led结温计算
LED结温热阻计算方法详解
LED结温热阻计算方法详解.Ta: 环境温度Rsa:铝基散热装置的热阻、散热器与环境间的热阻Ts: 散热装置的温度. Rms:铝基板到铝散热装置的热阻Tm: 铝基板的温度. Rcm:引脚到铝基板的热阻Tc: 引脚的温度. Rjc:PN结到引脚的热阻、结壳间的热阻Rja:PN结点到环境的热阻 Tj:晶体管的结温、芯片PN结最大能承受之温度( 100-130℃)P表示功耗 Rcs表示晶体管外壳与散热器间的热阻,L50: LED光源亮度降至50%的寿命L70: LED光源亮度降至70%的寿命结温计算的过程:1.热阻与温度、功耗之间的关系为: Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja,2.当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。
此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式Ta=Tc=Tj-P*Rjc。
厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。
一般Pcm 是指在Tc=25℃或Ta=25℃时的最大允许功耗。
当使用温度大于25℃时,会有一个降额指标。
3.以ON公司的为例三级管2N5551举个实例:1)2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。
2)代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj为150度。
一般芯片最大允许结温是确定的。
所以,2N5551的允许壳温与允许功耗之间的关系为:Tc=150-P*83.3。
3)比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。
4)注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。
规格书中给出的降额为12mW/度(0.012W/度)。
5)我们可以用公式来验证这个结论。
假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。
LED 散热设计原理及结温等相关技术参数的计算公式
LED 散热设计原理及结温等相关技术参数的计算公式2008-01-15 10:00:41 作者:戴维大功率LED的散热设计近年来,大功率LED发展较快,在结构和性能上都有较大的改进,产量上升、价格下降;还开发出单颗功率为100W的超大功率白光LED。
与前几年相比较,在发光效率上有长足的进步。
例如,Edison公司前几年的20W白光LED,其光通量为700lm,发光效率为35lm/W。
2007年开发的100W白光LED,其光通量为6000lm,发光效率为60lm/W。
又例如,Lumiled公司最近开发的K2白光LED,与其Ⅰ、Ⅲ系列同类产品比较如表1所示。
从表中可以看出:K2白光LED在光通量、最大结温、热阻及外廓尺寸上都有较大的改进。
Cree公司新推出的XLamp XR~E冷白光LED,其最高亮度挡QS在350mA时光通量可达107~114lm。
这些性能良好的大功率LED给开发LED白光照明灯具创造了条件。
前几年,各种白光LED照明灯具主要是采用小功率Φ5白光LED来做的。
如1~5W的灯泡、15~20W的管灯及40~60W的路灯、投射灯等。
这些灯具使用了几十到几百个Φ5白光LED,生产工艺复杂、可靠性差、故障率高、外壳尺寸大,并且亮度不足。
为改进上述缺点,这几年逐步采用大功率白光LED来替代Φ5白光LED 来设计新型灯具。
例如,用18个2W的白光LED做成的街灯,若采用Φ5白光LED 则要几百个。
另外,用一个1.25W的K2系列白光LED,可做成光通量为65lm的强光手电筒,照射距离可达几十米。
若采用Φ5白光LED来做则是不可能的。
图1 结温TJ与相对出光率关系图用大功率LED做的灯具其价格比白炽灯、日光灯、节能灯要高得多,但它的节能效果及寿命比其他灯具也高的多。
如果在路灯系统及候机大厅、大型百货商场或超市、高级宾馆大堂等用电大户的公共场所全部采用LED灯具,其一次性投资较高,但长期的节电效果及经济性都是值得期待的。
led的灯珠的结温
LED的灯珠的结温1. 介绍LED灯珠LED(Light Emitting Diode)是一种半导体器件,可以将电能转化为光能。
它具有高效、节能、寿命长等特点,因此被广泛应用于照明、显示和通信等领域。
在LED中,灯珠是最基本的发光单元。
2. 灯珠的结温概念灯珠的结温是指LED芯片内部的温度,也称为芯片结温或Tj。
它是衡量LED工作状态和性能稳定性的重要指标。
3. 影响灯珠结温的因素3.1 光通量光通量是指单位时间内从光源发出的光功率,单位为流明(lm)。
当光通量较大时,意味着LED芯片需要消耗更多的电能来产生更多的光,从而导致芯片温度上升。
3.2 散热设计良好的散热设计可以有效降低LED芯片的结温。
散热器、散热胶和散热风扇等散热装置可以帮助将芯片产生的热量迅速散发到周围环境中。
3.3 工作电流LED芯片的工作电流也会对结温产生影响。
