短波通信原理

合集下载

短波通信组网与数字短波组网关键技术

短波通信组网与数字短波组网关键技术

短波通信组网与数字短波组网关键技术一、短波通信组网的技术原理短波通信组网是指通过短波无线电信号在多个通信终端之间建立通信连接,并实现数据传输和信息交换的一种通信网络技术。

其技术原理主要包括频率选择、调制解调、信道编解码、功率控制、多址接入、信号波束成形等方面。

频率选择:短波通信组网需要选择合适的频率资源来进行通信,以保证通信的稳定性和可靠性。

在频率选择过程中,需要考虑天波传播、多径传播、多径干扰等因素,通过频率规划和频率分配来避免频谱空洞和频谱冲突,提高频谱利用效率。

调制解调:在短波通信中,利用调制解调技术将原始数据信号转换为适合无线传输的调制信号进行发送,并在接收端通过解调技术将接收到的调制信号还原为原始数据信号。

常见的调制技术包括幅度调制(AM)、频率调制(FM)、相位调制(PM)等,在短波通信组网中根据不同的通信需求选择合适的调制方式。

信道编解码:短波通信组网中需要对数据进行编解码处理,以提高传输效率和抗干扰能力。

通过采用信道编码技术对数据进行冗余编码,可以提高数据传输的可靠性和纠错能力;而信道解码技术可以在数据接收端对经过编码加密处理的数据进行还原和解密。

功率控制:短波通信组网中需要合理控制发送端和接收端的发射功率,以保证通信的质量和效率。

合理的功率控制可以降低信号干扰和能耗,提高频谱利用效率,同时也有利于节省通信设备的电能消耗。

多址接入:在短波通信组网中,通过采用多址接入技术实现多个用户同时共享同一频率资源进行通信。

常见的多址接入技术包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)等,通过这些技术可以实现多用户同时进行通信而不相互干扰。

信号波束成形:为了提高短波通信组网的传输距离和通信质量,可以利用信号波束成形技术对发送信号进行指向性发射,在接收端利用信号波束成形技术对接收信号进行指向性接收,从而提高信号的接收灵敏度和抗干扰能力。

二、数字短波组网的技术原理数字短波组网是在传统短波通信技术基础上,引入数字信号处理、数字调制解调、分组交换、数据压缩等先进技术,实现短波通信的数字化、网络化和智能化,具有传输速率高、通信质量好、系统灵活等优势。

短波通信原理

短波通信原理

短波通信原理
短波通信是一种利用短波频段进行无线传输的通信技术。

它的原理是通过调频调幅的方式,将信息信号转换为高频的短波信号,然后通过天线进行传输。

短波信号在空间中以电磁波的形式传播,经过反射和折射等过程,能够覆盖长距离的传输距离。

短波通信的频率范围一般为3MHz到30MHz,这个频段在电
离层中的传播特性比较好,可以实现远距离的通信。

与其他频段的无线通信相比,短波通信具有以下优点:
1. 长距离传输:由于短波信号的传输特性,它在空间中的传播距离较远,能够覆盖较大的通信范围,特别适用于遥远地区的通信需求。

2. 抗干扰能力强:短波信号在传输过程中相对不容易受到天气、建筑物等因素的干扰,因此能够更好地保证通信的稳定性和可靠性。

3. 灵活性高:短波通信设备相对较小、轻便,可以快速搭建和移动,适应各种复杂环境下的通信需求。

4. 自主性强:短波通信不依赖于任何地面基础设施,可以独立进行通信,特别适用于紧急情况下的通信应急需求。

短波通信在广播、航空、海陆交通等领域都有广泛应用。

虽然现在有很多其他频段的无线通信技术可以实现更高的传输速率
和更大的带宽,但短波通信由于其独特的传输特性和广阔的覆盖范围,仍然是许多远距离通信需求的首选技术。

短波电台通信原理

短波电台通信原理

短波电台通信原理尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。

其原因主要有三:一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。

无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;三、与卫星通信相比,短波通信不用支付话费,运行成本低。

