第10届“希望杯”全国数学邀请赛高一(1,2试)

合集下载

第9届“希望杯”全国数学邀请赛(高一)第一试

第9届“希望杯”全国数学邀请赛(高一)第一试

第九届“希望杯”全国数学邀请赛(高一)第一试班级 姓名一、选择题1、如图是函数c bx ax x f ++=2)(的图象,那么--( )(A )0,0,0><<c b a (B )0,0,0<>>c b a (C )0,0,0>><c b a (D )0,0,0>>>c b a2、某种菌类生长很快,长度每天增长1倍,在20天中长成4米,那么长成41米要--------------------------------( )(A )411天 (B )5天 (C )16天 (D )12天3、函数)1,0(log )(≠>=a a x x f a ,若1)()(21=-x f x f ,则)()(21x f x f -的值等于----------------------------------------------------------------------------------------( )(A )2 (B )21(C )1 (D )2log a4、平面外一直线和这个平面所成的角为θ,则θ的范围是-------------------------( )(A )0︒<θ<180︒ (B )0︒<θ<90︒ (C )0︒<θ≤90︒ (D )0︒≤θ≤90︒5、P 、Q 、R 、S 分别表示长方体集合、直平行六面体集合、直四棱柱集合、正四棱柱集合,它们之间的关系为-----------------------------------------------------------( )(A )R ⊃Q ⊃P ⊃S (B )R ⊃Q ⊃S ⊃P (C )S ⊂P=Q ⊂R (D )S ⊂R,P ⊂Q,R ⊆Q,Q ⊆R6、︒=70log 21tg a ,︒=25sin log 21b ,︒=25cos )21(c ,则------------------------( )(A )c b a << (B )a c b << (C )b c a << (D )a b c <<7、)(x f 是定义域为R 的奇函数,方程0)(=x f 的解集为M ,且M 中有有限个元素,则----------------------------------------------------------------------------------------( )(A )M 可能是∅(B )M 中元素的个数是偶数 (C )M 中元素的个数是奇数(D )M 中元素的个数可以是偶数,也可以是奇数。

“希望杯”中有关高斯符号“[]”的问题

“希望杯”中有关高斯符号“[]”的问题

( D)[ j a一1 a>
数 学竞赛 中,经 常出现带有 高斯符号的 问题.现基 于高斯符号的
几条基 本性质 ,以 “ 望杯”数 学竞赛 中的几道 问题 为例 ,对 希
解析 :根据性质 ( ) 3 可知 ,选 D.
例 3 (0 6年 第十 七届 “ 望杯” 全 国数 学邀请 赛初 一 20 希
正确的是 ( ) .
( )[ ] 一 ] A n +[ a =0
( )[ ] ~ ] 于 0或 1 B a +[ n等
( )[ ] 一 ] C 口 +[ a ≠0 ( )[ ] 一 ] D 。 +[ 。 等于 0或一 1 解析 :当 a为整数时 ,显然 [ ] 一 ] n +[ a =a+(a =0 一) .
_ ] + .
显然有 n / <、
<n+1 .
] / =/ ,
例 2 (0 3年 第 十四届 “ 望杯 ”全 国数 学邀请 赛初 二 20 希 第1 试)设 [ ] 口 表示不超过 n的最 大整数 , ̄ 1 .] ,[ 43 : 1 43 =4 一 .] 1

所 以根据高斯符号的意义 ,有[ / ( 、 ( 丽 所 以原 式 = ±2±
当不整时有 ] { ② 。 数,{ { t 是 【 一十 一a f :_ a 0+ ] J { 结性( 知{}’ 。}+{ } . 合质) ,a。且{ 。 =1 4 【。 0 可 > . >


} , >

① +② ,得 0=[ ] 一 ] a +{ ,即[ ] 一 ] 1 a +[ 。 +{ } a } n +[ a =一 .
故 选 B .
 ̄ 一 +2 0 " 03 -

