RAID阵列基础知识(一分钟读懂RAID

合集下载

什么是磁盘阵列(RAID)(无盘服务器必须掌握的知识)

什么是磁盘阵列(RAID)(无盘服务器必须掌握的知识)

磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。

它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。

从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。

盘阵列的全称是:RedundanArrayofInexpensiveDisk,简称RAID技术。

它是1988年由美国加州大学Berkeley 分校的DavidPatterson教授等人提出来的磁盘冗余技术。

从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。

现在已基本得到公认的有下面八种系列。

1.RAID0(0级盘阵列)RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。

其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。

2.RAID1(1级盘阵列)RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。

即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。

一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。

因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。

这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。

因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。

3.RAID2(2级盘阵列)RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。

最全面的服务器的RAID详解

最全面的服务器的RAID详解

最全面的服务器的RAID详解磁盘阵列(Redundant Arrays of Independent Disks,RAID),全称独立磁盘冗余阵列。

磁盘阵列是由很多廉价的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。

利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

利用同位检查(ParityCheck)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

相同的数据存储在多个硬盘的不同的地方的方法。

通过把数据放在多个硬盘上(冗余),输入输出操作能以平衡的方式交叠,改良性能。

因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。

分类:一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件实现。

RAID实现的方式:RAID 0,RAID 1,RAID2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 01,RAID 10,RAID50,RAID 53。

常见的有:RAID 0,RAID 1,RAID 5,RAID 6,RAID 01,RAID 10。

原理剖析:RAID 0:RAID 0又称为Stripe或Striping,中文称之为条带化存储,它代表了所有RAID级别中最高的存储性能。

原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。

这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。

磁盘空间= 磁盘总量= 100%需要的磁盘数≥2读写性能= 优秀= 磁盘个数(n)*I/O速度= n*100%块大小= 每次写入的块大小= 2的n次方= 一般为2~512KB优点:1、充分利用I/O总线性能使其带宽翻倍,读/写速度翻倍。

2、充分利用磁盘空间,利用率为100%。

缺点:1、不提供数据冗余。

(精)什么是Raid

(精)什么是Raid

RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。

冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。

RAID最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。

早期的RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。

1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。

从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。

在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性。

目前,IDE/SATA接口标准的硬盘都可以支持RAID技术,不过一般主板芯片组支持的主板只能支持SATA硬盘组建RAID。

简单点说,RAID的功能就是把多个硬盘组合成为一个逻辑磁区,因此,操作系统只会把它当作一个硬盘。

RAID系统的类型有多种方式,如RAID-0,RAID-1,RAID-2,RAID-3,RAID-4,RAID-5,RAID-6,RAID-10,RAID-53等。

下面我们分别来看看这些RAID类型的区别以及用途:RAID 0将多个磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。

RAID 0亦称为带区集。

它是将多个磁盘并列起来,成为一个大磁盘。

在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。

所以,在所有的级别中,RAID 0的速度是最快的。

但是RAID 0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都会丢失。

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。

RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。

RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。

RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。

常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。

RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。

RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。

然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。

RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。

RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。

然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。

RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。

RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。

当一个磁盘发生故障时,可以通过校验信息恢复数据。

然而,RAID 5的写入性能相对较低。

RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。

RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。

然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。

除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100图⽂并茂 RAID 技术全解 – RAID0、RAID1、RAID5、RAID100…… RAID 技术相信⼤家都有接触过,尤其是服务器运维⼈员,RAID 概念很多,有时候会概念混淆。

这篇⽂章为⽹络转载,写得相当不错,它对 RAID 技术的概念特征、基本原理、关键技术、各种等级和发展现状进⾏了全⾯的阐述,并为⽤户如何进⾏应⽤选择提供了基本原则,对于初学者应该有很⼤的帮助。

⼀、RAID 概述 1988 年美国加州⼤学伯克利分校的 D. A. Patterson 教授等⾸次在论⽂ “A Case of Redundant Array of Inexpensive Disks”中提出了 RAID 概念 [1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。

