主变差动保护调试方法详解1

合集下载

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。

为了确保差动保护能够可靠地工作,需要对其进行调试和验证。

下面将详细介绍完整的变压器差动保护调试和验证方法。

一、调试方法:1.检查保护装置的接线是否正确。

检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。

2.对CT进行检定。

使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。

3.调整差动保护装置的参数。

根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。

4.模拟故障事件进行测试。

通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。

同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。

二、验证方法:1.进行整套装置的一次性测试。

通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。

2.进行稳态和动态特性测试。

测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。

同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。

3.进行电流差动特性测试。

通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。

4.进行接地故障测试。

在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。

5.进行保护可靠性测试。

通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。

同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。

总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。

主变保护原理及调试方法

主变保护原理及调试方法

主变保护原理及调试方法主变保护是电力系统中最重要的保护之一,主要用于保护主变电站及其上下级设备的安全稳定运行。

主变保护的原理是在保证主变电站稳定运行的基础上,对主变及其连接线路的故障进行快速鉴别和切除,以防止更广泛的故障扩展。

调试主变保护的方法主要有以下三个方面:一、检查主变保护装置的配置和设置1.确认主变保护装置的型号和版本,检查是否与设计要求一致;2.检查主变保护装置的通信设置,包括通信接口、通信地址等是否正确;3.检查主变保护装置的保护定值设置,包括过流保护定值、间歇动作时间、时间限制定值等是否合理;4.检查主变保护装置的故障录波设置,确保能够记录故障发生前的电流、电压等信息。

二、进行保护信号的测试和验证1.对主变保护的各个元件进行测试,包括电压互感器、电流互感器、保护开关等,确保信号的正确输出;2.对保护信号进行验证,与实际电网数据进行对比,确保保护装置能够正确鉴别故障;3.对主变保护的各个功能进行测试,包括过流保护、差动保护、方向保护、欠频保护等,确保各功能齐全且工作正常。

三、进行系统联动和自动化测试1.对主变保护与其他保护装置进行联动测试,包括电网侧保护、变压器侧保护等,确保保护装置之间的协调动作;2.对自动化功能进行测试,包括自动重合闸、自动调压、自动开关等,确保自动化功能正常工作;3.进行应急停电和恢复供电测试,模拟实际故障情况,验证保护装置的响应速度和过程控制能力。

除了上述方法,还应注意以下几个调试要点:1.检查保护回路的接线和接地,确保保护信号传输的可靠性;2.定期对保护装置进行校准和维护,保证其工作的可靠性和准确性;3.在调试过程中,注意保护装置的动作记录和故障录波分析,找出问题所在,并进行相应调整;4.保护设置要符合实际运行情况,对于特殊情况或系统变动,要及时调整保护定值;5.保持与设备厂家和运维人员的沟通交流,及时了解新技术和装置。

总之,主变保护的调试是一个复杂而细致的过程,需要运用多种方法和手段来保证保护装置的正确配置和可靠性。

主变保护的原理和调试

主变保护的原理和调试

2、输入接点检查
在液晶主界面的数字量显示的子菜单, 对屏上"投差动保护"压板进行投退试验, 检查液晶上对应的开关量是否由"0"→"1", 同样进行别的开入实验如:置检修状态 等.
3、整组实验
• 差动速断保护:投入差动保护压板,在 变压器保护定值中整定差动速断"的控制 字为"1",比率差动控制字为"0",根据逻辑 框图的条件加量进行实验
•在保护屏端子上加入额定电压及额定电流,在面板液晶 上显示保护的采样值与实际加入量应相等,其误差应小 于±5% .
2、输入接点检查
在装置液晶的子菜单,按照液晶上显示 的顺序逐个进行屏上投退压板的断开和 连通,检查液晶上对应的开关量是否变位.
3、整组实验
• 复合电压闭锁<方向>过流保护:投入 复合电压闭锁〔方向过流保护压板,在后 备保护定值单中整定复合电压闭锁过流 保护的控制字为"1",
• 检测零序〔方向过流保护的各段动作时间
• 不接地零序保护,投入不接地零序保护压板, 在后备保护定值单中整定间隙零序过流保护、 零序过电压保护的控制字为"1",加入PT开口三 角零序电压和间隙零序电流I0g
• 间隙零序过流保护:检测间隙零序过流保 护的电流定值和动作时间时间.
• 过负荷、启动风冷、过载闭锁有载调压
4、开关传动试验 投入后备保护出口跳闸压板,模拟相应故障.进行开关传动试验. 5、变压器带负荷试验
变压器空投成功带负荷运行后,在保护状态菜单中查看 保护的采样值及相位关系等是否正确.
谢谢!
知识回顾 Knowledge Review
• 在满足复合电压的条件下,检测保沪 的过流定值.误差应在5%范围以内.

主变稳态比率差动保护原理及其校验方法

主变稳态比率差动保护原理及其校验方法

对于 南 瑞 的 R C S 一 9 7 8主 变 保护 装 置 , 其 稳态 比率 差 动 保 护 能够 区分 是 变 压 器 内部 故 障 还 是 外部 不 平 衡 故 障 。R C S 一 9 7 8 通 过 分 相 制 动 的方 式 闭锁 励 磁 涌 流 , 因 此 能够 将 故 障 电流 和 励 磁 涌流 区分 开来 , 其保 护动 作时 间大大 加 快 。
S_ L_ C 0 N VA LLEY