较大的工作电流会导致芯片发热量增加,进而使得结温升高。
3.4 环境温度环境温度是指LED灯珠所处的周围环境温度。
较高的环境温度会导致LED芯片难以散热,从而使得结温升高。
4. 结温对LED性能的影响4.1 光衰当LED芯片的结温升高时,其光衰速率也会加快。
光衰是指LED光通量随时间逐渐减小的现象。
过高的结温会缩短LED灯珠的使用寿命。
4.2 光效光效是指单位功率下所发出的光通量。
当LED芯片工作在较低结温下时,其光效较高;而当结温升高时,光效则下降。
4.3 可靠性结温过高还会对LED芯片的可靠性产生负面影响。
过高的结温可能导致元器件老化、损坏或失效,从而降低LED灯珠的可靠性。
5. 结温的测试与控制为了确保LED灯珠的正常工作和稳定性能,需要对其结温进行测试和控制。
5.1 测试方法常见的结温测试方法包括接触式测量和非接触式测量。
接触式测量通常使用热电偶或红外测温仪,直接接触或瞄准LED芯片进行测量。
非接触式测量则利用红外热像仪等设备,通过检测LED芯片发出的红外辐射来估算结温。
LED散热设计与计算公式
三:热阻(表征阻止热量传递的能力的综合参量),单位℃/W,方程式中用 “R”或“θ”表示。 导热热阻:R=L/(KA),L为平板厚度;A为平板垂直于热流方向的截面积; K为平板材料的导热率。 对流换热热阻:R=1/(hA),h为对流换热系数,A 为换热面积; 辐射热阻: 1,对于两个物体表面的辐射:R=1/(A1F1-2)或1/(A2F2-1) 2,对于物体与环境大气的辐射:R=1/(hrA) 式中:A,A1,A2为物体互辐 射的表面积;F1-2和F2-1为辐射角系数;hr为辐射换热系数; 以上三种热阻 或综合热阻也可以用以下的公式定义: R12=(T1-T2)/Q(T1>T2) 式中: T1,T2为某两点位置的温度;Q为通过的1,2点的传导热速率,则R12为1,2点 件的热阻。虽然热阻单位不同但其值是等效的,例:1℃/W=1K/W 四:接触热阻,单位㎡*K/W,在公式中用Rc表示; 对于单位面积的交界面接触 热阻定义为:Rc=(T2A-T2B)/Q,其中,T2A,T2B为两交接面的表面温度,Q为 通过交接面的传热速率。 减少触热阻的措施: 1. 增加借组部分面积,增加 结合压力,减小结合面粗糙度,提高结合面的平面度, 2. 选择导热率达界面 流体,自然状态下界面空隙的流体多为空气,而空气的导热系数极低 (0.023W/m*k)而在界面涂上有较高的导热能力的物体 五:散热器的设计及选择; ①;定义热边界条件(系统总的热耗散功率Q,最大 工作的温度TA,元器最大允许工作温度TJ) ②;估算系统热阻Rja=(Tj-Ta)/Q ③;估算散热热阻Rba=(Tj-Ta)/Q-Rjb ④;设计/选择散热器(根据估算的Rba为 初始目标进行散热器的设计或从散热设备制造商提供的规格数据选择合适的 散热器)
LED 散热设计与计算公式
一:LED灯具热分析公式: Tj ≧Ta + (
LED结温测试方法总结
LED 结温测试(参考:LED 结温测试方法研究)1. 红外热像法2. 光谱法:利用LED 结温升高时,LED 的主波长或λp 就会向长波长漂移,其正法线方向的亮度B0也会下降,主波长会漂移。
有实验数据表明当结温每升高10℃,则波长向长波漂移1nm.3. 管脚温度法4. 蓝白比法:利用芯片的蓝光发光与荧光粉发光随结温变化的不一致来确定结温。
定义W 为光谱中整个白光的功率,B 为蓝光部分的功率,那么比值R=W/B 应该是结温的函数。
5. K 系数法:初始电压是指LED 刚通电时测得的正向电压,初始结温是指刚通电时的结温,近似等于环境温度。
在恒定电流(20mA )改变环境温度(35-100℃)测量的情况下,初始电压与初始结温符合很强的线性关系。
通过测量正向电压确定结温具体方法如下:(1) 测量温度系数Ka. 将LED 置于温度为T A 的恒温箱中足够时间至热平衡,此时T jA =T Ab. 用低电流(可以忽略其产生的热量对LED 的影响,如I f =0.1,1.0,5.0,10mA )快速点测LED 的V fAc. 将LED 置于温度为T B (T B >T A 的恒温箱中足够时间至热平衡,此时T jB =T Bd. 重复步骤b ,测得V fBe. 计算KA B fA fB jA jB fAfB T T V V T T V V K --=--=(2) 测量在输入电功率加热状态下的变化a. 将LED 置于温度为T A 的恒温箱中,给LED 输入额定I F 使其产生自加热b. 维持恒定加热电流I F 足够时间至LED 工作热平衡,此时V F 达到稳定,记录I F ,V Fc. 迅速切换到测量电流源I f ,立即进行(l)之b 步骤,测量V f(3) 结温、热阻计算fA f f V V V -=∆K V V T fAf j -=6. 脉冲电流法。
LED结温测算方法
LED结温测算⽅法⽬录第⼀章电压法测量结温第⼀节电压法测算结温的理论依据第⼆节K系数的测量1. 测量K系数的原理2. 关于K系数的说明3. 测试电流⼤⼩对K系数的影响4. K系数测量⽅法5. 数据处理6. 关于器件⼚商提供K值的建议7. K系数测量误差问题第三节利⽤K系数测算结温第⼆章热阻法测算结温第⼀节热阻法测算结温的基本原理第⼆节热阻法测结温的问题1. 为什么要⽤热阻法测结温2. 热阻参考点的选择3. 器件传热状况的影响4. 温度的影响5. 热阻法测结温参考点的正确选择第三章其它测结温⽅法简介前⾔关于 PN 结温度的测量,以往在半导体器件应⽤端测算结温的⼤多是采⽤热阻法,但这种⽅法对LED 器件是有局限性的,并且以往很多情况下被错误地应⽤。