由于当时⼤容量磁盘⽐较昂贵, RAID 的基本思想是将多个容量较⼩、相对廉价的磁盘进⾏有机组合,从⽽以较低的成本获得与昂贵⼤容量磁盘相当的容量、性能、可靠性。

随着磁盘成本和价格的不断降低, RAID 可以使⽤⼤部分的磁盘, “廉价” 已经毫⽆意义。

因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定⽤ “ 独⽴ ” 替代 “ 廉价 ” ,于时 RAID 变成了独⽴磁盘冗余阵列( Redundant Array of Independent Disks )。

但这仅仅是名称的变化,实质内容没有改变。

RAID 这种设计思想很快被业界接纳, RAID 技术作为⾼性能、⾼可靠的存储技术,已经得到了⾮常⼴泛的应⽤。

RAID 主要利⽤数据条带、镜像和数据校验技术来获取⾼性能、可靠性、容错能⼒和扩展性,根据运⽤或组合运⽤这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满⾜不同数据应⽤的需求。

RAID技术知识普及介绍

RAID技术知识普及介绍

RAID技术知识普及介绍一、RAID 简介RAID 是Redundant Array of Inexpensive Disks 的缩写,直译为“ 廉价冗余磁盘阵列” ,也简称为“ 磁盘阵列” 。

后来RAID 中的字母I 被改作了Independent ,RAID 就成了“ 独立冗余磁盘阵列” ,但这只是名称的变化,实质性的内容并没有改变。

RAID 就是以多个磁盘组成并行工作的磁盘阵列的方式来提高数据存取的速度和安全两方面的能力。

RAID 技术最初都是建立在SCSI 系统基础上,后来Promise 公司第一次提出并研发了基于IDE 硬盘的RAID 产品,从而能以较低价格提供更高的性能和安全保证。

同时,RAID 系统的优点也是相当明显的。

首先,RAID 成本低,功耗小,传输速率高。

在RAID 中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID 可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。

这也是RAID 最初想要解决的问题。

因为当时CPU 的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。

RAID 最后成功了。

此外,RAID 可以提供容错功能。

这是使用RAID 的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC (循环冗余校验)码的话。

RAID 和容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。

最后,RAID 比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。

正是这些优点使得RAID 技术迅速普及,并成为2001 年的一个热点。

RAID 技术经过不断的发展,现在已拥有了从RAID 0 到 6 七种基本的RAID 级别。

另外,还有一些基本RAID 级别的组合形式,如RAID 1+0 (RAID 0 与RAID 1 的组合),RAID 5+0 (RAID 0 与RAID 5 的组合)等。

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。

RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。

二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。

常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。

1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。

然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。

2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。

当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。

然而,RAID 1并没有提高数据的读写性能。

3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。

奇偶校验位用于恢复损坏的数据。

RAID 5的读写性能较高,并且具有冗余备份功能。

然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。

4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。

RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。

三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。

Raid的学习和基础知识

Raid的学习和基础知识

Raid的学习和基础知识1 什么是RAID,RAID的级别和特点;什么是RAID呢?全称是“A Case for Redundant Arrays of Inexpensive Disks (RAID)”,在1987年,由加州大学伯克利大学发表的论文而来,其实就是这个标题的缩写就是RAID;中译为“磁盘阵列”;RAID就是把几个物理磁盘组合在一起成为一个大的虚拟物理磁盘,主要目的和用途主要有:把若干小容量物理磁盘组成一个大容量虚拟存储设备(以前的物理磁盘的容量都比较小);提高物理存储效率(读、写),或提供冗余以提高数据存储的安全性。

根据应用方向的不同,RAID也分不不同级别,有LINEAR、RAID0、RAID1、RAID5、RAID10、RAID4、RAID6、MULTIPATH。

常用的有RAID0、RAID1、RAID5、RAID10(其实就是0+1)、LINEAR1.1 什么是硬件RAID和软RAID;RAID 还分为硬件RAID 和软件RAID,硬件RAID是通过RAID 卡来实现的,而软件RAID是通过软件来实现的;在企业级应用领域,大部份都是硬件RAID。