主 变稳态 比率差 动保 护原理及其校 验 方法
盛 伟 1 2 1 0 1 3 ) ( 辽 宁 省电 力有 限公 司检 修 分公司 , 辽 宁 锦州
摘 要 继 电保 护为 一次设 备 的安 全设 立 了一 道屏 障 , 大 量事 实表 明做 好继 电保 护 工作对 电力 系统 的安全 稳 定运行 具 有 重要 作 用 。 由于 变压 器在 电 网 中处 于非 常重要 的地位 , 一旦 它发 生故 障 将给 电网的运 行 带来很 大的影 响 , 因此 主变 保 护 在 继 电保 护 中属 于重 中之 重 。 本 文针 对 南瑞 继保 的 R C S - 9 7 8 主 变保 护装 置 , 详 细分析 了主变稳 态 比率 差动保 护 原理 , 介绍 了R C S 一 9 7 8的动作 特 性 以及 其软 件 实现 相位 补偿 的算 法 , 给 出 了校 验 主保 护整 定值 的 方法 。 以明确 主 变保 护 定检
发生 误动 作 。
△侧 : { t ‘ = ( i - t 。 ) /
l I ' o = ( I - I b ) /侧c T二次 电流 ,i 。 、 、i 是 △侧 C T 二次 电流 ,i ・ 、t ・ 。 是Y 侧 校 正后 的各相 电流 , 。 、t 、 是 △侧 校正 后 的各相 电流 , t 。 是Y 侧 二 次零 序 电流 。

主变差动保护的调试校验

主变差动保护的调试校验

主变差动保护的调试校验一、相关的知识保护的制动特性曲线由3段折线组成,其中第一段和第三段的斜率固定为0.2和0.7,第二段折线的斜率可由用户整定,一般整定为0.5。

曲线中含有2个拐点,分别为e I 6.0和e I 5,其中e I 为高压侧的2次额定电流。

为保证主变在正常运行过程中或者外部故障时,流入到继电器的差动电流等于0,此时应对Y 侧电流进行相位和幅值的校正,校正同时去除因零序电流所造成的影响。

考虑到微机保护强大的计算能力,以及当前的很多主变保护,差动与后备保护公用同一组CT,由此,选I sdI cdI ⎪⎪⎩⎪⎪⎨⎧-==∑∑-=••=•11max 121N i izdN i idz I I I I I择外部进行相位校正势必会影响后备的接地保护功能。

因此由软件进行相位校正是必然的。

以Y /△-11为例:式中,ah I •、bh I •、ch I •为高压侧CT 二次电流,A I •'、B I •'、C I •'为高压侧校正后的各相电流;aL I •、bL I •、cL I •为低压侧CT 二次电流。

其它接线方式可以类推。

差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进行。

差流的计算均是在Y 侧进行相位校正,因而本软件自动进行了零序电流消除。

差动保护是以高压侧二次额定电流为基准,首先计算额定电流1.74961000600110350431n =⨯⨯⨯⨯=⋅=TAHnH e n U S I制动曲线的拐点计算1.04986.01.74966.06.0=⨯=⨯=e e I I (第一拐点) 8.748051.749655=⨯=⨯=e e I I (第二拐点)平衡系数的计算0.39775/6005/50021105.1011=⋅=⋅=TAH TAL nH nL phL n n U U K (低压侧平衡系数) 3/)('bh ah AI I I•••-=3/)('ch bh BI I I•••-=3/)('ah ch CI I I•••-=0.75/6005/12001105.3811=⋅=⋅=TAH TAm nH nm phm n n U U K (中压侧平衡系数) 式中,n S 为变压器额定容量,nH U 1为变压器高压侧额定电压(应以运行的实际电压为准,可参考变压器的铭牌),TA n 为变压器高压侧CT 变比,nL U 1为变压器低压侧额定电压,TAL n 为低压侧CT 变比,TAH n 为高压侧CT 变比。

