变压器零序差动保护的原理与调试

合集下载

变压器差动保护校验小结

变压器差动保护校验小结

变压器差动保护校验小结摘要: 众所周知,变压器保护在电网安全运行中扮演着重要的角色,无论在国外还是在国内,变压器保护都受到极高的重视。

不同的地区电网运行变电站结合自身的地域特点和气候环境,配备了不同的变压器保护。

结合本人对其不同电压等级,型号的南瑞变压器保护装置调试的工作经验和部分的了解,介绍一下个人对南瑞系列变压器差动保护装置校验中的异同点分析理解。

关键词:零差保护、联结组别Abstract: as we all know, transformer protection in the grid security plays an important role, whether in foreign countries or in China, by the transformer protection high attention. Different area of the operation of the electric substation in connection with its own characteristics and climate environment, and equipped with different transformer protection. Combined with oneself to the different voltage grade, type of transformer protection device south red the commissioning of the work experience and part of the understanding, to introduce individual of the south red series transformer differential protection device of the differences and similarities between calibration understanding and analyzing.Keywords: zero differential protection, link categories纵差保护是变压器主保护,它是所有变压器保护装置中主要配置之一,下面就南瑞厂家型号为9671C变压器保护装置的纵差保护进行说明。

变压器保护校验方法

变压器保护校验方法

RCS-978系列变压器保护测试、RCS-978型超高压线路成套保护RCS-978 配置:主保护:稳态比率差动,工频变化量比率差动,零序比率差动,谐波制动,后备保护:复合电压闭锁(启动)方向过流零序方向过流保护间隙零序过流过压保护零序过压稳态比率差动一、保护原理基尔霍夫电流定律,流入=流出(1)差动元件的动作特性在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:在上图中,I .为差动元件起始动作电流幅值,也称为最小动作电流;op.minI 为最小制动电流,又称为拐点电流;res.minK=tan a为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。

动作特性为:拐点前(含拐点):' >一忆V JmJ拐点后: I op - I op mn + K (I es — JmJ / J .mJ式中 I op ——差动电流的幅值I res ——制动电流的幅值也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。

以双绕组变压器为例,在微机保护中,变压器制动电流的取得方法比较灵活。

国内微机保护有以下几种取得方 式:I = I —I /2I = (I + I )/2resIres二、测试要点:标么值的概念另:注意,978可以自动辅助计算当前的差流,但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前X 相制动电流下的动作电流边界!! !三、试验举例:保护定值:动作门槛:0.3差动速断电流:4I 侧(Y 接线)二次侧额定电流:3.935;II 侧(Y 接线)二次侧额定电流:3.765;III 侧(D 接线)二次侧额定电流:3.955由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定 电流的倒数。

变压器零序差动保护

变压器零序差动保护

自耦变压器零序差动保护问题0引言在超高压电力系统中,自耦变压器因体积小、效率高、用材省等优点而得到了广泛应用。

在为自耦变压器配置保护时,其相间差动保护、匝间保护、瓦斯保护及相间后备保护与普通变压器基本相同,一般不需作特殊考虑,但其零序保护及过负荷保护却有着不同于普通变压器保护的特点。

对于过负荷保护,曾有许多专家及工程技术人员进行过大量的论述[1],本文将主要讨论自耦变压器的零序差动保护。

众所周知,自耦变压器与普通变压器的功率传递方式不尽相同,在普通变压器中,高、中压线圈之间没有电的联系,全部是由电磁感应的作用进行功率传递的,而在自耦变压器中,高、中压线圈之间有电的联系,其功率传递除一部分是靠电磁感应的作用外,另一部分则是靠电的直接传导传递的;并且由自耦变压器的原理、结构所定,其高、中压侧的中性点必须连在一起,且同时接地。

这是自耦变压器与普通变压器的主要差异[2]。

在超高压系统中,大多数大容量的自耦变压器都是分相式。

显而易见,对于分相式的自耦变压器而言,其内部发生接地故障的概率远大于相间故障,因此,对于自耦变压器的接地故障必须有高可靠系数的零序保护。

1自耦变压器单相接地故障时的电流分析为了更清楚地说明自耦变压器的特殊性,首先可以利用图1中500 kV/220 kV自耦变压器作为原型,对其中压侧、高压侧发生区外接地故障时的零序电流分布进行分析。

图1 自耦压器主接线图Fig.1 Connection diagram of autotransformera.当自耦变压器的中压侧发生区外接地故障时,对折合到中压侧的零序等效电路(如图2)进行分析,可以得到式(1)、式(2)。

图2自耦变压器中压侧区外单相短路电流分析Fig.2Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at medium voltage side(1)(2) 其中nGZ=U G/U Z,为自耦变压器高、中压变比;Z0为中压侧(短路点)的零序电流;ZX为中性点提供的零序电流;GG0为自耦变压器公共绕组中的零序电流;G0为自耦变压器高压侧零序电流;G0′为折合到中压侧的高压侧零序电流;XG0,XD0分别为自耦变压器高、低压侧的零序电抗;XSM0为自耦变压器高压侧的系统零序阻抗。

