 ( ) A. 2B 3C 6D 96.若函数()(01)xxf x ka a a a -=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是( )7. 已知是方程的解, 是方程的解, 函数=)(x f))((21x x x x --,则 ( )A. B. C. D.1x 210--=x x 2x 2lg --=x x )3()2()0(f f f <<)3()0()2(f f f <=)2()0()3(f f f =<)2()3()0(f f f <<8. 已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(l g (l g 2)f =( )A. 5- B 1- C 3 D 49. 设是定义在R 上的偶函数,对任意,都有且当时,.若在区间内关于的方程恰有3个不同的实数根,则实数的取值范围是( )A .B .C .D .10. 已知函数)(ln 22)(2R a x a ax x x f ∈--=,则下列说法不正确的是 ( ) A .当时,函数有零点B .若函数有零点,则C .存在,函数有唯一的零点 D .若函数有唯一的零点,则二.填空题:本大题共7小题,每小题4分,共28分11. 曲线21xy x =-在点(1,1)处的切线方程为 . 12. 已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且⌝p 是⌝q 的必要而不充分条件,则实数m 的取值范围是13. 函数则的值为 .14. 已知)3)(2()(++-=m x m x m x f ,22)(-=xx g ,若R x ∈∀,0)(<x f 或0)(<x g ,则m 的取值范围是_________。

浙江省杭州市杭州学军中学2014届高三第二次月考数学(文)试题

浙江省杭州市杭州学军中学2014届高三第二次月考数学(文)试题

杭州市杭州学军中学2014届高三第二次月考数学(文)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={0,1,2,3}, N ={x |12<2x <4},则集合M ∩(C R N )等于( ) A .{0,1,2} B .{2,3} C .O / D .{0,1,2,3}2.已知))(sin()(R x x f ∈+=ϕϕ,则“2πϕ=”是“)(x f 是偶函数”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( D ) A.xy 1= B.x e y -= C. ||lg x y = D.12+-=x y4.已知sin cos αα-=,α∈(0,π),则sin 2α=( )A . - D 1 5.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于 ( )A. 2 B 3C 6D 9 6.若函数()(01)x x f x ka a a a -=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是( )7. 已知1x 是方程210--=x x 的解, 2x 是方程2lg --=x x 的解, 函数=)(x f ))((21x x x x --,则 ( )A.)3()2()0(f f f <<B.)3()0()2(f f f <=C.)2()0()3(f f f =<D.)2()3()0(f f f <<8. 已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A. 5- B 1- C 3 D 49. 设()f x 是定义在R 上的偶函数,对任意x R ∈,都有(2)(2),f x f x -=+且当[2,0]x ∈-时,1()()12x f x =-.若在区间(2,6]-内关于x 的方程 ()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则实数a 的取值范围是( )A .(1,2)B .(2,)+∞C .D .10. 已知函数)(ln 22)(2R a x a ax x x f ∈--=,则下列说法不正确的是 ( )A .当0a <时,函数()y f x =有零点B .若函数()y f x =有零点,则0a <C .存在0a >,函数()y f x =有唯一的零点D .若函数()y f x =有唯一的零点,则1a ≤二.填空题:本大题共7小题,每小题4分,共28分11. 曲线21x y x =-在点(1,1)处的切线方程为 . 12. 已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且⌝p 是⌝q 的必要而不充分条件,则实数m 的取值范围是13. 函数⎩⎨⎧>-<=-.0),1(,0,2)(1x x f x x f x 则(3.5)f 的值为 .14. 已知)3)(2()(++-=m x m x m x f ,22)(-=xx g ,若R x ∈∀,0)(<x f 或0)(<x g ,则m 的取值范围是_________。