而软件RAID由于性价比高,大多被中小型企业所采用;硬件RAID是通过RAID卡把若干同等容量大小的硬盘,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘容量不一致,以最小容量的硬盘为基础;他的成员是整个硬盘;软RAID是软把若干同等容量大小的硬盘或分区,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘或分区容量不一致,以最小容量的硬盘或分区为基础。

软RAID的成员是整个硬盘或分区;RAID 总的来说还是应用在生产型项目领域中,一般在商用办公或个人娱乐应用并未被大规模采用。

RAID系列技术详解

RAID系列技术详解

RAID系列技术详解1、RAID 0 RAID 0是把n个物理磁盘虚拟成⼀个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成⼀个逻辑上连续,物理上也连续的虚拟磁盘。

⼀级磁盘控制器(指使⽤这个虚拟磁盘的控制器,如果某台主机使⽤配适卡链接外部盘阵,则指的就是主机上的磁盘控制器)对这个虚拟磁盘发出的指令,都被RAID控制器收到并分析处理,根据Block映射关系算法公式转换成对组成RAID0的各个物理盘的真实物理磁盘IO请求指令,收集或写⼊数据之后,再提交给主机磁盘控制器。

RAID 0也称为条带化存储,它代表了所有RAID级别中最⾼的存储性能。

⽆数据校验,下⾯分析从上到下访问RAID 0磁盘的过程。

假如某⼀时刻,主机控制器发出指令:读取初始扇区10000长度128 RAID控制器接收到这个指令之后,⽴即进⾏计算,根据对应公式算出10000号逻辑扇区所对应的物理磁盘的扇区号,然后依次算出逻辑上连续的下128个扇区所在物理磁盘的扇区号。

分别向对应这些扇区的磁盘再次发出指令。

这次是真是的读取数据了,磁盘接受到指令,各⾃将数据提交给RAID控制器,经过控制器在Cache中的组合,再提交给主机控制器。

经过以上过程,发现如果这128个扇区都落在同⼀个Segment中的话,也就是说条带深度容量⼤于128个扇区的容量(64KB),则这次IO就只能真实地从这⼀块物理盘上读取,性能和单盘相⽐会减慢,因为没有任何优化,反⽽还增加了RAID控制器额外的计算开销。

所以,在某种特定条件下要提升性能,让⼀个IO尽量扩散到多块物理盘上,就要减⼩条带深度。

在磁盘数量不变的条件下,也就是减⼩条带⼤⼩(Stripe SIZE,也就是条带长度),让这个IO的数据被控制器分割,同时放满⼀个条带的第⼀个Segment、第⼆个Segment等,以此类推,这样就能极⼤地占⽤多块物理盘。

所以RAID 0要提升性能,条带做的越⼩越好。

但是有⼀个⽭盾出现了,就是条带太⼩,导致并发IO⼏率降低,因为如果条带太⼩,则每次IO⼀定会占⽤⼤部分物理盘,队列中的IO就只能等待这次IO结束后才能使⽤物理盘,⽽条带太⼤,⼜不能充分提⾼传输速度。

RAID的基本知识

RAID的基本知识

RAID的基本知识
本文介绍RAID相关的一些基本知识。

一、RAID基本知识
磁盘阵列就是我们平常说的RAID,全称是“廉价的冗余磁盘阵列”。

主要RAID类型有RAID0,RAID1,RAID1+0,RAID5,RAID6,下面分别介绍。

RAID0:磁盘合并
将多个硬盘合并成一个大硬盘,提高硬盘的写功能。

RAID1:磁盘镜像
将一块(组)硬盘作为另一块(组)硬盘的镜像,同步写操作,牺牲50%的写功能,提高数据的安全性。

RAID1+0:镜像+合并
RAID5:奇偶校验
拿一块硬盘做奇偶校验,牺牲1块硬盘的写功能,可以坏1块硬盘,提高了数据的安全性。

RAID6:增强奇偶校验
牺牲2块硬盘的写功能,可以坏2块硬盘,提高了数据的安全性。

二、RAID故障解决
1、RAID卡坏了
RAID卡的信息应该是同时保存在RAID卡和硬盘中,所以RAID卡坏了后,换一个同型号的RAID卡,所有的阵列配置信息都在。