变压器差动保护原理及调试方法

变压器差动保护原理及调试方法

制动电流I r
+-
i i
1
2
=2i1
++
差动电流I cd
i 1
i 2
≈2i1
制动电流I
++
i i
≈0
r
1
2
Icd
Icd
I set
(Ir<Ie区) 外故障特点区Icd内故I障set 特点
差动电流小 差动电流大
I cd
K
I r
(Ir≥I制e) 动电流大
I制动 电K流 I小
cd
r
变量
恒量
动作区
Iset
➢ 涌流波形偏于时间轴一侧,波形含有非周期 分量。
22:02
22
二、 差动保护的几个特殊问题(1)
如何识别涌流(1)
当变压器合闸于电源时,灵敏的差动保护可能误动。 为使差动保护躲过涌流,必须采取措施使保护能区分 涌流状况与故障状况。这就必须要提供某种形式来识 别涌流从而限制此时的差动保护动作。
可以从涌流的特点出发来找到识别的方法!
部流入差动回路
22:02
18
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(1)
22:02
19
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(2)
22:02
20
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(3)
➢涌流的波形、大小和持续时间主要取决于下列因素:
Ir
22:02
17
二、 差动保护的几个特殊问题(1)
励磁涌流对差动保护的影响
空充变压器时,将产生励磁涌流,励磁涌流的 幅值可以达到8-10倍主变额定电流,而励磁涌流 是以单边的差流出现的,如此大的电流全部流 入差动回路,若不采取措施势必造成差动保护 误动。

第6章 变压器保护 差动保护

第6章 变压器保护 差动保护

励磁涌流的产生
图6-8 励磁涌流的产生及电流变化曲线 (a)稳态时电压与磁通关系;(c)变压器铁芯的磁化曲线瞬 间合闸时电压与磁通关系
励磁涌流的产生


com
m
2m
np
m
m
Im
t
p
(b)t=0,u=0瞬间空载合闸时电压与磁 通关系 图6-8变压器励磁涌流


I exs
t
(d)励磁涌流波形
变压器各侧电压等级和额定电流不同,因而采用的电流互感
器型号不同,它们的特性差别很大,故引起较大的不平衡
电(实际上是两个电流互感器励磁电流之差)
I unb
3K err K st I k . max K TA.d
(6-12)
Kerr——电流互感器误差,取0.1; KSt——电流互感器同型系数,对发电机线路纵差保护取0.5;对变压器、 母线差动保护取1;
6.4.3变压器的励磁涌流及其抑制措施
变压器励磁电流仅流经变压器的某一侧,因此,通过电流 互感器反应到差动回路中不能被平衡,在外部故障时,由 于电压降低,励磁电流减小,它的影响就更小。可忽略不 计。 但是当变压器空载投入和外部故障切除后电压恢复时,则 可能出现数值很大的励磁电流(又称为励磁涌流)。
UX1

I Y(1)
I Y(2)
KD UT
I Y(1)
I Y(2)
KD W2 UA

I Y(2)
UX2
I (1)

I (2)

I (1)

I

(2)
I Y(2) - I (2)


Wd
(a)
(b)

线路零序电流差动保护调试方法分析

线路零序电流差动保护调试方法分析

线路零序电流差动保护调试方法分析吴玉鹏;张乐安;邱立伟;冒杰【摘要】介绍了零序电流差动保护原理,分析PCS-931GM(M)超高压线路保护装置零序电流比率制动差动保护判据,探讨了零序电流差动保护的调试方法和保护联调步骤,为现场调试人员提供了一定的参考.【期刊名称】《电力安全技术》【年(卷),期】2015(017)009【总页数】3页(P62-64)【关键词】超高压线路保护;零序电流差动保护;单体调试;保护联调【作者】吴玉鹏;张乐安;邱立伟;冒杰【作者单位】中核核电运行管理有限公司,浙江嘉兴314300;中核核电运行管理有限公司,浙江嘉兴314300;中核核电运行管理有限公司,浙江嘉兴314300;中核核电运行管理有限公司,浙江嘉兴314300【正文语种】中文0 引言近年来,随着通信技术的发展,作为线路主保护之一的光纤电流差动保护得到了越来越广泛的应用。

光纤电流差动保护原理简单、灵敏度高,具有不受系统振荡、线路串补电容、平行互感、系统非全相运行、单侧电源运行方式等影响的特点,动作速度快、选择性好,能可靠反映线路上各种类型故障,并且具备天然的选相能力,可准确分辨区内、区外故障,具有其他纵联保护不可比拟的优势。

