信息论与编码试卷及答案
信息论与编码期末考试题
信息论与编码期末考试题信息论与编码期末考试题(一)一、判断题.1.当随机变量和相互独立时,条件熵等于信源熵.()2.由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集.()3.一般情况下,用变长编码得到的平均码长比定长编码大得多.()4.只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信.()5.各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件.()6.连续信源和离散信源的熵都具有非负性.()7.信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小.8.汉明码是一种线性分组码.()9.率失真函数的最小值是.()10.必然事件和不可能事件的自信息量都是.()二、填空题1、码的检、纠错能力取决于.2、信源编码的目的是;信道编码的目的是.3、把信息组原封不动地搬到码字前位的码就叫做.4、香农信息论中的三大极限定理是、、.5、设信道的输入与输出随机序列分别为和,则成立的条件..6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是.7、某二元信源,其失真矩阵,则该信源的= .三、计算题.1、某信源发送端有2种符号,;接收端有3种符号,转移概率矩阵为.(1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布.2、一阶马尔可夫信源的状态转移图如右图所示,信源的符号集为.(1)求信源平稳后的概率分布;(2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵并与进行比较.3、设码符号为,信源空间为试构造一种三元紧致码.4、设二元线性分组码的生成矩阵为.(1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码.(二)一、填空题1、信源编码的主要目的是,信道编码的主要目的是2、信源的剩余度主要来自两个方面,一是,二是3、三进制信源的最小熵为,最大熵为4、无失真信源编码的平均码长最小理论极限制为5、当时,信源与信道达到匹配。
信息论与编码试卷及答案2
篇一:信息论与编码期末题(全套)〔一〕7、某二元信源一、判断题共 10 小题,总分值 20 分.1. 当随机变量X和Y相互独立时,条件熵H(X|Y)等于信源熵H(X). 〔〕2. 由于构成同一空间的基底不是唯一的,所以不同的基1X0P(X)1/21/2,其失真矩阵0a,那么该信源的Dmax= Da0三、此题共 4 小题,总分值 50 分.1、某信源发送端有2种符号xi(i1,2),p(x1)a;接收端底或生成矩阵有可能生成同一码集.符号 y( j 1 ,2) ,转移概率矩阵为有3 种,3〔〕3.一般情况下,用变长编码得到的平均码长比定长编码大得多. 〔〕4. 只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信〔〕 5. 各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. 〔〕 6. 连续信源和离散信源的熵都具有非负性. 〔〕7. 信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小. 8. 汉明码是一种线性分组码. 〔〕 9. 率失真函数的最小值是0. 〔〕10.必然事件和不可能事件的自信息量都是0. 〔〕二、填空题共 6 小题,总分值 20 分.1、码的检、纠错能力取决于 .2、信源编码的目的是的目的是 .3、把信息组原封不动地搬到码字前k位的(n,k)码就叫做 .4、香农信息论中的三大极限定理是、、. 5、设信道的输入与输出随机序列分别为X和Y,那么I(XN,YN)NI(X,Y)成立的条件6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 . iP1/21/201/21/41/4.〔1〕计算接收端的平均不确定度H(Y);〔2〕计算由于噪声产生的不确定度H(Y|X);〔3〕计算信道容量以及最正确入口分布. 2、一阶马尔可夫信源的状态转移图2-13图如右图所示,信源X的符号集为{0,1,2}. 〔1〕求信源平稳后的概率分布;〔2〕求此信源的熵;〔 3 〕近似地认为此信源为无记忆时,符号的概率分布为平 X )稳分布.求近似信源的熵H(并与H进行比拟.4 、设二元( 7 , 4 ) 线〔1〕给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;),试计算出其对应的伴随式S并按照最小距离译码准那么试着对其译码. 〔二〕一、填空题〔共15分,每空1分〕1、信源编码的主要目的是,信道编码的主要目的是。
信息论与编码试题集与答案
1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
四、计算题1.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x == (1)1/3p x == (0)1/3p y == (1)2/3p y == ()()(1/3,2/3)H X H Y H ===0.918 bit/symbol(),(1/3,1/3,1/3)H X Y H ==1.585 bit/symbol ();()()(,)I X Y H X H Y H X Y =+-=0.251 bit/symbol2.某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ 01X Y011/31/301/3(1)求对应的生成矩阵和校验矩阵; (2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。
信息论与编码试卷及答案1
二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X的数学模型。
假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;2.二元对称信道如图。
