RAID系统基础知识
RAID知识简介(附模拟器)
RAID知识简介RAID功能概述RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。
RAID就是一种由多块硬盘构成的冗余阵列。
虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。
利用RAID技术于存储系统的好处主要有以下三种:1. 通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能2. 通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度3. 通过镜像或校验操作提供容错能力最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。
目前来看RAID在节省成本方面的作用并不明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。
除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。
根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。
常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。
目前经常使用的是RAID5和RAID(0+1)。
RAID等级概述RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。
根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。
常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。
目前经常使用的是RAID5和RAID(0+1)。
NRAIDNRAID即Non-RAID,所有磁盘的容量组合成一个逻辑盘,没有数据块分条(no block stripping)。
raid知识点
raid知识点
RAID是Redundant Array of Inexpensive 的缩成,称为廉价冗余磁盘阵列。
原理是利用数组方式来做磁盘组,配合数据分散排列的设计,提升数据的安全性。
其中磁盘阵列是有很多便宜、容量较小、稳定性较高、速度较慢的磁盘组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能
目前RAID技术大致分为两种:基于硬件的RAID技术的硬RAID和基于软件RAID技术的软RAID.
软件RAID:是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成raid阵列。
硬件RAID:是在服务器的bos界面进行RAID级别的配置,然后内核通过RAID适配器把RAID识别为sd接口的硬盘。
什么是RAID如何配置电脑的RAID系统
什么是RAID如何配置电脑的RAID系统RAID(独立磁盘冗余阵列)是一种通过将多个硬盘并联使用来提高数据存储性能和冗余容错能力的技术。
不同的RAID级别有不同的配置方式和适用场景。
本文将介绍什么是RAID以及如何配置电脑的RAID系统。
一、RAID的定义和作用RAID是一种通过将多个独立的硬盘组成一个逻辑卷来提高数据存储性能和数据安全性的技术。
它通过分布式存储、数据备份和容错技术,可以将数据同时存储在多个硬盘上,不仅提高了读写速度,还可以防止单个硬盘故障导致数据丢失。
RAID系统被广泛应用于服务器、工作站以及大量数据存储需求的场景,比如数据库服务器、视频编辑工作站以及企业级数据中心等。
通过合适的RAID级别配置,可以根据不同的需求平衡数据存储和数据冗余的需求。
二、RAID级别的分类和特点RAID系统根据冗余方式和数据分发方式的不同,可以分为多个级别,常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6和RAID 10等。
1. RAID 0:RAID 0是一种数据条带化(Striping)方式的RAID级别,它将数据均匀地分割并存储到多个硬盘上,提高了数据的读写速度。
然而,RAID 0没有冗余机制,一旦一个硬盘损坏,所有数据都会丢失。
2. RAID 1:RAID 1是一种镜像(Mirroring)方式的RAID级别,它将数据同时写入两个硬盘,并实时保持数据的一致性。
RAID 1提供了数据冗余和容错能力,但是需要两倍的硬盘容量。
3. RAID 5:RAID 5是一种条带化加分布式奇偶校验(Striping with Distributed Parity)方式的RAID级别。
它将数据条带化地存储到多个硬盘上,并通过计算奇偶校验信息实现数据冗余和恢复。
RAID 5需要至少三个硬盘,并提供了较高的数据读取性能和数据冗余能力。
4. RAID 6:RAID 6是在RAID 5基础上增加了双重奇偶校验的RAID级别,提供了更高的数据冗余性和故障容忍能力。
RAID简介与基本原理.pptx
RAID 简介
RAID是Redundant Arrays of Independent Disks的缩写,意思是“独立冗 余磁盘阵列”,也可以被简称为“磁盘阵列”;
为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费 用;
同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受 损失,并且能适当的提升数据传输速度;
三、故障恢复
当将故障硬盘更换,RAID磁盘阵列就会通过其他正常磁盘中的数据计算出故 障硬盘上原有的数据,并把这些数据写入更换的正常的硬盘中。
四、知识小结
RAID磁盘 阵列
多个磁盘 组成
提供数据 冗余
条带化技 术
提高读写 速度
故障恢复
谢谢
通过其他磁盘进行恢复; 提高了数据安全性与可靠性;
二、提高磁盘阵列容量
未使用RAID
使用RAID
二、提高磁读写速度
使用RAID技术可以使得读取和写入文件的操作在多个磁盘上同时操作,从而 提高了数据的读写速度;
未使用RAID
使用RAID
三、条带化存储
针对大量数据在被写入或被读取的时候,RAID技术会将其分成多个小的数据 块,进行并行处理。这些被划分成的小数据块就被成为条带;
二、磁盘阵列的特点
提高磁盘 提升读写
存储空间
速度
提高数据 可靠性
RAID
提高磁盘 空间利用
率
二、提高数据可靠性
将数据存储在单个磁盘当中; 当磁盘出现故障,则数据完全
丢失; 没有任何数据可靠性可言;
硬盘一旦损坏,数据将全部丢失
二、提高数据可靠性
将数据存储在磁盘阵列中; 当部分磁盘出现故障,则可以
raid(独立冗余磁盘阵列)基础知识
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。
RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。
RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。
常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。
RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。
然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。
RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。
RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。
然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。
RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。
当一个磁盘发生故障时,可以通过校验信息恢复数据。
然而,RAID 5的写入性能相对较低。
RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。
RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。
然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。
存储基础知识(RAID及磁盘技术)..