专题6 数列-2014届高三名校数学(理)试题解析分项汇编(第01期)Word版无答案

专题6 数列-2014届高三名校数学(理)试题解析分项汇编(第01期)Word版无答案

一.基础题组1.【河北省唐山市2013-2014学年度高三年级摸底考试理科】设等差数列{}n a 的前n 项和为n S ,且513S =,1563S =,则20S =( )A .90B .100C .110D .1202.【广东省广州市海珠区2014届高三入学摸底考试数学理试题】已知等差数列{}n a 满足244a a +=, 3510a a +=,则它的前10项和10S = ( )A.85B.135C.95D.233.【内蒙古赤峰市全市优质高中2014届高三摸底考试(理)】已知数列{n a }是公差为3的等差数列,且124,,a a a 成等比数列,则10a 等于( ) A. 30 B. 27 C.24 D.334.【广东省广州市“十校”2013-2014学年度高三第一次联考理】已知等差数列{}n a 中,25a = ,411a =,则前10项和=10S ( )A . 55B . 155C . 350D . 4005.【安徽省六校教育研究会2014届高三素质测试理】在正项等比数列{n a }中,1n a +<n a ,28466,5a a a a ∙=+=,则57a a = ( ) A .56 B .65 C .23 D .326.【广东省汕头四中2014届高三第一次月考数学(理)】设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k =( )(A) 3或 -1 (B) 3或1 (C) 3 (D) 1 7.【广东省佛山市南海区2014届普通高中高三8月质量检测理】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( )(A ) 1 (B ) 53(C ) 2 (D ) 38.【江苏省扬州中学2013—2014学年高三开学检测】设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =___ ___.9.【江苏省南京市2014届高三9月学情调研】在等差数列{}n a 中,487,15a a ==,则数列{}n a 的前n 项和n S = .10.【广东省珠海市2014届高三9月摸底考试数学(理)】 设等比数列{}n a 的公比2q =,则44S a = . 11.【广东省惠州市2014届高三第一次调研考试】已知等差数列{n a },满足381,6a a ==,则此数列的前10项的和10S = .二.能力题组12.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a a ( ) A.50 B.35 C.55 D.4613.【吉林省白山市第一中学2014届高三8月摸底考试理】若数列{}n a 的前n 项和为n S ,则下列命题:(1)若数列{}n a 是递增数列,则数列{}n S 也是递增数列; (2)数列{}n S 是递增数列的充要条件是数列{}n a 的各项均为正数;(3)若{}n a 是等差数列(公差0d ≠),则120k S S S ⋅= 的充要条件是120.k a a a ⋅=(4)若{}n a 是等比数列,则120(2,)k S S S k k N ⋅=≥∈ 的充要条件是10.n n a a ++= 其中,正确命题的个数是( )A .0个B .1个C .2个D .3个14.【江西师大附中高三年级2013-2014开学考试】设{}n a 是公比为q 的等比数列,令1(1,2,)n n b a n =+= ,若数列{}n b 的连续四项在集合}{53,23,19,37,82--中,则q 等于( )A .43-B .32-C .32-或23-D .34-或43- 15.【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =,2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n16.【四川省德阳中学2014届高三“零诊”试题理科】等差数列{}n a 中的40251a a ,是函数16431)(23-+-=x x x x f 的极值点,则=20132log a ( )A .2B .3C .4D .517.【安徽省望江四中2014届高三上学期第一次月考数学(理)】已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A B . C .12D .12-18.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .19.【2014届新余一中宜春中学高三年级联考数学(理)】已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.20.【广东省广州市“十校”2013-2014学年度高三第一次联考理】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图4中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,若145n a =,则n = .21.【安徽省望江四中2014届高三上学期第一次月考数学(理)】数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2013S = . 22.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈ ,311=a ,则n na 的最小值为 . 23.【四川省德阳中学2014届高三“零诊”试题理科】定义在(0,)+∞错误!未找到引用源。

2014年高考浙江理科数学试题及答案(word解析版)