近年来,短波通信技术在世界范围内获得了长足进步。

这些技术成果理应被中国这样的短波通信大国所用。

用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。

这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。

1、短波通信的一般原理1.1.无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。

无线电波一般指波长由100,000米到0.75毫米的电磁波。

根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。

频率与波长的关系为:频率=光速/波长。

电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。

为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波。

52短波应急通信原理

52短波应急通信原理

52短波应急通信原理短波应急通信是指在自然灾害、战争、紧急救援等紧急情况下,利用短波(高频)无线电波进行通信的一种应急通信方式。

短波应急通信原理主要包括短波传输原理、天线原理、调制解调原理以及通信链路原理等。

短波传输原理是指利用短波信号进行远距离传输的原理。

短波信号是指频率范围在3MHz到30MHz之间的无线电波,它有很好的穿透力和抗干扰能力,可以通过天空波、地波、空波等多种传播方式进行传输。

在实际应急通信中,特别是在远距离通信时,利用空波传播方式进行通信较为常见。

天线原理是指在短波应急通信中,合理选择和使用天线来实现有效传输的原理。

天线是将无线电信号从发射装置送出或者接收装置接收的设备,它能够对无线电波进行集中辐射或者接收。

在短波应急通信中,合理选择和布置天线可以提高通信效果。

常用的天线包括直立天线、水平极化天线、偶极子天线等。

调制解调原理是指在短波应急通信中,将消息信号转化为适合无线传输的信号以及将接收到的无线信号转化为原始消息信号的原理。

调制是指将消息信号与较高频率的载波信号进行合成,通过调制过程得到适合传输的信号。

解调是指将接收到的信号进行解调处理,将其恢复为原始的消息信号。

在短波应急通信中,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

通信链路原理是指短波应急通信中,实现通信的传输路径和传输环境的原理。

通信链路在应急通信中往往是从一个发射站点到多个接收站点的传输路径。

影响通信链路质量的因素主要有天气环境、地理环境、电离层状况等。

在设计和布置通信链路时,需要考虑这些因素,选择合适的频率、天线以及传输技术来保证通信的可靠性和稳定性。

总之,短波应急通信原理涉及短波传输原理、天线原理、调制解调原理以及通信链路原理等方面的知识。

了解这些原理,可以帮助我们更好地应对突发紧急情况,确保应急通信的顺利进行。

短波通信原理

短波通信原理

短波通信原理
短波通信是一种利用短波频段进行通信的技术,它具有覆盖范围广、穿透能力强、抗干扰能力好等特点,因此在无线通信领域有着广泛的应用。

短波通信原理涉及到无线电波的传播、调制解调、天线设计等多个方面,下面将对短波通信原理进行详细介绍。

首先,短波通信的原理是基于无线电波的传播。

无线电波是一种电磁波,它的
传播具有直射传播和地面波传播两种方式。

在短波通信中,地面波传播是主要的传播方式,它能够沿着地球表面传播,覆盖范围广,适合用于远距离通信。

此外,短波通信还利用了电离层的反射作用,使得信号可以在大范围内传播,这也是短波通信能够覆盖全球的重要原因之一。

其次,短波通信的原理还涉及到调制解调技术。

调制是指将要传输的信息信号
转换成适合在载波上传输的调制信号的过程,而解调则是将接收到的调制信号转换成原始的信息信号的过程。

在短波通信中,常用的调制方式有调幅调制(AM)和
单边带调制(SSB),它们能够有效地利用频谱资源,提高信号的传输效率。

另外,短波通信的原理还涉及到天线设计。

天线是短波通信中至关重要的组成
部分,它的设计直接影响到通信质量。

在短波通信中,常用的天线类型有垂直天线、水平偶极天线等,它们各自具有不同的辐射特性和波束方向,可以根据实际需求进行选择和设计。