• RAID可以多个硬盘按照指定容量创建一个或多个逻辑卷,便通过
LUN(Logic Unit Number)来标识。一个逻辑卷对于主机来说 就是一块硬盘(物理卷)
逻辑卷
LUN1
逻辑卷
LUN2
LUN3
物理卷
物理卷
RAID10
RAID5
多个物理卷上创建1个逻辑卷
多个物理卷上创建2个逻辑卷
特点:较高的数据冗余性能;超强的数据保护能力,可以应付多颗盘同 时出错; 优点:允许在同一组内并发进行多个写操作 缺点:计算校验地址占用较多的处理时间;较低的写入速率。
RAID6 P+Q
•
RAID6 P+Q会根据公式计算出P和Q的值,当有 两个数据同时丢失时,仍可以计算出原数据
磁盘1 条带1 条带2 数据1a 数据2d
I/O 2
I/O 2 (Disk 2)
• CPU运算速度飞速 提高,数据读写速 度不应该成为计算 机系统处理的瓶颈
节省时间
Total request execution time
速度 @ N x 单块硬盘的速度
RAID基本概念 ——条带
大数据块写入RAID时会被分成多个数据块并行写入多块硬盘, 这些大小一致的数据块就称为条带。同时数据读取时会并行从 多块硬盘读取条带数据,最后完整输出。 条带无疑会大幅度提升整体读写效率。
磁盘2 数据1b 数据2e
磁盘3 数据1c P2
磁盘4 P1 Q2
磁盘5 Q1 数据2f
条带3
条带4 条带5
数据3g
P4 Q5
P3
Q4 数据5m
Q3
数据4j 数据5n
数据3h
RAID基础知识总结
RAID基础知识总结a1.数据条带 (Data Stripping)原理:将数据分⽚保存到多个磁盘,多个数据分⽚共同组成⼀个完整的数据副本。
数据安全性:不提供数据安全保护。
任何⼀个数据条带损坏都会导致整个数据不可⽤,增加了数据发⽣丢失的概率。
故障修复:⼀旦数据损坏将⽆法恢复。
读写I/O:具有更⾼的I/O并发粒度,当访问数据时,可以同时对位于不同磁盘上的数据进⾏读写操作。
成本:要根据数据特征和需求选择合适的分块⼤⼩,在数据存取随机性(块寻址时间)和并发处理能⼒之间进⾏平衡,以争取尽可能⾼的整体性能。
a2.镜像 (Mirroring)原理:将数据复制到多个磁盘。
数据安全性:提供完全的数据冗余能⼒,当⼀个数据副本不可⽤时,外部系统仍可正常访问另⼀副本。
故障修复:不需要额外的计算和校验,故障修复⾮常快。
读写I/O:可以从多个副本并发读取数据,提供更⾼的读I/O性能;但不能并⾏写数据,写多个副本会导致⼀定的I/O性能降低。
成本:备份时间⼏乎为零;但⾄少需要双倍的存储空间。
a3.数据校验 (Data Parity)原理:利⽤冗余数据进⾏数据错误检测和修复,要在写⼊数据同时进⾏校验计算,并将得到的校验数据存储在RAID成员磁盘中。
数据安全性:可以检测数据错误,当其中⼀部分数据出错时,可以对剩余数据和校验数据进⾏反校验计算,重建丢失的数据。
故障修复:⽐镜像技术复杂得多且慢得多。
读写I/O:数据校验需要从多处读取数据并进⾏计算和对⽐,会影响系统性能。
成本:节省⼤量冗余开销;但由于每次数据读写都要进⾏⼤量的校验运算,对计算机的运算速度要求很⾼,必须使⽤硬件RAID控制器。
a4.缓存 (Cache)原理:作为写,⼀般存储阵列只要求写到cache就算完成了写操作,所以,阵列的写是⾮常快速的,在写cache的数据积累到⼀定程度,阵列才把数据刷到磁盘,可以实现批量的写⼊,⾄于cache数据的保护,⼀般都依赖于镜像与电池(或者是UPS)。
RAID技术入门详解
RAID技术入门详解随着计算机应用的日益普及,人们对计算速度和性能的要求也逐渐提高。
在一个完整的计算机系统中,CPU和内存的作用固然重要,但是数据存储设备性能的好坏和速度的快慢也直接影响到整个系统的表现。
本文所要讲解的RAID技术起初主要应用于服务器高端市场,但是随着个人用户市场的成熟和发展,正不断向低端市场靠拢,从而为用户提供了一种既可以提升硬盘速度,又能够确保数据安全性的良好的解决方案。
本文将对RAID技术进行较为详细的介绍,希望能够对广大读者有所帮助。
入门基础RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为磁盘阵列。
其实,从RAID的英文原意中,我们已经能够多少知道RAID就是一种由多块廉价磁盘构成的冗余阵列。
虽然RAID包含多块磁盘,但是在操作系统下是作为一个独立的大型存储设备出现。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。
人们在开发RAID时主要是基于以下设想,即几块小容量硬盘的价格总和要低于一块大容量的硬盘。
虽然目前这一设想还没有成为现实,RAID在节省成本方面的作用还不是很明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。
除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID 0我们在前文中已经提到RAID分为几种不同的等级,其中,RAID 0是最简单的一种形式。