应⽤热阻法的错误之处,以及其局限性,本⼈已在⽂献【1】中有详细阐述。
本⼈认为应该摒弃热阻法。
现在出现了不少新的测结温的⽅法,但其中⼀些⽅法也许并不能很好地反映结温。
⽐如红外成像法,理论上讲这只是测量器件表⾯或芯⽚表⾯的温度,不可能测量到实际 PN 结处的温度。
光谱法则只是个别专业测试机构能够进⾏,仪器昂贵,不适于器件使⽤者⽇常⼯作。
实际上,⽆论从专业测量,还是业余测量,最简便易⾏、最准确的、最基础的,还是电压法测算结温。
热阻法其实是在电压法基础上衍⽣⽽来的。
由于现在测量显⽰精度达 1mV 的仪表很便宜,器件使⽤者完全没有必要采⽤热阻法来测算结温。
本⽂主要是介绍电压法测算结温。
也介绍了热阻法测算结温,并提出热阻法存在的问题。
最后简单介绍了⼀些其它测结温的⽅法。
本⽂介绍的电压法测算结温的⽅法,是从⼀般⼯程应⽤的⾓度来讲。
主要是为⼀般的器件⼚商和器件使⽤者提供⾃⼰测试的⽅法。
因此所述的⽅法中,使⽤的⼀些仪器不能与专业的仪器设备⽐较,但精度和准确性不⽤担⼼。
这⽅⾯只要你懂得了物理原理就明⽩了。
关键还是看具体的操作者对测试机构的设计和仪表的选择,以及操作中的精⼼程度。
大功率LED结温方法
大功率LED 结温方法GaN 基白光LED 结温测试方法1. 正向电压法(forward voltage method)原理:初始电压与初始结温符合很强的线性关系KV V T T t j 00-+= 其中T0是作为参考的环境温度,V0是在T0下的初始电压;Tj 和Vt 分别是稳定时的结温和正向电压。
系数K 可以通过测量两组不同的参考温度和电压得到K=(V1-V0) /(T1-T0),也可以通过测量多组参考温度和电压作线性拟合得到。
K 值测量测量时将LED 放置在控温烤箱中,施加小电流(10mA ),分别在不同的烤箱温度下(Ta1,Ta2),每个温度阶段恒温30min (样品为1WLED 加散热片,如果未加散热片可另外考虑),使得结温与环境温度一致,测试过程中保持电流恒定。
测量LED 的正向电压(Vf1,Vf2),这时可近似认为;K=(V1-V0) /(Ta2-Ta1)Rth 为热阻Rth=(Tj-Tb )/PTb 为测试得到的基板底部的温度,P 为L E D 的耗散功率,Tb 用热电偶实时测量LED 基板底部的温度。
2. 管脚法(Pin method)原理:管脚温度法是利用LED 器件的热输运性质,通过测量管脚温度和芯片耗散的热功率,以及热阻系数来确定结温p j j p j R P T T -+=*其中Tp 是管脚温度,Tj 是结温;Pj 是LED 芯片耗散的热功率;R Θj-p 是从结到管脚的热阻系数,可以由厂家给出,或者由实验确定,本实验中结合电压法测量来确定热阻系数文献中提到热阻系数由电压法测得,而电压法又会存在误差,所以此方法误差会较大一些。
3. 蓝白法(non-contactmethod for determining junction temperatur ) 原理:利用白光LED 的发光光谱分布(SPD)来测量结温,最大的优点是不需要破坏器件的整体性,是一种非接触的结温测量方法。
蓝白比R 与结温都有较好的线性关系,可通过测量光谱算得R 值,然后用下面的换 算公式得到结温:rj K R R T T 00-+= 其中T0为参考结温,Tj 是要测量的结温;R0和R 分别是结温为T0和Tj 时的蓝白比;Kr 是比例系数,可以通过测量两组不同的参考结温和蓝白比得到Kr=(R0-R1) /(T0-T1),也可以通过测量多组已知结温情况下的蓝白比作线性拟合。
什么是LED 的结温
什么是LED 的结温LED 的基本结构是一个半导体的P—N 结。
实验指出,当电流流过LED 元件时,P —N 结的温度将上升,严格意义上说,就把P—N 结区的温度定义为LED 的结温。
通常由于元件芯片均具有很小的尺寸,因此我们也可把LED 芯片的温度视之为结温。
现在世界上知名的LED 光源品牌CREE、LUMILED(流明)、CIZITEN(丰田合成)、NICHIA(日亚)、ORSAM、首尔半导体。
光效:单位每瓦流明 Lm/w,说明电光源将电能转化为光的能力,以发出的光通量除以耗电量来表示真空普通灯泡的光效约为 7-8LM/W、充气普通灯泡的光效约为10-13 LM/W高色温卤钨灯的光效约为 26-28 LM/W、日光色荧光灯的光效约为 40-65 LM/W 三基色荧光灯的光效约为 65-80 LM/W、荧光高压汞灯的光效约为 40-60 LM/W 超高压氙灯的光效约为 30-35 LM/W、高压钠灯的光效约为 90-120 LM/W金属卤化物灯的光效约为 70-100 LM/W理论计算表明,1W能量如果全部转变为视见函数最高的555NM 波长的光时,光效可达680LM/WLED 封装生产工艺流程1.芯片检验外观检验:材料表面是否有机械损伤及麻点麻坑(lockhill)芯片尺寸及电极大小是否符合工艺要求电极图案是否完整。