5 ,则下列各式 中正确 的是 (

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每题5分共60分)1.(5分)计算:3.6×(2.45﹣1.9)÷0.4=_________.2.(5分)已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是_________,乙数是_________.3.(5分)如图,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;…,按此规律,当n=5时,图中有_________个圆.4.(5分)54个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾,如果游戏开始时,小亮站在队首,当小亮再次站在队首时,已经做了_________轮游戏.5.(5分)有一列数,第1个是1,从第2个数起,们每个数比它前面相邻的数大3,最后一个数是100,将这列数相乘,则在计算结果的末尾中有_________个连续的零.6.(5分)公元纪年法中,每四年含一个闰年,每个平年有365天,每个闰年有366天,2012年是闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是_________年.7.(5分)在平面上有7个点,其中任意3个点都不在同一条直线上,如果连接这7个点中的每两个点,那么最多可以得到_________条线段;以这些线段为边,最多能构成_________个三角形.8.(5分)如图所示,在一个圆周上放了1枚黑色的围棋子和2012枚白色的围棋子.若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下_________枚白子.9.(5分)正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有_________个角,最少有_________角.10.(5分)如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是_________cm2.11.(5分)某次数学竞赛以后52 人参加,共考5道题,每道题做错的人数统计如下:题号 1 2 3 4 5做错人数 4 6 10 20 39如果每人都至少做对1道题,只做对1题有7人,5道题都做对的有6人,只做对2道题和只做对3道题的人数相同,那么做对4道题的有_________人.12.(5分)在长、宽、高分别是10cm、10cm、6cm的长方体的容器中盛有深4cm的水,在向容器中放入棱长5cm 的正方体铁块,则水深变为_________cm.二.解答题:(每小题15分共60分)每题都要写出推算过程.13.(15分)将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.14.(15分)甲乙丙三辆汽车从A地去B地,甲车的速度是60千米/时,乙车的速度是48千米/时,与此同时,一辆卡车从B地去A地,卡车在出发后6小时、7小时、8小时的时刻分别与甲乙丙三车相遇,求:(1)甲车与卡车相遇时,甲车与乙车的距离;(2)求卡车的速度;(3)求丙车的速度.15.(15分)某快递公司对从A地发往B地的快件的运费收费标准是:快件重量不超过10千克,每千克收费8元;如果超过10千克,超出部分按每千5元收费,已知甲乙二人向该公司各投递一个快件,甲比乙多交了34元,求甲乙的快件的重量.(甲乙的快件的重量都是整千克数)16.(15分)已知,,,各代表一个自然数,观察下面三个算式呈现的规律:+﹣=6﹣+=3××=140求(+)÷的值.2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每题5分共60分)1.(5分)计算:3.6×(2.45﹣1.9)÷0.4= 4.95.考点:小数四则混合运算.专题:运算顺序及法则.分析:先算括号内的,再算除法和乘法.解答:解:3.6×(2.45﹣1.9)÷0.4,=3.6×0.55÷0.4,=1.98÷0.4,=4.95;故答案为:4.95.点评:此题考查了小数四则混合运算,注意运算顺序和运算法则.2.(5分)已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是210,乙数是21.考点:和倍问题.专题:和倍问题.分析:根据“甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,”知道甲数是乙数的10倍,再根据题意知道甲乙两数的和是231,由此利用和倍公式解决问题.解答:解:乙数:231÷(10+1),=231÷11,=21,甲数:231﹣21=210,答:甲数是210,乙数是21.故答案为:210,21.点评:解答本题的关键是根据题意找出甲数与乙数的倍数关系,再利用和倍问题的公式{和÷(倍数+1)=小数,小数×倍数=大数,(或者和﹣小数=大数)}解决问题.3.(5分)如图,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;…,按此规律,当n=5时,图中有61个圆.考点:数与形结合的规律.专题:探索数的规律.分析:所构成的图形是轴对称图形,沿中间的一列分开,两边对称,最左边的一行是n个圆,后面每一列比前面的每一列多一个,直到中间的一列,中间的一排是2n﹣1个.中间的后面的每排依次减少.解答:解:最左边的一列是n,第二列是n+1,第三列是n+2,…,第n列是2n﹣1;第n列以后,各列的个数分别是2n﹣2,2n﹣3…,n.则第n个图形的圆的个数是:n+(n+1)+…(2n﹣1)+(2n﹣2)+(2n﹣3)+…+n=2[n+(n+1)+(n+2)+…+(2n﹣2)]+(2n﹣1)=(n﹣1)[n+(2n﹣2)]+(2n﹣1)=3n2﹣3n+1.所以当n=5时,图中有圆:3×52﹣3×5+1,=3×25﹣15+1,=75﹣15+1,=61(个),答:当n=5时,图中有圆61个.故答案是:61.点评:本题考查了图形的变化规律,可以用圈数表示为:1+6×1+6×2+6×3+…+6×(n﹣1))解决问题.4.(5分)54个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾,如果游戏开始时,小亮站在队首,当小亮再次站在队首时,已经做了9轮游戏.考点:排队论问题.专题:数学游戏与最好的对策问题.分析:54和12的最小公倍数为108,也就是说共移动了108人次,做了108÷12=9轮游戏.解答:解:54=2×3×9,12=2×2×3,因此54和12的最小公倍数为:2×2×3×9=108;做了:108÷12=9(轮).答:已经做了9轮游戏.故答案为:9.点评:此题的关键是运用求最小公倍数的方法解决问题,5.(5分)有一列数,第1个是1,从第2个数起,们每个数比它前面相邻的数大3,最后一个数是100,将这列数相乘,则在计算结果的末尾中有9个连续的零.考点:数字问题.专题:综合填空题.分析:由于从第2个数起,每个数比它前面相邻的数大3,则此数列为1,4,7,10,…100.则一个它们积的末尾有多个数零是由其中因数2与5的个数决定的,而其中因数2的个数一定大于5个的个数,因此只要找出1×4×7×10×…×100中因数的个数即可.这一数列的数可表示为1+3(n﹣1),则5的倍数有10,25,40,55,70,85,100共7个,由于25=5×5,25和100是25的倍数,则1×4×7×10×…×100中共有7+2=9个因数5,则计算结果的末尾中有9个连续的零.解答:解:积的末尾有多个数零是由其中因数2和5的个数决定的,由题意可知,这一数列中5的倍数有10,25,40,55,70,85,100共7个,由于25=5×5,25和100是25的倍数,则1×4×7×10×…×100中共有7+2=9个因数5.所以计算结果的末尾中有9个连续的零.故和案为:9.点评:明确的末尾有多个数零是由其中因数2与5的个数决定的,并根据数列的特点求出这一数列中因数5的个数是完成本题的关键.6.(5分)公元纪年法中,每四年含一个闰年,每个平年有365天,每个闰年有366天,2012年是闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是2017年.考点:平年、闰年的判断方法.分析:一星期有7天,这是定数,闰年有366天,平年有365天,366÷7=52个…2天,365÷7=52个…1天,只要余数加起来是7,就是这年的元旦是星期日.解答:解:2012年366天,是52个星期余2天,然后是3个平年52个星期余1天,接着是闰年,又余2天,2+1+1+1+2,即经过所以5年后即,2012+5=2017年的元旦是星期日;故答案为:2017.点评:本题主要考查年月日的知识,注意一星期有7天,闰年是52个星期余2天,平年是52个星期余1天.7.(5分)在平面上有7个点,其中任意3个点都不在同一条直线上,如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形.考点:组合图形的计数.专题:操作、归纳计数问题.分析:根据两点确定一条线段即可计算出线段的条数.顺次连接不在同一直线上的三个点可作1个三角形;当有4个点时,可作4个三角形;当有5个点时,可作10个三角形;依此类推当有n个点时,可作个三角形.解答:解:在平面上有7个点,其中任意3个点都不在同一条直线上,连接其中任意两个点,最多能画6+5+4+3+2+1=21条线段.以这些线段为边,最多能构成=35个三角形.答:最多可以得到21条线段;以这些线段为边,最多能构成35个三角形.故答案为:21,35.点评:数三角形的个数,可以按照数线段条数的方法,如果平面上有n个点,其中任意三点都不在同一条直线上,那么就有条线段,得到个三角形.8.(5分)如图所示,在一个圆周上放了1枚黑色的围棋子和2012枚白色的围棋子.若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下503枚白子.考点:哈密尔顿圈与哈密尔顿链.专题:综合填空题.分析:从黑子的右面第一枚白子开始编号为1,2,3,…2012,则黑子为2013;从黑子计数,按顺时针方向,每隔1枚,取走1枚,首先取走的依次是2、4、6、8…2012号,到此时剩余奇数号;继续取,取走的依次是1、5、9、…4n﹣3号(n=1、2、3…),因为2013=4×504﹣3,所以2013此时被取走;余下的是3,7,11,15,…2011,规律是4n﹣1,n=1,2,3…,求出3到2011以4为等差的等差数列的个数,即可得解.解答:解:(2011﹣3)÷4+1=503(枚),答:若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下503枚白子.故答案为:503.点评:此题考查了哈密尔顿圈与哈密尔顿链问题,锻炼了学生的认真分析问题的能力.9.(5分)正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有10个角,最少有7角.考点:图形的拆拼(切拼).专题:立体图形的认识与计算.分析:把正方体木块被砍掉了一个角,如果如果砍切点在组成这个顶点的这三条棱上,将会增加一个三角形,即增加三个顶点,剩余部分用原来的正方体的8个顶点减去一个顶点,再加新增加的3个顶点,此时剩余部分角最多;如果砍切点在另外三个角(顶点)上,这时将比原正方体减少一个角(顶点).据此解答.解答:解:正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有10个角,最少有7角;故答案为:10,7.点评:此题是考查图形的切拼问题,关键是砍切点的选取.最好是动手操作一下,既可解决问题,又锻炼了动手操作能力.10.(5分)如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是20 cm2.考点:重叠问题.专题:平面图形的认识与计算.分析:因为重叠部分是一个长方形,所以∠1=∠3,2=∠1,可得∠2=∠3,因此AB∥EF,又因为AB=EF,所以四边形ABEF是平行四边形,那么直角△ACB和△EDF的面积都与四边形ABEF等底等高,直角△ACB 和△EDF的面积都是四边形ABEF的面积的一半,那么四边形ABEF的面积是:10×2=20cm2.解答:解:根据分析可得:直角△ACB和△EDF的面积都是四边形ABEF的面积的一半,那么四边形ABEF的面积是:10×2=20(cm2).故答案为:20.点评:本题关键是能够看出四边形ABEF是平行四边形,然后利用等底等高的三角形与平行四边形的面积关系解答即可.11.(5分)某次数学竞赛以后52 人参加,共考5道题,每道题做错的人数统计如下:题号 1 2 3 4 5做错人数 4 6 10 20 39如果每人都至少做对1道题,只做对1题有7人,5道题都做对的有6人,只做对2道题和只做对3道题的人数相同,那么做对4道题的有31人.考点:容斥原理.专题:传统应用题专题.分析:总共有52×5=260道题,做错的题目数为4+6+10+20+39=79道,所以做对的题目为260﹣79=181道,又只做对1题有7人,5道题都做对的有6人,则做对2道题、3道题、4道题的题目总数为181﹣7﹣5×6=144道,由于做对2道题和3道题的人数一样多,即可以看作是一样的人数做对了5道题,由此可设做对四道题的有x人,只做对2道题和只做对3道题的一样的人数为y,则4x+5y=144①,又只做对1题有7人,5道题都做对的有6人,则做对2、3、4道题的共有x+2y=52﹣1﹣7人②,整理①②即能得出做对道题的有多少人.解答:解:做对的题目有:260﹣(4+6+10+20+39)=60﹣79,=181(道);做对做对2道题、3道题、4道题的题目总数为181﹣7﹣5×6=144道,设做对四道题的有x人,只做对2道题和只做对3道题道的一样的人数为y,即共做对了(2+3)y题,可得:4x+5y=144①,x+2y=52﹣1﹣7=39②,由②得:x=39﹣2y,由①得:4(39﹣2y)+5y=144,156﹣8y+5y=144,3y=12,y=4.则x=39﹣2×4=31.即做对4道题的有31人.故答案为:31.点评:根据容斥原理求出共做对多少道题的基础上通过设未知数,根据人数与做各题的数量列出等量关系式进行分析是完成本题的关键.12.(5分)在长、宽、高分别是10cm、10cm、6cm的长方体的容器中盛有深4cm的水,在向容器中放入棱长5cm 的正方体铁块,则水深变为 5.25cm.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先根据长方体的容积(体积)公式:v=abh,求出容器中水的体积是多少立方厘米,根据正方体的体积公式:v=a3,再求出棱长5厘米的正方体的体积,用容器中水的体积加上这个正方体铁块的体积,除以容器的底面积就是现在水的深(高).由此列式解答.解答:解:容器中水的体积:10×10×4=400(立方厘米),正方体铁块的体积:5×5×5=125(立方厘米),水深:(400+125)÷(10×10),=525÷100,=5.25(厘米);答:水深5.25厘米.故答案为:5.25.点评:此题属于长方体、正方体的容积(体积)的实际应用,长方体的高=体积÷底面积,关键是求出容器中水和铁块的体积之和.再根据体积除以底面积等于高,列式解答.二.解答题:(每小题15分共60分)每题都要写出推算过程.13.(15分)将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.考点:图形划分.专题:几何形体的分、合、移、补的问题.分析:(1)通过观察,图中小正方形的个数是36个,由正方形的面积公式,面积=边长×边长,6×6=36,所以拼成的正方形的边长是6;(2)如下图所示,第一行右边留两个,向下分割,沿水平向左两个小正方形边长分割;第二行右边留4个向下分割,沿水平向左两个小正方形边长分割,第三行,留6个向下分割,分割后,左部分向右两个,向上一个小正方形,即可得解.解答:解:(1)6×6=36,答:拼成的正方形的边长是6;(2)点评:此题考查了图形划分,锻炼了学生的空间想象力和几何直观.14.(15分)甲乙丙三辆汽车从A地去B地,甲车的速度是60千米/时,乙车的速度是48千米/时,与此同时,一辆卡车从B地去A地,卡车在出发后6小时、7小时、8小时的时刻分别与甲乙丙三车相遇,求:(1)甲车与卡车相遇时,甲车与乙车的距离;(2)求卡车的速度;(3)求丙车的速度.考点:相遇问题.专题:综合行程问题.分析:(1)甲车与卡车相遇时行了6小时,由于甲乙两车的速度差为每小时60﹣48=12千米,则此时甲乙两车相距12×6=72千米;(2)由于卡车与甲车相遇时甲乙两车相距72千米,即此时卡车与乙车相距也是72千米,由于卡车又经过了7﹣6=1小时与乙车相遇,则卡车的速度为每小时72÷1﹣48=24千米;(3)由于卡车与乙车相遇时,三车已行了7小时,此时乙车已行48×7=336千米,又过了8﹣7=1小时,卡车与丙车相遇,从与乙车相遇到与丙车相遇,卡车行了24千米,即丙车在8小时内行了336﹣24=312千米,则丙车的速度为每小时:312÷8=39千米.解答:解:(1)(60﹣48)×6=12×6,=72(千米).答:甲车与卡车相遇时,甲车与乙车的距离为72千米.(2)72÷1﹣48=72﹣48,=24(千米/小时).答:卡车每小时行24千米.(3)[48×7﹣24×(8﹣7)]÷8=[336﹣24]÷8,=312÷8,=39(千米/小时).答:丙车每小时行39千米.点评:首先根据速度差×行驶时间=路程差求出甲车与卡车相遇时,甲车与乙车的距离,进而求出卡车的速度是完成本题的关键.15.(15分)某快递公司对从A地发往B地的快件的运费收费标准是:快件重量不超过10千克,每千克收费8元;如果超过10千克,超出部分按每千5元收费,已知甲乙二人向该公司各投递一个快件,甲比乙多交了34元,求甲乙的快件的重量.(甲乙的快件的重量都是整千克数)考点:整数、小数复合应用题.分析:因为34不是8的倍数,也不是5的倍数,所以多付的34元有8元每千克的,也有5元每千克的;然后找出34可以是几个5与几个8的和,由此求出甲比乙多的重量,进而求出甲乙原来的重量.解答:解:34元=8元×3千克+5元×2千克;那么甲比乙多的分成2部分:10千克以上的有2千克;10千克以下的有3千克;甲的重量就是:10+2=12(千克);乙的重量就是:10﹣3=7(千克);答:甲的快件的重量是12千克,乙的重量是7千克.点评:本题关键是根据重量都是整千克数,把34分解,找出有几个8元和几个5元即可求解.16.(15分)已知,,,各代表一个自然数,观察下面三个算式呈现的规律:+﹣=6﹣+=3××=140求(+)÷的值.考点:简单的等量代换问题.专题:消元问题.分析:我们把图变成字母,=a,=b,=c,=d,所以a+d﹣c=6,c﹣b+a=3,d×a×c=140,求(d+c)÷b值是多少.解答:解:因为d×a×c=140,140=1×10×14,140=2×7×10,140=4×5×7,又因a+d﹣c=6,所以a+d=6+c,所以只有140=4×5×7,适合题意.在4、5、6、7,所以①c=5,a=4,d=7;②c=5,a=7,d=4.当①c=5,a=4,d=7时.c﹣b+a=3,5﹣b+4=3,9﹣b=3,b=6;则(d+c)÷b值是:=(7+5)÷6,=2;当②c=5,a=7,d=4;c﹣b+a=3,5﹣b+7=3,12﹣b=3,b=9,则(d+c)÷b值是:=(4+5)÷9,=9÷9,=1;答:(+)÷的值是2或1.点评:本题是一道复杂的等量代换,考查了学生的等量的代换的意识.。

第19届希望杯全国数学邀请赛高一(一试)试题(含答案)

第19届希望杯全国数学邀请赛高一(一试)试题(含答案)

第十九届“希望杯”全国数学邀请赛高一 第一试 (第二类)2008年3月16日 上午8:30至10:00校名________________ 班_________ 姓名__________ 辅导老师_________ 成绩_____一、选择题(每小题4分, 共40分)以下每题的四个选项中, 仅有一个是正确的,请将你认为正确答案的英文字母写在下面的表格中。

1. 设全集{1,3,5,7}U =, 集合{3,5},A ={1,3,7}B =, 则()U A C B 等于( ) (A ){5} (B) {3,5} (C) {1,5,7} (D) ∅2. 函数()lg(21)f x x =+的定义域为( ) (A )R (B) 1(,)2-∞-(C) 1[,)2-+∞ (D) 1(,)2-+∞3. 已知定义在R 上的函数()f x 的图像是连续的,且其中的四组对应值如右表, 那么在下列区间中,函数()f x 存在零点的是 ( )(A )(1,2) (B) {3,5} (C) {1,5,7} (D) ∅ 4. 函数1()2xy =与函数21log ()y x=的图像 ( )(A )有且只有1个公共点, 且在直线y x =上。

(B )有且只有1个公共点, 且不在直线y x =上。

(C )有且只有3个公共点, 且有1个在直线y x =上。

(D )没有公共点.5. 555的五次方根是( ) (A )5(51)5- (B )545 (C )455 (D 56. Let ⊗ be the binary operator on positive intergers defined by ba b a ⊗=. Consider the following identities:①a b b a ⊗=⊗ ② ()()a b c a b c ⊗⊗=⊗⊗③()()()a b c a b a c ⊗+=⊗+⊗ ④()()()a b c a c b c +⊗=⊗+⊗(A) ① and ② are true (B) ③and ④ are true (C) ② is true (D) None is true7. 若三棱锥的三个侧面的斜高相等, 棱锥的顶点在底面所在的平面内的射影在底面三角形的内部, 则该射影是底面三角形的 ( )(A )外心 (B )内心 (C ) 垂心 (D ) 旁心8. 实验室里有一架不等臂天平: 同学甲说: 分别把所称物体放在左右两个盘中各称一次, 则两次称得的质量的平均数就等于被称物体的真实质量; 同学乙说: 将一个物体放到左盘称得的质量是1千克, 将另一个物体放到右盘中, 称得的质量也是1千克, 则这两个物体的质量之和的真实值是2千克。