RAID 0可以把多块硬盘连接在一起形成一个容量更大的存储设备。
最简单的RAID 0技术只是提供更多的磁盘空间,不过我们也可以通过设置,使用RAID 0来提高磁盘的性能和吞吐量。
RAID 0没有冗余或错误修复能力,但是实现成本是最低的。
RAID 0最简单的实现方式就是把几块硬盘串联在一起创建一个大的卷集。
磁盘之间的连接既可以使用硬件的形式通过智能磁盘控制器实现,也可以使用操作系统中的磁盘驱动程序以软件的方式实现。
raid(独立冗余磁盘阵列)基础知识
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。
二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。
常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。
1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。
2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。
当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。
然而,RAID 1并没有提高数据的读写性能。
3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。
奇偶校验位用于恢复损坏的数据。
RAID 5的读写性能较高,并且具有冗余备份功能。
然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。
4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。
RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。
三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。
Raid的学习和基础知识
Raid的学习和基础知识1 什么是RAID,RAID的级别和特点;什么是RAID呢?全称是“A Case for Redundant Arrays of Inexpensive Disks (RAID)”,在1987年,由加州大学伯克利大学发表的论文而来,其实就是这个标题的缩写就是RAID;中译为“磁盘阵列”;RAID就是把几个物理磁盘组合在一起成为一个大的虚拟物理磁盘,主要目的和用途主要有:把若干小容量物理磁盘组成一个大容量虚拟存储设备(以前的物理磁盘的容量都比较小);提高物理存储效率(读、写),或提供冗余以提高数据存储的安全性。
根据应用方向的不同,RAID也分不不同级别,有LINEAR、RAID0、RAID1、RAID5、RAID10、RAID4、RAID6、MULTIPATH。
常用的有RAID0、RAID1、RAID5、RAID10(其实就是0+1)、LINEAR1.1 什么是硬件RAID和软RAID;RAID 还分为硬件RAID 和软件RAID,硬件RAID是通过RAID 卡来实现的,而软件RAID是通过软件来实现的;在企业级应用领域,大部份都是硬件RAID。
而软件RAID由于性价比高,大多被中小型企业所采用;硬件RAID是通过RAID卡把若干同等容量大小的硬盘,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘容量不一致,以最小容量的硬盘为基础;他的成员是整个硬盘;软RAID是软把若干同等容量大小的硬盘或分区,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(或RAID0,或RAID1,或RAID5,或RAID10……),如果每个硬盘或分区容量不一致,以最小容量的硬盘或分区为基础。
软RAID的成员是整个硬盘或分区;RAID 总的来说还是应用在生产型项目领域中,一般在商用办公或个人娱乐应用并未被大规模采用。
RAID基础知识解析
RAID 制作
intel 目前主板使用的intel RAID 控制器 分别是 intel ICH5R、ICH6R、ICH7R南 桥芯片中集成的SATA RAID 控制器。主板型号对应有以下几种: 它们的BIOS设定和RAID BIOS界面也大致相同,只是所支持的RAID 模式稍 有不同,所以也一起来介绍了。 BIOS设定; 将On-Chip SATA 模式设定为 Enhanced Mode; 将On-Chip SATA Mode 设定为 RAID; 保存BIOS充启后,按Ctrl+I 进入RAID BIOS 创建RAID ; 确认创建; RAID 0模式下磁盘信息; Matrix RAID 模式下的磁盘信息(只有ICH6R、ICH7R能够组建Matrix RAID); ICH5R(82801ER)与ICH6R(82801FR)软盘驱动加载; ICH7R 软盘驱动加载; 组建成功Matrix RAID后,在安装程序中识别出的磁盘容量; 操作系统成功安装完成即制作完成。