主变保护的原理及调试

主变保护的原理及调试

主变保护的原理及调试主变保护是电力系统中关键的保护之一,它主要用于对主变压器进行保护,以防止主变压器由于外界故障或内部故障引起的损坏。

主变保护主要包括差动保护、过流保护和继电保护。

1.差动保护:差动保护是主变保护的最主要的保护方式。

它基于主变压器两侧电流的差值来判断是否有故障发生。

差动保护装置通过将主变压器两侧的电流进行比较,如果两侧电流之差超过设定值,就会判定为故障,从而触发保护动作。

差动保护装置一般由差动电流继电器和判据继电器组成。

差动电流继电器通过测量主变压器两侧电流来判断是否有故障,而判据继电器用来对差动电流继电器的输出信号进行判别,并进行相应的动作信号输出。

2.过流保护:过流保护是为了防止主变压器由于过电流引起的损坏。

过流保护一般采用了方向性元件来判别过电流的方向,从而确定保护方向。

过流保护装置通过测量主变压器的电流,并与设定的电流值进行比较。

如果测量到的电流超过设定值,就判定为过电流,触发保护动作。

过流保护装置一般由过流继电器和方向继电器组成,过流继电器进行电流测量和保护判别,方向继电器用于判断过电流的方向。

3.继电保护:继电保护用于检测主变压器的各种参数是否在正常范围内,如温度、压力、流量等。

继电保护装置一般由继电器和传感器组成,传感器用于检测各种参数,继电器用于进行保护判别并输出保护信号。

1.校验设备:首先需要校验主变保护装置和相关设备的准确性和完好性。

包括校验差动电流继电器和过流继电器的准确性,以及校验方向继电器和传感器的准确性。

2.参数设置:根据实际情况,设置差动保护和过流保护的参数,包括差动电流继电器的设定值、过流继电器的设定值和方向继电器的设置。

3.动作测试:对主变保护系统进行动作测试,以测试保护装置的可靠性和动作速度。

动作测试可以通过人工模拟故障来实现,如短路和过电流。

4.定期检查:需要定期对主变保护系统进行检查,包括对差动电流继电器和过流继电器的检查,以及传感器的检查。

主变差动保护动作处理步骤

主变差动保护动作处理步骤

主变差动保护动作处理步骤主变差动保护是电力系统中常用的保护方案之一,用于检测主变压器的内部故障。

当主变出现故障时,差动保护将根据测量电流和相位差来判断是否发生故障,并及时采取保护动作,以防止故障扩大。

本文将深入探讨主变差动保护的动作处理步骤,并分享我的观点和理解。

一、差动保护基本原理和动作判据差动保护的基本原理是通过比较主变两侧的电流,判断主变是否发生故障。

一般情况下,正常工作时,主变两侧的电流应平衡。

当发生内部故障时,故障电流会导致差动电流的产生,从而触发差动保护的动作。

差动保护的动作判据主要包括以下几个方面:1. 检测电流的合格率:差动保护通过检测主变两侧电流的合格率来判断是否发生故障。

在正常工作条件下,合格率应为100%。

若合格率小于100%,则可能说明发生了故障。

2. 相序和相位判据:差动保护还需要检测主变两侧电流的相位差和相序是否一致。

一般情况下,正常工作时,主变两侧电流的相位差应为零或接近零。

若相位差大于一定阈值,或者相序不一致,都可能表明发生了故障。

二、主变差动保护动作处理步骤1. 差动保护动作判据的设置:在应用差动保护前,需要根据主变的特性和工作条件来设置动作判据。

动作判据应根据实际情况进行调整,以确保保护的准确性和可靠性。

2. 采集主变两侧电流信息:差动保护需要采集主变两侧电流的信息,这通常由电流互感器(CT)来实现。

CT将主变两侧电流变比为保护装置能够处理的范围内的电流,并输送给差动保护装置。

3. 进行电流比较和相位比较:差动保护装置会将主变两侧电流进行比较,并计算合格率、相位差等参数。

若合格率小于设定值,或者相位差大于设定阈值,则差动保护装置会判定发生了故障。

4. 动作判据满足时进行差动保护动作:当差动保护装置判定发生了故障时,会触发保护动作,如切断主变的电源和告警等。

三、我的观点和理解作为写手,我对主变差动保护动作处理步骤有以下几点观点和理解:1. 在设置差动保护动作判据时,需要充分考虑主变的特性和工作条件。

主变差动保护比率制动系数的校验方法

主变差动保护比率制动系数的校验方法
主变差动保护比率制动系数的校验方法
深圳供电局
继电保护测试技术
三侧加量校验比率制动系数
1、题目要求 比率差动保护(高、中、低压侧试验,K=0.5)制动曲线测试,分别试验制动值为 0.5Ie、2.5Ie、4.5Ie三个点 主变参数: 220kV主变为三卷变,接线方式为Y12/Y12/△11,Se=240MVA,高压侧: Ue=230 kV,CT变比600/1;中压侧Ue=115 kV ,CT变比1200/1;低压侧: Ue=11.5 kV,CT变比6000/1。
折算为有名值: I1 2.3751 2.3750
I2 3.3131 3.3130 I3 5.737 2 11.47180
深圳供电局
6、实验步骤(状态序列)
状态1

I A 0.4750

IB 0.2630

IC 0.909180
按键控制

差动电流略小于

动作门槛
状态4

I A 1.5750
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (4.5 0.5) 0.5 0.5 0.2 Icdqd 2.5Ie
a)计算0.95倍动作值: I1 0.95 2.5Ie 2.375Ie0
I2
2 4.5 2
2.375
3.313Ie0
I3
2
4.5 2
2.375
3 5.737Ie180
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (2.5 0.5) 0.5 0.5 0.2 Icdqd 1.5Ie
b)计算0.95倍动作值: I1 1.051.5Ie 1.425Ie0
2 2.5 1.425

主变差动保护动作处理步骤

主变差动保护动作处理步骤

主变差动保护动作处理步骤简介主变差动保护是电力系统中一种常见的保护方式,用于保护电力主变压器及其连接线路和设备。

它通过对主变压器两侧电流差值进行监测,以检测电流的不平衡,并对异常情况进行保护动作。

主变差动保护动作处理步骤是指当差动保护装置检测到异常情况时,对该情况进行处理的步骤和流程。

本文将介绍主变差动保护动作处理的具体步骤和注意事项。

主变差动保护动作处理步骤主变差动保护动作处理通常包括以下步骤:1.报警或动作信号的接收:当主变差动保护装置检测到差动电流超过设定值或其他异常情况时,会产生报警或动作信号。