高一希望杯hope1-2-17

高一希望杯hope1-2-17

橙子奥数工作室 教学档案第十七届“希望杯”全国数学邀请赛高一 第2试一、选择题(每下题4分,共40分)1.M 、N 为两个非空实数集,定义:M + N ={p + q | p ∈M ,q ∈N },若M = {2,3,5,7},N = {1,2,4,8},则M + N 的元素的个数是A 、10B 、11C 、12D 、132.α为第3象限角,则3α不可能在A 、第1象限B 、第2象限C 、第3象限D 、第4象限3.下列函数中在(0,+∞)上递减的函数是A 、2(1)y x =−− B 、121log y x = C 、2|1|y x =− D 、12x y =4.151()4a =,141()5b =,224log 5log b c a =,则a 、b 、c 的大小关系是 A 、a < b < c B 、b < a < c C 、c < b < a D 、b < c < a5.二次函数2y ax bx c =++与x 轴交于A 、B 两点,此抛物线的顶点为C ,且△ABC 是等边三角形,则 24b ac −的值为A 、9B 、12C 、16D 、不确定6.a 、b 、c 均属于区间(0,2π),且满足cos a a =,sin(cos )b b =,cos(sin )c c =,则A 、a < b < cB 、a < c <b C 、b < a <c D 、b < c < a 7.某校组织学生参观a 、b 、c 、d 四个地方,规定:去a 就不去b ,去b 就去d ,去c 就不去d ,不去c就去b .那么下列叙述错误的是 A 、不可能去b 又去c B 、去b 的人与去d 的人相同 C 、去a 就去c D 、去d 就去a 8.The coefficient of the term x 19 in the polynomial expansion of (1)(2)(3)(19)(20)x x x x x −+−−+" is A 、−210 B 、10 C 、20 D 、2109.方程22352(1)1x x x x +−−−=的整数解有几个A 、2B 、4C 、5D 、610.方程log x a a x =的根有几个A 、1B 、0或1C 、0或1或2D 、0或1或2或多于2二、填空题(每小题4分,共40分)11.若3()f x x =,且约定()(1)()f x f x f x Δ=+−,2()[()]f x f x Δ=ΔΔ,32()[()]f x f x Δ=ΔΔ,……,则4()f x Δ=_____.12.There are 15 students in a class. In a mathematics test they have scored an average of 94 marks. The maximum possible score of the test is 100 marks. Then the minimum possible score that any of these students could get is __________ marks.13.(,)42ππα∈,log cos (sin )x παα=,log sin (cos )y παα=,log sin (sin )z παα=,则x 、y 、z 的大小关系是_____. 14.1x y e −=对应的图象为F ,图象F’与F 关于(−3,2)中心对称,则F’的函数表达式为__________.15.A ={23|,5n nn N n N +∈∈},将A 中所有元素从小到大依次排列:a 1、a 2、a 3、…,则a 1 + a 2 + a 3 + … + a m =__________.16.f (x )对于任意的实数x 、y 都满足22()()2[()]f x y f x f y +=+,f (1)≠0,则f (2006) = __________.17.1()(2x f x =,则1(1)3f x −−>的解集是__________.18.2()31f x x x =−+,则f [f (x )] = x 的实数根是__________.19.如由图,用边长是1的正三角形拼成正六边形,六边形的边长是n 时边长是1的三角形个数是S n ,则S 3 = __________,S n = _____.20.以下8个数据:a 1=3.57,a 2=3.61,a 3=3.65,a 4=3.71,a 5=3.79,a 6=3.82,a 7=3.86,a 8=3.99,它们的和为30,若整数A i (18i ≤≤)的和仍是30,则“误差”||i i A a −的最大值M 的最小值为__________.三、解答题(第21题10分,第22、23题各15分,共40分)21.已知函数21()26(0)f x x x a a=−−>在区间[−2,3]上最大值为6,最小值为−3,求a 、b 的值. 22.(1)求证1sin cos [sin()sin()]2x y x y x y =++−. (2)△ABC 中,30A B C ≥≥≥°,求cos sin cos 222A B C 的最大值和最小值. 23.试确定所有正整数k 使集合P = {2006,2006 + 1,2006 + 2,…,2006 + k }分成2个不相交子集A 和B ,且A 元素之和等于B 中元素的和. (试题提供:祖正石 录入:成俊锋)。

1994-2010年高一希望杯数学竞赛汇编 2004.pdf

1994-2010年高一希望杯数学竞赛汇编 2004.pdf

第十四届“希望杯”全国数学邀请赛 高一 第1试 一、选择题(每小题5分,共50分) 1.设,则 A.B.C.D. 2.方程的解的个数是 A.4B.3C.1D.0 3.已知四边形ABCD在映射:→作用下的象集为四边形。

四边形ABCD的面积等于6,则四边形的面积等于 A.9B.C.D.6 4.已知,则“”是“”的 A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 5.图2是函数的图象,由图象可以看出 A.,B., C.,D., 6.设,,,,则a,b,c,d的大小关系是 A.B. C.D. 7.?An equilateral triangle(等边三角形)and a circle have the same center. The area of the triangle not in the circle equals the area of the circle not in the triangle. If the radius of the circle is 2, then the length of a side of the triangle is A.B.C.D. 8.已知数列中,,,且对大于2的正整数,总有,则等于 A.B.C.D.3 9.等比数列中,,公比,用表示数列的前项之积,则中最大的是 A.B.C.D. 10.2002年9月28日,“希望杯”组委会第二次赴俄考查团启程,途径哈巴罗夫斯克和莫斯科,两地航程约9000千米,往返飞行所用的时间并不相同,这是因为在北半球的高纬度地区,有股终年方向恒定的西风,人们称它为“高空西风带”,已知往返飞行的时间相差1.5小时,飞机在无风天气的平均时速为每小时1000千米,那么西风速度最接近 A.60千米/小时B.70千米/小时 C.80千米/小时D.90千米/小时 二、A组填空题(每小题5分,共50分) 11.函数,其中,则方程的解集是_______。

小学奥数“希望杯”全国数学邀请赛报名通知

小学奥数“希望杯”全国数学邀请赛报名通知

小学奥数“希望杯”全国数学邀请赛报名通知教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.这篇关于_年小学奥数“希望杯”全国数学邀请赛报名通知,是小编特地为大家整理的,希望对大家有所帮助!一、比赛宗旨鼓励小学生努力学习和进步,培养他们学习数学的兴趣,提高他们的科学思维素质,为小学数学教研人员提供新的信息和资料,促进小学数学教育水平的提高。

二、考试时间第一试:时间:_年3月_日(星期日) 上午8:30至_:_。

第二试:时间: _年4月_日(星期日) 上午9:_至_:_。

三、报名流程【报名对象】小学四,五,六年级的学生。

【报名费】25元【报名流程】1、请您从报名之日起到各教学点前台进行登记报名,后续另行通知领取注册卡,请留下正确的手机号并关注后续提醒。

2、领取注册卡后,请家长登陆“巨人竞赛考试系统”注册学员信息,在“竞赛管理”中先“激活考试”,再在“正在进行的考试中”选择相应年级的考试,并打印准考证。

注册时间以注册卡上为准。

【报名截止时间】第一试:_年_月_日-_年_月26日说明:按年级分别命题,每个年级都进行两试。

所有报名参赛的学生都参加第一试,其中成绩优秀者参加第二试。

未参加第一试者,不允许参加第二试。

第一试以考查教学进度内现行小学数学课本中应掌握的内容为主,对知识和能力的考查并重。

第二试试题内容同第一试,但能力上比第一试有更高要求。

满分为_0分。

报名地点:巨人学校各前台咨询电话:4_8883456 5_48371通知领取注册卡后,请按照步骤注册选择考点!_年小学奥数“希望杯”全国数学邀请赛报名通知.到电脑,方便收藏和打印:。

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是

14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷

3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

第13届“希望杯”全国数学邀请赛高一第一试

第13届“希望杯”全国数学邀请赛高一第一试

第十三届“希望杯”全国数学邀请赛高一 第1试一.选择题1. 已知}3|{},4|{2<=>=x x N x x M ,则下列等式中正确的是---------------------------( ) (A))}2|{-≥=x x N M (B)R N M = (C)}3|{<=x x N M (D)R N M =2.设x x g -=1)(,且当1≠x 时,x x x g f -=1)]([,则)21(f 等于-------------------------( ) (A)2 (B)1 (C)31 (D)0 3.设)()(),()(,3)()(),5()(4321x f x f x f x f x f x f x f x f --=-=-=+=,则下列表述中正确的是---------------------------------------------------------------------------------------------------------( )(A))(1x f 的图象是由)(x f 的图象往右平移5个单位得到(B))(2x f 的图象是由)(x f 的图象往上平移3个单位得到(C))(3x f 是偶函数(D))(4x f 的图象是将)(x f 的图象绕原点旋转180得到4.已知x x x f 2001)(2-=,若n m n f m f ≠=),()(,则)(n m f +等于-------------------( ) (A)2001 (B)2001- (C)0 (D)1000.55.已知数列}{n a 满足11,211+-==+n n a a a ,则2001a 等于-------------------------------------( ) (A)23- (B)31- (C)1 (D)2 6.命题:P 有些三角形是直角三角形,则命题P 为-------------------------------------------------( )(A)有些三角形不是直角三角形 (B)有些三角形是锐角或钝角三角形(C)所有三角形都不是直角三角形 (D)不是三角形就不是直角三角形7.Let f be a function such that )()()(y f x f y x f ⋅=+ for any real numbers x and y. If161)1(=f ,then the value of )1(-f is--------------------------------------------------------------------( ) (A)16 (B)161 (C)161- (D)16- 8.设)sin(cos )(),cos(sin )(x xg x x f ==,则( )(A))(x f 为偶函数,)(x g 为奇函数 (B) )(x f 为奇函数,)(x g 为偶函数(C) )(x f 为偶函数,)(x g 为偶函数 (D) )(x f 为奇函数,)(x g 为奇函数9.已知集合}032|{},0)152(log |{2223≤--=>--=a ax x x B x x x A ,若∅≠B A ,则实数a 的取值范围是( ) (A))0,34(- (B)),34()4,(+∞--∞ (C)),2()34,(+∞--∞ (D)),2()0,34(+∞- 10.在以下关于向量的命题中,不正确的是( )(A)若向量),(y x =,向量),(x y -=,则⊥(B)四边形ABCD 是菱形的充要条件是=且||||=(C)点G 是ABC ∆的重心,则0=++(D) ABC ∆中,和的夹角等于A - 180二、A 组填空题11.公式βαβαβαtan tan 1tan tan )tan(⋅-+=+成立的条件是_________________________. 12.若2523παπ<<,且32sin =α,则α2在第_____________象限. 13.函数⎪⎩⎪⎨⎧-<+-≥+=1,111,1x x x x y 的反函数是_______________________________. 14.已知数列}{n a 中,131+=+n n n a a a ,且719=a ,则=2002a _____________. 15.不等式x x x 13512≤+的解集为________________________________.16.已知函数5)3(42)(2+-+=x a ax x f 是在区间)3,(-∞上的减函数,则a 的取值范围是________________________.17.在ABC ∆中,AB CH S AB ABC ⊥==∆,22,3于H ,HB AH 2=,则与B ∠的两边相切且圆心在CH 上的圆的半径等于___________________.18.使不等式22115+>-+x x x 成立的x 的正整数值是__________________. 19.Let a and b the two real roots of the quadratic equation 0)43()1(22=+++--k k x k x ,where k is some real number. The largest possible value of 22b a + is ________________________.20.用)(n S 表示自然数n 的数字和,例如18909)909(,101)10(=++==+=S S ,若对任何N n ∈,都有x n S n ≠+)(,满足这个条件的最大的两位数x 的值是_______________.三、B 组填空题21.若等比数列}{n a 是递增数列,则首项1a 及公比q 应满足的条件是_______________.22.函数)1,0()(≠>=a a a x f x 在区间]2,1[上的最大值比最小值大3a ,则=a ________. 23.已知函数R x x x x f y ∈++-==,182)(2,对于R t ∈,在区间]2,[+t t 上,将函数)(x f 的最大值表示为t 的函数)(t g ,则=)(t g ________________________.24.设函数x y 6.03-=与函数x y 6.0=的图象交于点),(111y x P ,对任意N n ∈且1>n ,将过点)3,0(和点)0,(1-n x 的直线与直线x y 6.0=的交点的坐标记为),(n n n y x P ,则点321,,P P P 的坐标依次为__________________________________,点2002P 的坐标为_______.25.若抛物线c bx ax y ++=2过点)4,0(-,且与直线x y =的交点A 、B 关于直线x y -=对称,又24||=AB ,则=a _________,=b ___________,=c _________________.。