用同一型号的RAID卡来恢复RAID,我们在镇江机房实践成功过。

2、硬盘坏了
好的RAID卡,它的驱动里面有监控软件,可以在系统下监控并发现哪块盘坏了。

以前我们无法监控时,从盘镜像盘坏了,我们无法知道,直到主盘也坏了,我们才发现,这时候想要恢复数据,但两块盘都坏了,于是,数据损失了。

三、RAID FAQ
1、从RAID1组里面拿出一块硬盘,在别的机器上是否能读出?
答:1)能看到盘,但读不出数据;2)可以直接读数据;3)连盘都看不到。

raid介绍简单易懂

raid介绍简单易懂

raid介绍简单易懂RAID(冗余阵列独立磁盘,Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起的技术,以提高数据存储性能、可靠性和/或容量。

RAID 技术通过在多个硬盘之间分配数据和/或进行冗余备份来实现这些目标。

以下是几种常见的 RAID 级别,每个级别都有不同的工作原理和适用场景:1. RAID 0 - 带条带化(Striping):•工作原理:数据被分割成小块,然后分别写入多个硬盘。

提高读写性能,但不提供冗余,一块硬盘故障会导致数据丢失。

•适用场景:对性能要求高,对数据冗余要求不高的场景,如临时数据存储。

2. RAID 1 - 镜像(Mirroring):•工作原理:数据同时写入两块硬盘,实现数据冗余。

如果一块硬盘故障,另一块硬盘仍然可用。

•适用场景:对数据冗余和可靠性要求高的场景,如关键数据存储。

3. RAID 5 - 带分布式奇偶校验(Striping with Distributed Parity):•工作原理:将数据分割成块并分别写入多个硬盘,同时每个块的奇偶校验信息分布在其他硬盘上。

提高性能和数据冗余。

•适用场景:对性能和冗余兼顾的场景,如文件服务器。

4. RAID 6 - 带双分布式奇偶校验(Striping with Dual Distributed Parity):•工作原理:类似 RAID 5,但使用两个奇偶校验块。

可以容忍两块硬盘同时故障。

•适用场景:对冗余容错性要求极高的场景,如大容量磁盘阵列。

5. RAID 10 - RAID 1+0:•工作原理:将多块硬盘分为两组,每组实施 RAID 1 镜像,然后通过 RAID 0 带条带化。

兼具高性能和高冗余。

•适用场景:对性能和冗余兼顾的场景,如数据库服务器。

RAID 技术可以根据需求进行组合或选择,以满足不同的存储需求。

选择合适的 RAID 级别需要综合考虑性能、可靠性、成本和数据冗余等因素。

RAID知识

RAID知识

RAID知识/组建全面解析说起RAID,相信大多数DIYer都听过这个名词,它会经常出现在各个主板包装、说明书上;但是要说对RAID技术非常熟悉的DIYer,却屈指可数。

早在多年前,RAID一直以来都是面向服务器用户,以提高服务器数据的安全性;不过现在经过了几年的发展,普通用户也有条件关注RAID,并且成了我们今后装机必须考虑的一件事情。

本文中,笔者将会深入浅出的为你讲述以下内容:1、什么是RAID?原理、种类等知识?2、普通用户是否适合组建RAID?3、实战RAID系统组建!●什么是RAID?RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。

冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。

RAID最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。

早期的RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。

1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE 硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。