这个信号会被传输到控制室或相关的监控设备,以通知操作人员。

2.确认动作原因:接收到报警或动作信号后,操作人员需要首先确认动作原因。

他们会检查主变差动保护装置显示屏上的报警信息,并与其他监测装置进行比对,以判断是否确实存在异常情况。

3.判断动作类型:根据动作原因的确定,操作人员需要判断差动保护装置的动作类型。

主变差动保护的动作类型通常包括差动保护器动作、微分电流超限动作、CT故障和CT回路故障等。

这一步的目的是为了准确判断异常情况的性质,从而制定相应的处理策略。

4.现场巡视检查:对于差动保护器动作的情况,操作人员需要进行现场巡视检查,以确认主变压器和连接线路的运行状态。

他们会检查变压器的温度、噪音、油位等指标,以及连接线路的接触情况和绝缘状态。

5.动作范围的确定:根据动作原因和类型的确定,以及现场巡视检查的结果,操作人员需要确定差动保护装置的动作范围。

这包括是否需要切除电力系统中的故障设备、线路或区域,以及是否需要进行其他措施,如投入备用设备、调整系统运行参数等。

6.故障分析和处理:在确定动作范围之后,操作人员需要进行故障分析和处理。

他们会利用差动保护装置的记录功能,分析故障发生的原因和过程,并制定相应的处理方案。

处理方案可能涉及设备维修、线路更换、系统重启等。

7.报告编写和归档:最后,操作人员需要撰写差动保护动作的报告,并进行归档。

主变差动保护动作处理步骤

主变差动保护动作处理步骤

主变差动保护动作处理步骤一、引言主变差动保护是电力系统中重要的保护之一,能够对电力系统中的故障进行快速定位和处理,保证电力系统的稳定运行。

在主变差动保护动作处理过程中,需要遵循一定的步骤和流程,以确保处理结果准确可靠。

本文将详细介绍主变差动保护动作处理步骤。

二、主变差动保护概述主变差动保护是指通过对主变压器两侧电流和电压进行比较,检测电力系统中发生故障时产生的不平衡信号,并对故障进行快速定位和处理。

主变差动保护通常由微机型数字式继电器实现,具有高精度、高可靠性等优点。

三、主变差动保护动作原因分析当电力系统中发生故障时,主变差动保护会产生相应的不平衡信号,并通过检测这些信号来判断故障类型和位置。

常见的导致主变差动保护动作的原因包括:1. 主变压器内部故障:例如短路、接地等;2. 主变压器两侧线路故障:例如短路、接地等;3. 主变压器两侧线路负载不平衡;4. 主变差动保护本身故障。

四、主变差动保护动作处理步骤当主变差动保护发生动作时,需要进行相应的处理步骤,以确保电力系统的稳定运行。

主要的处理步骤包括:1. 确认主变差动保护是否存在故障:首先需要确认主变差动保护是否存在故障,例如继电器本身损坏等情况。

可以通过检查继电器状态和参数设置等方式来判断。

2. 确认故障类型和位置:根据主变差动保护发出的报警信号,可以初步判断故障类型和位置。

例如,如果是主变压器内部故障,则可能是短路或接地等;如果是线路故障,则可能是短路或接地等。

3. 验证故障信息:在确定了故障类型和位置后,需要进一步验证故障信息。

可以通过现场检查、测试仪器等方式来确认。

4. 切除故障部分:根据验证结果,需要对发生故障的部分进行切除。

例如,在发生线路短路时,需要切除故障部分,以避免对电力系统造成更大的影响。

5. 恢复电力系统:在切除故障部分后,需要恢复电力系统的正常运行。

例如,可以通过切换备用线路、更换设备等方式来实现。

五、主变差动保护动作处理注意事项在进行主变差动保护动作处理时,需要注意以下几点:1. 确认故障类型和位置:在进行处理前,一定要准确确认故障类型和位置。

浅谈主变比率制动差动保护原理与调试方法

浅谈主变比率制动差动保护原理与调试方法

浅谈主变比率制动差动保护原理与调试方法刘东洋(中国水利水电第四工程局有限公司机电安装分局,河南平顶山467521)摘要:差动保护是变压器的主保护,其误动或拒动将对电网的稳定运行造成极大影响。

对变压器比率制动差动保护动作特性曲线的校验,既是保护调试最重要的一环,又是难度最大的一个项目。

现介绍比率差动保护的动作特性曲线以及电流相位的补偿计算原理,以南瑞继保RCS -978为例分析各侧额定电流的计算、继保仪应当输出的电流有名值计算以及继保仪接线及加量方法,最后给出了a 、b 两点动作电流及比率制动系数K 的计算结果。

关键词:比率差动;相位补偿;制动电流;标幺值;有名值;比率制动系数0引言变压器差动保护反映的是各侧能量的平衡关系。

通过比较各侧电流大小和相位,在发生区内故障时使差动继电器动作实现差动保护。

发生区外故障时短路电流增大造成CT 饱和,可能导致差动保护误动作。

比率差动保护在外部短路电流增大时,制动电流和动作电流都随之增大,能有效防止变压器区外故障时差动保护误动作,这就是主变比率制动差动保护的原理。

要想准确校验出比率制动系数K ,需对保护的原理及继保仪加量方法深入理解,本文对此进行了研究。

1主变比率差动保护原理1.1比率差动保护的动作特性本文以RCS -978G5举例说明比率差动保护的动作特性,其比率差动保护动作特性如图1所示。

I r1=0.5I e ,I r2=6I e ,K 1=0.2,K 2=0.5,K 3=0.75。

动作电流随不平衡电流增大而按比率增大,当I d 、I r 同时处于动作区时,比率差动保护动作。

1.2差动各侧电流相位的补偿微机型变压器差动保护的应用中,为简化现场接线,变压器各侧CT 均采用星型接线方式,CT 极性端均指向同一方向(如母线侧),各侧的CT 二次电流直接接入保护。

此时对于Y /△-11接线方式的变压器,两侧二次电流之间会出现30°的相位差,保护装置需通过软件算法对相位进行校正。

变压器差动保护调试方法

变压器差动保护调试方法

变压器差动保护调试方法微机变压器差动保护中电流互感器二次电流的相位校正问题,有两种解决方法。

第一种方法是采用电流互感器二次接线进行相位补偿。

具体做法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形。

这样做可以消除不平衡电流,使得差回路中的电流相位一致。

第二种方法是采用保护内部算法进行相位补偿。

当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从而简化了TA二次接线,增加了电流回路的可靠性。

但是在变压器为Y/△-11连接时,高、低两侧TA二次电流之间将存在30°的角度差。

为了消除这种角度差,保护软件通过算法进行调整,使得差动回路两侧电流之间的相位一致。

常见的校正方法包括Y→△变化调整差流平衡等。

本文介绍了RCS-978微机变压器保护装置的相位校正方法和差动电流计算公式。

对于三绕组变压器采用Y/Y/△-11接线方式,Y侧的相位校正方法都是相同的。

通过软件校正后,差动回路两侧电流之间的相位一致。

差动电流的计算方法为校正后的低压侧二次电流乘以高压侧平衡系数加上校正后的高压侧二次电流。

在微机变压器保护试验中,可以通过加补偿电流的方式进行单相测试,或者改变平衡系数和接线方式,用三圈变外转角方式测试。

以Y/Y/D-11接线变压器A相比例制动特性扫描为例,相关保护参数定值为差动速断值5A、差动电流1A、比例制动拐点3A、比例制动斜率0.5、高、中、低压侧额定电流分别为1A、1A、1.5A。