2.扩晶由于LED 芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。
我们采用扩片机对黏结芯片的膜进行扩张,是LED 芯片的间距拉伸到约0.6mm.也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。
3.点固晶胶在LED 支架的相应位置点上银胶或绝缘胶.(对于GaAs、SiC 导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。
对于蓝宝石绝缘衬底的蓝光、绿光LED 芯片,采用绝缘胶来固定芯片),评估一款银胶的好坏主要有两点:一、粘稠度(一般在3000-4000cps)二、热量传导率(目前我司采用的是美国银胶EPO-TEK 公司生产导热系数为29W/mk)三、固化条件工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求.由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的解冻、搅拌、使用时间都是工艺上必须注意的事项.4.备固晶胶和点胶相反,备胶是用备胶机先把银胶涂在LED 背面电极上,然后把背部带银胶的LED 安装在LED 支架上.备胶的效率远高于点胶,但不是所有产品均适用备胶工艺(一般应用于做数码管生产上面)。
LED灯珠散热计算方法及公式
2019/10/30
23
(2)测量LED在输入电功率加热状态下的Vf变化
①将LED置于温度为Ta的恒温箱中,给LED输入电功率 Pd,使其产生自加热; ②维持If恒定足够时间,至LED工作热平衡,此时Vf达 至稳定,记录If、Vf; ③测量LED热沉温度Ts(取最高点); ④切断输入电功率的电源,立即(<10ms)进行(1) 之②步骤,测量Vf3。
2019/10/30
25
五、LED的结温Tj
1.常用的结温测算方法
LED的结温TJ无法直接测量,只能通过间接的方 式进行测量估算。
(1)热影像法
用精密热影像仪聚焦LED芯片PN结层面,拍摄热 影像,对应出Tj。 (2)热阻测量法
InGaN
Au
170
317
衬底 Si 146
0.005
0.02
0.25
固晶层 AuSn
58
0.01
S(mm2)
1.0
环节热阻(K/W) 0.0294 总热阻Rthjs
0.027 2.3367
2.5
2.5
0.6849 0.06897 4.30(K/W)
热沉 Cu 264 1.85 1.0 7.065 19.625 1.1849
2019/10/30
24
(3)数据处理
Δ V f= V f3- V f1 P d= I f · V f
R
th ja
=
Δ k
V Pd
f
R
th sa
=
T
s-T Pd
a
R th js= R th ja - R th sa
LED模块的结温及热阻测量
LED模块的结温及热阻测量韩冰发光二极管(LED)由于其亮度高、功耗低、寿命长、可靠性高、易驱动、节能、环保等特点,已被广泛应用于交通、广告和仪器仪表的显示中,现已在特殊照明中获得应用,并将成为普通照明中的主要光源。
目前世界上生产和使用LED 呈现急速上升的趋势,但是LED 存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降,这主要是由于LED结温升高导致的。
热是从温度高处向温度低处散热。
LED主要的散热路径是:LED芯片→基座→铝基板→散热板→环境空气。
若LED的结温为T J,散热板底部的温度为T c(这里我只讨论LED从芯片到散热板底部之间的热阻关系),所以可以把热阻关系公式写成:RJC =(TJ-TC)/(PD-PI) 热阻的单位是℃/W。
公式里的P I代表输出的光功率,用LED模块的总功率减掉光输出的部分功率,剩余部分就是发热功率,这样计算可以更准确的反映基板、散热板材料本身的热阻特性。
可以这样理解:热阻越小,其导热性能越好,即散热性能越好。
LED热阻的测量是跟LED的结温测量紧密相关的,如果无法准确测量LED的结温,也就没办法真正准确测量到LED的热阻。
首先我介绍一下,第一个也是最关键的步骤---结温的测量,因为LED光源与其他传统光源差别很大,LED结温的高低直接影响了LED的特性,所以准确测量LED的结温很重要。
但是在测量LED结温的时候不能破坏它模块的结构,只能通过间接方法测量。
现在国际上公认能够准确得到LED结温的方法就是利用LED的结温与它的PN结压降有直接线性关系,利用这一线性关系曲线,通过直接测量LED的压降从而间接的得到LED的结温。
图1图1是我公司自己研制的一套测量LED结温与压降相关曲线的设备。
我们利用硅油不导电且导热性能优良的特点,在油缸中装入硅油,把被测的LED模块用四端法接入电路后浸没在硅油内。
led灯珠结温测试方法