“希望杯”全国数学邀请赛简介

“希望杯”全国数学邀请赛简介

“希望杯”全国数学邀请赛简介 这⼀邀请赛⾃1990年以来,已经连续举⾏了⼆⼗⼆届。

22年来,主办单位始终坚持⽐赛⾯向多数学校、多数学⽣,从命题、评奖到组织⼯作的每个环节,都围绕着⼀个宗旨:激发⼴⼤中学⽣学习的兴趣,培养他们的⾃信,不断提⾼他们的能⼒和素质。

这⼀活动只涉及初⼀、初⼆、⾼⼀、⾼⼆四个年级,不涉及初三、⾼三,不与奥赛重复,不与中考、⾼考挂钩,不增加师⽣负担,因此受到⼴⼤师⽣的欢迎。

该竞赛⼀直受到原国家教委的肯定,并被列⼊原国家教委批准的全国性竞赛活动的名单中,同时愈来愈多的数学家、数学教育家对邀请赛给予热情的关⼼和⽀持。

到第⼗届为⽌,参赛城市已超过500个,参赛学⽣累计598万。

“希望杯”全国数学邀请赛已经成为中学⽣中规模、影响最⼴的学科课外活动之⼀。

据介绍,该竞赛活动分两试进⾏。

第⼀试(每年三⽉进⾏)以各地(省、市、县、〔区〕、学校)为单位组织参赛学⽣,在全国各参赛学校同时进⾏,各测试点按命题委员会下发的评分标准进⾏阅卷、评分,从中按七分之⼀的⽐例按成绩择优选拔参加第⼆试的选⼿。

第⼆试(每年四⽉进⾏)由当地《数理天地》编委分会或地、市级教研室或教育学院、教科所、教师进修学校统⼀组织,测试结束后,各测试点将试卷密封,向组委会挂号寄出,由命题委员会阅卷,从中按⼋分之⼀的⽐例按成绩评定⼀、⼆、三等奖,分别授予⾦、银、铜奖牌及获奖证书。

对组织⼯作做得出⾊的地区或学校,组委会颁发“希望杯”数学邀请赛组织奖。

⽇本国算数奥林匹克委员会对此项赛事⾮常关注,该委员会事务局局长若杉荣⼆先⽣专程来华同邀请赛组委会洽谈参赛事宜,并从1996年开始,已连续三年组织⽇本部分中学⽣参加了竞赛活动,由此开创了我国社会团体举办同类竞赛⾛出国门的先例。

近年来,美国、德国的有关组织也与组委会联系合作事宜。

希望杯杯徽 ★圆形,表⽰⼴阔的天空。

★英⽂hope(希望)形如⼀只展翅飞翔的鸟。

喻义:“希望杯”全国数学邀请赛为⼴⼤的青少年在科学思维能⼒上的健康发展开辟了⼀个⼴阔的空间,任他们⾃由翱翔。

第5届“希望杯”全国数学邀请赛高一第1试

第5届“希望杯”全国数学邀请赛高一第1试

第五届“希望杯”全国数学邀请赛(高一)第一试班级 姓名一、选择题 1、若11)(+-=x x x f 的定义域为A ,)]([x f f 的定义域为B ,则-----------------( ) (A )R B A = (B )B A ⊃ (C )B A = (D )B A ⊆2、已知21y y y -=,其中1y 与2x 成正比例,2y 与x 成反比例,并且当1=x 和2=x 时都有21=y ,则y 与x 之间的关系是----------------------------------------( )(A )xx y 1832-= (B )2183xx y +=(C )1832x x y +=(D )xx y 1832+=3、若函数)(log 23a ax x y -+=的定义域为R ,则实数a 的取值范围是---------( )(A )R (B )+R(C )),0()4,(+∞--∞ (D ))0,4(-4、已知函数||)(a x x f +=,当3≥x 时为增函数,则--------------------------------( )(A )3=a (B )3-<a (C )3-=a (D )3-≥a5、函数|||log |)(2x x f =的图象与直线π=y 的交点的个数是-------------------( ) (A )1 (B )2 (C )3(D )46、定义域是全体实数的函数)(x f ,对于常数a 都有)()(x a f x f -=,那么这个函数的图象的对称轴是直线-----------------------------------------------------------------( )(A )a x = (B )2ax = (C )a x 2= (D )2ax -=7、关于x 的一元函数)0(1≠-+=k k kx y 的图象与坐标轴围成的三角形的面积是2,则k 值的集合是-------------------------------------------------------------------------( )(A )}223,223,1{+--(B )}0,1{-(C )}32,223{++(D )∅8、幂函数αx y =,对于给定的有理数α,其定义域与值域相同,则此幂函数-( )(A )一定是奇函数(B )一定是偶函数(C )一定不是奇函数(D )一定不是偶函数9、23)(-=x x f ,则)]0([1f f -的值是---------------------------------------------( )(A )98(B )8- (C )0(D )81-10、长方体ABCD-A 1B 1C 1D 1各棱所在直线中,与直线AC 1成异面直线的直线的条数是-------------------------------------------------------------------------------------------( )(A )4 (B )6 (C )8 (D )10二、A 组填空题11、函数)927(log )1(x x y -=+的定义域为 。

第20届全国希望杯数学邀请赛高一数学第二试试题及答案

第20届全国希望杯数学邀请赛高一数学第二试试题及答案

第20届全国希望杯高一数学邀请赛第二试(第1类)一、选择题(每题4分,40分)1、设的定义域为D ,又()()().h x f x g x =+若(),()f x g x 的最大值分别是M ,N ,最小值分别是m ,n ,则下面的结论中正确的是( )A .()h x 的最大值是M+NB .()h x 的最小值是m +nC .()h x 的值域为{|}x m n x M N +≤≤+D .()h x 的值域为{|}x m n x M N +≤≤+的一个子集2、方程log (0,1)x a a x a a -=>≠的实数根的个数为( )A .0B .1C .2D .33、已知函数32()1(0)f x ax bx cx a =++-<,且(5)3f =,那么使()0f x =成立的x 的个数为( )A .1B .2C .3D .不确定的4、设22{(,)|S x y x y =-是奇数,,}x y R ∈,22{(,)|sin(2)sin(2)T x y x y ππ=-= 22cos(2)cos(2),,}x y x y R ππ-∈,则S ,T 的关系是( )A .S ≠⊂TB .T ≠⊂S C .S=T D .S T =Φ 5、定义集合M,N 的一种运算*,:1212*{|,,}M N x x x x x Mx N ==∈∈,若{1,2,3}M =,N={0,1,2},则M*N 中的所有元素的和为( )A .9B .6C .18D .166、关于x 的整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( )A .方程没有整数根B .方程有两个相等的整数根C .方程有两个不相等的整数根D .不能判定方程整数根的情况7、设x 是某个三角形的最小内角,则cos cos sin 22x y x x =-的值域是( ) A.( B.( C. D. 8、已知e的大小关系是( )A.sin tan <<< B.sin tan <<< C.<<< D .<<<9、()f x 是定义在R 上的奇函数,且(2)f x -是偶函数,则下列命题中错误的是( )A .()f x 的图像关于x =2对称B .()f x 的图像关于点(4,0)-对称C .()f x 的周期为4D .()f x 的周期为810、某航空公司经营A,B,C,D 四个城市之间的客运业务,其中部分单程机票的价格如下: A,B 区间:2000元;A,C 区间:1600元;A,D 区间:2500元;B,C 之间:1200元;C,D 区间:900元。

高中希望杯数学竞赛试题详解(1-10题)

高中希望杯数学竞赛试题详解(1-10题)