2014年高考浙江理科数学试题及答案(word解析版)
,解得
a
b
6
11
,ቤተ መጻሕፍቲ ባይዱ
所以
32
f(x)x6x11xc,由0f(1)3,得01611c3,即6c9,故选C.
【点评】本题考查方程组的解法及不等式的解法,属于基础题.
a
(7)【2014年浙江,理7,5分】在同一直角坐标系中,函数()(0)
fxxx,g(x)logax的图像可能是()
(A)(B)(C)(D)
【答案】D
I1|f(a1)f(a0)||f(a2)f(a1)||f(a3)f(a2)||f(a4)f(a3)|=A1H1A2H2A3H3A4H4
f(1)f(0)1,同理对题中给出的I1,同样有I11;而I2略小于
1
21
2
,I3略小于4
14
33
,所
以估算得
III,故选B.
213
【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.
2
f1(x)x,
1i
2
f2(x)2(xx),f3(x)|sin2x|,a,i0,1,2,
i
399
,99,记Ik|fk(a1)fk(a0)||fk(a2)fk(a1)||fk(a99)fk(a98)|,k1,2,3,则()
(A)I1I2I3(B)I2I1I3(C)I1I3I2(D)I3I2I1
【答案】B
a
【解析】函数()(0)
fxxx,g(x)logax分别的幂函数与对数函数答案A中没有幂函数的图像,不符合;答
aa
案B中,f(x)x(x0)中a1,g(x)logax中0a1,不符合;答案C中,()(0)
fxxx中0a1,
a
g(x)logax中a1,不符合;答案D中,f(x)x(x0)中0a1,g(x)logax中0a1,符合,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省杭州市杭州学军中学2014届高三第二次月考数学(理)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={0,1,2,3}, N ={x |12<2x <4},则集合M ∩(C R N )等于( )A .{0,1,2}B .{2,3}C .O /D .{0,1,2,3}2.已知命题p :ln x >0,命题q :e x >1则命题p 是命题q 的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.若tan α=sin cos αα= ( )4.若函数()(01)x x f x ka a a a -=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是( )5.将函数sin 23y x π⎛⎫=+⎪⎝⎭的图像经怎样平移后所得的图像关于点,012π⎛⎫- ⎪⎝⎭中心对称( ) A .向左平移12π B.向左平移6π C.向右平移12π D.向右平移6π 6. 已知1x 是方程210--=x x 的解, 2x 是方程2lg --=x x 的解,函数()()21)(x x x x x f --=,则 ( )A.)3()2()0(f f f <<B.)3()0()2(f f f <=C.)2()0()3(f f f =<D.)2()3()0(f f f <<7.函数)4cos()4cos()(ππ--+=x x x f 是 ( )A .周期为π的偶函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为2π的奇函数8. 已知二次函数2y ax =(0a >),点(12)P -,。

若存在两条都过点P 且互相垂直的直线1l 和2l ,它们与二次函数2y ax =(0a >)的图像都没有公共点,则a 的取值范围为( )A .1()8+∞,B .18⎡⎫+∞⎪⎢⎣⎭, C .1(0)8, D .108⎛⎤ ⎥⎝⎦, 9、函数⎪⎩⎪⎨⎧<>+=0,2cos 0),1lg()(x x x x x f π图象上关于坐标原点O 对称的点有n 对,则n 的值为( ) A.4 B.3 C.5 D.无穷多10. 已知函数f(x)=x 2-2ax-2alnx(a ∈R),则下列说法不正确的是 ( )A .当0a <时,函数()y f x =有零点B .若函数()y f x =有零点,则0a <C .存在0a >,函数()y f x =有唯一的零点D .若函数()y f x =有唯一的零点,则1a ≤ 二:填空题:本大题共7小题,每小题4分,共28分11. 曲线21x y x =-在点(1,1)处的切线方程为 . 12. 已知幂函数()f x 的图像过点18,2⎛⎫ ⎪⎝⎭,则此幂函数的解析式是()f x =_____________.13. 已知)(x f y =是定义在R 上的增函数,且()y f x =的图像关于点(6,0)对称.若实数y x ,满足不等式22(6)(836)0f x x f y y -+-+≤,则22y x +的取值范围是 . 14. 某商品在最近100天内的单价()f t 与时间t 的函数关系是22(040,)4()52(40100,)2t t t f t t t t ⎧+≤<∈⎪⎪=⎨⎪-+≤≤∈⎪⎩N N 日销售量()g t 与时间t 的函数关系是109()(0100,)33t g t t t =-+≤≤∈N .则这种商品的日销售额的最大值为 . 15. 已知关于x 的不等式22(1)x ax ->有且仅有三个整数解,则实数a 的取值范围为16.函数{}()min ,2f x x =-,其中{},min ,,a a b a b b a b≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,它们的横坐标分别为123,,x x x ,则123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.17. 已知函数11()||||f x x x x x =+--,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤18. 已知函数)cos()(ϕω+=x A x f (0>A ,0>ω,02<<-ϕπ)的图像与y 轴的交点 为)1,0(,它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为)2,(0x 和)2,2(0-+πx(1)求函数)(x f 的解析式;(2)若锐角θ满足1cos 3θ=,求)2(θf 的值.19. 已知命题:p 方程2220a x ax +-=在[]1,1-上有解;命题:q 只有一个实数x 满足不等式2220x ax a ++≤,若命题“p q 或”是假命题,求a 的取值范围.20. 已知二次函数2()2(,)f x x bx c b c =++∈R 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--、(0,1)内.(1)求实数b 的取值范围;(2)若函数()log ()b F x f x =在区间(1,1)c c ---上具有单调性,求实数c 的取值范围.21. 设函数)(x f 和)(x g 都是定义在集合M 上的函数,对于任意的x M ∈,都有 ))(())((x f g x g f =成立,称函数)(x f 与)(x g 在M 上互为“H 函数”.(1)函数x x f 2)(=与x x g sin )(=在M 上互为“H 函数”,求集合M ;(2)若函数xa x f =)((0a a >≠且1)与1)(+=x x g 在集合M 上互为 “H 函数”,求证:1>a ;(3)函数2)(+=x x f 与)(x g 在集合1|{->=x x M 且32-≠k x ,*N k ∈}上互为“H 函数”,当10<≤x 时,)1(log )(2+=x x g ,且)(x g 在)1,1(-上是偶函数,求函数)(x g 在集合M 上的解析式.22. 已知函数f (x )=x|x ﹣a|﹣lnx(1)若a=1,求函数f (x )在区间[1,e ]的最大值;(2)求函数f (x )的单调区间;(3)若f (x )>0恒成立,求a 的取值范围杭州学军中学2014届高三第二次月考高三数学(理科)答卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)请填涂在答题卡上二、填空题(本大题共7小题,每小题4分,共28分)11. 12.13. 14.15. 16.17.三、解答题(本大题共5小题,共72分)18.(本题满分14分)20. (本题满分14分)杭州学军中学2014届高三第二次月考 参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.8. 易知1l 斜率存在,且不为0。