;1)若,,求和;2)求该信道的信道容量和最佳输入分布。
3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率。
4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
二、综合题(每题10分,共60分)1.答:1)信源模型为2)由得则2.答:1)2),最佳输入概率分布为等概率分布。
3.答:1)二元码的码字依序为:10,11,010,011,1010,1011,1000,1001。
平均码长,编码效率2)三元码的码字依序为:1,00,02,20,21,22,010,011。
平均码长,编码效率4.答:1)最小似然译码准则下,有,2)最大错误概率准则下,有,5.答:1)输入为00011时,码字为00011110;输入为10100时,码字为10100101。
2)6.答:1)无错传输时,有即则2)在时,最大熵对应的输入概率密度函数为信息论习题集二、填空(每空1分)(100道)1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
信息论与编码试题集与答案
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成 客观信息和主观信息 。
人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。
信息的 可度量性 是建立信息论的基础。
统计度量 是信息度量最常用的方法。
熵 是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生 概率的对数 来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码试卷及问题详解
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是 0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0.25 p(B)=0.5 p(B|A)=0.75 (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 (2分)I(A|B)=-log0.375=1.42bit (1分)四、(5')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY)证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (1分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为0.3,白色出现的概率为0.7。
信息论与编码期末考试题(全套)
《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为32log bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。
6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222xf x σ-=时,信源具有最大熵,其值为值21log 22e πσ。
9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈” (1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。
(2)()()1222H X X H X =≥()()12333H X X X H X =(3)假设信道输入用X 表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。
()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度 该信源的绝对熵为无穷大。
三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。
信息论与编码考题标准答案
信 息 论 与 编 码 考题与标准答案第一题 选择题1.信息是( b )a. 是事物运动状态或存在方式的描述b.是事物运动状态或存在方式的不确定性的描述c.消息、文字、图象d.信号 2.下列表达式哪一个是正确的(e )a. H (X /Y )=H (Y /X )b. )();(0Y H Y X I <≤c.)/()(),(X Y H X H Y X I -=d. )()/(Y H Y X H ≤e. H (XY )=H (X )+H (Y /X )3.离散信源序列长度为L ,其序列熵可以表示为( b )a. )()(1X LH X H =b.c. ∑==Ll lXH X H 1)()(d. )()(X H X H L =4.若代表信源的N 维随机变量的取值被限制在一定的范围之内,则连续信源为( c ),具有最大熵。
a. 指数分布b. 正态分布c. 均匀分布d. 泊松分布 5.对于平均互信息);(Y X I ,下列说法正确的是( b )a. 当)(i x p 一定时,是信道传递概率)(i j x y p 的上凸函数,存在极大值b. 当)(i x p 一定时,是信道传递概率)(i j x y p 的下凸函数,存在极小值c.当)(i j x y p 一定时,是先验概率)(i x p 的上凸函数,存在极小值d.当)(i j x y p 一定时,是先验概率)(i x p 的下凸函数,存在极小值 6.当信道输入呈( c )分布时,强对称离散信道能够传输最大的平均信息量,即达到信道容量 a. 均匀分布 b. 固定分布 c. 等概率分布 d. 正态分布7.当信道为高斯加性连续信道时,可以通过以下哪些方法提高抗干扰性(b d ) a. 减小带宽 b. 增大发射功率 c. 减小发射功率 d.增加带宽第二题 设信源 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡6.04.0)(21x x X p X 通过一干扰信道,接收符号为Y={y 1,y 2},信道传递矩阵为⎥⎦⎤⎢⎣⎡43416165 求:(1) 信源 X 中事件 x 1 和 x 2 分别含有的自信息量。