10
RAID的分类
RAID 0+1
1、RAID10的情况 这种情况中,我们假设当DISK0损坏时,在剩下的3块盘中,只 有当DISK1一个盘发生故障时,才会导致整个RAID失效,我们 可简单计算故障率为1/3。
2、RAID01的情况 这种情况下,我们仍然假设DISK0损坏,这时左边的条带将无 法读取。在剩下的3块盘中,只要DISK2,DISK3两个盘中任 何一个损坏,都会导致整个RAID失效,我们可简单计算故障 率为2/3。
8
RAID的分类
A1
RAID 1
A2 A3
A4
Raid1
A1
A1
A2
A2
A3
A3
服务器RAID知识介绍
服务器RAID知识介绍预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制服务器RAID知识介绍第一章RAID知识介绍RAID的全称是廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),于1987年由美国Berkeley 大学的两名工程师提出的RAID出现的,最初目的是将多个容量较小的廉价硬盘合并成为一个大容量的“逻辑盘”或磁盘阵列,实现提高硬盘容量和性能的功能。
随着RAID技术的逐渐普及应用,RAID技术的各方面得到了很大的发展。
现在,RAID从最初的RAID0-RAID5,又增加了RAID0+1和RAID0+5等不同的阵列组合方式,可以根据不同的需要实现不同的功能,扩大硬盘容量,提供数据冗余,或者是大幅度提高硬盘系统的I/0吞吐能力。
RAID技术主要有三个特点:第一、通过对硬盘上的数据进行条带化,实现对数据成块存取,减少硬盘的机械寻道时间,提高数据存取速度。
第二、通过对一阵列中的几块硬盘同时读取,减少硬盘的机械寻道时间,提高数据存取速度。
第三、通过镜像或者存储奇偶校验信息的方式,实现对数据的冗余保护。
经常应用的RAID阵列主要分为RAID 0,RAID 1,RAID 5和RAID 0+1。
1.1 RAID0:条带化RAID 0 也叫条带化,它将数据象条带一样写到多个磁盘上,这些条带也叫做“块”。
条带化实现了可以同时访问多个磁盘上的数据,平衡I/O负载,加大了数据存储空间和加快了数据访问速度。
RAID 0是唯一的一个没有冗余功能的RAID技术,但RAID0 的实现成本低。
如果阵列中有一个盘出现故障,则阵列中的所有数据都会丢失。
如要恢复RAID 0,只有换掉坏的硬盘,从备份设备中恢复数据到所有的硬盘中。
硬件和软件都可以实现RAID0。
实现RAID0最少用2个硬盘。
对系统而言,数据是采用分布方式存储在所有的硬盘上,当某一个硬盘出现故障时数据会全部丢失。
Raid的学习和基础知识.docx
1 •什么是Raid;RAID (Redundant Array of Inexpensive Disks)称为廉价磁盘兀余阵列。
RAID的基木想法是把多个便宜的小磁盘组合到一起,成为一个磁盘组,使性能达到或超过一个容最巨大、价格昂贵的磁盘。
目前RAID技术大致分为两种:基于硬件的RAID技术和基于软件的RAID技术。
其屮在Linux下通过自带的软件就能实现RAID功能,这样便可省去购买昂贵的破件RAID控制器和附件就能极大地增强磁盘的I0性能和可靠性。
山于是用软件去实现的RAID功能,所以它配館灵活、管理方便。
同时使用软件RAID,还可以实现将几个物理磁盘合并成一个更大的虚拟设备,从而达到性能改进和数据冗余的冃的。
当然基于硬件的RAID解决方案比基于软件RAID技术在使用性能和服务性能上稍腔一筹,具体表现在检测和修复多位错误的能力、错误磁盘自动检测和阵列重建等方面。
2.RAID级别介绍;一般常用的RAID阶层,分别是RAIDO、RAID1、RAID 3、RAID 4以及RAID 5,再加上二合一型RAID 0+1 (或称RAID 10)。
我们先把这些RAID级别的优、缺点做个比较:RAID级别相对优点相对缺点RAID 0存取速度最快没有容错RAID 1完全容错成本高RAID 3写入性能最好没有多任务功能RAID 4具备多任务及容错功能Parity磁盘驱动器造成性能瓶颈RAID 5具备多任务及容错功能写入时有overheadRAID0+1/RAID 10速度快、完全容错成本高2J RAID0的特点与应用;也称为条带模式(striped),即把连续的数据分散到多个磁盘上存取,如图所示。
当系统有数据请求就可以被多个磁盘并行的执行,毎个磁盘执行属于它0己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
因为读取和写入是在设备上并行完成的,读取和写入性能将会増加,这通常是运行RAID0的主要原因。
存储服务器基础知识
存储服务器基础知识概述:存储服务器是一种用于存储和管理数据的设备,它提供了高容量、高可靠性和高性能的数据存储能力。