从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。

在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性。

目前,IDE/SATA接口标准的硬盘都可以支持RAID技术,不过一般主板芯片组支持的主板只能支持SATA硬盘组建RAID。

早期一般都是SCSI卡提供SCSI RAID的支持那么为何叫做冗余磁盘阵列呢?冗余的汉语意思即多余,重复。

而磁盘阵列说明不仅仅是一个磁盘,而是一组磁盘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAID 2级 纠错海明码磁盘阵列
磁盘驱动器组中的第一个、第二个、第四个……第2n个磁盘驱动器是专门的校验盘,用于校验和纠错,例如七个磁盘驱动器的RAID 2,第一、二、四个磁盘驱动器是纠错盘,其余的用于存放数据。使用的磁盘驱动器越多,校验盘在其中占的百分比越少。RAID 2对大数据量的输入输出有很高的性能,但少量数据的输入输出时性能不好。RAID2很少实际使用。
1.2 RAID的优点
1.2.1 成本低,功耗小,传输速率高。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。
RAID 1级(Mirror) 镜象磁盘阵列
每一个磁盘驱动器都有一个镜像磁盘驱动器,镜像磁盘驱动器随时保持与原磁盘驱动器的内容一致。RAID1具有最高的安全性,但只有一半的磁盘空间被用来存储数据。主要用在对数据安全性要求很高,而且要求能够快速恢复被损坏的数据的场合。
RAID 1+0 如果同时对RAID 0中写往两个硬盘的数据再做两个镜像如何呢?这就是RAID 1+0的方案。RAID 1+0至少使用4个硬盘,这样,RAID 1+0在理论上同时保证了RAID 0的性能和RAID 1的安全性,代价是比RAID 0 或1再多一倍的硬盘数量。但应该注意,这仅仅是理论上的,因为实际中IDE RAID 这样的软件RAID系统会消耗CPU运算时间,RAID 1+0比起RAID 0或1来讲,同样多消耗一倍的CPU时间,所以性能最后不一定能提升到RAID 0那样的比例,甚至有可能总体性能不升反降。
另一个特点就是巨大的磁盘吞吐量。这主要归功于RAID。举一个例子来说,一台使用了SCSI RAID的奔腾166与一台IDE硬盘的PIIICopermine 800都用做文件服务器,奔腾166会比PⅢ的事务处理能力高上几十倍甚至上百倍,因为PⅢ处理器的运算能力根本用不上,反倒是奔腾166的RAID起了作用。
同样采用奇偶校验来检查错误,但没有独立的校验盘,校验信息分布在各个磁盘驱动器上。RAID5对大小数据量的读写都有很好的性能,被广泛地应用。
从RAID1到RAID5的几种方案中,不论何时有磁盘损坏,都可以随时拔出损坏的磁盘再插入好的磁盘(需要硬件上的热插拔支持),数据不会受损,失效盘的内容可以很快地重建,重建的工作也由RAID硬件或RAID软件来完成。但RAID0不提供错误校验功能,所以有人说它不能算作是RAID,其实这也是RAID0为什么被称为0级RAID的原因--0本身就代表"没有"。
1.4 RAID 提供的容错功能是自动实现的(由RAID硬件或是RAID软件来做)。
它对应用程序是透明的,即无需应用程序为容错做半点工作。要得到最高的安全性和最快的恢复速度,可以使用RAID1(镜像);要在容量、容错和性能上取折衷可以使用RAID 5。在大多数数据库服务器中,操作系统和数据库管理系统所在的磁盘驱动器是RAID 1,数据库的数据文件则是存放于RAID5的磁盘驱动器上。
1.2.2 可以提供容错功能。这是使用RAID的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC (循环冗余校验) 码的话。RAID 和容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。