信息论与编码试卷_信息论与编码试卷题目及答案
最大熵值为组成一个马尔可夫链,且有,。
说明经数据处理后,一般只会增加信息的损失。
,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于由得,则解释无失真变长信源编码定理。
只要,当什么是保真度准则?对二元信源,其失真矩阵,求和?答:,所以有,而。
息出现前后没有关联,求熵;)假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;)信源模型为)由得则)若,,求和;)),最佳输入概率分布为等概率分布。
信源空间为答:1)二元码的码字依序为:10,11,010,011,1010,1011,1000,1001。
平均码长,编码效率2)三元码的码字依序为:1,00,02,20,21,22,010,011。
平均码长,编码效率4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
答:1)最小似然译码准则下,有,2)最大错误概率准则下,有,5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
7.答:1)无错传输时,有即则2)在时,最大熵对应的输入概率密度函数为2)最大错误概率准则下,有,6.答:1)无错传输时,有即则2)在时,最大熵对应的输入概率密度函数为。
专升本《信息论与编码》_试卷_答案
专升本《信息论与编码》_试卷_答案专升本《信息论与编码》⼀、(共48题,共150分)1. H(X)____________0,⼩概率事件对熵的贡献____________,确定事件的信息量____________0。
(6分)标准答案:1. >= ;2. ⼩;3. =;2. 确定信道的H(Y/X) ____0,H(X/Y) ____0。
(4分)标准答案:1. =;2. ;3. 霍夫曼编码可以编出不同的码,这些码的平均码长________,.编码效率________,码长⽅差________。
(6分)标准答案:1. ⼀样;2. ⼀样;3. 不⼀定⼀样;4. N个独⽴并联的信道,每个信道的信道容量为C,为了达到总的信道容量NC,所有信道的输⼊要________________,.所有信道的输⼊概率分布是各⾃信道的________________。
(4分)标准答案:1. 相互独⽴;2. 最佳分布;5. 通信系统中的编码器包括____________________,____________________,____________________。
(6分)标准答案:1. 信源编码器;2. 纠错编码器;3. 调制器;6. 率失真函数R(D)的最⼤值为________________,最⼩值为________________。
(4分)标准答案:1. H(X);2. 0;7. 某事件的概率为p(x),则⾃信息量为()。
(2分)A.-p(x)B.1/ p(x)C.-log p(x)D.log p(x)标准答案:C8. 有事件x,y,I(x)=2 bit,I(x/y)=1 bit,则互信息量I(x;y)的值为()。
(2分)A.1 bitB.2 bitC.3 bitD.4 bit标准答案:A9. 下列关于条件熵的结论,不成⽴的是()(2分)A.H(X/Y)C.H(X/Y)标准答案:B10. 使I(X;Y)=0成⽴的条件是(): (2分)A.X和Y相互独⽴B.H (X) =H(Y)C.X和Y的概率分布相同标准答案:A11. 以下关于离散⽆记忆信源(熵为H(X))的结论,不正确的是(): (2分)A.是平稳信源B.其N次⽆记忆扩展信源的熵是NH(X)C.其极限熵⼤于H(X)标准答案:C12. 以下关于信道容量C和信息传输率R间的关系,正确的是(): (2分)A.C RB.C=RC.C R 标准答案:A13. 某信源有8个符号,其信源熵为2.4 bit,进⾏⼆元定长编码(不扩展),则其编码效率⾄少可达()(2分)A.80%B.85%C.90%D.95%标准答案:A14. 在准对称信道中,要达到信道容量,要求(): (2分)A.信源和信宿的概率分布⼀致B.信源为等概分布C.信宿为等概分布标准答案:B15. 在信道编码中,简单重复编码可以(): (2分)A.减⼩但降低了信息传输率B.提⾼了信息传输率,但增⼤了PEC.减⼩并提⾼了信息传输率标准答案:A16. ⼆元码C={(000),(011),(101),(110),该码的最⼩码距是():。
信息论与编码试题集与答案
信息论与编码试题集与答案1. 在⽆失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须⾸先信源编码,然后_____加密____编码,再______信道_____编码,最后送⼊信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的⾹农公式是log(1)C W SNR =+;当归⼀化信道容量C/W 趋近于零时,也即信道完全丧失了通信能⼒,此时E b /N 0为 -1.6 dB ,我们将它称作⾹农限,是⼀切编码⽅式所能达到的理论极限。
4. 保密系统的密钥量越⼩,密钥熵H (K )就越⼩,其密⽂中含有的关于明⽂的信息量I (M ;C )就越⼤。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输⼊符号表为X ={0,1},输出符号表为Y ={0,1}。
输⼊信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001??;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010??。
7. 已知⽤户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若⽤户B 向⽤户A 发送m =2的加密消息,则该加密后的消息为 8 。
⼆、判断题1. 可以⽤克劳夫特不等式作为唯⼀可译码存在的判据。
(√ )2. 线性码⼀定包含全零码。
(√ )3. 算术编码是⼀种⽆失真的分组信源编码,其基本思想是将⼀定精度数值作为序列的编码,是以另外⼀种形式实现的最佳统计匹配编码。
信息论与编码试卷及答案