总之,短波通信原理涉及到无线电波的传播、调制解调、天线设计等多个方面,它是一门综合性的学科,需要对无线电技术有深入的了解和掌握。

随着科技的不断发展,短波通信技术也在不断创新和完善,相信在未来会有更多的新技术应用到短波通信中,为人类的通信带来更多的便利和可能性。

脉冲短波 原理

脉冲短波 原理

脉冲短波原理脉冲短波是一种无线通信技术,利用电磁波的传播特性进行信息的传输。

它具有传输距离远、抗干扰能力强、传输速率快等优点,被广泛应用于军事通信、无线电广播等领域。

脉冲短波的原理是利用电磁波在空间中的传播来传输信息。

电磁波是由电场和磁场相互作用产生的一种能量传播形式。

当电磁波传播到接收器时,接收器便可以解读其中包含的信息。

脉冲短波的传输距离远的优点得益于电磁波在空间中的传播特性。

电磁波在空间中传播时遵循波动理论,具有传播速度快、传输损耗小等特点。

这使得脉冲短波可以在较远的距离上进行通信,满足了人们对远距离通信的需求。

脉冲短波还具有较强的抗干扰能力。

由于电磁波的传播特性,脉冲短波相对于其他无线通信技术来说,能够更好地抵御干扰的影响。

这使得脉冲短波在复杂的环境中仍能保持较高的通信质量。

脉冲短波的传输速率也是其优点之一。

脉冲短波通过调制电磁波的特定参数,可以实现较高的传输速率。

这使得脉冲短波在大数据传输方面具备一定的优势。

脉冲短波的应用领域广泛。

在军事通信方面,脉冲短波能够实现安全可靠的通信,具备较高的抗干扰能力,可以在复杂的电磁环境中进行通信。

在无线电广播方面,脉冲短波可以实现远距离的广播覆盖,满足人们对广播信息的需求。

脉冲短波的发展前景广阔。

随着无线通信技术的不断发展,人们对通信质量和传输速率的要求越来越高。

脉冲短波作为一种具备传输距离远、抗干扰能力强、传输速率快等优点的通信技术,将在未来的发展中发挥更加重要的作用。

脉冲短波作为一种无线通信技术,利用电磁波的传播特性进行信息传输。

它具有传输距离远、抗干扰能力强、传输速率快等优点,被广泛应用于军事通信、无线电广播等领域。

脉冲短波的发展前景广阔,将在未来的发展中发挥更加重要的作用。

短波通信原理

短波通信原理

短波通信原理短波通信是一种利用短波无线电波进行远距离通信的技术。

短波通信具有穿透力强、传播距离远、适应性广等特点,因此在军事、航空、海事、天气预报、应急通信等领域得到了广泛的应用。

短波通信的原理主要包括发射、传播和接收三个基本环节。

首先是发射环节,发射机产生的高频电流通过天线辐射出去,形成电磁波信号。

这些信号经过电离层的反射和折射,可以传播到地球上的远处地区。

其次是传播环节,短波信号在传播过程中会受到电离层、大气层、地球曲率等因素的影响,因此会发生多种传播方式,如地面波、天波、空间波等。

最后是接收环节,接收机接收到传播回来的信号,经过解调、放大等处理,最终还原成原始的信息信号。

短波通信的原理中,电离层的影响是至关重要的。

电离层是地球大气层的一部分,位于地球表面以上约80至500千米的高空,主要由电离气体组成。

在白天,由于太阳辐射的作用,电离层会发生电离,形成一个能够反射短波信号的层次,这被称为F层。

而在夜晚,电离层会发生变化,F层会消失,但会出现一个能够反射短波信号的E层。

这种变化会影响短波信号的传播距离和传播方式,因此也会影响到短波通信的可靠性和稳定性。

除了电离层的影响,大气层和地球曲率也会对短波信号的传播产生影响。

大气层的不均匀性会导致信号的折射和散射,从而影响信号的传播路径和传播距离。

而地球曲率则会导致信号的衰减,使得远距离传播的信号强度逐渐减弱。

总的来说,短波通信的原理是基于电磁波在大气层中的传播特性,利用电离层的反射和折射,以及大气层和地球曲率的影响,实现远距离通信。

了解短波通信的原理对于合理地选择频率、天线和设备,以及预测和改善通信质量都是非常重要的。

在实际应用中,需要综合考虑各种因素,才能确保短波通信的可靠性和稳定性。

250nm短波通 -回复

250nm短波通 -回复

250nm短波通-回复什么是短波通信?短波通信是一种利用较高频率的电磁波传输信息的无线通信方式。

它的频率范围通常被定义为3 MHz到30 MHz之间,对应的波长范围大约为100 m到10 m。

在这个频率范围内,短波信号具有许多独特的特点,使得它成为一种非常灵活和可靠的通信技术,尤其是在远距离通信中。

短波通信的历史可以追溯到20世纪初。

在那个时候,人们开始认识到电磁波可以用于远程通信。