本文将介绍存储服务器的基础知识,包括其工作原理、存储技术、常见的存储协议等。
一、存储服务器的工作原理存储服务器通过硬盘阵列、存储控制器和网络连接等组件实现数据的存取和管理。
其工作原理如下:1. 硬盘阵列(RAID):存储服务器通常采用RAID技术,将多个硬盘组合成一个逻辑磁盘组,在数据存储和读取时提供冗余和性能优化。
2. 存储控制器:存储控制器是存储服务器的核心组件,负责管理硬盘阵列、处理数据读写请求,并提供高可靠性和高性能的存储服务。
3. 网络连接:存储服务器通过网络连接与客户端或其他存储设备通信,支持各种存储协议。
二、存储技术存储服务器采用多种存储技术,以满足不同的存储需求。
以下是几种常见的存储技术:1. 磁盘存储:存储服务器使用硬盘作为主要的存储介质,提供高容量、高性能、可靠性。
硬盘可以分为机械硬盘(HDD)和固态硬盘(SSD)两种类型,HDD适用于大容量存储,而SSD适用于高性能存储。
2. 网络存储:存储服务器通过网络连接提供存储服务,包括网络附加存储(NAS)和存储区域网络(SAN)两种模式。
NAS通过文件共享协议(如NFS和SMB)提供文件级别的存储服务,而SAN基于块级别的存储协议(如FC和iSCSI)提供更高性能的存储服务。
3. 对象存储:对象存储是一种新型的存储技术,将数据作为对象进行管理,适应了大规模、分布式存储的需求。
对象存储通过访问对象的唯一标识符进行数据的读写操作,具有高扩展性、可靠性和低成本的特点。
三、存储协议存储服务器支持多种存储协议,用于与客户端或其他存储设备进行通信。
以下是几种常见的存储协议:1. NFS(网络文件系统):NFS是一种文件级别的存储协议,用于在网络上共享文件。
它提供了简单的访问控制和文件锁定机制,适用于共享文件的存储场景。
2. SMB(服务器消息块):SMB也是一种文件级别的存储协议,常用于Windows操作系统。
RAID的基本知识
RAID的基本知识
本文介绍RAID相关的一些基本知识。
一、RAID基本知识
磁盘阵列就是我们平常说的RAID,全称是“廉价的冗余磁盘阵列”。
主要RAID类型有RAID0,RAID1,RAID1+0,RAID5,RAID6,下面分别介绍。
RAID0:磁盘合并
将多个硬盘合并成一个大硬盘,提高硬盘的写功能。
RAID1:磁盘镜像
将一块(组)硬盘作为另一块(组)硬盘的镜像,同步写操作,牺牲50%的写功能,提高数据的安全性。
RAID1+0:镜像+合并
RAID5:奇偶校验
拿一块硬盘做奇偶校验,牺牲1块硬盘的写功能,可以坏1块硬盘,提高了数据的安全性。
RAID6:增强奇偶校验
牺牲2块硬盘的写功能,可以坏2块硬盘,提高了数据的安全性。
二、RAID故障解决
1、RAID卡坏了
RAID卡的信息应该是同时保存在RAID卡和硬盘中,所以RAID卡坏了后,换一个同型号的RAID卡,所有的阵列配置信息都在。
用同一型号的RAID卡来恢复RAID,我们在镇江机房实践成功过。
2、硬盘坏了
好的RAID卡,它的驱动里面有监控软件,可以在系统下监控并发现哪块盘坏了。
以前我们无法监控时,从盘镜像盘坏了,我们无法知道,直到主盘也坏了,我们才发现,这时候想要恢复数据,但两块盘都坏了,于是,数据损失了。
三、RAID FAQ
1、从RAID1组里面拿出一块硬盘,在别的机器上是否能读出?
答:1)能看到盘,但读不出数据;2)可以直接读数据;3)连盘都看不到。
RAID技术基础知识课件
操作数1 假 假 真 真
操作数2 假 真 假 真
XOR结果 假 真 真 假
学习交流PPT
12
热备和热换
• 热备是指在不干扰当前系统的正常使用的 情况下,用系统中另外一个正常的备用磁 盘顶替失效磁盘
• 热换是指在不影响系统正常运转的情况下, 用正常的磁盘物理替换RAID阵列中的失效 磁盘
学习交流PPT
磁盘3 数据1c
P2 Q3 数据4j 数据5n
磁盘4 P1 Q2
数据3h 数据4k 数据5o
磁盘5 Q1
数据2f 数据3i 数据4l
P5
学习交流PPT
28
RAID6 DP
• RAID6 DP中的DP指Double Parity,它在RAID4 的基础上不仅有行的校验,还增加了一个用来 存放斜向校验信息的磁盘
D0
D1
D2
D3
D4
D5 D6
D0
D1
D2
D3
条带0
D7
D4
D5
D6
D7
条带1
D8
D8
D9
D10
D11
条带2
D9
D10
D11
物理磁盘0 物理磁盘1 物理磁盘2 物理磁盘3
…..
学习交流PPT
16
RAID0的特性
所需成员磁盘数 优点 缺点
适用领域
2个或更多,最低为2个 极高的磁盘读写效率
不存在校验,不会占用太多CPU资源 设计、使用和配置比较简单
学习交流PPT
8
镜像冗余的概念
• 镜像冗余使用了磁盘镜像技术 • 磁盘镜像是一个简单的设备虚拟化技术,
每个I/O操作都会在两个磁盘上执行,两 个磁盘看起来就像一个磁盘一样 • 镜像冗余可以提高磁盘的读性能
RAID基本知识介绍..