相关保护设置为差流=│I1+I2+I3│,制动电流={│I1│,│I2│,│I3│}。

三相测试仪:在保护控制字为0000内转角方式时,采用三相测试仪进行测试,同时对三侧进行测试。

测试对象选择3圈变,采用Y/Y/D-11接线方式,CT外转角。

电流接线方法为:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出后进入C相非极性端,由C相极性端流回测试仪。

变压器差动保护原理及其调试方法

变压器差动保护原理及其调试方法

变压器差动保护原理及其调试方法变压器作为发电厂和变电所的主要运行设备,能够将发电廠发出的高压电转变成用户所需的各级低压电,实现了不同行业和人群的用电需要。

因此,保证电力变压器各项工作的正常运行,不仅有助于提升供电和用电质量,而且对于输电线路的整体安全也有重要影响。

但是在实际过程中,由于人为工作疏忽或设备本身的原因,时常发生差动保护误动,导致变压器的自动保护功能失效,因此必须根据差动保护原因,探寻科学正确的调试方法。

标签:电力变压器;差动保护;误动原因;调试方法1 变压器差动保护的概述常见的变压器保护方式有差动保护、气体保护、过负荷保护以及单相接地保护等,其中差动保护是变压器的主保护,保护范围是变压器各侧电流互感器之间的一次电气设备,它能迅速而有选择地切除保护范围内的故障,从而保证了输配电线路的安全。

但是在实际工作过程中,变压器常常会出现各种问题,其中较为常见的故障有以下几种:第一种是变压器在长期使用后,内部线圈会因为受热出现绝缘漆损坏、脱落等问题,导致线圈之间的绝缘性能降低,出现短路现象。

第二种是在用电高峰期或当有大容量用电设备启动时,瞬时电压往往超出变压器额定电压的几十倍甚至上百倍,导致变压器线路烧毁。

第三种是变压器系统线路接地,导致电流增大,严重情况下还会出现变压器爆裂问题。

而变压器差动保护的作用原理就是当出现上述线路故障时,能够根据实际故障情况有选择性地切断线路,从而保证变压器本身不受到损坏。

2 差动保护误动实例分析及处理2.1 差动保护实例分析某厂变压器为三卷变压器,极限组别Y 0/Y/d-11,为大电流接地系统。

其中中压侧由于长期负荷低,在投运时未做带负荷六角图,变压器运行正常。

随着电力市场的发展和农网改造,110kV侧的负荷增加较多。

一段时间以来,主变差动保护时有误动,在其动作后对保护装置进行了检验,均满足比例制动特性要求,装置正常之后,在变压器中压侧差动TA间有一段母线距离山体较近,怀疑变压器差动保护误动是由于山体树枝接地所致,未引起高度重视,后来利用110kV 设备增容改造的机会,对中压侧TA进行了详细检查,发现其中B相TA的极性接反,改接后恢复了正常运行,经作六角图,接线正确,此后,差动保护误动得以根本消除。

主变差动保护调试方法详解1

主变差动保护调试方法详解1

主变差动保护调试方法详解1主变差动保护调试方法详解1调试主变差动保护的方法一般可以分为以下几个方面:1.硬件连接及参数设置在进行差动保护调试前,首先需要进行硬件连接及参数设置。

确保保护设备与主变压器之间的接线正确,保护装置与其他继电保护设备之间的连接可靠。

同时,需要根据主变压器的电气参数和差动保护设备的参数要求进行相应的设置,包括比率、变比、相位等。

2.故障注入及校正为了验证差动保护的正常工作,通常需要通过故障注入的方式模拟主变压器内部故障,然后进行差动保护的校正。

常见的故障注入方式包括短路故障注入和变压器回路故障注入。

在进行故障注入前,需要通过对系统进行分析,选择合适的注入点和注入方式,保证模拟的故障对差动保护提供有效的检测。

3.正常运行测试除了进行故障注入测试,还需要对主变差动保护进行正常运行测试。

在主变压器正常运行时,通过对不同故障点的检测和记录,验证差动保护对于正常运行状态的正确判断。

同时,需要注意观察差动保护的运行指示灯和触发信号,确保其与实际情况一致。

4.稳态误差测试主变差动保护的稳态误差是指负载不均衡等因素引起的保护误动,而差动保护的稳态误差测试主要是验证差动保护在不平衡负载下的稳定性能。

具体的测试方法包括在正常运行状态下,通过改变负载,观察差动保护是否误动,以及误动时间、误动次数等参数的记录和分析。

5.动态特性测试主变差动保护的动态特性测试主要是验证差动保护在故障发生后的动作时间和动作速度。

测试方法包括注入不同故障类型和不同故障位置的故障,观察差动保护的动作时间和动作速度,并与规定的误动时间和误动速度进行比较。

同时,还需要进行稳定性测试,验证差动保护对于主变压器的保护是否稳定可靠。

6.软件功能测试在调试过程中,还需要对差动保护的软件功能进行测试。

包括保护逻辑的正确性检查、软件参数的设置和校验、通信功能的测试等。

通过这些测试,确保差动保护装置的软件功能正常运行,并与其他继电保护设备进行协调,形成完整的保护系统。

同种调试方法分析不同型号主变比率差动保护

同种调试方法分析不同型号主变比率差动保护


变压器差 动保护
比率差动 门槛定值 比率镧 动曲线斜率
o6 n .l 05 .
其 中,
J、 为变压器两侧校正后 的电流 ; r l
收 稿 日期 :0 2 0 - 3 2 1- 6 1
作者简 介: 朱海 波(9 8 ) 男 , 17一 , 江苏常州人 , 工程 师 , 士学位 。 学 研究方 向为 : 电保护 。 继
图 l在 试 验开 始 时 , 入 主变保 护 的 差流计 算 : 加
I =1 d 1+1 2=0
差动高压侧 T A接线方式
差动低压翻 T A愿边 差动低压翻 T A副边 高压侧二 次额定电流 低压侧二次额定 电流
差动低压饲 T A接线方式 差动速 断电流定值