led灯珠结温测试方法英文回答:LED Die Temperature Measurement Methods.Determining the junction temperature (Tj) of an LED die is crucial for ensuring optimal performance and reliability. Accurate Tj measurement enables the assessment of thermal management effectiveness and the prediction of LED lifespan. Several methods are commonly used to measure LED die temperature:1. Forward Voltage (Vf) Method.The forward voltage (Vf) of an LED decreases linearly with increasing temperature. By measuring the Vf at a known temperature and then at the operating temperature, the temperature difference can be calculated using thefollowing equation:ΔTj = (ΔVf / αVf) (1 + αTj)。
where:ΔTj is the temperature difference.ΔVf is the difference in forward voltage.αVf is the temperature coefficient of forward voltage.αTj is the temperature coefficient of Vf at the reference temperature.This method is simple and non-invasive but requires accurate knowledge of αVf and αTj.2. Light Output Power (LOP) Method.The light output power (LOP) of an LED decreases exponentially with increasing temperature. By measuring the LOP at a known temperature and then at the operating temperature, the temperature difference can be calculated:ΔTj = (1 / β) ln(LOP1 / LOP2)。
LED结温测算法
5.如何具体测算LED的结温。
现在就以Cree公司的XLamp7090XR-E为例。
来说明如何具体测算LED的结温。
要求已经把LED安装到散热器里,并且是采用恒流驱动器作为电源。
同时要把连接到LED去的两根线引出来。
在通电以前就把电压表连接到输出端(LED 的正极和负极),然后接通电源,趁LED还没有热起来之前,马上读出电压表的读数,也就是相当于V1的值,然后等至少1小时,等它已经达到热平衡,再测一次,LED两端的电压,相当于V2。
把这两个值相减,得出其差值。
再被4mV 去除一下,就可以得出结温了。
实际上,LED多半为很多个串联再并联,这也不要紧,这时的电压差值是由很多串联的LED所共同贡献,所以要把这个电压差值除以所串联的LED数目再去除以4mV,就可以得到其结温。
例如,LED是10串2并,第一次测得的电压为33V,第二次热平衡后测得的电压为30V,电压差为3V。
这个数字先要除以所串联的LED个数(10个),得到0.3V,再除以4mV,可以得到75度。
假定开机前的环境温度是20度,那么这时候的结温就应当是95度。
采用这种方法得出的结温,肯定要比用热电偶测量散热器的温度再来推算其结温要准确很多。
6.如何来预测这个灯具的寿命。
从结温来推测寿命好像应该很简单,只要查一下图1的曲线,就可以知道对应于95度结温时的寿命就可以得到LED的寿命为2万小时了。
但是,这种方法用于室内的LED灯具还有一定的可信度,如果应用到室外的LED灯具,尤其是大功率LED路灯,那里还有很多不确定因素。
最大的问题是LED路灯的散热器的散热效率的随时间而降低。
这是由于尘土、鸟屎的积累而使得其散热效率降低。
也还因为室外有很强烈的紫外线,也会使LED的寿命降低。
紫外线主要是对封装的环氧树脂的老化起很大作用,假如采用硅胶,可以有所改善。
紫外线对荧光粉的老化也有一些坏作用,但不是很严重。
不过,这种方法用来相对比较两种散热器的散热效果是比较有效的。
LED结温的影响及测量方法
LED结温的影响及测量方法杨伟煌;幸芦笙;吴懿平【摘要】对于LED器件来说,结温是最重要的热性能参数之一,结温的大小对LED器件的输出功率以及可靠性具有很大的影响.超过一半的LED灯具的输入功率以热的形式被浪费,散热问题是LED灯具设计师所面临的最关键的问题.因此,获得准确的结温信息对于监控和评估灯具的健康状态至关重要.主要介绍结温对LED电学参数、LED发光特性以及LED器件的寿命的影响,然后对LED结温的测量方法包含正向电压法、管脚温度法、蓝白比法、红外热成像法、光谱法等进行详细描述并且分析彼此的优缺点.【期刊名称】《江西科学》【年(卷),期】2017(035)004【总页数】6页(P594-598,634)【关键词】LED结温;测量方法;结温的影响;正向电压法【作者】杨伟煌;幸芦笙;吴懿平【作者单位】五邑大学信息工程学院,529020,广东,江门;五邑大学信息工程学院,529020,广东,江门;五邑大学信息工程学院,529020,广东,江门【正文语种】中文【中图分类】TN312.8与传统的白炽灯、荧光灯相比,发光二极管(light emitting diodes,LED)具有节能、环保、效率高、稳定性高、寿命长等特点。