题1 已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 .(第十一届高二第一试第11题)解法1 b b a a b b a x ++=-+=,ab b aa b b y -+=--=.y x a b b b b a b a <∴-+>++∴<<,,0 .解法2bb a ab b a b b b b a y x ++-+=---+=,y x y x a b b a <∴<∴->+,1, . 解法3a ab b a b b a ab b b b a y x -+-++=----+=-1111 =y x yx a a b b a <∴>-∴>--+,011,0.解法4 原问题等价于比较a b b a -++与b 2的大小.由,2)(222y x y x +≥+得b a b b a a b b a 4)(2)2=-++≤-++(,b a b b a 2≤-++∴. y x b a b b a a b b a <∴<-++∴-≠+,2, .解法5 如图1,在函数x y =的图象上取三个不同的点A(a b -,a b -)、B (b ,b )、C (b a +,b a +). 由图象,显然有AB BCk k <,即)()(a b b ab b b b a b b a ----<-+-+, 即a b b b b a --<-+,亦即y x <.解法6 令()f t a t t =+-,tt a at f ++=)( 单调递减,而a b b ->,)()(a b f b f -<∴,即a b b b b a --<-+,y x <∴.解法7 考虑等轴双曲线)0(22>=-x a y x . 如图2,其渐近线为x y =.在双曲线上取两点 A (b ,a b -)、B (a b +,b ). 由图形,显然有1>AB k ,即1>-+--bb a ab b ,从而y x <.ABCxyO b-a b b+a图1ABOxyb a a b +解法8 如图3.在Rt △ABC 中,∠C 为直角,BC=a ,AC=b ,BD=b ,则AB=b a +,DC=a b -. 在△ABD 中,AB-AD<BD ,即-+b a AD b <,从而-+b a AD-DC<-b DC ,即a b b b b a --<-+,故y x <.评析 比较大小是中学代数中的常见内容.其最基本的方法是作差比较法、作商比较法、利用函数的单调性.解法1通过分子有理化(处理无理式常用此法)将问题转化成比较两个分母的大小.解法2直接作商与1比较大小,顺理成章,也很简洁.要注意的是:0,>b a 时,1a a b b >⇔>;0,<b a 时,1aa b b>⇔<.此题直接作差难以确定差与0的大小,解法3对y x ,的倒数作差再与0比较大小,使得问题顺利获解,反映了思维的灵活性.解法6运用函数的单调性解题,构造一个什么样的函数是关键.我们认为构造的函数应使得y x ,恰为其两个函数值,且该函数还应是单调的(最起码在包含y x ,对应的自变量值的某区间上是单调的).解法5与解法7分别构造函数与解几模型,将y x ,的大小关系问题转化成斜率问题加以解决,充分沟通了代数与几何之间的内在联系,可谓创新解法.解法8充分挖掘代数式的几何背景,构造平面图形,直观地使问题得到解决,这也是解决大小关系问题和证明不等式的常用方法.有人对此题作出如下解答:取,2,1==b a 则12112,23123+=-=+=-=y x ,322+>10+>,.,121231y x <∴+<+可再取两组特殊值验证,都有y x <.故答案为y x <. 从逻辑上讲,取2,1==b a ,得y x <.即使再取无论多少组值(也只能是有限组值)验证,都得y x <,也只能说明y x >或y x ≥作为答案是错误的,而不能说明y x <一定是正确的,因为这不能排除x y =的可能性.因此答案虽然正确,但解法是没有根据的.当然,如果将题目改为选择题:已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 ( )A 、y x >B 、y x ≥C 、y x =D 、y x <此时用上述解法,且不用再取特殊值验证就可选D ,并且方法简单,答案一定正确.总而言之,特殊值法在解许多选择题时显得特别简捷,那是因为选择支中的正确答案是唯一的,从而通过特殊值排除干扰支,进而选出正确答案.但特殊值法只能排除错误结论,而不能直接肯定正确答案,因此,用此法解填空题(少数特例除外)与解答题是没有根据的.当然,利用特殊值指明解题方向还是十分可取的.题2 设c b a >>N n ∈,,且11n a b b c a c+≥---恒成立,则n 的最大值为 ( ) A 、2 B 、3 C 、4 D 、5(第十一届高二第一试第7题)ABD Cb图3a ab +b a -b解法1 原式n c b c a b a c a ≥--+--⇔.mina c a c n ab bc --⎡⎤∴≤+⎢⎥--⎣⎦.而b a c a --+c b c a -- =b ac b b a --+-+b c a b b c -+--=2+b a c b --+c b b a --≥4,且当b ac b --=cb ba --,即bc a 2=+时取等号.mina c a c ab bc --⎡⎤∴+⎢⎥--⎣⎦4=.4n ∴≤.故选C . 解法2 c b a >>,0,0,0>->->-∴c a c b b a ,已知不等式化为()()()2a c n a b b c -≤--.由()()()()22242a c a c ab bc a b b c --≥=---+-⎛⎫⎪⎝⎭,即()()()4min2=⎥⎦⎤⎢⎣⎡---c b b a c a ,故由已知得4≤n ,选C .解法3 由c b a >>,知0,0,0>->->-c a c b b a ,有()⎪⎭⎫⎝⎛-+--≤c b b a c a n 11.又()()()[]()41111112=+≥⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫⎝⎛-+--c b b a c b b a c b b a c a ,即()411min=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+--c b b a c a ,由题意,4≤n .故选C . 解法4 c b a >>,0,0,0>->->-∴c a c b b a .∴已知不等式可变形为()()()2a c n a b b c -≤--.记()()()2a c k ab bc -=--,则()()[]()()()()[]()()4222=----≥---+-=c b b a c b b a c b b a c b b a k .由题意,4≤n .故选C .解法5 c b a >>110,0.a b b c∴>>--于是 ()()ca cb b ac b b a -=-+-≥-+-4411.比较得4≤n .故选C . 评析 由已知,可得()⎪⎭⎫⎝⎛-+--≤c b b a c a n 11恒成立.根据常识“若()a f x ≤恒成立,则()min x f a ≤;若()x f a ≥恒成立,则()max a f x ≥,”()⎪⎭⎫ ⎝⎛-+--c b b a c a 11的最小值就是所求n 的最大值,故问题转化为求()⎪⎭⎫⎝⎛-+--c b b a c a 11的最小值,上述各种解法都是围绕这一中心的,不过采用了不同的变形技巧,使用了不同的基本不等式而已.解法1运用了2,,baa b R a b++≥∈“”;解法2运用了”“22⎪⎭⎫⎝⎛+≤b a ab ;解法3运用了()”“411≥⎪⎭⎫ ⎝⎛++b a b a ;解法4运用了()”“+∈≥+R b a ab b a ,2;解法5运用了()”“+∈+≥+R b a ba b a ,411.虽解法异彩纷呈,但却殊途同归. 此题使我们联想到最新高中数学第二册(上)P 30第8题: 已知c b a >>,求证:0111>-+-+-ac c b b a . 证:令()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.()22111111x y xya b b c c a x y x y xy x y ++∴++=+-=---++.0,0x y >>, 0111>-+-+-∴ac c b b a . 此证法通过换元将分母中的多项式改写成单项式,使得推证更简单了.运用这一思路,又可得本赛题如下解法:设()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.ca nc b b a -≥-+-11恒成立,就是y x ny x +≥+11恒成立.也就是()⎪⎪⎭⎫ ⎝⎛++≤y x y x n 11恒成立.()411≥⎪⎪⎭⎫ ⎝⎛++y x y x 恒成立, ∴由题意得4≤n .故选C .再看一个运用这一思想解题的例子.例 设+∈R c b a ,,,求证:2222cb a b ac a c b c b a ++≥+++++. (第二届“友谊杯”国际数学竞赛题)证明 设,,,z b a y a c x c b =+=+=+则()()0,,21>++=++z y x z y x c b a . ()()()02222≥+-=++-+y x xy bx ay y x b a y b x a ,()222a b a b x y x y +∴+≥+ ①, ()()()()222222222a b a b c a b c a b c c a b c x y z x y z x y z a b c +++++++∴++≥+≥==+++++,即 2222c b a z c y b x a ++≥++,2222c b a b a c a c b c b a ++≥+++++∴. 本赛题还可直接由下面的命题得解.命题 若021>>>>n a a a ,则()nn n a a n a a a a a a --≥-++-+--12132211111 .证明 021>>>>n a a a ,n n a a a a a a ---∴-13221,,, 都大于0.反复运用①式,可得: “若,(1,2,,)i i x y R i n +∈=,则22111n i ni i ni iii x x y y ===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当1212nnx x x y y y ===时取等号”.故有()()22122311223111111111n n n n nn a a a a a a a a a a a a a a --+++-+++≥=----+-++--. 也可以这样证明:021>>>>n a a a ,12231,,,0n n a a a a a a -∴--->.故由柯西不等式,得()()()1223112231111()n n n na a a a a a a a a a a a --+++-+-++-⎡⎤⎣⎦---()()211111n -≥+++个()21n =-,即()()21132211)111(-≥--++-+--n a a a a a a a a n nn .01>-n a a ,()nn n a a n a a a a a a --≥-++-+-∴-12132211111 . 由此可得本赛题的如下解法:c b a >>,0,0,0>->->-∴c a c b b a ,()ca cb b ac b b a -=-+-+≥-+-∴411112.由 题意,4≤n .故选C .由此命题还可直接解决第七届高二培训题第8题:设1232000200a a a a a >>>>>,并且122320002001111m a a a a a a =+++---,200116104a a n -⨯=,则m 与n 的大小关系是 ( ) A 、n m < B 、n m > C 、n m ≥ D 、n m ≤ 解12320002001a a a a a >>>>>,2001162001121042000a a a a m -⨯=-≥∴.故选C . 题3 设实数y x n m ,,,满足a n m =+22,b y x =+22,则ny mx +的最大值为 ( )A 、21()b a +B 、2122b a + C 、222b a + D 、ab(第十一届高二培训题第5题)解法1 设,sin ,cos ααa n a m ==,sin ,cos ββb y b x ==则,)cos(sin sin cos cos ab ab ab ab ny mx ≤-=+=+βαβαβα即)(ny mx +max =ab .故选D .解法2 b n a b m a b a n m =+⇒=+2222,又b y x =+22,+=+∴mx abny mx a b )( ≤ny ab 22222222()()()()222b b b m x n y m n x y a a a ++++++==.2b b a a b=+⋅nymx +∴,ab ab b =≤当且仅当b m x a =且,b n y a=即my nx =时取等号,max )ny mx +∴(.ab = 解法3 2222222222222()2mx ny m x mxny n y m x m y n x n y +=++≤+++()()2222,m n x y ab =++=,mx ny ab ∴+≤当且仅当my nx =时取等号,故()max mx ny ab +=.解法4 设()(),,,,p m n q x y →→==则cos ,p q p q p q θ→→→→→→⋅=⋅⋅≤⋅222,p q p q →→→→∴⋅≤⋅()()222mx ny m n+≤+即()22,xyab +=当且仅当,p q →→共线,即my nx =时取等号,故()max mx ny ab +=.解法5 若设mx ny k +=,则直线mx ny k +=与圆22x y b +=有公共点,于是22k b m n≤+,即()max ,k mx ny ab mx ny ab =+≤∴+=.解法6 设12,z m ni z x yi =+=-,则()()()()12,z z m ni x yi mx ny nx my i =+⋅-=++-∴()()()2221212,z z mx ny nx my mx ny mx ny mx ny mx ny z z ⋅=++-≥+=+≥+∴+≤12z z =⋅2222,m n x y ab =+⋅+=当且仅当my nx =时取等号,故()max mx ny ab +=.解法7 构造函数()()()222222f X m n X mx ny X x y =+++++, 则()()()220.f X mX x nX y =+++≥故()()()2222244mx ny m nxy ∆=+-++()2440,mx ny ab =+-≤即()max .mx ny ab mx ny +≤∴+.ab =解法8 由2222,m n a x y b +=+=还可构造图形(如图),其中90A C BA DB ︒∠=∠=,b A C m a=,bB Cna= BCA,,BD x AD y AB b ===为圆的直径,由托勒密定理,AD BC BD AC ⋅+⋅2,AB CD AB =⋅≤得,b b m x n y b a a⋅+⋅≤,从而得m x n y a b +≤,当且仅当my nx =且0mx >时取等号.()max mx ny ab ∴+=.评析 解法1抓住已知条件式的结构特征,运用三角代换法,合情合理,自然流畅,也是解决此类型问题的通法之一.解法2运用基本不等式222b a ab +≤将ny mx +放大为关于22n m +与22y x +的式子,再利用条件求出最大值.值得注意的是,稍不注意,就会得出下面的错误解法:()()()22222222max ,22222m n x y m x n y a b a bmx ny mx ny ++++++++≤+==∴+=.故选A .错误的原因就在于用基本不等式求最值时未考虑等号能否取到.上述不等式取等号的条件是x a =①且y b =②,而若①,②式同时取得,则2222m n x y +=+,即,a b =这与题设矛盾!即当a b ≠时,mx ny +取不到2a b+.解法2是避免这种错误的有效方法. 由于向量与复数的模的平方是平方和形式,与已知形式一致,故解法4与解法6分别运用了构造向量与构造复数的方法,新颖而简洁.解法5设k ny mx =+后,将其看作动直线,利用该直线与定圆b y x =+22有公共点,则圆心到直线的距离小于等于半径,得ab ny mx k ≤+=,充分体现了等价转化的解题功能.解法7运用的是构造函数法.为什么构造函数()()()2222f X m n X mx ny X =+++2x +2y +呢?主要基于两点:①()f X 为非负式(值大于等于0),②由于()0≥X f ,故有0≤∆,而∆沟通了已知与未知的关系,故使问题得到解决.解法8抓住已知两条件式的特征,构造了两个有公共边的直角三角形,利用托勒密定理及圆的弦小于等于半径使问题获解,充分揭示了这一代数问题的几何背景.拓展 此题可作如下推广 若2222221212,,n n a a a p b b b q +++=+++=则()1122max n n a b a b a b +++pq =(当且仅当()1,2,,i i qa b i n p==时取得最大值).证明 2222221212n n q q q a a a p a a a p p p ⎛⎫⎛⎫⎛⎫+++=⇒+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.q =1122a b a b ∴+++1122n n n n p qqqa b a b a b a b q p pp ⎛⎫=⋅+⋅++⋅ ⎪ ⎪⎝⎭p q ≤2222221122222n n q q q a b a b a b p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+++ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭+++⎢⎥⎢⎥⎢⎥⎣⎦=(),22222222122221pq qp p q q p b b b a a a pq q p n n=⎪⎪⎪⎪⎭⎫⎝⎛+⋅=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++ 当且仅当()().,,2,1m a x2211pq b a b a b a n i b a pqn n i i =+++∴== 时取等号,本推广实际就是由著名的Cauchy (柯西)不等式()()()222212222122211n n n n b b b a a a b a b a b a +++⋅+++≤+++ (当且仅当nn b a b a b a === 2211时取等号)直接得到的一个结论.推广有十分广泛的应用,现举一例:例 已知123,,,,,,234,8.a b c x y z R a b c x y z +∈++=++=且求23a b cx y z++最大值. 解 ()()()222123234234,8a b c a b cx y z ++=⇒++=++=2212x y ⎛⎫⎛⎫⇒+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭23z ⎛⎫+ ⎪ ⎪⎝⎭=8.由推广知23a b c x y z ++123234842,a b c x y z =⋅+⋅+⋅≤⨯=当且仅当81,4a x=82832,3,44b c y z==即12ax by cz ===时取等号.max23a b c x y z ⎛⎫∴++= ⎪ ⎪⎝⎭.24 题4 对于1≤m 的一切实数m ,使不等式221(1)x m x ->-都成立的实数x 的取值范围是____(第十三届高二培训题第63题)解法1 题设等价于⎪⎩⎪⎨⎧--<>-1120122x x m x 或⎪⎩⎪⎨⎧--><-1120122x x m x 或⎩⎨⎧>-=-012012x x ,即⎪⎩⎪⎨⎧--<>-11210122x x x 或⎪⎩⎪⎨⎧-->-<-11210122x x x 或⎩⎨⎧>-=-012012x x ,所以21<<x 或113<<-x 或1=x ,即)2,13(-∈x . 解法2 已知不等式即()()01212<---x m x ,令()()121)(2---=x m x m f ,则当012≠-x ,即1±≠x 时,)(m f 是m 的一次函数,因为1≤m ,即11≤≤-m 时不等式恒成立,所以)(m f 在[]1,1-上的图象恒在m 轴的下方,故有⎩⎨⎧<+--=<+-+-=-0121)1(0121)1(22x x f x x f ,即⎩⎨⎧<->-+0202222x x x x ,解得213<<-x )1(≠x .又当1=x 时,1)(-=m f ,适合题意,当1-=x 时,()3f m =不合题意. 故x 的取值范围是213<<-x .评析 解决本题的关键是如何根据条件构建关于x 的不等式或不等式组.解法1运用分离参数法,为了达到分离参数的目的,又对12-x 分大于0、小于0、等于0三类情形分别构建关于x 的不等式组,从而通过解不等式组解决了问题.解法2则转换思维角度,把已知不等式看成关于m 的不等式,从而将原问题转化为函数()()121)(2---=x m x m f 在[]1,1-上的图象恒在m 轴下方的问题.这种方法称为变更主元法.用此方法,使得此题的解决显得既简捷,又直观易懂.题5 当0x a <<时,不等式2)(1122≥-+x a x 恒成立,则a 的最大值是________. (第十一届高二培训题第45题)解法 1 当0x a <<时, 2≥-+-x a x x x a ①,又有2)()(2222≥-+-x a x x x a ②, ②+①×2,得6)(222222≥--+-x a x ax x x a ,6)()(122222≥---+-x a x a a x a ,8)(2222≥-+x a a x a ,即2228)(11a x a x ≥-+.由282≥a,得02a <≤,2max =∴a . 