内页一级标题
RAID类型选择
• RAID部署的选择维度:对于RAID类型的选择,需要从速度、容量、 安全3个维度来综合考虑,速度快、磁盘空间利用率高、安全可靠永 远是用户追求的目标,但在实际部署中,受用户实际需求及应用场 景的限制,速度、容量、安全 3个维度各自的优先级还是有所侧重的 二级标题 。
• 软件阵列:指通过网络操作系统自身提供的磁盘管理功能将连接的 普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。软件阵列可以 提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降低 幅度还比较大,达30%左右。
RAID的优点
• 1. 传输速率高。RAID通过在多个磁盘上同时存储和读取数据来大幅 提高存储系统的数据吞吐量。
RAID定义
• 单击此处编辑母版文本样式 • 可以把RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用 某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。
RIAD实现方式
内页一级标题
• 硬件阵列:使用专门的磁盘阵列卡来实现的。硬件阵列能够提供在 二级标题 线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速 缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理 性的解决方案。阵列卡专用的处理单元来进行操作。 • 单击此处编辑母版文本样式
内页一级标题
• RAID 5 和RAID 3极为相似,都是数据分条,奇偶校验产生冗余。但 是,它不采用一个固定的硬盘来存储奇偶校验值, 所有数据和校验值都分布在所有硬盘上。RAID5 二级标题 最大的好处是在一块盘掉线的情况下,RAID照工 作,相对于RAID0必须每一块盘都正常才可以正常 • 单击此处编辑母版文本样式 工作的状况容错性能好多了。因此RAID5是RAID级 别中最常见的一个类型。 • RAID 10的容错功能和RAID 1相同,分条使用RAID 1 段得到较高的 I/O率。RAID 10巧妙的利用了RAID 0的速度以及RAID 1 的保护两种特性,不过它的缺点是需要的硬盘数较多, 因为至少必须拥有四个以上的偶数硬盘才能使用。
磁盘阵列系统
1
目录
一、磁盘阵列基础知识
二、RAID基础知识 三、DAS、SAN、NAS等存储方式介绍
2
磁盘阵列基础
第一部分 磁盘阵列基础知识
3
磁盘阵列的定义
定义:
磁盘阵列将多个磁盘组成一个阵列,并视为单一的虚拟磁盘, 此虚拟磁盘被操作系统当做是一个硬盘。
4
磁盘阵列的优点
• • • • •
12
RAID 0+1
RAID 0+1:RAID0与RAID1的结合体。这种配置方式综合了带区集和镜像 的优势,所以被称为RAID 0+1。 • 把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都 有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影 响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立 带区集至少4个硬盘。
• Enclosure Spare 机框热备:针对盘柜,只会作用于该磁盘所在盘柜, 当该磁盘所在盘柜中RIAD组故障才进行恢复
21
RAID的实现方式
实现RAID的方式:软件方式、硬件方式(RAID卡,包含CPU芯片、ROM、 内存及相应接口)
软件方式 • RAID需要在操作系统 中运行,系统盘不在 RAID中 • 占用过多的系统资源
硬件方式
• RAID卡可以实现多个磁盘同时 传输,并在逻辑上将这些磁盘 划成一体磁盘,读写速度上大 大提高。 • RAID卡在芯片上实现RAID算法, 提供磁盘的容错功能
22
RAID卡
• RAID卡:通过主板上的SCSI控制器来管理硬盘,RAID卡不集成SCSI控 制器为零通道卡。集成了SCSI控制器的,根据SCSI控制器的通道数, 分单通道卡,双通道卡。 • HBA卡Host Bus Adaptor: 主机总线适配卡,是服务器内部I/O通道与 存储系统I/O通道之间的物理连接接口。功能类似网卡,是计算机内部 总线与存储系统的桥梁。 • 常用协议:IDE、SCSI、光纤通道。选择类型是由磁盘所支持的协议决 定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAID系统基础知识1.1 SCSI基础知识在配置磁盘阵列系统之前,你必须了解一些SCSI的基础知识。
●SCSI IDSCSI ID是安排给一个SCSI设备的唯一的编号,这使这些设备在通过SCSI总线连接到主机后,能够很好的与主机之间交换信息。
每个SCSI设备和SCSI卡必须有一个SCSI ID号(Fast SCSI-2 = 0 ~7,Ultra Wide/Ultra2 SCSI = 0 ~ 15)。