当电流通过LED元器件的时候,P-N结的温度会随之上升,并且将P-N的温度定义为LED结温,LED结温直接决定着LED的光学特性和电学特性。
当LED器件工作的时候,电子和空穴会在PN结的发光层进行电光转换,将电能转换为光,但是由于半导体材料的电阻与非复合效应,70%的能量会浪费转换为热能,由于热能的累积无法散出,LED的结温会相应的提高。
结温的升高会影响LED的内部量子效率。
当电流通过LED器件时,如果散热解决不好,芯片内部热量聚集,结温会上升,结温的上升会导致禁带的宽度、电子空穴浓度、有效载离子复合率等微观参数变化,从而导致发光波长偏移、白光LED的光度和色度性能变差、寿命变短、加速LED光电特性的恶化等,同时封装材料的特性也会在高结温的影响下迅速衰减,从而导致LED器件失效。
LED结温(Tj)温度测量概述
LED结温(Tj)温度测量概述摘要:本文介绍了一种LED结温(Tj)温度测量的一些基础知识和一种简单的测量方法。
通过该方法测量得到的数据,对汽车灯具中LED散热设计有一定的参考作用。
关键词:LED(结温) LED的热电阻LED的工作功率因LED具有寿命长、耐候性能好等优点,近年来在汽车照明领域中得到了广泛的应用。
虽然LED具有很多优点,但是其作为光电器件,在工作过程中却只有约15%~25的电能可以转换成光能,其余的电能基本都会被转化成热能。
因此,如果采用LED作为光源运用于车灯照明中时,LED的结温(Tj)测量就成为了散热设计的关键点。
1 LED结温(Tj)的含义:LED的结温(Tj)简单来讲,就是LED本身的温升极限,英文含义为:Temperature Junction。
LED的基本结构是一个半导体的PN结,由于LED的芯片均具有很小的尺寸。
因此一般把LED芯片的温度视之为结温。
LED的结温高低直接影响到其发光效率,器件寿命,可靠性,发射波长等,保持LED结温在允许的范围内,是LED能否发挥出应有机能的关键一环。
2 影响LED结温(Tj)上升的主要因素:2.1 发光效率是导致LED结温升高的主要原因以目前的LED生产水平,虽然通过采用先进的生产材料和器件加工工艺,已经尽可能的将LED绝大多数的输入电能转化成了光辐射能;但是由于LED的芯片材质往往会比周围的介质相比具有大得多的折射系数,致使芯片内部产生的大部分光子无法顺利的溢出,而在芯片与介质面产生全反射,返回芯片内部并通过多次内部反射最终被芯片材料或衬底吸收,并以晶格振动的形式变成热,导致结温升高。
2.2 器件不良的电极结构也是造成结温升高的原因之一结温区域的材料、导电银胶等均存在着一定的电阻值,这些电阻相互叠加,构成了LED器件的串联电阻。
当电流通过PN结时,同时也会流经这些产生电阻的区域,从而产生热,导致芯片的温度或结温上升。
2.3 LED的散热能力是决定结温工地的另一个关键因素由于环氧树脂是一种低导热材料,因此,PN结产生的热量很难通过透明的环氧树脂向上散发到环境中去。
led的灯珠的结温
LED的灯珠的结温1. 什么是LED灯珠的结温?LED(Light Emitting Diode)是一种半导体器件,通过电流通过时发射出可见光。
而LED灯珠则是指由多个LED芯片组成的发光源。
在LED灯珠中,结温(Junction Temperature)是指芯片内部结构的最高温度,也是影响LED性能和寿命的重要因素。
2. 结温对LED性能和寿命的影响LED灯珠在工作过程中会产生热量,而结温则决定了芯片内部各种物理和化学过程的进行情况。
高结温会导致以下问题:a. 光衰高结温会加速LED芯片中材料老化和损伤,从而降低光效和色彩品质。
研究表明,当结温每升高10摄氏度时,光衰速度将加快20%至30%。
b. 寿命缩短高结温会加速芯片中金属线与半导体材料之间界面的迁移和氧化反应,从而降低芯片寿命。
同时,高结温还容易引起焊点断裂、金属线断裂等问题,进一步缩短LED灯珠的寿命。
c. 光色偏移结温的升高会导致发光材料的能带结构发生变化,从而引起光色偏移。
这会影响到LED灯珠的色温和色彩品质,降低用户体验。
3. 结温的测量方法为了准确测量LED灯珠的结温,常用以下两种方法:a. 基于热电模型的间接测量法该方法通过在芯片底部安装一个热敏电阻来测量结温。
当LED芯片工作时,热敏电阻受到芯片产生的热量影响而发生变化,通过测量电阻值的变化即可推算出芯片结温。
b. 基于红外线热像仪的直接测量法该方法通过红外线热像仪直接对LED灯珠进行拍摄,并利用红外辐射信号来计算出芯片表面和结温。
这种方法具有非接触性和实时性优势,适用于大批量生产中对LED灯珠进行快速检测。
4. 结温的控制方法为了降低LED灯珠的结温,可以采取以下措施:a. 散热设计优化通过合理的散热设计,提高LED灯珠散热效果,减少结温的升高。
例如使用优良的散热材料、增加散热片面积、增加风扇散热等方式。
b. 电流控制合理控制LED灯珠的工作电流,避免过高电流引起过多热量产生。