解法2 2222)11()11()(112x a x x a x x a x --+-+=⎥⎦⎤⎢⎣⎡-+ , 又 =-+x a x 11 +a 4(1a 2)x a x x x a ---, 222)4()(112a x a x≥⎥⎦⎤⎢⎣⎡-+∴, 即2228)(11a x a x ≥-+, 当且仅当xa xx x a -=- 且x a x -=11, 即 2ax = 时取等号. 2)(1122≥-+x a x 恒成立, ∴282,02a a ≥<≤. 于是2max =a .解法3 原不等式等价于12)(1122≥-+x a x ,由 0x a <<,可知10,x >10a x >-. 由 “两个正数的平方平均值不小于它们的调和平均值”, 可知只需1)(2≥-+x a x , 即2≤a 即可, 故02a <≤, 于是2m a x =a .解法422)(11x a x -+2≥ 即 2)(112222≥⎥⎦⎤⎢⎣⎡--++x x a x x ①成立,又 2122≥+x x 恒成立, ∴a 只要满足22)(1x x a --0≥②就能使①恒成立.由②式,得2x 2)(x a -1≤,1)(≤-x a x ,012≤-+-ax x ③.由于对称轴),0(2a ax ∈=,由二次函数的性质,当),0(a x ∈时,要③式恒成立,则24002a a ∆=-≤∴<≤ 2max =∴a .解法5 设αα22sin ,cos =-=ax a a x (0x a <<),则22)(11x a x -+=α42cos 1a + α42sin 1a ==+⋅αααα44442cos sin cos sin 1a =-⋅αα2sin 1612sin 2111422aαα2sin 2sin 28422-⋅a . )22(sin 2+αα2(sin 2-1)0≤,即2-αα2sin 2sin 42≥,则αα2s i n 2s i n 242-1≥)12s i n(2时取等号当=α,于是2228)(11ax a x ≥-+,由已知,得282,02,a a ≥∴<≤2max =∴a . 解法6 设11,(0,0),X Y X Y x a x==>>-则2为222X Y +≥表示在XOY 坐标系第一象限内以原点为圆心,半径的圆及其外部.由11,,X Y x a x==-得,aXY X Y =+又aXY X Y =+,4,22a XY XY ≥∴≥它表示双曲线24a XY =位于第一象限内的一支及其上方部分.依题意,双曲线2224(0)200XY X X Y X Y a=>+=>>与圆弧(,)相切或相离,从而282≥a,即02a <≤ 2max =∴a .2 xO解法7 运用结论“如果),,2,1(,n i R y x i i =∈+,则≥+++nn y x y x y x 2222121),()(21221*++++++nn y y y x x x 当且仅当k y x y x y x n n ==== 2211(常数)时取等号.” 0x a <<,∴0.a x ->由柯西不等式,有22222)11())(11)(11(x a x x a x -+≥-++①,由)(*得x a x -+11a4≥②.故,)4())(11(2222a x a x ≥-+得2228)(11a x a x ≥-+,当且仅当2a x =时取等号,由282≥a,得02a <≤ 2max =∴a .解法8 运用结论“212122311111(1),,n n n nn a a a a a a a a a a a -->>>+++≥----若则当且仅当n a a a ,,,21 成等差数列时取等号.”2222111122()(0)()x a x x a x ⎡⎤⎡⎤+=+≥⎢⎥⎢⎥---⎣⎦⎣⎦2110x a x ⎛⎫+ ⎪--⎝⎭222160)13(a a =⎥⎦⎤⎢⎣⎡--≥.∴2228)(11a x a x ≥-+,当且仅当x a x -=,即2a x =时取等号.令282≥a ,得02a <≤ 2max =∴a . 评析2)(1122≥-+x a x 恒成立,∴2)(11min 22≥⎥⎦⎤⎢⎣⎡-+x a x.故问题的实质就是求22)(11x a x -+的最小值(关于a 的式子)大于等于2的解.因而在0x a <<的条件下,如何求22)(11x a x -+的最小值成了问题的关键.解法1运用“两个互为倒数的正数的和大于等于2”, 解法2运用配方再放缩, 解法3运用均值不等式及“两个正数的平方平均值不小于它们的调和平均值”,解法5运用三角代换,解决了这一关键问题.解法4巧妙地将原问题转化为一个含参(a )一元二次不等式恒成立,求参数的范围问题,从而运用二次函数的性质解决问题.解法6将原问题转化为解析几何问题处理.解法7、8则是运用一些现成的结论(读者可自己证明),各种解法异彩纷呈,都值得细细品味.拓展 此题可作如下推广:推广 1 若1210n x x x a -<<<<<,则≥-++-+-2121221)(1)(11n x a x x x 23a n ,当且仅当a x x x n ,,,,121- 成等差数列时取等号.证明 由已知,1210n x x x a -<<<<<,则12x x -0>,23x x -0>,, 1--n x a 0>.根据柯西不等式及解法7运用的不等式(*),有⎥⎦⎤⎢⎣⎡-++-+-2121221)(1)(11n x a x x x n ≥21211111n x x x a x -⎛⎫+++≥ ⎪--⎝⎭2242,n n a a ⎛⎫= ⎪⎝⎭故≥-++-+-2121221)(1)(11n x a x x x 23a n . 当且仅当a x x x n ,,,,121- 成等差数列时取等号.推广2 若1210n x x x a -<<<<<,,),,,2,1(++∈=∈N k n i R b i 则++kk x b 111kk n k n k n k k a b b b x a b x x b 121111212)()()(+-+++++≥-++- ,当且仅当∑==ni ii i b ab a 1时取等号. 证明 不妨设112211,,,--=-==n n x a a x x a x a ,=M ,)(11+=∑k ni i b 由已知得i a 0>且),,2,1(n i =,1a a ni i =∑=令a a c i i =,则∑=ni i c 1=111=∑=ni i a a .由均值不等式,++k i k i c b 1≥+++个k i i i Mc Mc Mc ,)1(11+++k k ik b M k 即kik i c b 1+k n i b b b k kMc ))(1(21++++≥+ i b ⋅,则11111(1)()k nn nk i i i ki i i i b kM c k b c ++===+≥+∴∑∑∑1111()k nn k i i k i i i b b c ++==≥∑∑,即11k nki k i ib a a +=≥∑11()n k i i b +=∑,11111()nk k i ni i k k ni ii i b b a a ++===≥⎛⎫ ⎪⎝⎭∑∑∑,当且仅当=i a ∑∑∑====⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n i i i i n i i n i i b ab b b a 111时取等号. ∴++kk x b 111++kk x b 212kn kn x a b )(1--+ k k n a b b b 121)(++++≥ . 题6 已知()⎪⎭⎫ ⎝⎛∈=2,0,log sin πθθx x f ,设⎪⎭⎫ ⎝⎛+=2cos sin θθf a , ()θθcos sin ⋅=fb ,⎪⎭⎫⎝⎛+=θθθcos sin 2sin f c ,那么c b a 、、的大小关系是 ( ) A 、b c a ≤≤ B 、a c b ≤≤ C 、a b c ≤≤ D 、c b a ≤≤(第八届高二第一试第10题) 解法1 设p =θsin ,q =θcos .pq qp ≥+2,而()x f 是减函数,()pq fq p f ≤⎪⎭⎫ ⎝⎛+∴2,即b a ≤.2qp pq +≤,()2pq q p pq +≤∴,pq qp pq≤+2.()pq fq p pq f ≥⎪⎪⎭⎫⎝⎛+∴2,即b c ≥.故c b a ≤≤.选D.解法2 由题意,令6πθ=,则21s i n =θ,3cos 2θ=,4312cos sin +=+θθ ,23cos sin 4=θθ,233cos sin cos sin 2cos sin 2sin -=+=+θθθθθθθ,()1,021sin ∈=θ ,()x f ∴是减函数,又233234314->>+,()⎪⎭⎫⎝⎛+<<⎪⎭⎫ ⎝⎛+∴θθθθθθθcos sin 2sin cos sin 2cos sin f ff ,即c b a <<.故选D.评析 这是一个比较函数值大小的问题,通常利用函数的单调性.若函数()x f 单调递增(减),则当21x x <时,()()()()()2121x f x f x f x f ><,当21x x >时,()()21x f x f >()()()21x f x f <.因此解决问题的关键有两个:一是确定函数的单调性,二是确定自变量的大小关系.解法1就是这样解决问题的.因为正确答案应对一切⎪⎭⎫ ⎝⎛∈2,0πθ都正确,故又可以运用特殊值法.对⎪⎭⎫⎝⎛2,0π内的某个角不正确的选择支都是错误的,由正确选择支的唯一性,也可选出正确答案.解法2便是取特殊值6πθ=,排除了A 、B 、C 、而选D 的.当然,此题也可用作差比较法来解:⎪⎭⎫⎝⎛∈2,0πθ ,()1,0sin ∈∴θ,()x f ∴是单调减函数,0sin >θ,0cos >θ.=⋅-+=-∴θθθθθθcos sin log 2cos sin log sin sin b a01log cos sin 2cos sin log sin sin =≤⋅+θθθθθθ,b a ≤∴.又-⋅=-θθθcos sin log sin c b 01log cos sin 2cos sin log cos sin cos sin 2cos sin log cos sin 2sin log sin sin sin sin =≤+=+⋅=+θθθθθθθθθθθθθθθθθ,即c b ≤,c b a ≤≤∴.选D.题7 已知21=a ,不等式49321log <⎪⎭⎫ ⎝⎛-x a的解是 .(第三届高二第二试第13题)解 原不等式即2l o g 32321-⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛-x a. 指数函数x⎪⎭⎫⎝⎛32是减函数,21=a ,∴原不等式化为2log121->-x ,即22121121loglog -⎪⎪⎭⎫ ⎝⎛->x .又 对数函数12log x 是减函数,2211-⎪⎭⎫⎝⎛<-∴x ,即21<-x ,解得31<<-x . 对数函数121log -x 的定义域是1≠x 的实数,∴原不等式的解是11<<-x 或31<<x .评析 此题涉及到指数不等式、对数不等式、绝对值不等式的解法.解指数不等式与对数不等式的基本方法是同底法,即先将不等式两边的指数式或对数式化成底数相同的指数式或对数式,然后根据底数所属区间是()1,0或()+∞,1,确定以该底数为底的指数函数或对数函数的单调性,再去掉底数或对数符号,转化成别的不等式.主要依据如下:⑴若01a <<,则()()()()f x g x a af xg x <⇔>;⑵若1a >,则()()()()f x g x aaf xg x <⇔<; ⑶若01a <<,则()()()()log log 0f x g x a af xg x <⇔>>;⑷若1a >,则()()()()log log 0f x g x aaf xg x <⇔<<.有时需要将常数化为指数式或对数式,其化法如下: ⑴ac ca log =(,0,0>>c a 且1≠c );(化为指数式)⑵log ac a c =(,0>c 且1≠c ).(化为对数式) 例如,23log 32=将常数2化为3为底的指数式,233log 2=将常数2化为3为底的对数式.解指数不等式不需检验,但解对数不等式必须保证解使得对数式有意义,这点常被忽略. 若一个指数不等式的指数部分是对数式,常常采用取对数法求解. 例 不等式()x x x>lg的解集是 .(第十一届高二培训题第40题)解 两边取常用对数,得()x xlg lg2>,即0lg ,0lg 4lg ,0lg lg 4122<>->-x x x x x 或10,4lg <<∴>x x 或410>x .故所求解集是()()+∞,101,04 .应当指出,两边取对数后,不等号的方向变不变,关键看取的是什么底数.如果底数大于1,则不等号方向不变,如果底数大于0且小于1,则不等号方向改变.关于绝对值不等式,主要是根据绝对值的几何意义求解.下列结论应当理解并熟记(a 为常数).⑴()0≤<a a x 的解集是φ; ⑵()0><a a x 的解集是()a a ,-; ⑶()0<>a a x 的解集是R ;⑷()0x a a >>的解集是()()+∞-∞-,,a a . 下列题目供练习:⑴已知常数⎪⎭⎫⎝⎛∈4,0πθ,则不等式()()8103cot tan 2--->x x x θθ的解集是 .(第八届高二第一试第16题)⑵若函数()⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛=4222log log x x x f 的定义域是不等式211222log 7log 30x x ⎛⎫++≤ ⎪⎝⎭的解集,则()x f 的最小值= ;最大值= .(第十届高二第一试第23题)⑶不等式22222log 2log x x x x x x ++>的解集是 .(第九届高二培训题第23题)⑷不等式1323>--x 的解是 ( )(A )6>x 或232<≤x (B )6>x 或2<x (C )6>x (D )2<x答案 ⑴(]⎪⎭⎫⎢⎣⎡-∞-1374,52, ⑵43 ;2 ⑶⎪⎭⎫⎝⎛2,21 ⑷A题8 不等式t x x +≥-21 的解集是∅ ,实数t 的取值范围(用区间形式)是 .(第一届高二第一试第18题)解法1 由t x x +=-21两边平方并整理得012222=-++t tx x ,此方程无实根,故()084184222<+-=--=∆t t t ,22>t .又0>t ,2>∴t .故填()+∞,2.解法2 作出函数21x y -=的图象(即图中的半圆)及函直线应数t x y +=的图象(即图中斜率为1的直线系).由题意,距在半圆的上方,由图象可知直线t x y +=在y 轴上的截2>t .故填()+∞,2.解法3 由012≥-x ,得11≤≤-x .故设θc o s =x ,[]πθ,0∈,则已知不等式就是yx122- -11 ot +≥θθcos sin ,即θθcos sin -≤t .⎪⎭⎫ ⎝⎛-=-4sin 2cos sin πθθθ ,又⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛-43,44πππθ,()sin cos [1,2]θθ∴-∈-.由题意得2>t .故填()+∞,2.评析 这是一道蕴含着丰富数学思想方法的好题.解法1﹑2﹑3分别运用方程思想﹑数形结合思想﹑化归转换思想,从不同的角度解决了问题,体现了这道题的丰富内涵.解法2揭示了本题的几何背景.解法3的依据是:不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21恒成立.有人认为不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21有解,这种观点是错误的.事实上,21=t 时,不等式x x t -->21就有解(比如53=x 就是其一个解),而21=t 时,不等式t x x +≥-21即2112+≥-x x 的解集却不是∅ (比如0就是它的一个解).拓展 通过上面的分析,并作进一步的研究,我们便有下面的 结论 已知t 为参数, ()f x 的值域是[],a b . (1) 若()t f x ≤恒成立,则t a ≤. (2) 若()t f x ≥恒成立,则t b ≥. (3) 若()t f x ≤的解集是∅,则t b >. (4) 若()t f x ≥的解集是∅,则t a <. (5) 若()t f x ≤有解,则t b ≤. (6) 若()t f x ≥有解,则t a ≥.若将()f x 的值域改为[),a b 、(],a b 、(),a b 等,也会有相应的结论,限于篇幅,不再一一列出. 根据这一结论,请回答下列问题:1.不等式213x x t -≥+的解集是∅,则实数t 的取值范围是 .2.不等式213x x t -≤+的解集是∅,则实数t 的取值范围是 .3.不等式213x x t -≥+有解,则实数t 的取值范围是 .4.不等式213x x t -≤+有解,则实数t 的取值范围是 .5.不等式213x x t ->+恒成立,则实数t 的取值范围是 .6.不等式213x x t -<+恒成立,则实数t 的取值范围是 .答案 1. ()2,+∞ 2.(),3-∞- 3.)3,⎡-+∞⎣4.(],2-∞5.(),3-∞- 6.()2,+∞题9 不等式03422≥+---x x x 的解集是 ( )A 、⎥⎦⎤⎢⎣⎡++255,253 B 、⎥⎦⎤⎢⎣⎡+-255,253 C 、⎪⎪⎭⎫⎢⎣⎡+∞+⎥⎦⎤ ⎝⎛+∞-,255253, D 、⎥⎦⎤⎢⎣⎡+-253,255 (第十三届高二第二试第8题)解法 1 当0342≥+-x x ,即1≤x 或3≥x 时,原不等式就是,03422≥-+--x x x 即0552≤+-x x ,解得2553.255255+≤≤∴+≤≤-x x . 当2430,13x x x -+<即<<时,原不等式就是,03422≥+-+-x x x 即,0132≥+-x x 解得253-≤x 或3535322x x ++≥∴≤<,. 综上,所求解集为3555,33,,22⎡⎫⎡⎤++⎪⎢⎢⎥⎪⎣⎭⎣⎦即⎥⎦⎤⎢⎣⎡++255,253.故选A. 解法2 如图,作函数2-=x y 和342+-=x x y 的图象.要求的解集就是21y y ≥,即1y 在2y 上方时x 的区间,即图中线段AB 上的点所对应的横坐标所组成的区间[]B A x x ,.又(),1234222--=+-=x x x y 当32<<x 时,().2122--=x y 由()2212-=--x x 可解得253+=A x .当3>x 时,(),1222--=x y 由()2122-=--x x 可解得255+=Bx ,∴所求不等式的解集为⎥⎦⎤⎢⎣⎡++255,253,故选A.解法 3 同解法2画出图形后,可知解集为一个闭区间[]b a ,,且()3,2∈a ,对照选择支.可知选A.解法4 当5.1=x 时,03422<+---x x x 时,故1.5不是原不等式的解,从而排除含1.5的B 、1 3A BC 、D ,故选A.评析 解含绝对值的不等式,一般是先去掉绝对值符号,然后再求解.解法1正是运用分类讨论思想这样解决问题的,也是一种通法.我们知道,方程()()x g x f =的解就是函数()x f y =与()x g y =的图象交点的横坐标;若图象无交点,则方程无解.而不等式()()x g x f >的解集则是函数()x f y =的图象在()x g y =的图象上方部分的点的横坐标的集合;若()x f y =的图象都不在()x g y =的图象的上方,则不等式无解.解法2正是运用这种数形结合思想解决问题的.许多超越不等式的近似解或解的所属范围也都运用此法解决. 选择题的正确答案就在选择支中,只是要求我们把它选出来而已.因此,不是非要求出答案再对照选择支选择答案不可的.基于此,解法3运用估算的方法选出了正确答案(注意:估算能力是高考明确要求要考查的能力之一).而解法4则运用特殊值排除了干扰支,进而选出了正确答案.类似这种不等式(方程)的解集是什么的选择题几乎都可用这种方法解,而且十分方便.值得注意的是,特殊值只能否定错误结论,根据正确选择支的唯一性才能肯定正确答案.另外,如何选取特殊值也是很有讲究的,读者可在解题实践中体会并加以总结.题10 不等式199920003224>-+-x x 的解集是 . (第十一届高二培训题第41题)解 设y=x x -+-3224 ,由⎩⎨⎧≥-≥-03024x x ,得定义域为[21,3].1999200010,106144410)3)(24(4)3(42422>≥∴≥-+-+=--+-+-=y x x x x x x y 即原不等式在定义域内恒成立,故所求解集为[21,3]. 评析 解无理不等式,通常是通过乘方去掉根号,化为有理不等式后再解.但从此题中不等式右边的数可以想象该有多么复杂,若将题目改为“276.571623.93224+>-+-πx x 的解集是 ”,还会有谁想通过平方化为有理不等式去解呢?显然,常规方法已难以解决问题,怎么办呢?考虑到不等式中的x ∈[21,3],从而左边1999200010>≥,故解集就是定义域,这就启示我们,当常规思维受阻或难以奏效时,就应积极开展非常规思维,另辟蹊径,寻求解决问题的新方法.拓展 根据上面的分析,并加以拓广,我们可得结论 设a,b,c 是常数,若[,],()[,],()[,]x a b f x m n g x p q ∈∈∈,则 当m c >时,不等式()f x c >的解集是[,],()a b f x c ≤的解集是φ; 当n c <时, 不等式()f x c ≥的解集是φ,()f x c <的解集是[,]a b ; 当n p >时, 不等式()()f x g x ≥的解集是φ, ()()f x g x <的解集是[,]a b ; 当m q >时,不等式()()f x g x >的解集是[,]a b ,()()f x g x ≤的解集是φ. 根据这一结论,不难求得下列不等式的解集:1、 2sinx+3cosx>4;2、 322163-->-x x ;3、 x x x -<-+-433)1(log 4;4、 sinx-cosx<32+x .答案:1、φ 2、[2,+∞) 3、φ 4、R。