随着技术的发展,人们逐渐发现将短波信号发送到天空中,然后从天空中反射回地面是一种有效的通信方法。

那么,为什么短波信号能够在远距离通信中表现得如此突出呢?这主要归功于短波信号的一些特性。

首先,短波信号相对于更高频率的无线信号来说具有更好的穿透力。

它们能够穿过大气层的大部分层级,并且在地球表面反射和传播。

这使得短波信号不受地形、建筑物和其他障碍物的限制,使得远距离通信成为可能。

其次,短波信号的传播路径具有多样性。

短波信号可以通过天空中的电离层反射,或者沿着地球表面的地波传播。

这意味着即使在没有直接可视范围的情况下,短波信号也可以找到合适的路径来传播信号。

这使得短波通信成为一种很好的选择,尤其是在远离城市、交通不便的地区或紧急情况下。

此外,短波信号还具有天地反射的能力。

当信号沿地球表面传播时,它们有时会被天地反射影响。

这种影响可以使信号在远距离上得以传播,甚至超出直线视距。

最后,短波通信设备堪称便携和经济。

由于短波通信所使用的频率范围宽,所以只需一小块天线就可以覆盖许多不同的频率。

这使得短波通信设备更加方便携带和操作,并且相对较为便宜。

总之,短波通信是一种非常灵活、可靠并适用于远距离通信的无线通信技术。

其频率范围覆盖广泛,同时具有优异的穿透力、多样的传播路径和天地反射能力。

短波通信设备携带方便且经济实惠,因此在许多领域都得到了广泛应用,包括远程通信、紧急救援、军事通信等。

短波电台通信原理

短波电台通信原理

短波电台通信原理尽管当前新型无线电通信系统不断涌现,短波这一古老与传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。

其原因主要有三:一、短波就是唯一不受网络枢钮与有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。

无论哪种通信方式,其抗毁能力与自主通信能力与短波无可相比;二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;三、与卫星通信相比,短波通信不用支付话费,运行成本低。

近年来,短波通信技术在世界范围内获得了长足进步。

这些技术成果理应被中国这样的短波通信大国所用。

用现代化的短波设备改造与充实我国各个重要领域的无线通信网,使之更加先进与有效,满足新时代各项工作的需要,无疑就是非常有意义的。

这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。

1、短波通信的一般原理1、1、无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。

无线电波一般指波长由100,000米到0、75毫米的电磁波。

根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1、6兆赫;短波的波长为100米~10米,频率为1、6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。

频率与波长的关系为:频率=光速/波长。

电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散与媒介质的吸收,其场强不断减弱。

为使接收点有足够的场强,必须掌握电波传播的途径、特点与规律,才能达到良好的通信效果。

常见的传播方式有:地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波。

短波通信原理

短波通信原理

短波通信原理
短波通信是一种无线电通信方式,利用短波无线电波在大气中的反射和折射特性进行远距离传播。

短波无线电波的频率范围在3kHz到30MHz之间,可以在地面与大气层之间多次反射和折射,从而实现远距离通信。

其工作原理大致如下:通过改变发射机的电压来产生电磁波,这些电磁波被传输到空气中。

接收机捕捉到这些电磁波,并通过放大和解调的过程将信息转换回电信号。

由于短波无线电波可以穿越大气层,因此短波通信可以在大范围内传输信息。

然而,短波通信也有一些局限性,如受地形的影响和易受干扰。

为了克服这些限制,人们可以使用不同的天线或调整频率来提高短波通信的性能。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业人士。