光纤电流差动保护包括分相电流差动保护和零序电流差动保护。

在保护验收和日常预防性维修时,需对光纤电流差动保护进行调试,而其中零序电流差动保护是调试项目中难度系数最高的部分。

本文以南瑞继保电气有限公司生产的PCS-931GM(M)超高压线路成套保护装置为例,介绍零序电流差动保护的单体调试方法和保护联调的步骤。

1 零序电流差动保护原理对电流差动保护而言,负荷电流是穿越性电流,是制动电流,不产生动作电流;经高电阻接地后,其短路电流很小,因此动作电流很小。

在重负荷情况下,线路内部发生经高阻接地故障,制动电流很大,但动作电流不大,此种情况下的稳态量差动保护灵敏度可能不足,会导致保护拒动。

对零序差动保护而言,其不反应负荷电流,所以无负荷电流产生的制动作用,受过渡电阻影响较小。

变压器保护及原理

变压器保护及原理

应装设哪些的继电保护 各保护的配置及原理
1)防止变压器油箱内各种短路故障和油面降低的瓦斯 保护(重瓦斯 跳闸 / 轻瓦斯 信号) 2)防止变压器绕组和引出线的多相短路、大接地电 流系统侧绕组和引出线的单相接地短路及绕组匝 间短路的纵差保护或电流速断保护 3)防止变压器外部相间短路并作为瓦斯保护和差动 保护(或电流速断保护)后备的过电流保护(或 复合电压启动的过电流保护或复序过流保护)
瓦斯保护原理及构成
瓦斯保护的主 要元件是瓦斯 继电器,它安 装在变压器的 油箱和油枕之 间的连接管道 中。
瓦斯继电器装设在变压器油枕之间的联通管上。变压器安装时应取1%~1.5%的 倾斜度(使气体能够进入瓦斯继电器和油枕);联通管对油箱的油箱与顶盖也有 2%~4%的倾斜度(防止储存气体,同时保证瓦斯保护的可靠动作)。
分级绝缘变压器零序保护组成 由零序电压保护Байду номын сангаас零序电流保护、间隙零序电流保 护共同构成 分级绝缘变压器零序保护原理 当系统发生一点接地,中性点接地运行的变压器由 其零序电流保护动作于切除。若高压母线上已没有中性 点接地运行的变压器,而故障仍然存在时,中性点电位 将升高,发生过电压而导致放电间隙击穿,此时中性点 不接地运行的变压器将由反应间隙放电电流的零序电流 保护瞬时动作于切除。如果中性点过电压值不足以使放 电间隙击穿,则可由零序电压保护带0.3~0.5S的延时将 中性点不接地运行的变压器切除。
外部故障:指油箱外引出线的短路故障 相间短路 单相接地短路
变压器不正常工作状态
外部短路引起的过电流
油箱漏油造成油面降低
外部接地短路引起中性点过电压 过负荷 绕组过电压 频率降低引起的过励磁
油温过高等
值班人员处理措施
变压器处于不正常工作状态时,继电保护应根据其 严重程度,发出告警信号,使运行人员及时发现并采取相 应的措施,以确保变压器的安全。

变压器差动保护

变压器差动保护

变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。

一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。

该保护也是我们继电保护调试人员在工作中经常接触到的设备。

下面将介绍一些有关于差动保护方面的一些知识。

二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。

简单地讲,就是输入的两端TA之间的设备。

由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。

差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。

三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。

差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。

在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。

当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。

关于撤除零序量的变压器差动保护的校验方法

关于撤除零序量的变压器差动保护的校验方法

露熊璺凰关于撤除零序量的变压器差动保护的校验方法李敏肖涛古(广州市地下铁道总公司运营事业总部,广东广州510000)喃要】变压嚣在正常运行或外部故障时可能在斋低压僻存在零序电流差,所以变压器保护装置为了防止差动保护误动作,有必要.在计算差动电流时把所有绕组电流中的零序分量撤除掉,利用撤除了零序电流量的高低压侧电流计算差动和制动电流值。

在这种情况下加单相电流进行板验和加三相电流校验时的差动电滴屈制动电流之间存在差异,本文给出了在在加单相电流进行板验的差流计算公式并进行了现场校验。

供键阆差动保护;零序电流;较验1变压器差动保护撤除零序量的原因变压器差动保护是按比较变压器高低压侧的电流的大小及相位而构成的一种保护,根据变压器正常工作和发生外部故障时流八和流出变压器的功率相等的条件建立差动平衡方程。

以广州地铁某主变保护装置SR745为例,其差动保护的工作原理见下图1:图1变压器差动保护的工作原理主变保护S R745的三绕组变压器的比例差动的基本工作原理可用下列公式表示:差动电流乒匠瑚;制动电流三=m缸(同,固,团);斜r,1凇LO PE=I睾l x10090;其中-、不嚣芭经过cT变L-t;不匹陇和相【{J‘’。