一、(11')填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍.(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1。
6米以上的,而女孩中身高1。
6米以上的占总数的一半。
假如我们得知“身高1。
6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0。
25 p(B)=0.5 p(B|A)=0。
75 (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0。
25/0。
5=0。
375 (2分)I(A|B)=—log0.375=1。
42bit (1分)四、(5')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)—H(XY)证明:(2分)同理(1分)则因为(1分)故即(1分)五、(18')。
黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0。
信息论与编码试题集与答案(新)Word版
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
信息论与编码试题集与答案(新)
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
信息论与编码试题集与答案(新)Word版
信息论与编码试题集与答案(新)Word版一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是∞ 。
15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍。
信息论与编码理论(最全试题集+带答案+各种题型)
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息论与编码试卷及答案2
信息论与编码试卷及答案2篇一:信息论与编码试卷及答案一、概念简答题(每题5分,共40分)1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?2.简述最大离散熵定理。
对于一个有m个符号的离散信源,其最大熵是多少?3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
5.写出香农公式,并说明其物理意义。
当信道带宽为5000Hz,信噪比为30dB时求信道容量。
6.解释无失真变长信源编码定理。
7.解释有噪信道编码定理。
8.什么是保真度准则?对二元信源时率失真函数的和?,其失真矩阵,求a>0二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为,白色出现的概率为。
给出这个只有两个符号的信源X的数学模型。
假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,求其熵;,,2.二元对称信道如图。
;1)若,,求和;2)求该信道的信道容量和最佳输入分布。
3.信源空间为曼码,计算其平均码长和编码效率。
,试分别构造二元和三元霍夫4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
一、概念简答题(每题5分,共40分)1.答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9')判断题(1)信息就是一种消息。
(⨯)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(⨯)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(⨯)(6) 对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
( √ ) (7) 非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
( ⨯ ) (8) 信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。
( √ )(9)信息率失真函数R(D)是关于平均失真度D 的上凸函数. ( ⨯ )三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量? 解:设A 表示“大学生”这一事件,B 表示“身高1.60以上”这一事件,则 P(A)=0.25 p(B)=0.5 p(B|A)=0.75 (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 (2分) I(A|B)=-log0.375=1.42bit (1分)四、(5')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY) 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分)则()()()YY-=XH;IYXH因为()()()X YH+XY=(1分)HXH故()()()()YXYH;=+-XXIYHH即()()()()YXI-+=;(1分)XHHXYYH五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X的数学模型。
H;假设图上黑白消息出现前后没有关联,求熵()X2)假设黑白消息出现前后有关联,其依赖关系为,,,,求其熵()X H ∞。
3)分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义。
解:1)信源模型为(1分)(2分)2)由题意可知该信源为一阶马尔科夫信源。
(2分)由(4分)得极限状态概率(2分)(3分)3)119.02log )(121=-=X H γ(1分)447.02log )(122=-=∞X H γ(1分)12γγ>。
说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱。
而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大。