l0 oA 2 50 .A 094A . 8 320A . 8
中图分类号 : M4 35 T 0 .
文献标识码 : B
文章编号 : 2 5 5 ( 0 )9 0 0-3 17 - 4 X 2 1 0 — 1 - 6 2 9 0
主 变保护 的 比率差 动保护 的基 本原 理 是 : 当变压 1 差 回路 电流 的计 算方法简述 器外 部 发生故 障时 , 变压 器差 动保 护 的不平 衡 电流会 随 着 外 部短 路 时一 次 侧穿 越 性 短路 电流 的增 大 而增
E up n Ma u a t n e h o o y N . 2 1 q i me t n fc r gT c n l g o 9, 0 2 i
同种 调试 方 法 分 析 不 同型 号 主 变 比率差 动保 护
朱海波
( 辽源供电公司 , 吉林 辽源 160 ) 3 20
摘 要: 随着 用电负荷与 日俱增 , 建变电站越 来越 多, 新 出现 了不 同厂 家、 不同型号的主变保护。由于保护的型号不 同, 差

主变差动保护校验方法

主变差动保护校验方法

主变差动保护校验方法在电力系统里,主变差动保护就像一个忠诚的看门狗,时刻关注着变压器的健康状况,防止它出问题。

就好比我们在家里养了一只小狗,虽然看起来它天天就爱吃喝拉撒,但关键时刻它会警觉地吠叫,提醒我们小心不法之徒。

变压器也是一样,万一有故障,立马就得有人来解决,不能让小问题发展成大麻烦。

1. 主变差动保护的基本原理1.1 什么是主变差动保护?简单来说,主变差动保护是一种用来检测变压器内部故障的保护方式。

它通过比较变压器输入和输出的电流来判断是否有异常。

如果发现输入电流和输出电流之间有明显的差异,那就说明变压器内部可能出了问题,就像小狗发现了家里有陌生人的气味一样,立刻报警。

1.2 为什么需要差动保护?在电力系统中,变压器可是重头戏。

一旦它出现故障,可能会导致大规模停电,甚至引发连锁反应。

就像在一个大家庭里,谁要是生病了,大家都得担心,整个家庭的气氛都不一样了。

因此,差动保护就成了保护变压器的重要手段,它可以在故障发生时迅速切断电源,防止事故扩大。

2. 校验方法的重要性2.1 校验方法的意义好比我们买了一台新手机,大家都会仔细检查一下,确保没有问题再开始使用。

主变差动保护的校验方法就是为了确保保护装置的准确性,防止误动作或者漏动作。

就像过年时,家家户户都会大扫除,确保每个角落都干干净净,才能过个放心年。

2.2 常见的校验方法校验的方法有很多,比如说使用电流互感器来进行校验,看看它们的灵敏度是否正常。

这就像医生给病人做体检,确保各项指标都在正常范围内。

还有就是对比电流信号的相位,看看它们是否一致,是否有任何异常现象。

这就好比我们一起吃饭,看看每个人的盘子是不是差不多,保证大家都吃得饱饱的。

3. 实际操作中的注意事项3.1 注意安全在校验的过程中,安全是第一位的。

就像我们做任何事情都要注意安全,特别是涉及到电力的工作,更要小心翼翼。

确保所有的设备都处于正常状态,穿戴好个人防护装备,才能放心地进行操作。

主变差动保护调试方法

主变差动保护调试方法

主变差动保护调试方法主变差动保护是我们平时调试频率最高,难度最大,过程最复杂的一种保护类型,在调试过程中经常会遇到各种各样的问题,这里介绍一个主变差动保护的调试方法,以武汉豪迈电力继保之星6000C(传统保护用继保之星1600)为调试工具来做南瑞继保RCS-978和国电南自PST-1200主变差动保护试验,相信大家看了之后会觉得差动保护其实很简单很明了,将那些繁杂的公式转换都抛之脑后。

一、加采样来到现场第一步别急着开始做试验,首先我们要看保护装置的采样信息。

数字保护我们要先导取模型文件,一般后台厂家会给我们全站SCD文件,在继保之星6000C上按照步骤导入配置文件,配置通道时最好按照高中低通道1、2、3,通道映射为ABC、abc、UVW的顺序,以免弄错弄糊涂了,正确设置三侧变比信息。

然后按照通道接好光纤,在接光纤的时候可以先接保护装置侧,然后接继保仪RX光口,如果指示灯点亮表示接的正确,如果没有亮表示接反了换另一根光纤接RX。

南瑞继保RCS-978用的是方口(LC 口),国电南自PST-1200用的是圆口(ST口)。

准备工作做好之后可以按照图1所示设置参数:图1传统继保可以先接线接线时按照黄绿红ABC相的顺序,只有六路电流先接上高中侧(或者高低侧)电流,接好线后开机可以按照图2所示设置参数:图2每相设置不同的电压电流量方便检查采样值。