关于短波电台通信原理的文章

关于短波电台通信原理的文章

关于短波电台通信原理的文章短波电台通信原理短波电台通信是一种广泛应用于国际无线电通信的技术,它利用短波频段的无线电波进行远距离的通信。

这种通信方式在军事、航空、海事以及国际广播等领域都有着重要的应用。

短波电台通信的原理基于无线电波在大气中传播的特性。

无线电波是一种由振荡器产生的电磁辐射,它可以在空间中传播,并且可以被接收器接收和解码。

短波频段指的是频率范围从3到30兆赫兹(MHz)之间的无线电波。

在短波电台通信中,发射机首先将音频或数据信号转换为无线电频率。

这个过程称为调制。

调制可以分为幅度调制(AM)、频率调制(FM)和相位调制(PM)等不同方式。

其中,AM调制是最常用的方式之一。

经过调制后,发射机将信号发送到天线上,并以无线电波形式辐射出去。

天线起到了将发射机产生的高频能量转换为空间中传播的无线电波的作用。

天线的设计和构造对于无线电波的传播效果有着重要的影响。

一旦无线电波被发射出去,它们会在大气中传播。

短波频段的无线电波具有较强的穿透力和反射能力,因此可以在地球表面和大气层之间来回反射多次。

这种现象被称为天波传播。

接收机是用于接收和解码无线电信号的设备。

它通过天线接收到传播中的无线电波,并将其转换为可听或可读的信号。

接收机中包含了解调器,它可以将调制过程中添加到信号中的音频或数据信号分离出来。

短波电台通信具有许多优点。

首先,短波频段具有较强的穿透力,可以在地球表面和大气层之间传播远距离。

其次,短波通信不受地理位置限制,可以实现全球范围内的通信。

此外,短波通信设备相对简单且成本较低。

然而,短波电台通信也存在一些挑战和限制。

由于大气层对无线电波传播有一定影响,短波通信在不同的时间和地点可能会受到干扰和衰减。

此外,短波频段的带宽有限,限制了数据传输速率和通信质量。

总的来说,短波电台通信是一种重要的无线电通信技术。

它利用短波频段的无线电波进行远距离的通信,并在军事、航空、海事以及国际广播等领域发挥着重要作用。

短波通信原理

短波通信原理

短波通信原理
短波通信是一种通过使用较短波长的无线电信号进行远距离通信的方法。

它是一种非常重要的通信方式,尤其在没有其他通信设施或网络可用时。

短波通信的原理在于利用大气中的电离层反射电磁波的特性。

信号会从发送端发出后被电离层所反射,然后再经过一段距离后再次反射回地面。

这样一来,信号就可以越过较长的距离进行通信。

这种反射会随着电离层数量和离地距离的不同而发生。

为了更好地利用短波通信,需要根据具体情况选择合适的发射机功率、天线方向和极化方式等参数。

这些参数的选择会受到天气条件、电离层活动和地球表面形态等因素的影响。

短波通信具有一些优点,例如可靠性较高、成本较低和覆盖范围广等。

它可以用于军事通信、无线电广播、天气预报、航空通信等各种应用领域。

然而,短波通信也存在一些局限性。

由于电离层的波动性和天气条件的变化,信号的传播会受到很大的影响。

此外,短波频段的带宽较窄,传输速率较低,无法支持大量数据的传输。

总的来说,短波通信是一种通过利用电离层反射特性进行远距离通信的方法。

虽然它有一些限制,但是在特定应用场景下仍然是一种非常有用的通信方式。

短波通信原理

短波通信原理

短波通信原理
短波通信是一种利用短波进行远距离通信的技术,它在国际间的通信中起着重
要的作用。

短波通信的原理是利用大气对短波的反射和折射来实现信号的传输,下面我们来详细了解一下短波通信的原理。

首先,短波通信的频段一般指的是3MHz到30MHz的无线电频段。

这个频段
的特点是能够在地面和电离层之间进行多次反射和折射,从而实现远距离的通信。

这种特性使得短波通信成为了一种重要的远距离通信手段。

其次,短波通信的原理是利用大气对短波的反射和折射来实现信号的传输。


短波信号发射到大气中时,一部分信号会被电离层反射回地面,另一部分信号则会穿透电离层直射到达远处。

这种反射和折射的机制使得短波信号能够跨越千里远程传播。

另外,短波通信还受到太阳活动的影响。

太阳活动的变化会导致电离层的密度
和高度发生变化,从而影响短波信号的传播。

在太阳黑子活跃期,短波信号的传播距离会更远;而在太阳黑子不活跃期,短波信号的传播距离会减小。

总的来说,短波通信的原理是利用大气对短波的反射和折射来实现信号的传输。

这种技术在国际间的通信中起着重要的作用,尤其是在远程地区或者灾难救援中。

随着科技的不断发展,短波通信技术也在不断完善和提升,为人们的通信带来了更多的便利和可能性。

总之,短波通信作为一种重要的远距离通信技术,其原理是利用大气对短波的
反射和折射来实现信号的传输。

在实际应用中,我们需要充分了解短波通信的原理,以便更好地利用这种技术进行远距离通信。

希望本文能够对大家有所帮助,谢谢阅读!。

短波无线电通信原理和技术

短波无线电通信原理和技术

短波无线电通信原理和技术随着科技的快速发展,人们日常生活中所用到的设备已经越来越多,无线电通信技术也愈加重要。

在这其中,短波无线电通信技术更是不可或缺的一部分,因为它具有通信距离远、信号穿透力好、抗干扰能力强等特点。

本文将从短波无线电通信技术的原理和技术入手,详细阐述这一话题。

一、短波无线电通信的基本原理短波无线电通信是以电磁波作为信息传递的载体,通过空气等自然界介质的传导进行的无线电通信方式。

短波的波长范围通常从1.6米到30米,对应的频率范围为1.8~30兆赫兹。

因此,它的通信距离较远,可以覆盖几百公里的范围。

短波无线电通信的基本原理是利用调制后的信号,使其通过天线发射出去。

接收端根据信号的调制方式恢复出原始信号。

而这个过程需要经过以下三个基本环节:(1) 信息源信息源是短波无线电通信的起点,也就是信号的源头,例如人声、数字二进制等等。

它需要根据具体需求进行相应的调制,将其转化为无线电信号,也就是通过调制方法在载波波形上进行。

(2) 调制发送调制是指在信息源信号基础上又另外加上一些特定的信号,使信息源的信号转化为更适合传送的形式,例如包括幅度调制、频率调制和相位调制等方式。

调制符号的传送过程就是通过短波信号输出模块向外发送无线电波。

(3) 接收解调接收端将接收到的无线电波,通过天线接收,之后在解调模块中进行信息的还原。