角校正之后的值。

双绕组变压器的基本工作原理也可以表示为:五=I;乜I西,--m a x (卧㈨;r,1%SL OPE=-l睾fxl000/oo‘、i是经过C7"变比不匹配校正和相角校【‘J‘。

正之后的值。

由于变压器的特殊结构,在正常运行或外部故障时可能在高低压侧存在零序电流差,所以有必要在计算差动电流时把所有绕组的电流零序量撤除,原因分析如下三点:1)如果零序电流能够流入和流出变压器某个绕组(如中性点接地Y型绕组)但不能在其他的绕组(如△型绕组),外部接地故障将导致差动元件不正确地动作,该问题的经典解决方法为在一台Y,△变压器的Y侧按照△型来连接C T,因此流^继电器的电流都是相位正确的并且无零序电流。

三段电流、零序电压电流及其保护和差动保护

三段电流、零序电压电流及其保护和差动保护

零序电压:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A 相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C 相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

基本知识讲解:零序电流和零序保护原理

基本知识讲解:零序电流和零序保护原理

基本知识讲解:零序电流和零序保护原理零序电流与零序保护定义是什么呢?本文主要将为大家详细的讲解下零序电流和零序保护原理。

什么是零序电流在正常的三相三线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0。

如果在三相三线中接入一个电流互感器,这时感应电流为零。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流,即零序电流)。

三项电流的向量和不等于零,所产生的电流即为零序电流。

如何检测零序电流当存在零序电流时,电流互感器二次线圈中就有一个感应电流,此电流加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,若大于动作电流,则使灵敏继电器动作,作用于执行元件跳闸。

这里所接的互感器称为零序电流互感器。

零序电流的危害零序电流是由三相不平衡带来的,三相不平衡的危害非常多,下面列举两个三相不平衡的危害:1、增加变压器损耗假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。

则变压器的损耗表达式如下:Qa+Qb+Qc≥3√〔(Ia2 R)(Ib2 R)(Ic2 R)〕由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。

当存在零序电流时,三相负荷不平衡,增大变压器损耗。

而当不平衡严重时,变压器损耗过大,会加速变压器的老化甚至烧毁。

2、增加高压线路的损耗设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R)即高压线路上电能损耗增加12.5%。

零序保护在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量(比如零序电流)构成保护接地短路的继电保护装置统称为零序保护。

变压器保护原理及试验方法最终版

变压器保护原理及试验方法最终版

2.2 后备保护的原理
2.2.1 过流保护 过流保护用于降压变压器,动作电流Idz的整定应考虑
躲过切除外部短路后电机自启动和变压器可能出现的最大负
荷电流,动作方程:I>Idz 且t >Tdz。即短路电流I大于
动作电流定值Idz,持续时间t大于动作时间定值Tdz。一个 装置中可以设置多段过流保护,每段的Idz和Tdz各不相同, Idz越大 Tdz越小。
据,动作方程:I2>K2xbI1。
K2xb为二次谐波制动系数整定值,推荐为0.15。 满足动作方程就闭锁差动保护,否则开放差动保护。
原理二:波形判别原理。
基波的波形是正弦波,完整对称。励磁涌流存在大量谐 波分量,波形是间断不对称的。保护装置利于三相差动电流 的波形判别作为励磁涌流的识别判据,判断波形是对称完整 的就开放差动保护,否则就闭锁差动保护。
2.2.6 零序过压保护
对全绝缘的变压器,中性点直接接地时采用零序过流保 护,而在中性点不接地时采用零序过压保护。
有些变压器在中性点装设放电间隙作为过电压保护,这 种变压器保护的零序过流保护和零序过压保护就变为间隙零 序过流保护和间隙零序过压保护,在间隙击穿过程中,间隙 零序过压和零序过流交替出现,有的厂家的装置一旦零序过 压或零序过流元件动作后,两个保护就相互展宽,使保护可 靠动作。
在实际的变压器差动保护装置中,其比率制动特性如图 4所示,图4中平行于横坐标的AB段称为无制动段,它是由启 动电流和最小制动电流构成的,动作值不随制动电流变化而 变化。我们希望制动电流小于变压器额定电流时无制动作用, 通常选取制动电流等于被保护变压器高压侧的额定电流的二 次值。即: Izd=Ie/nLH
2.2.7 失灵保护 220kV以上的断路器发生拒动时,会危及整个

差动保护基本原理

差动保护基本原理

精心整理差动保护基本原理1、母线差动保护基本原理母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。

因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。

如果母线发生故障,这一平衡就会破坏。

有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。

如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围2、什么是差动保护?为什么叫差动?这样有什么优点?差动保护是变压器的主保护,是按循环电流原理装设的。

主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

I1与I2之和,即3、现在4、12、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器,应使1.全线速动保护在高压输电线路上,要求继电保护无时限地切除线路上任一点发生的故障。