在加采样值时以防保护动作产生报文不方便看采样信息最后先将主保护功能退掉。

在加采样值时如果不正确可检查以下情况。

数字继保:确保模型文件导入正确;通道设置与所用的实际光口通道一致;通道映射与交流试验所用的相别对应;CT 、PT 变比设置与保护装置内部变比一致;高中低三侧SMV 接受压板均打开状态;波形监测是否有实时波形输出状态。

传统继保:电流开路指示灯是否处于点亮状态;两根电流测试线是否接反;测试线是否接对位置;CT 二次侧划片是否与保护侧断开以防产生分流。

二、 看差流采样值信息无误后第二步可以看差流信息,在此以江西鹰潭洪桥220kV 变电站两套保护装置配置信息为例来完成下面的操作。

南瑞主变差动保护调试篇

南瑞主变差动保护调试篇
3、以RCS9671/9679差动保护为例,解释Ie的概念
Ie是指根据变压器的实际容量求到的额定电流的标幺值。我们常说的CT二次额定电流是5A,这只是一个产品标准参数,而Ie是根据主变容量得到的,它所对应的电流有名值的具体数值,对主变的每一侧都是不同的。
以下列参数为例:某台主变,容量31.5/20/31.5兆伏安;变比110±4×2.5%/38.5±2×2.5%/11千伏;接线组别Yo/Y/△-12-11;CT变比200/5,500/5,2000/5;CT为Y/Y。
主变差动保护要考虑的一个基本原则是要保证正常情况和区外故障时用以比较的主变高低压侧电流幅值是相等相位相反或相同由差流计算采取的是矢量加和矢量减决定不过一般是让其相位相反从而在理论上保证差流为管是电磁式或集成电路及现在的微机保护都要考虑上述三个因素的影响
经验总结-主变差动保护部分
一、从工程角度出发所理解的主变差动保护
注意:上例中提及的主变高压侧及中压侧的Ie,与装置中Ieh及Iem不是同一个量,后者是前者的√3倍。
求Ie具体值的公式里包含了变压器容量、电压变比、每侧CT变比这几个参数。基于能量守衡的原理(忽略主变本身损耗),计算时容量都采用同一个最大容量(应注意对于35KV侧,额定参数是20MVA,但计算时还是要用31.5MVA)。得到的每侧额定值作为本侧的基准,实际电流除以该基准,就得到可以直接用以统一运算的标幺值。整个计算的过程,就消除了由主变电压变比和CT变比因素所造成的影响。其它公司以一侧为基准,其它侧往基准侧归算。我们的差动分别以各侧额定为基准,各侧实际电流都往本侧归算;思路都是一致的,但是我个人感觉还是Ie的概念更好一些,更符合物理意义。举个通俗的例子,把高压侧电流比做黄金、低压侧电流比做白银,两者没法直接通过比较重量来比较价值。我们都把其折合成美元,就可以统一比较了。Ie在差动归算中,就起了一个美元的作用。Ie是一个标幺值,是一个可以统一计算的中间度量单位(转换单位)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主变差动保护调试方法
主变差动保护是我们平时调试频率最高,难度最大,过程最复杂的一种保护类型,在调试过
程中经常会遇到各种各样的问题,这里介绍一个主变差动保护的调试方法,以武汉豪迈电力
继保之星6000C(传统保护用继保之星1600)为调试工具来做南瑞继保RCS-978和国电南自PST-1200主变差动保护试验,相信大家看了之后会觉得差动保护其实很简单很明了,将那些
繁杂的公式转换都抛之脑后。

一、加采样
来到现场第一步别急着开始做试验,首先我们要看保护装置的采样信息。

数字保护我们要先导取模型文件,一般后台厂家会给我们全站SCD文件,在继保之星6000C
上按照步骤导入配置文件,配置通道时最好按照高中低通道1、2、3,通道映射为ABC、abc、UVW的顺序,以免弄错弄糊涂了,正确设置三侧变比信息。

然后按照通道接好光纤,在接
光纤的时候可以先接保护装置侧,然后接继保仪RX光口,如果指示灯点亮表示接的正确,
如果没有亮表示接反了换另一根光纤接RX。

南瑞继保RCS-978用的是方口(LC口),国电
南自PST-1200用的是圆口(ST口)。

准备工作做好之后可以按照图1所示设置参数:
图1
传统继保可以先接线接线时按照黄绿红ABC相的顺序,只有六路电流先接上高中侧(或者
高低侧)电流,接好线后开机可以按照图2所示设置参数:
图2
每相设置不同的电压电流量方便检查采样值。

在加采样值时以防保护动作产生报文不方便看
采样信息最后先将主保护功能退掉。

在加采样值时如果不正确可检查以下情况。

数字继保:确保模型文件导入正确;通道设置与所用的实际光口通道一致;通道映射与交流
试验所用的相别对应;CT、PT变比设置与保护装置内部变比一致;高中低三侧SMV接受压
板均打开状态;波形监测是否有实时波形输出状态。

传统继保:电流开路指示灯是否处于点亮状态;两根电流测试线是否接反;测试线是否接对
位置;CT二次侧划片是否与保护侧断开以防产生分流。

二、看差流
采样值信息无误后第二步可以看差流信息,在此以江西鹰潭洪桥220kV变电站两套保护装置
配置信息为例来完成下面的操作。

PST-1200保护定值如下:高中低压侧额定容量为100MVA,电压等级为220kV/110kV/10kV,CT变比分别为300/1、600/1、3000/1,差动电流0.2Ie,速断电流2Ie,拐点1制动电流Ie,
拐点2制动电流3Ie,斜率分别为0.5、0.7,(Ie为高压侧二次额定电流)制动公式为Ir = ( |
Ih | + | Il | ) / 2,主变接线方式为Y/Y0-△11。