一个ID号将唯一的定义在同一SCSI总线.上的一个设备,不能有多个设备使用同一ID号。
如果一台主机有两条SCSI总线,则不同SCSI总线上的设备可以有相同SCSI ID号。
●Terminator(终结器)基于SCSI的定义,SCSI总线必须在两端终结。
这就是说,连接在SCSI总线最末端的设备必须使其终结器有效。
连接在SCSI总线中间的设备必须使其终结器失效。
其实,终结是为了使数据信号能不失真的在SCSI总线上传输。
一些SCSI设备要手工加上或去掉终结器,而另一些设备内建有终结器,通过开关或软件命令使终结器有效或失效。
1.2 Why disk array●我们需要磁盘阵列在过去的七年间,PC机速度提高了50多倍,这种进步导致现在已能制造出功能非常强大的PC机,它们能执行那些以前被认为只有在大得多并且贵得多的机器上才能完成的任务.但是,存储数据的设备(指硬磁盘)的处理速度未能跟上来。
图1说明了两者的巨大差异。
虽然磁盘驱动器的性能就其价格容量比来说大大改善了,它的实际速度却只提高了3-4倍。
因此,九十年代末最强大的计算将是那些磁盘系统性能优化的机器,如果磁盘系统的性能得到像计算机处理系统性能那样的改善,我们就有了真正的超级微型计算机.的速度对比目前已经研制了新的技术来缩小日益增大的计算机主机和磁盘驱动之间的性能差距,这就是现在正在被人们逐渐认识的磁盘阵列技术。
磁盘阵列技术可以详细地划分为若干个级别0 - 5 RAID技术。
RAID是廉价冗余磁盘阵列(Redundant Array of Inexpensive Disk)的简称。
某些级别的RAID技术可以把速度提高到单个磁盘驱动器的400% 。
磁盘阵列把多个磁盘驱动器连接在一起协同工作,大大提高了速度,同时把磁盘系统的可靠性提高到接近无错的境界。
这些“容错”系统速度极快,同时可靠性极高。
这本小册子将讨论这些新技术,以及不同级别RAID的优缺点。
我们并不想涉及那些关键性的技术细节问题,而是将磁盘阵列和RAID技术介绍给对它们尚不熟悉的人们。
相信这将帮助你选用合适的RAID技术。
RAID级别的定义下表提供了RAID的简单定义,本书其后部分将对各级RAID进行更详尽的描述。
备注1:N代表驱动器总数目;C代表capacity,单个驱动器容量。
2RAID 0:又称Striping阵列,做RAID 0需要两上或两个以上的、容量相同的硬盘,N个硬盘做成RAID0后的硬盘容量为单个硬盘的N倍。
在做数据存储时将数据分割存储到多块硬盘上,磁盘读写时负载平均分配到多块硬盘,由于多块硬盘均可同时读写,所以速度显著提升。
也正是由于数据被分割存储到多块硬盘,所以数据的完整性依赖于多块硬盘数据均完好无损,一旦其中一块硬盘的数据损坏或磁盘故障,那么所有的数据都将丢失。
所以RAID0数据存取性能好、速度快,但可靠性差,RAID 0通常用于对磁盘性能要求高但对数据安全性要求不高的场合。
RAID 1:又称Mirror阵列,做RAID 1需要两个容量相同的硬盘,两个硬盘做成RAID1后的硬盘容量为单个硬盘容量。
在做数据存储时将同样的数据写入两块硬盘,两块硬盘互为镜像盘,当一块硬盘中的数据受损或磁盘故障时,另一块硬盘可继续工作,并可在需要时重建RAID1阵列。
但RAID 1不能提升磁盘性能,RAID 1适合对数据可靠性要求严格的场合。
RAID 2:带海明码校验磁盘阵列,RAID2是为大型机和超级计算机开发的。
磁盘驱动器组中的第一个、第二个、第四个......第2的n次幂个磁盘驱动器是专门的校验盘,用于校验和纠错,例如七个磁盘驱动器的RAID2,第一、二、四个磁盘驱动器是纠错盘,其余的用于存放数据。
使用的磁盘驱动器越多,校验盘在其中占的百分比越少。
RAID2对大数据量的输入输出有很高的性能,但少量数据的输入输出时性能不好。
由于海明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。
它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码的硬盘性能,对于控制器的设计来说,它又比RAID3、4、5要简单。
但是利用海明码校验必须要付出数据冗余的代价。
RAID 3:做RAID 3至少需要三块硬盘,N个硬盘做成RAID 3后的硬盘容量为单个硬盘的N-1倍。
RAID 3是将数据先做XOR 运算,产生Parity Data后,再将数据和Parity Data以并行存取模式写入成员磁盘驱动器中,进一步来说,RAID3每一笔数据传输,都更新整个Stripe﹝即每一个成员磁盘驱动器相对位置的数据都一起更新﹞,因此不会发生需要把部分磁盘驱动器现有的数据读出来,与新数据作XOR运算,再写入的情况发生。
因此,在所有RAID级别中,RAID3的写入性能是最好的。
RAID 3的Parity Data一般都是存放在一个专属的Parity Disk,但是由于每笔数据都更新整个Stripe,因此,RAID3的Parity Disk并不会如RAID 4的Parity Disk,会造成存取的瓶颈。