2.单侧测量保护无法实现全线速动所谓单侧测量保护是指保护仅测量线路某一侧的母线电压、线路电流等电气量。

单侧测量保护有一个共同的缺点,就是无法快速切除本线路上的所有故障,最长切除时间为0.5秒左右。

由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的。

如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除。

可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,不能有效地区分本线路末端故障与下线路始端故障。

3.双侧测量保护原理如何实现全线速动为了实现全线速动保护,保护判据由线路两侧的电气量或保护动作行为构成,进行双侧测量。

变压器差动保护的实现及效验

变压器差动保护的实现及效验

种移 相方式 与采 用改 变T 接线进 行移 相 的方式是 完全 等效 A 的。 这是因为取Y 形接 线T -次两相 电流之差与将Y A- 形接线T A 改成 △形接线后取一相 的输 出电流是等效 的。 值得注意的是 : 用软件实现移相时 , 究竟取哪两相T =次 电 A
流之差 , 由变压器的接线组别决定。 这应 例如 : 当变压器的接线组
技 术 与 市 场
第l卷第6 21年 8  ̄ 0 1
技 术 研 发
变压器 差动保 护 的实现及效验
杨树雄
( 深圳 市地铁 集 团有 限公 司 , 东 深 圳 5 8 0 ) 广 10 0
摘 要 : 对 变 压 器 的 差 动 保 护 。 讨 其 工 作 原 理 以及 实 际应 用 中应 注 意 的 问题 。 针 探
差动保护的工作原理在于 比较被保护线路 区段 、变压器 、 电机 的始端 和终端电流 的数值 和相位 , 为此 , 在该线 路两端装 变 比相同的电流互感器 , 互感器 的二次线用 电缆接至差动继电 器。 由接线保证 : 当被保护线路外部发生短路时 , 差动继 电器 中
电流为0 当被保护线路 内部发生短路 时 , , 差动继 电器 中电流为
生接地故障时保 护不会误动 , 开零 序 电流 的影 响 ; 即避 能可靠
躲过稳态及暂 态不平衡 电流。 21 变压器差动保护 两侧 电流 的移相 . 呈Y,接线 的变压 器 , d 两侧 电流的相位 不 同 , 不能满 足 就 YIO + ,因此 ,要使正常工况下差动保护各侧 的电流向量和为 -
两个 互感器二次电流的总和。当外部 短路 时 , 线路始端和末端
的电流的数值 和相 位相 等 , 。 :继电器中的电流 : 即i=i ,

变压器零序差动保护

变压器零序差动保护

第四节 变压器零序差动保护1.概述通常的差动保护用在N Y ,d 接线的三项变压器,当N Y 侧单相接地短路时灵敏度不高,故提出零序差动保护方案。

单相式超高压大型变压器绕组的短路类型主要是绕组对铁芯(即地)地绝缘损坏,即单相接地短路,相间短路(指箱内故障)可能性极小,因此认真对待变压器绕组地单相短路故障保护,十分必要。

2.原理2.1 普通变压器的零序差动保护先看图1(a)所示N Y ,d 变压器,N Y 侧电源断开,该侧发生金属性单相接地短路,短路点距中性点的长度占全绕组总长的%α,电流Y I 和∆I 如图所示,变压器的电抗为0.10,∆侧接于无穷大电源。

变压器差动保护的电流互感器二次接线为常规方式(即变压器Y 接,互感器二次侧∆接;变压器∆接,互感器二次侧Y 接)。

输入变压器差动保护的电流是∆I ,当短路点靠近中性点时,即0→α,电流0→∆I ,注意到∆I 中只有正、负序分量,不包含零序分量,所以∆I 总是小于Y I ,使通常的差动保护灵敏度不高且有动作死区。

再看图1(b)的两侧电源N Y ,d 变压器,单相接地短路将Y 绕组分为两部分(1W 和2W ),各自流过电流1Y I 和2Y I ,如果有1Y I 1W >2Y I 2W ,则∆I 的正向将如图所示,这时1Y I 和∆I 将呈现穿越特性,通常的差动保护灵敏度低,或者根本不动作。

对于上述单相短路灵敏度低的问题,如果在N Y 侧三相电流互感器二次侧接成零序滤过器方式,再与中性点互感器二次组成差动接线,就构成了变压器的接地零序差动保护。

这种零序差动保护,无论图1(a)或(b),都能反应全部短路电流Y I (=1Y I 和2Y I ),灵敏度大大提高。

2.2 自耦变压器的零序差动保护按照相间短路差动保护互感器二次侧接线惯例,自耦变压器高中压侧电流互感器二次必为∆接线,差动继电器中不流过零序电流,所以这种差动保护对接地短路的灵敏度低,而对中高压侧中性点均直接接地的自耦变压器,单相接地是其主要故障形式之一,加装零序差动保护将提高自耦变压器内部接地短路的灵敏度。