1.2.3 RAID的另一特征是具备数据校验(Parity)功能,校验可被描述为用于RAID级别2,3,4,5的额外的信息,当磁盘失效的情况发生时,校验功能结合完好磁盘中的数据,可以重建失效磁盘上的数据。对于RAID系统来说,在任何有害条件下绝对保持数据的完整性(Data Integrity)是最基本的要求。数据完整性指的是阵列面对磁盘失效时保持数据不丢失的能力,由于数据的破坏通常会带来灾难性的后果,所以选择RAID阵列的基础条件是它能提供什么级别的数据完整性。
1.5 有时我们看某些名牌服务器的配置单,发现其CPU并不是很快,内存也算不上是很大,显卡更不是最好,但价格绝对不菲。是不是服务器系统都是暴利产品呢?当然不是。服务器的配置与一般的家用PC的着重点不在一处。除去更高的稳定性外,冗余与容错是一大特点,如双电源、带电池备份的磁盘高速缓冲器、热插拔硬盘、热插拔PCI插槽等。
Rபைடு நூலகம்ID
1.1 RAID是由美国加州大学伯克利分校的D.A.Patterson教授在1988年提出的。RAID 是Redundent Array of Inexpensive Disks的缩写,直译为"廉价冗余磁盘阵列",也简称为"磁盘阵列"。后来RAID中的字母I被改作了Independent,RAID就成了"独立冗余磁盘阵列",但这只是名称的变化,实质性的内容并没有改变。可以把 RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。一般情况下,组成的逻辑磁盘驱动器的容量要小于各个磁盘驱动器容量的总和。RAID的具体实现可以靠硬件也可以靠软件,Windows NT操作系统就提供软件RAID功能。RAID一般是在SCSI磁盘驱动器上实现的,因为IDE磁盘驱动器的性能发挥受限于IDE接口(IDE只能接两个磁盘驱动器,传输速率最高1.5MBps)。IDE通道最多只能接4个磁盘驱动器,在同一时刻只能有一个磁盘驱动器能够传输数据,而且IDE通道上一般还接有光驱,光驱引起的延迟会严重影响系统速度。SCSI适配器保证每个SCSI通道随时都是畅通的,在同一时刻每个SCSI磁盘驱动器都能自由地向主机传送数据,不会出现像IDE磁盘驱动器争用设备通道的现象。
1.2.4 RAID比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。
RAID的分级
级别解释
RAID 0级(Stripe) 无冗余无校验的磁盘阵列 附:带区卷 有两块以上磁盘用相同容量组成。容量等于:单个磁盘容量x磁盘个数
数据同时分布在各个磁盘驱动器上,没有容错能力,读写速度在RAID中最快,但因为任何一个磁盘驱动器损坏都会使整个RAID系统失效,所以安全系数反倒比单个的磁盘驱动器还要低。一般用在对数据安全要求不高,但对速度要求很高的场合。
RAID 3和 RAID 4 奇校验或偶校验的磁盘阵列
不论有多少数据盘,均使用一个校验盘,采用奇偶校验的方法检查错误。任何一个单独的磁盘驱动器损坏都可以恢复。RAID3和RAID4的数据读取速度很快,但写数据时要计算校验位的值以写入校验盘,速度有所下降。RAID3和RAID4的使用也不多。
RAID 5级 无独立校验盘的奇偶校验磁盘阵列
1.6 RAID现在主要应用在服务器,但就像任何高端技术一样,RAID也在向PC机上转移。也许所有的 PC 机都用上了SCSI磁盘驱动器的RAID的那一天,才是PC机真正的"出头之日"。
1.3 RAID 的应用
当前的PC机,整个系统的速度瓶颈主要是硬盘。虽然不断有Ultra DMA33、 DMA66、DMA100等快速的标准推出,但收效不大。在PC中,磁盘速度慢一些并不是太严重的事情。但在服务器中,这是不允许的,服务器必须能响应来自四面八方的服务请求,这些请求大多与磁盘上的数据有关,所以服务器的磁盘子系统必须要有很高的输入输出速率。为了数据的安全,还要有一定的容错功能。RAID 提供了这些功能,所以RAID被广泛地应用在服务器体系中。
相关文档
最新文档