RAID 3需要RAID控制器特别功能的支持,RAID3以其优越的写入性能,特别适合用在大型、连续性档案写入为主的应用。
RAID 4:带奇偶校验码的独立磁盘结构,做RAID 4至少需要三块硬盘,RAID 4和RAID 3很相似,不同的是RAID4对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘。
RAID 3是一次一横条,而RAID 4一次一竖条。
所以RAID3常须访问阵列中所有的硬盘驱动器,而RAID4只须访问有用的硬盘驱动器。
这样读数据的速度大大提高了,但在写数据方面,需将从数据硬盘驱动器和校验硬盘驱动器中恢复出的旧数据与新数据通过异或运算,然后再将更新后的数据和检验位写入硬盘驱动器,所以处理时间较RAID3长。
RAID 5:类似于RAID 0,做RAID 5至少需要三块硬盘,N个硬盘(N>2)做成RAID5后的硬盘容量为单个硬盘的N-1倍,在做数据存储时将数据的每个字节按bit 拆分到硬盘,在数据出错时可以按奇偶校验码重建数据,容错能力强于RAID0,但它需要一块硬盘来容纳额外的奇偶校验信息。
RAID 5的Parity Data分散写入到各个成员磁盘驱动器,脱离如RAID 4单一专属Parity Disk的写入瓶颈。
但是,RAID 5在做数据写入时,仍然稍微受到"读、改、写过程"的拖累。
当RAID5的成员磁盘驱动器数目越多,其性能也就越高,但是反过来说,成员磁盘驱动器越多,RAID5中可能有磁盘驱动器故障的机率就越高,整个阵列的可靠度就会降低。
基本上来说,多人多任务的环境,存取频繁,数据量不是很大的应用,都适合选用RAID 5架构。
3RAID6:带有两种分布存储的奇偶校验码的独立磁盘结构,几乎没有进行商用。
它使用一种分配在不同的驱动器上的第二种奇偶方案,扩展了RAID5。
它能承受多个驱动器同时出现故障,但是,性能尤其是写操作却很差,而且,系统需要一个极为复杂的控制器。
当然由于引入了第二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载。
突出价值点:IBM磁盘存储DS4200,DS4700,DS5100和DS5300支持RAID 6 p+q方式,RAID 6可提供最出色的容错能力,允许任意两块硬盘发生故障,而不会影响数据的完整性。
RAID 6使用相当于两块硬盘的容量进行奇偶保护,并将奇偶信息存放在所有硬盘上。
RAID 6至少由4块硬盘组成,n-2块硬盘用于奇偶保护。
磁盘阵列使用RAID 6保护机制,可以有效降低因为磁盘损坏而造成的数据丢失的机率,从而保护用户数据可靠性,提高用户数据存储环境的安全性。
RAID 7:磁盘阵列新标准RAID 7。
其实,RAID 7不仅仅是一种技术,还是一种存储计算机(Storage Computer)。
因为它与RAID0、1、5标准有明显区别,RAID 7自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。
RAID7不仅具有更高的性能和卓越的存储管理能力,而且集普通RAID标准的所有优点于一身,因而RAID 7系统整体性能极佳。
RAID7存储计算机操作系统(Storage Computer Operating System)是一套实时事件驱动操作系统,主要用来进行系统初始化和安排RAID7磁盘阵列的所有数据传输,并把它们转换到相应的物理存储驱动器上。
通过自身系统中的阵列电脑板来设定和控制读写速度,存储计算机操作系统可使主机I/O传递性能达到最佳。
如果一个磁盘出现故障,还可自动执行恢复操作,并可管理备份磁盘的重建过程。
RAID7突破了以往RAID标准的技术架构,采用了非同步访问,极大地减轻了数据写瓶颈,提高了I/O速度。
所谓非同步访问,即RAID7的每个I/O接口都有一条专用的高速通道,作为数据或控制信息的流通路径,因此可独立地控制自身系统中每个磁盘的数据存取。
如果RAID7有N个磁盘,那么除去一个校验盘(用作冗余计算)外,可同时处理N-1个主机系统随机发出的读/写指令,从而显著地改善了I/O应用。
RAID7系统内置实时操作系统还可自动对主机发送过来的读/写指令进行优化处理,以智能化方式将可能被读取的数据预先读入快速缓存中,从而大大减少了磁头的转动次数,提高了I/O速度。
RAID7可帮助用户有效地管理日益庞大的数据存储系统,并使系统的运行效率提高至少一倍以上,满足了各类用户的不同需求。
RAID 10:即RAID 0+1,它综合了RAID 0和RAID 1的优点,适合用在速度需求高、又要完全容错的应用。
做RAID10至少需要4块硬盘,并且是偶数个,N个硬盘做成RAID 10后的容量为单个硬盘的N/2倍。
RAID 0和RAID1的原理很简单,合起来之后还是很简单,但RAID 0+1到底应该是RAID 0 over RAID 1,还是RAID 1 over RAID 0?综合分析,RAID 0 over RAID 1要比RAID 1 over RAID 0更具有较高的可靠度。