差动保护原理及校验

差动保护原理及校验

差动保护原理保护的动作方程假设保护的差动电流为Id,制动电流为Ir,差动门槛定值为Icd,差动速断定值为Isd,拐点1为Ig1,比例制动系数为K1,拐点2为Ig2,比例制动系数为K2,则国内绝大部分保护的动作方程均为:Id > Icd 当 Ir < Ig 时;Id > Icd + K * ( Ir – Ig1 ) 当 Ig2 > Ir > Ig1 时;Id > Icd + K1 * ( Ig2 – Ig1 ) + K2 * ( Ir – Ig2)当 Ir > Ig2 时;Id > Isd比例制动曲线如上图所示:以上四个动作方程只要满足其中一个,保护就会动作出口。

大部分差动保护目前只采用了一个拐点。

即便是存在两个拐点的差动保护,为了测试更方便简单,往往也可以在试验前将保护定值中修改定值为:Ig1 = Ig2;K1 = K2。

从而按只有一个拐点的方式进行测试。

只有一个拐点的比例制动动作方程如下:Id > Icd + K * ( Ir – Ig ) 当 Ir > Ig 时;对于微机差动保护,实际上比例制动和差动速断是两套保护,所以很多保护都设置了控制字,用于投、退这两种保护。

测试差动速断保护时,一般应将“比例制动”保护由控制字退出。

如果不退出,或有些保护没有这种退出功能,则只有在比例制动保护动作后,继续增加输出电流,从保护的指示灯或有关报文判断差动速断保护是否动作。

高、低压侧电流与差动电流、制动电流的关系一般,国内保护的差动电流均采用:Id = | Ih + Il |,可表述为:差动电流等于高、低压侧电流矢量和的绝对值,因此必须注意加在保护高低压侧电流的方向。

制动电流的方程则各个品牌和型号的保护往往不同,国内保护最常见的公式有以下三种:◆Ir = max{ | Ih |,| Il | },正确的表述为:制动电流等于高、低压侧电流幅值的最大值;◆Ir = ( | Ih | + | Il | ) / K ,正确的表述为:制动电流等于1/K倍的高、低压侧电流幅值之和;◆Ir = | Il | ,正确的表述为:制动电流等于低压侧电流的幅值。

变压器差动保护问题分析及措施

变压器差动保护问题分析及措施

变压器差动保护问题分析及措施【摘要】在电力系统中电力变压器是十分重要和必不可少的设备。

它的故障将会给系统的正常供电和安全运行带来严重的后果,因此,变压器主保护:差动保护的正确动作至关重要。

为提高差动保护正确动作率,我们还要在工作中总结问题,分析问题,并提出改进措施,提高电网的安全运行。

【关键词】变压器;差动保护按差动原理构成的继电保护装置具有动作速度快,灵敏度高,不受外部短路影响,不受系统振荡影响等优点。

因而差动原理在构成继电保护装置上得到了广泛的应用。

当差动原理用于保护变压器时,需要解决在构成其他设备差动保护时,也会遇到一些特殊的问题,本文分析了一些问题及改进措施。

1.变压器纵差保护问题分析与措施变压器的高、低压侧是通过电磁联系的,故仅在电源的一侧存在励磁电流,它通过电流互感器构成差回路中不平衡电流的一部分。

在正常运行情况下,其值很小,小于变压器额定电流的3%。

当发生外部短路故障时,由于电源侧母线电压降低,励磁电流更小,因此,在这些情况下的不平衡电流对差动保护的影响一般可以不必考虑。

但在变压器空载投入电源或外部故障切除后电压恢复过程中,则会出现励磁涌流。

特别是在电压过零时刻合闸时,变压器铁芯中的磁通急剧增大,使铁芯瞬间饱和,这时出现数值很大的冲击励磁电流(可达5~10倍的额定电流),通常称为励磁涌流。

图1为一500kV变压器合闸时励磁涌流的电流波形图(由RCS-978所录,也就是说从电流互感器二次所见到的波形)。

由图可见,励磁涌流IE中含有大量的非周期分量与高次谐波,因此励磁涌流已不是正弦波,且可能在最初瞬间完全偏于时间轴的一侧。

励磁涌流的大小和衰减速度,与合闸瞬间外加电压的相位、铁芯中剩磁的大小和方向、电源容量、变压器的容量及铁芯材料等因素有关。

对于单相的双绕组变压器,在其它条件相同的情况下,当电压瞬时值过零时合闸,励磁电流最大;如果在电压瞬间值最大时合闸,则不会出现励磁涌流,而只有正常的励磁电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器零序差动保护的原理与调试摘要:在电力系统中,变压器占据重要地位,是电力系统的核心因素。