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题(共20小题,满分0分)1.计算:1.2×67+6.7×88=_________.2.计算:21.49+52.37﹣0.4+5.51﹣11.37﹣6.6=_________.3.用1,2,3,4,5和+,﹣,×,÷组合成一个算式(不使用括号),计算结果最大是_________.4.一件商品,对原价打八折和打六折的售价相差4.8元,那么这件商品的原价是_________元.5.将252块巧克力,294盒饼干,336袋牛奶分成相同的份数,并且都没有余数,那么最多可以分成_________份.6.若8只羊一星期要吃168千克饲料,一头牛的食量是一只羊的食量的2.8倍,那么,200只羊和180头牛一个月(按30天计)要吃_________千克饲料.7.如图中,阴影面积最大的图形是_________,阴影面积最小的图形是_________.(填序号)、8.一个两位数,将它的十位数字和个位数字对调,得到的数比原来的数大18,这样的两位数有_________个.9.如图,如果小树的愿望能够实现,那么它的身高平均每年要增长到上一年的_________倍.10.两个不同的三位数被13除,若得到相同的余数,那么,这两个三位数的和最大是_________,它们的差最大是_________.11.如图,从左到右,在每列各选出一个框,组成算式(如:5×2+3),则有_________种不同的结果.12.A、B两地间有一条公路.甲车从A驶到B,需60分钟;乙车从B驶到A,需120分钟.若甲、乙两车分别从A、B两地同时出发,则在出发后_________分钟相遇.13.学校购买了数量相同的课桌和椅子,用小货车装运,每车装17张课桌和13把椅子.装了若干车后,课桌剩9张,椅子剩77把.那么,此时已经装了_________车;按1桌1椅为1套,那么学校购买了_________套课桌和椅子.14.如图,甲、乙、丙三个大小相同的杯子在桌面上一次排列,其中甲杯中盛满水,乙和丙是空杯.现把水全部倒入相邻(左或右)的空杯中,那么,经过55次倒水后,有水的是_________杯.15.要搭建如图所示的立体,需要_________个相同的小正方体.16.用60个相同的正方体,可以堆积成形状不同的长方体_________个.17.(2012•东城区模拟)恰好有两位数字相同的三位数共有_________个.18.小王为一个16人的旅游团购买飞机票,座位有经济舱和商务舱可选择,其中经济舱的票价是720元/人,商务舱的票价是1500元/人.这次购票共花费13080元,则小王购买了_________张经济舱机票.19.如图,在由9个相同的小正方形拼成的3×3网格中,标出9个角.则它们的度数和是_________.20.在一个海岛上居住者2012人,其中一些人总是说假话,其余的人总是说真话.岛上的每一位居民都崇拜太阳神、月亮神和地球神这三个神中的一个.一位外来的采访者向岛上的每一位居民提出三个问题:(1)你崇拜太阳神吗?(2)你崇拜月亮神吗?(3)你崇拜地球神吗?对第一个问题,有804人回答:“是”;对第二个问题,有1004人回答:“是”;对第三个问题,有1204人回答:“是”.那么,他们中有_________人说的是真话.2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题(共20小题,满分0分)1.计算:1.2×67+6.7×88=670.2.计算:21.49+52.37﹣0.4+5.51﹣11.37﹣6.6=61.3.用1,2,3,4,5和+,﹣,×,÷组合成一个算式(不使用括号),计算结果最大是22.5.4.一件商品,对原价打八折和打六折的售价相差4.8元,那么这件商品的原价是24元.5.将252块巧克力,294盒饼干,336袋牛奶分成相同的份数,并且都没有余数,那么最多可以分成42份.6.若8只羊一星期要吃168千克饲料,一头牛的食量是一只羊的食量的2.8倍,那么,200只羊和180头牛一个月(按30天计)要吃63360千克饲料.7.如图中,阴影面积最大的图形是①,阴影面积最小的图形是③.(填序号)、8.一个两位数,将它的十位数字和个位数字对调,得到的数比原来的数大18,这样的两位数有7个.9.如图,如果小树的愿望能够实现,那么它的身高平均每年要增长到上一年的2倍.10.两个不同的三位数被13除,若得到相同的余数,那么,这两个三位数的和最大是1985,它们的差最大是897.11.如图,从左到右,在每列各选出一个框,组成算式(如:5×2+3),则有13种不同的结果.12.A、B两地间有一条公路.甲车从A驶到B,需60分钟;乙车从B驶到A,需120分钟.若甲、乙两车分别从A、B两地同时出发,则在出发后40分钟相遇.甲车的速度是,()÷,13.学校购买了数量相同的课桌和椅子,用小货车装运,每车装17张课桌和13把椅子.装了若干车后,课桌剩9张,椅子剩77把.那么,此时已经装了17车;按1桌1椅为1套,那么学校购买了298套课桌和椅子.14.如图,甲、乙、丙三个大小相同的杯子在桌面上一次排列,其中甲杯中盛满水,乙和丙是空杯.现把水全部倒入相邻(左或右)的空杯中,那么,经过55次倒水后,有水的是乙杯.15.要搭建如图所示的立体,需要95个相同的小正方体.16.用60个相同的正方体,可以堆积成形状不同的长方体10个.17.(2012•东城区模拟)恰好有两位数字相同的三位数共有243个.18.小王为一个16人的旅游团购买飞机票,座位有经济舱和商务舱可选择,其中经济舱的票价是720元/人,商务舱的票价是1500元/人.这次购票共花费13080元,则小王购买了14张经济舱机票.19.如图,在由9个相同的小正方形拼成的3×3网格中,标出9个角.则它们的度数和是405°.20.在一个海岛上居住者2012人,其中一些人总是说假话,其余的人总是说真话.岛上的每一位居民都崇拜太阳神、月亮神和地球神这三个神中的一个.一位外来的采访者向岛上的每一位居民提出三个问题:(1)你崇拜太阳神吗?(2)你崇拜月亮神吗?(3)你崇拜地球神吗?对第一个问题,有804人回答:“是”;对第二个问题,有1004人回答:“是”;对第三个问题,有1204人回答:“是”.那么,他们中有1012人说的是真话.。