(2分)六、(18’).信源空间为1234567()0.20.190.180.170.150.10.01X x x x x x x x P X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,试分别构造二元香农码和二元霍夫曼码,计算其平均码长和编码效率(要求有编码过程)。
14.3)(71==∑=iiilapL831.014.361.2)(===LXHR七(6’).设有一离散信道,其信道传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2/16/13/13/12/16/16/13/12/1,并设⎪⎪⎪⎩⎪⎪⎪⎨⎧===41)(21)(41)(321x p x p x p ,试分别按最大后验概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
1)(3分)最小似然译码准则下,有,2)(3分)最大后验概率准则下,有,八(10').二元对称信道如图。
1)若()430=p ,()411=p ,求()X H 、()Y X H |和()Y X I ;; 2)求该信道的信道容量。
解:1)共6分2),(3分)此时输入概率分布为等概率分布。
(1分)九、(18')设一线性分组码具有一致监督矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101100110111000H1)求此分组码n=?,k=?共有多少码字?()符号/749.0|bit Y X H =2)求此分组码的生成矩阵G 。
3)写出此分组码的所有码字。
4)若接收到码字(101001),求出伴随式并给出翻译结果。
解:1)n=6,k=3,共有8个码字。
(3分)2)设码字()012345C C C C C C C =ρ由T T HC 0=得⎪⎩⎪⎨⎧=⊕⊕⊕=⊕⊕=⊕⊕0000135034012C C C C C C C C C C (3分)令监督位为()012C C C ,则有⎪⎩⎪⎨⎧⊕=⊕=⊕=340451352CC C C C C C C C (3分)生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100110010011001(2分) 3)所有码字为000000,001101,010011,011110,100110,101011,110101,111000。
(4分)4)由TT HR S =得()101=S ,(2分)该码字在第5位发生错误,(101001)纠正为(101011),即译码为(101001)(1分)1. 在无失真的信源中,信源输出由H (X )来度量;在有失真的信源中,信源输出由R (D )来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为-1.6dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式h(x)=31x x ++。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min =0,R (D min )=1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max =0.5,R (D max )=0,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。
(√)2. 线性码一定包含全零码。
(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。
(×)4. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。
(×)5. 离散平稳有记忆信源符号序列的平均符号熵随着序列长度L 的增大而增大。
(×)6. 限平均功率最大熵定理指出对于相关矩阵一定的随机矢量X ,当它是正态分布时具 有最大熵。
(√ )7. 循环码的码集中的任何一个码字的循环移位仍是码字。
(√ )8. 信道容量是信道中能够传输的最小信息量。
(×)9. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。
(×) 10. 在已知收码R 的条件下找出可能性最大的发码i C 作为译码估计值,这种译码方 法叫做最佳译码。
(√ )三、计算题某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ (1)求对应的生成矩阵和校验矩阵;(2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。
解:1.1000110010001100101110001101G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦101110011100100111001H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2. d min =33.4. RH T =[001]接收出错E =0000001 R+E=C = (发码)四、计算题已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x ==(1)1/3p x ==(0)1/3p y ==(1)2/3p y ==()()(1/3,2/3)H X H Y H ===0.918 bit/symbol (),(1/3,1/3,1/3)H X Y H ==1.585 bit/symbol ();()()(,)I X Y H X H Y H X Y =+-=0.251 bit/symbol五、计算题一阶齐次马尔可夫信源消息集},,{321a a a X ∈,状态集},,{321S S S S ∈,且令3,2,1,==i a S i i ,条件转移概率为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=03121313121141)/(i j S a P ,(1)画出该马氏链的状态转移图; 01X Y011/31/301/3(2)计算信源的极限熵。