在变压器其使用过程中,其内部故障保护至关重要,保护方式包括后备保护、纵联差动保护、零序差动保护等。

其中,由于零序差动保护具有灵敏度高、保护安全等优点,因此,在近几年变压器保护中广泛应用。

本文主要对变压器零序差动保护原理进行阐述,分析零序差动保护的具体应用,研究变压器零序差动保护的调试方法,为零序差动保护使用提供参考。

关键词:零序差动保护;变压器;原理;调试Principle and debugging of transformer zero sequence differential protectionYuan Haihua China Academy of Railway SciencesAbstract:In the power system,transformer occupies an important position.It is the core factor of the power system.In theprocess of using transformer,the internalfault protection is essential.Protection method includes backup protection,longitudinal differential protection,zero-sequence differential protection and soon.Amongthem zero-sequence differential protection is widely used in the transformer protection in recent years due to itsadvantages such as high sensitivity,safety protectionetc.This paper is mainly about the describing of principle,the analyzing of the specific application,and the studying of debugging method of zero-sequencedifferential protection;it provides the reference for the application of zero-sequence differential protection.Keywords:zero-sequence differential protection;transformer;principle;debugging随着我国工业生产、经济的快速发展,人们对用电需求更大,电力系统承载更大压力。

在高压电力系统中,自耦变电器具有用材省、体积小、效率高点等优点,应用广泛。

同时,电力系统得以运行的前提保障是安全性,电力企业、部门极为重视变压器电力设备的安全性,通过保护装置保护变压器内部故障安全。

在对自耦变压器配置保护时,其与普通变压器具有相同的后备保护、匝间保护、瓦斯保护,但自耦变压器的功率传递方式与普通变压器存在差异,主要通过直接传导、电磁感应传递,易发生接地故障,需配置专门反应接地故障保护的零序差动保护[1]。

一、变压器零序差动保护原理在变压器运行过程中,变压器中压侧、公共侧绕组、高压侧接地故障的主保护是变压器零序差动,其对中压侧、公共侧绕组、高压侧三侧之间的相互关系、电流大小进行比较,从而构成差动保护。

其中,差动保护即当两端输入的CT 电流矢量差与设定的动作值一致时,动作元件将被启动,保护两端CT 间的设备[2]。

而变压器零序差动保护的组成部分为零序电流互感器及互感器,其工作不受变压器电流相移、励磁电流、涌流电流等因素的影响,对接地故障反映灵敏。

零序差动保护原理如图1 所示。

图1 零序差动保护原理图根据图1 可知,在系统正常运行过程中,中性点零序电流为零,即3I0'=0,且自产零序电流3I0''=0。

而区内接地故障在系统中发生时,自产零序电流3I0''、中性点零序电流3I0'保持相同大小及相位,这样,零序差动便具有较高灵敏度,动作可靠。

同时,在区外接地故障在系统中发生时,自产零序电流3I0''、中性点零序电流3I0'保持相反的相位、相同大小,从而差动可靠。

同时,当中性点零序电流3I0'超过变压器装置内整定动作定值时,装置内的元件动作被启动,零序差动保护开放。

二、零序差动保护在变压器中的具体使用(一)、合理区分外部故障在变压器运行过程中,当外部故接地故障发生时,中性点电流随着增加,且随着故障的延伸、发展,电流互感器发生饱和,差电流增加。

这样,当中性点电流剧增过程中,如果具有较小的差电流,则可判断外部接地障碍,而如果中性点电流与差电流同时出现,便无需判断区外故障[3]。

同时,当变压器发生区外、区内故障时,电路中呈现不同的电流分布。

例如,在自耦变压器运行中,由于其高中压侧有电的联系,且两者均需要直接接地,具有公共的接地中性点。

这样,自耦变压器系统发送单相接地故障时,零序电流便通过一个网络,经接地中性点向另一个网络流动,在因系统短路点、运行方式影响电流在中接地中性点发生较大变化。

因此,通过电流测定区分外部故障。

(二)、注意零序差动不平衡电流比较于相同差动,在系统外部短路、正常运行情况下,在理论上,零序差动保护没有不平衡电流。

但是,在实际应用中,一定量的不平衡电流存在,其主要包括空载合闸的励磁涌流、电流互感器的励磁电流、三相短路时各侧零序不平衡电流。

就空载合闸的励磁涌流而言,理论上,其是零差保护的穿越性电流,不产生不平衡电流。

但是,各互感器存在差异性,当空载合闸时,产生不平衡的零差保护,且由于不平衡电流量的值较小,因此,应根据变压器的具体运行资料确定零差保护的动作电流,不能用理论计算。

同时,当三相短路在自耦变压器外部发生时,各侧零序不平衡电流以相量和形式出现。

而为了躲避此不平衡电流,额定电流值将小于零序差动整体值,使零序差动保护对接地故障的可靠性、灵敏度降低。

因此,在变压器零序差动保护具体应用中,应使用带比率制动特性的变压器保护。

在具体应用中,设定零序差动保护计算在IN≥0.5Idmin 时启动,依据比率制动原理,根据计算方程:当Id>Idmin,Ir<1.25;当Id>Idmin+0.7(Ir-1.25),Ir∈[1.25,2.25];当Id>Idmin+Ir-1.55,Ir∈[2.25,∞][4],制动特性曲线如图2 所示。