一道“希望杯”高一竞赛题的推广与证明

一道“希望杯”高一竞赛题的推广与证明

一道“希望杯”高一竞赛题的推广与证明
鲁加才
【期刊名称】《数理天地:高中版》
【年(卷),期】2009(000)012
【摘要】第20届(09年)“希望杯”全国数学邀请赛高一年级第2试23题:从点A(√2,2)向⊙D:x2+(y-2)2=1作两条切线AB、AC,其中B、C是两条切线与抛物线y=x2的交点,请判定直线BC与⊙D的位置关系.
【总页数】1页(P24)
【作者】鲁加才
【作者单位】广东省深圳市石岩公学,518108
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.一道数学竞赛题的推广及证明
2.一道“希望杯”数学竞赛题的推广
3.把错因之脉施辩证之法\r——关于一道竞赛题的证明、变式及推广
4.一道积分不等式数学竞赛题的推广及证明
5.一道全国大学生数学竞赛题的推广及证明
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十届“希望杯”全国数学邀请赛高一(第一试)班级 姓名一、选择题1、已知1)1(+=-x x f ,则)12(+x f 等于------------------------( )(A )x 2(B )12+x(C )22+x (D )32+x2、若}2log |{2x x x x -=∈,则有--------------------------------------( )(A )12>>x x (B )x x >>12(C )x x >>21 (D )21x x >>3、已知222)(--=-x x x f ,0)(=a f ,则)(a f -等于------------------( )(A )4--a(B )―2(C )―4(D )a 2-4、线段OA 、OB 、OC 不共面,∠AOB=∠BOC=∠COA=60º,OA=1,OB=2,OC=3,则ΔABC 是--------------------------------------------------------------------( )(A )等边三角形 (B )不等边的等腰三角形 (C )直角三角形(D )钝角三角形5、已知函数⎪⎪⎩⎪⎪⎨⎧<-≥=23 , )3lg(23, lg )(x x x x x f ,若方程k x f =)(无实数解,则k 的取值范围是------------------------------------------------------------------( )(A ))0,(-∞(B ))1,(-∞ (C ))23lg ,(-∞(D )),23(lg +∞6、若︒<<︒<<1809020βα,βαcos )(sin =a ,βαsin )(cos =b ,βαcos )(cos =c ,则c b a ,,的大小顺序是--------------------------------------------------------( )(A )b c a >> (B )c b a >> (C )c a b >> (D )b a c >>7、函数)2(log )(2x x x f x -+=的定义域是------------------------------( )(A )21<<-x(B )20<<x (C )10<<x 或21<<x(D )0>x 且1≠x8、函数αx x f =)(,)1,0()0,1( -∈x ,若不等式||)(x x f >成立,则在}2,1,32,31,0,32,1,2{---∈α的条件下,α可以取的值的个数是-------------------( )(A )1(B )2 (C )3 (D )49、在矩形ABCD 中,AB=a ,AD=b 2,b a <,E 、F 分别是AD 、BC 的中点,以EF 为折痕把四边形EFCD 折起,当∠CEB=90º时,二面角C-EF-B 的平面角的余弦值等于------------( )(A )0(B )22b a(C )22b a -(D )ba-10、l b a ,,是两两异面的直线,a 与b 所成的角是3π,l 与a 、l 与b 所成的角都是α,则α的取值范围是---------------------------------------------------------( )(A )⎥⎦⎤⎢⎣⎡65,6ππ (B )⎥⎦⎤⎢⎣⎡2,3ππ (C )⎥⎦⎤⎢⎣⎡65,3ππ (D )⎥⎦⎤⎢⎣⎡2,6ππ 二、填空题11、函数)(a x f y -=与函数)(a x f y +-=的图象关于 对称。

12、将函数x x f 2sin )(=的图象向左移3π个单位,再将所得图象上各点的横坐标压缩到原来的21,这时所得图象的函数解析式是 。

13、与正方体各面成相等的角且过正方体三个顶点的截面的个数是 。

14、空间四边形ABCD 中,AB=AD=3,BC=CD=2,AC=5,则AC 与平面BCD 所成的角等于 。

15、长、宽、高分别为3cm 、4cm 、12cm 的长方体木块ABCD-A 1B 1C 1D 1中,AB=3cm ,BC=4cm ,CC 1=12cm ,若一只小虫要由A 点沿木块表面爬到C 1点,最短路径的长度是 。

16、已知10,>y x ,1000=xy ,则y x lg lg ⋅的取值范围是 。

17、对于函数x x f a log )(=(其中1,0≠>a a ),若1)2()3(=-f f ,则)9.0()75.3(f f +的值等于 。

18、棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是A 1B 1、B 1C 1的中点,则B 1点到平面EFCA 的距离等于 。

19、βα--l 是60º的二面角,二面角内一点P 到βα,的距离分别是1,2,则P 到棱l 的距离等于 。

20、定义在R 上的函数)(x f y =、)(x f y -=、)(x f y -=、)(x f y --=的图象重合,它们的值域是 。

21、有两块直角三角板,一块三角板的两条直角边的长分别是1,3;另一块三角板的两条直角边的长分别是3,3。

这两块三角板有两对顶点重合,且成90º的二面角,则不重合的两个顶点的距离等于 。

22、已知⎪⎭⎫ ⎝⎛-∈2,2ππα,⎪⎭⎫ ⎝⎛-=4sin 2sin παα,则α等于 。

23、已知集合}1|,|,1{}2,1,0{+--=-a a a a ,则实数a 的值等于 。

24、][t 表示:不大于t 的最大整数,则方程x x 4]12[=+的根是 。

25、已知直线l 垂直于平面α,直线m 在平面β内,那么下面四个命题:(1)α∥β⇒l ⊥m (2)α⊥β⇒l ∥β (3)l ∥m ⇒α⊥β (4)l ⊥m ⇒α∥β 其中正确命题的序号是 。

第十届“希望杯”全国数学邀请赛(第二试)班级 姓名一、选择题1、已知A :|sin ||sin |B A =,B :0)sin(=+B A ,则----------------------------( )(A )由A 可推出B ,但由B 推不出A 。

(B )由B 可推出A ,但由A 推不出B 。

(C )由A 可推出B ,由B 也可推出A 。

(D )由A 推不出B ,由B 也推不出A 。

2、定义域为R 的函数)(x f y =满足)2()1(x f x f -=-,这个函数图象的对称轴是--( )(A )0=x(B )21=x (C )1=x (D )2=x3、最小正周期为T 的周期函数)(x f y =,当),0(T x ∈时,反函数是)(1x f y -=(定义域为D ),那么当)0,(T x -∈时,)(x f y =的反函数是-------------------------( )(A )D x T x f y ∈+=-),(1 (B )D x T x f y ∈+=-,)(1 (C )D x T x f y ∈-=-),(1(D )D x T x f y ∈-=-,)(14、二面角M-l -N 的平面角是60︒,直线⊂a 平面M ,a 与棱l 所成的角是30︒,则a 与平面N 所成的角的余弦值是--------------------------------------------------------( )(A )43(B )22(C )413 (D )21 5、设集合A={1,2},则从A 到A 的映射f 中满足)()]([x f x f f =的映射的个数是---( )(A )1 (B )2(C )3(D )46、设11)(+-=x x x f ,记)]}([{)(x f f f f x f fn n 个=,则=)(1999x f -----------------( )(A )x1-(B )x (C )x x-+11(D )11+-x x 7、由四个全等的正三角形围成的空间图形叫正四面体。

正四面体的四个正三角形面的12条中线能形成数值不同的k 个锐角,则k 的数值是-------------------------( )(A )7(B )6(C )5(D )48、方程1)1(22=--+x x x 的整数解的个数是----------------------( )(A )2(B )3 (C )4 (D )59、q p ,都是奇数,二次方程0222=++q px x 有实根,那么它的根一定是-----( )(A )奇数 (B )偶数 (C )有理数但不是整数 (D )无理数10、若函数m x f x x -⋅-=+-+-|1||1|5425)(的图象与x 轴有交点,则实数m 的取值范围是------------------------------------------------------------( )(A )0<m (B )4-≥m (C )04<≤-m (D )03<≤-m二、填空题11、已知二次函数bx ax x f +=2)(,且2121),()(x x x f x f ≠=, 则)(21x x f += 。

12、已知0,,>c b a 且1,,≠c b a , 则a c b b a cb ac a c b c b a c b alog log log log log log ---++的值等于 。

13、一个锐角为30︒,斜边长为2的直角三角形纸片,以斜边上的中线为折痕折成直二面角,折后斜边两个端点的距离等于 。

14、函数)1(11±≠-=x x y 可以表示成一个偶函数)(x f 与一个奇函数)(x g 的和,则)(x f = 。

15、设函数xxx f +==121)(,若函数)(x g 与)1(1+=-x f y 的图象关于直线x y =对称,则=)3(g 。

16、圆柱形钢管在运输中被捆紧成正六棱柱的形状,已知每个侧面恰有10根钢管,则整捆钢管有 根。

若钢管直径为d ,则捆钢管的铅丝每圈的长度为 。

17、函数)0(sin >=ωωx y 在区间[0,1]上恰好有50个最大值,则ω的取值范围是 。

18、图1为一个长方体盒子的展开图(重叠部分不计),尺寸如图所示,点P 、Q 是原长方体盒子中不在一个面上的两个顶点,则在长方体盒子中,P 、Q 的距离等于 。

相关文档
最新文档