LED结温(Tj)温度测量概述5页word文档
LED结温(Tj)温度测量概述因LED具有寿命长、耐候性能好等优点,近年来在汽车照明领域中得到了广泛的应用。
虽然LED具有很多优点,但是其作为光电器件,在工作过程中却只有约15%~25的电能可以转换成光能,其余的电能基本都会被转化成热能。
因此,如果采用LED作为光源运用于车灯照明中时,LED的结温(Tj)测量就成为了散热设计的关键点。
1 LED结温(Tj)的含义:LED的结温(Tj)简单来讲,就是LED本身的温升极限,英文含义为:Temperature Junction。
LED的基本结构是一个半导体的PN结,由于LED 的芯片均具有很小的尺寸。
因此一般把LED芯片的温度视之为结温。
LED 的结温高低直接影响到其发光效率,器件寿命,可靠性,发射波长等,保持LED结温在允许的范围内,是LED能否发挥出应有机能的关键一环。
2 影响LED结温(Tj)上升的主要因素:2.1 发光效率是导致LED结温升高的主要原因以目前的LED生产水平,虽然通过采用先进的生产材料和器件加工工艺,已经尽可能的将LED绝大多数的输入电能转化成了光辐射能;但是由于LED的芯片材质往往会比周围的介质相比具有大得多的折射系数,致使芯片内部产生的大部分光子无法顺利的溢出,而在芯片与介质面产生全反射,返回芯片内部并通过多次内部反射最终被芯片材料或衬底吸收,并以晶格振动的形式变成热,导致结温升高。
2.2 器件不良的电极结构也是造成结温升高的原因之一结温区域的材料、导电银胶等均存在着一定的电阻值,这些电阻相互叠加,构成了LED器件的串联电阻。
当电流通过PN结时,同时也会流经这些产生电阻的区域,从而产生热,导致芯片的温度或结温上升。
2.3 LED的散热能力是决定结温工地的另一个关键因素由于环氧树脂是一种低导热材料,因此,PN结产生的热量很难通过透明的环氧树脂向上散发到环境中去。
其大部分热量只能通过衬底、银胶、壳体、环氧粘结层、PCB板向下发散。
LED的结温计算
LED的结温计算LED的PN结结温主要影响LED光通量和寿命,本文用电压法对直插LED,食人鱼LED和大功率LED的结温和热阻进行了实验研究。
在测量LED结温的同时,研究它的光谱变化,色光LED峰值波长的偏移与其结温存在线性关系,白光LED 的总能量和蓝光能量比率(W/B)的变化与结温也存在线性的关系。
LED存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降,这主要是由于LED结温升高导致的。
对于白光LED,随着结温的增加,LED发出黄光和蓝光的强度以不同的速率下降,白光LED的总能量和蓝光能量比率(W/B)与结温存在关系。
首先对LED的结温进行研究,由此可得到LED的热阻。
然后在测量结温的同时,测量LED光谱变化,可以得出LED的PN结结温与色光LED峰值波长或白光LED的白色/蓝色能量比(W/B)之间存在一定的关系。
因此可以采用非接触式方法来进行结温的测量。
测量原理LED的结温是影响发光二极管各项性能指标的一个重要因素,测量LED结温的方法可用通过测量在不同环境温度下LED的正向电压的大小来得到。
实验原理如图1所示,被测LED置于积分球内,积分球放在恒温箱的中间,积分球内的光经石英光纤导入SSP3112快速光谱分析仪,可以快速测取LED的峰值波长或W/B比率。
将热电偶与LED管脚紧密接触,用测温仪读取不同加热电流和不同环境温度下的管脚温度。
恒温箱的温度范围为0℃-150℃,精度 1℃。
PC机通过高速开关控制对LED的加热电流(IF)和参考电流(IFR),并测量IF和IFR下的VF 和VFR。
热是从温度高处向温度低处散热。
大功率LED 主要的散热路径是:管芯→散热垫→印制板敷铜层→印制板→环境空气。
若LED 的结温为T J ,环境空气的温度为T A ,散热垫底部的温度为T c (T J >T c >T A 。
在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。
在大功率LED中,散热是个大问题。
例如,1个10W 白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是150℃),大功率LED会因过热而损坏。
因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。
另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。
但在大功率LED散热设计中,其结温TJ要求比125℃低得多。
其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。
K2系列白光LED的结温TJ与相对出光率的关系。
在TJ=25℃时,相对出光率为1;
TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了。
:TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。
TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。
大功率LED的散热路径.