图2 零序差动比率制动特性曲线(三)、采取措施避免保护误动在线路合环瞬间,不平衡电流会在线路上产生,产生零序差动保护误动,影响变压器的正常运行。

因此,在变压器零序差动保护应用过程中,应采取一些措施改进零序差动保护。

例如,通过增加零序差动保护动作时间,避免合闸时的保护误动。

同时,还可增加零序电压启动,在变压器单相接地时,增加零序电压,使零序电压二次高达100V[5]。

这样,在系统运行过程中,电压互感器开口三角电压值几乎接近于零,因此,启动零序电压,可防止零序差动保护误动,防止非接地故障。

此外,还可采用五次谐波原理,在电力系统运行过程中,高次谐波分量存在于电源感应电动势中,且受电压互感器、变压器等设备铁芯非线性影响,一些高次谐波分量存在于电网中。

此时,采用中性点经消弧线圈消接地,利用消弧线圈对谐波的强大感抗性,减弱高次谐波分量,准确判断接地系统故障。

三、变压器零序变压器保护调试(一)、合理按照步骤进行零序差动保护调试在进行零序差动保护调试过程中,需要先校验电流通道采样精度、差速电流定值及差动电流定值,然后根据校验结果进行保护调试。

其中,在先校验电流通道采样精度过程中,分别从保护装置各侧将三相对称电流通入电流端子处,对装置的零序电流、三相电流进行校验。

同时,将单相电流通入各侧电流端子处,对零序电流的精准度进行察看。

而在校验差速电流、差动电流定值过程中,将单相电流通入保护装置高压侧电流端子处,此时,如果当电流大小为1.5 倍及0.95 倍的零差保护电流定值时,校验0.95 倍的定值可靠不动作,1.5 倍定值可靠动作。

校验零序差动保护后,根据结果进行故障保护。

(二)选取变压器制动电流对于自耦变压器而言,制动电流按照I=max{(IAH-IBH),(IBH-ICM),(ICH-IAH)}公式进行选取,其中,高压侧三相电流用IAH、IBH、ICH 表示[6]。

根据电流保护可靠制动。

例如,对于区外相间故障,当发生如图3 所示的AB 相间故障时,I= max{(IAH-IBH),(IAM-IBM)},其IAM、IBM 表示中压侧三相电流。

在故障发生时,I 值较大,相同故障引起的零序不平衡电流便为差动电流,在制动电流远大于差动电流时,保护可靠制动。

图3 AB 相间故障(三)、准确判断中性点CT在变压器零序差动保护过程中,保护动作的正确性是确保系统安全、可靠运行的关键因素,而正确的中性点零序CT 极性是保障保护动作正确的核心因素,因此,在变压器零序差动保护调试中,应对中心点CT 进行极性判别,准确连接CT 极性,避免发生因CT 极性接反而出现的保护误动情况。

在具体操作中,如果在变压器空载合闸时无内部故障,对于零序差动保护而言,励磁涌流是穿越性电流,此时,如果是正确的零序CT 极性,相位相反、大小相等的中性点、自产零序励磁涌流在合闸侧产生,变压器空载合闸纵差保护不动作。

同时,根据中性点、自产零序励磁涌流相位差对零序CT极性进行校验,如果两者具有相同相位,则将向现场投运人员发送告警信息提示,核实零序CT 极[7]。

四、结束语零序差动保护以其灵敏度高、可靠性强等优势广泛应用于变压器接地故障中,灵敏反应变压器存在的接地故障,为变压器运行提供保护。

在实际应用中,电力工作人员应根据变压器型号、输电要求选择配置合适的零序差动保护,科学调试设备,为故障判断提供依据,提高保护可靠性,确保电网正常运行。

参考文献:[1]周建,周卫巍,王锋等.1000 MW 发电机变压器组保护配置探讨[J].电力系统保护与控制,2010,38(11):126-129,146.[2]罗云照,陈朝晖.变压器零序差动保护制动电流算法探讨[J].南方电网技术,2011,05(5):77-80.[3]柳维衡,郑涛.基于不同故障情况的特高压变压器差动保护仿真研究[J].现代电力,2010,27(1):12-16.[4]马玉玲.变压器零序差动保护原理及调试[J].电网与清洁能源,2009,25(9):23-25.[5]胡红斌,郭素梅,史新民等.变压器零序方向及零序差动保护接线正确性检测方法[J].中国电业(技术版),2010,(1):25-27.[6]张连杰.基于零序电流分布的自耦变压器电流保护分析[J].通信电源技术,2011,28(6):101-102.[7]袁宇波,李鹏,黄浩声等.变压器差动保护误动原因分析及对策综述[J].江苏电机工程,2013,32(6):8-11,14.。

相关文档
最新文档