以上参数在“差动保护试验模块设备参数设置”项目里输入可自动计算出各侧二次额定电流。

计算结果为高压侧Ihn=0.875A,中压侧Imn=0.875A,低压侧Iln=1.925A。

其中Ie=0.875A。

也可手动计算,以高压侧为基准,则各侧流入差动保护某相的电流分别为
式中为变压器额定容量。

将其他两侧的电流折算到高压侧的平衡系数分别为。


得到各侧二次额定电流值之后就可以在交流试验界面下输入以下幅值和相位观察保护装置上
的差流值是否为零。

以继保之星6000C为例,高中两侧参数如图3所示:
图3
按照图3设置注意幅值和相位差流一定为0,高中侧相位反差180°
高低两侧参数设置如图4所示:
图4
按照图4设置注意幅值和相位差流一定为0,高低侧相位反差210°
注意:在看差流为零的情况下是六相电流一起加的,所以不用考虑补偿电流问题,在相位上可以自动调整的。

三、做启动
按照上面的方法差流值正常就可以开始做差动保护试验了,首先别急着在差动保护界面做比例制动曲线,应该先在交流试验界面把启动值和速断值做正确。

不管是南瑞继保的RCS-978还是国电南自的PST-1200操作方法是一样的。

以上面配值的PST-1200为例,启动定制为差动电流0.2Ie,计算得0.2*0.875A=0.175A,数字
保护装置先配值好订阅Goose通道,注意到通道设置与开入映射等细节问题保证能够接受到
动作时间信号,传统继保先找到保护装置的一个跳闸出口接入测试仪的开入量端子。

然后在
交流试验界面下将中低压侧的电流都设为0,高压侧也为0,高压侧三相给一个0.02A的步长,手动或者是自动试验从零开始增加,直到保护装置动作采集到动作时间信号,记下动作值与
启动定值比较。

速断定制为2Ie,计算得2*0.875A=1.75A,做速断值时建议直接加突变量值1.2倍定值,查看保护装置上是否有差动速断动作报文。

此时可能也有差动保护动作保护是正常的因为也大于启动定值。

注意:做启动和速断试验是别忘了投差动保护和速断保护的控制字,在加值的时候最好加ABC三相变化值,如果高压侧只加单相动作值应为1.732倍的启动定值。

四、搜曲线
在完成启动定值校验以后保证了采样值和Goose信号的正确,接线正确就可以很安心的在差
动保护试验界面下操作了,剩下最后的一步也是最重要的一步了。

此时国电南自PST-1200和南瑞继保的RCS-978就有些不同了,主要是在补偿电流相位调整
方式不同。

目前国内大多数保护厂家都是Y侧向△侧调整,这种算法将各侧电流均折算到三
角形侧进行计算比较。

其校正算法如下:
星形侧三角形侧
而南瑞继保RCS-978是△侧向Y侧调整,这种算法将各侧电流均折算到星角形侧进行计算比较。

其校正算法如下:
星形侧三角形侧
式中——星形侧零序电流二次值
其实这些转换方式我们知道就行不需要去深究,在差动保护模块里完全可以不用去理会他们,只需要注意设置的相位调整方式就行了。

以PST-1200高对中压侧差动为例,按照上面的定值可设参数如图5、图6所示:
图5
图6
完成上面的设值之后就可以直接开始试验了,此时如果是做PST-1200高对低压侧比例边界曲线相位调整方式就应该选择为高压侧调整了。

制动电流与差动电流初值终值步长只会形象图的美观度,测试仪会自动的完成比例制动边界搜索,试验结果如图7所示:
图7
然后我们再以RCS-978的高对低压侧差动为例来说明试验方法,RCS-978的保护定值如下:高中低压侧额定容量为100MVA,电压等级为220kV/110kV/10kV,CT变比分别为300/1、600/1、3000/1,差动电流0.3Ie,速断电流4Ie,拐点1制动电流0,拐点2制动电流0.5Ie,拐点3制动电流6Ie,斜率分别为0.2、0.5、0.75,(Ie为高压侧二测额定电流)制动公式为Ir = ( | Ih | + | Il | ) / 2,主变接线方式为Y/Y0-△11。

按照上面的定值可设参数如图8、图9所示:
图8
图9
完成上面的设值之后就可以直接开始试验了,制动电流与差动电流初值终值步长只会形象图的美观度,测试仪会自动的完成比例制动边界搜索,试验结果如图10所示:
图10
图7和图10即为比例制动边界曲线,测试仪自动的搜索出这个曲线就省去了我们一个点一个点的加,一个点一个点的描那些复杂的过程了,提高了我们的工作效率而且更加形象的表达
出了试验结果。

在边界搜索过程中还是出现了问题就注意这几种细节:
1、测试方式一定要选择六相电流;相位调整高对低的Y侧向△侧调整选择高压侧,△侧向
Y侧选择低压侧;电流类型区分清楚是标幺值还是有名值;制动公式一定要选择正确,保护
说明书上会明确给出。

2、如果是传统继保上面一部分曲线有可能打不出来,是正常的因为低压侧平衡系数比较低
时低压侧输出电流已经达到了最大单相的30A,解决最好方法改定值减小低压侧的变比增大
低压侧平衡系数。

3、数字继保还要注意一些控制字、软压板、功能压板、跳闸矩阵的设置。

4、进行高中压侧差动边界时,注意低压侧的SMV压板要么退出不接光纤(或配置不勾选),要么投入时低压侧要有零值输出,保证链路;进行高低压侧差动边界时,注意中压侧SMV
压板要么退出不接光纤(或配置不勾选),要么投入时中压侧要有零值输出,还要注意高对
低时低压侧的通道映射应改为Ia、Ib、Ic,系统设置变比对应项也改为低压侧实际值。

熟悉了以上的试验操作方法,相信以后大家在做主变差动保护就不用再有任何后顾之忧了,
希望对大家有所帮助!。

相关文档
最新文档