大功率LED在结构设计上是十分重视散热的。
图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。
从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。
大功率LED是焊在印制板(PCB)上的,如图4所示。
散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。
为提高散热效率,采用双层敷铜层的PCB,其正反面图形如图5所示。
这是一种最简单的散热结构。
热是从温度高处向温度低处散热。
大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜层→印制板→环境空气。
若LED的结温为TJ,环境空气的温度为TA,散热垫底部的温度为Tc(TJ>Tc>TA),散热路径如图6所示。
在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。
若管芯传导到散热垫底面的热阻为RJC(LED的热阻)、散热垫传导到PCB面层敷铜层的热阻为RCB、PCB传导到环境空气的热阻为RBA,则从管芯的结温TJ传导到空气TA的总热阻RJA与各热阻关系为:
RJA=RJC+RCB+RBA
各热阻的单位是℃/W。
可以这样理解:热阻越小,其导热性能越好,即散热性能越好。
如果LED的散热垫与PCB的敷铜层采用回流焊焊在一起,则RCB=0,则上式可写成:
RJA=RJC+RBA
散热的计算公式
若结温为TJ、环境温度为TA、LED的功耗为PD,则总热阻RJA与TJ、TA及PD的关系为:
RJA=(TJ-TA)/PD (1)
式中PD的单位是W。
PD与LED的正向压降VF及LED的正向电流IF的关系为:
PD=VF×IF (2)
如果已测出LED散热垫的温度TC,则(1)式可写成:
RJA=(TJ-TC)/PD+(TC-TA)/PD
则RJC=(TJ-TC)/PD (3)
RBA=(TC-TC)/PD (4)
在散热计算中,当选择了大功率LED后,从数据资料中可找到其RJC值;当确定LED 的正向电流IF后,根据LED的VF可计算出PD;若已测出TC的温度,则按(3)式可求出TJ来。
在测TC前,先要做一个实验板(选择某种PCB、确定一定的面积)、焊上LED、输入IF电流,等稳定后,用K型热电偶点温度计测LED的散热垫温度TC。
在(4)式中,TC及TA可以测出,PD可以求出,则RBA值可以计算出来。
若计算出TJ来,代入(1)式可求出RJA。
这种通过试验、计算出TJ方法是基于用某种PCB及一定散热面积。
如果计算出来的TJ 小于要求(或等于)TJmax,则可认为选择的PCB及面积合适;若计算来的TJ大于要求的TJmax,则要更换散热性能更好的PCB,或者增加PCB的散热面积。
另外,若选择的LED的RJC值太大,在设计上也可以更换性能上更好并且RJC值更小的大功率LED,使满足计算出来的TJ≤TJmax。
这一点在计算举例中说明。
各种不同的PCB
目前应用与大功率LED作散热的PCB有三种:普通双面敷铜板(FR4)、铝合金基敷铜板(MCPCB)、柔性薄膜PCB用胶粘在铝合金板上的PCB。
MCPCB的结构如图7所示。
各层的厚度尺寸如表3所示。
其散热效果与铜层及金属层厚如度尺寸及绝缘介质的导热性有关。
一般采用35μm铜层及1.5mm铝合金的MCPCB。
柔*PCB粘在铝合金板上的结构如图8所示。
一般采用的各层厚度尺寸如表4所示。
1~3W星状LED采用此结构。
采用高导热性介质的MCPCB有最好的散热性能,但价格较贵。
计算举例
这里采用了NICHIA公司的测量TC的实例中取部分数据作为计算举例。
已知条件如下:
LED:3W白光LED、型号MCCW022、RJC=16℃/W。
K型热电偶点温度计测量头焊在散热垫上。
PCB试验板:双层敷铜板(40×40mm)、t=1.6mm、焊接面铜层面积1180mm2背面铜层面积1600mm2。
LED工作状态:IF=500mA、VF = 3.97V。
用K型热电偶点温度计测TC,TC=71℃。
测试时环境温度TA = 25℃.
1.TJ计算
TJ=RJC×PD+TC=RJC(IF×VF)+TC
TJ=16℃/W(500mA×3.97V)
+71℃=103℃
2.RBA计算
RJA=(TC-TA)/PD
=(71℃-25℃)/1.99W
=23.1℃/W
3.RJA计算
RJA=RJC+RBA
=16℃/W+23.1℃/W
=39.1℃/W
如果设计的TJmax=90℃,则按上述条件计算出来的TJ不能满足设计要求,需要改换散热更好的PCB或增大散热面积,并再一次试验及计算,直到满足TJ≤TJmax为止。
另外一种方法是,在采用的LED的RJC值太大时,若更换新型同类产品RJC=9℃
/W(IF=500mA时VF=3.65V),其他条件不变,TJ计算为:
TJ=9℃/W(500mA×3.65V)+71℃
=87.4℃
上式计算中71℃有一些误差,应焊上新的9℃/W的LED重新测TC(测出的值比71℃略小)。
这对计算影响不大。
采用了9℃/W的LED后不用改变PCB材质及面积,其TJ符合设计的要求。
PCB背面加散热片
若计算出来的TJ比设计要求的TJmax大得多,而且在结构上又不允许增加面积时,可考虑将PCB背面粘在"∪"形的铝型材上(或铝板冲压件上),或粘在散热片上,如图10所示。
这两种方法是在多个大功率LED的灯具设计中常用的。
例如,上述计算举例中,在计算出TJ=103℃的PCB背后粘贴一个10℃/W的散热片,其TJ降到80℃左右。
这里要说明的是,上述TC是在室温条件下测得的(室温一般15~30℃)。
若LED灯使用的环境温度TA大于室温时,则实际的TJ要比在室温测量后计算的TJ要高,所以在设计时要考虑这个因素。
若测试时在恒温箱中进行,其温度调到使用时最高环境温度,为最佳。
另外,PCB是水平安装还是垂直安装,其散热条件不同,对测TC有一定影响,灯具的外壳材料、尺寸及有无散热孔对散热也有影响。
因此,在设计时要留有余地。