设1l 的斜率为k ,则1l 的方程为2(1)y k x +=-。

由22(1)y axy k x ⎧=⎨+=-⎩得,220ax kx k -++=。

由1l 与二次函数2y ax =(0a >)的图像没有公共点知,214(2)0k a k =-+<△。

同理,由2l 与二次函数2y ax =(0a >)的图像没有公共点知,2211()4(2)0a k k=---+<△。

由10<△,得22ak a -<<+由20<△,得28410ak a -->,k <或k >。

依题意,方程组1200<⎧⎨<⎩△△有解。

∵ 方程组1200<⎧⎨<⎩△△无解⇔242a a a a ⎧-≥⎪⎪⎨⎪+⎪⎩108a <≤。

∴ 方程组1200<⎧⎨<⎩△△有解⇔18a >。

故,a 的取值范围为1()8+∞,。

10. 解法一:由2()22ln ()f x x ax a x a R =--∈得21ln 2x x a x +=,设2ln ()x x g x x +=, 所以32ln 1'()x x g x x --+=,因2ln 1y x x =--+在(0,)+∞上递减且1x =时等于0, 所以(0,1),()x g x ∈递增,(1,),()x g x ∈+∞递减,又(1)1,0()-,g x g x =→+→∞时,x →+∞时,()0g x →.其图象如图所示.(4,2)--所以当10212a a <=或时有一个零点, 当1(0,1)2a ∈时有两个零点. 所以当102a a <=或时, 函数有唯一零点,12a >时,函数有两个零点, 则A,C,D 正确, B 错误,故选B.解法二:2'()22,(0).a f x x a x x=-->当0a <时,'()0f x >恒成立.()f x 递增且(1)120f a =->,0,().x f x →+→-∞所以一定有唯一零点;当0a =时,无零点;当0a >时,'()0f x =必有一个根t>0,即20t at a --=,则21t a t =+. 当(0,)x t ∈时,()f x 递减,当(,)x t ∈+∞时,()f x 递增.32222min 2ln (2ln 1)()()22ln 11t t t t t t t f x f t t at a t t t -+--+-==--==++, 令()0f t =,即得()2ln 10h t t t =+-=,由于()2ln 1h t t t =+-为增函数,仅当t=1时,()0h t =,此时1.2a =即时,函数()f x 有唯一零点1x t ==, 所以当102a a <=或时,函数()f x 有唯一零点,则A,C,D 正确, B 错误,故选B. 二:填空题:本大题共7小题,每小题4分,共28分11. x+y-2=0 12. Y= 13. [16,36] 14. 808.5 15. [16/9,9/4)16. 1 17. 13. 因为函数()y f x =的图像关于点(6,0)对称,所以(6)(6)f x f x +=--,由22(6)(836)0f x x f y y -+-+≤2222(6)(836)(8306)[6(830)]f x x f y y f y y f y y -≤--+=--++=--+,因为函数)(x f y =是定义在R 上的增函数,所以得2266(830)x x y y -≤--+,即22683060x x y y -+-+-≤,配方得22(3)(4)1x y -+-≤,所以圆心为(3,4),半径为1,22y x +的几何意义为圆上动点到原点距离的平方的最值。

相关文档
最新文档