同样的,解调模块需要在根据调制方式,对接收到的波进行解调,使其返回到最初的信号源。

二、短波无线电通信技术的应用短波无线电通信技术是广泛应用于许多领域的通信方式,尤其是在古老的军事领域有着极其广泛的应用,例如通信、侦察和导航等方面。

同时,短波无线电通信技术也可以应用于国际卫星通信系统、天气预报、海上通信、广播电视转播等领域。

在现代军事通信中,短波无线电通信技术有着十分重要的地位,跨过广泛的地区,穿透各种地形、气候、各种噪声干扰,可以满足复杂环境下军队指挥、警告等要求。

同时,短波无线电通信技术也可以应用于紧急情况下的通信需求,使用短波电台可以发出求救信号,让救援人员可以在第一时间找到你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

短波通信原理尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展.其原因主要有三:(一)短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击.无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;(二)在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; (三)与卫星通信相比,短波通信不用支付话费,运行成本低。

近年来,短波通信技术在世界范围内获得了长足进步。

这些技术成果理应被中国这样的短波通信大国所用。

用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。

这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。

1、短波通信的一般原理1。

1。

无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。

无线电波一般指波长由100,000米到0。

75毫米的电磁波。

根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1。

6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。

频率与波长的关系为:频率=光速/波长.电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。

为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波.地波的传播途径如图 1.1 所示。

其传播途径主要取决于地面的电特性。

地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。

但地波不受气候影响,可靠性高。

超长波、长波、中波无线电信号,都是利用地波传播的。

短波近距离通信也利用地波传播。

直射波传播直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。

直射波传播距离一般限于视距范围.在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。

在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影).限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

天波传播天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波.电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。

散射传播散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点.散射传播距离远,但是效率低,不易操作,使用并不广泛.1。

2 电离层的作用电离层对短波通信起着主要作用,因此是我们研究的重点。

电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。

上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。

产生电离的大气层称为电离层。

电离层分为D、E、F1、F2四层。

D层高度60~90公里,白天可反射2~9MHz 的频率。

E层高度85~150公里,这一层对短波的反射作用较小.F层对短波的反射作用最大,分为F1和F2两层。

F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播.电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低。

电离的浓度以单位体积的自由电子数(即电密度)来表示。

电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变.1.3 短波频率范围电离层最高可反射40MHz的频率,最低可反射1。

5MHz的频率.根据这一特性,短波工作频段被确定为1。

6MHz - 30MHz.1.4 短波传播途径短波的基本传播途径有两个:一个是地波,一个是天波。

如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。

海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。

短波信号沿地面最多只能传播几十公里。

地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的.短波的主要传播途径是天波。

短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。

但天波是很不稳定的。

在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果.2、单边带的概念在无线电通信中,传送信息的载体是特定频率的载波(也称为主频)。

那么信息又是如何放到载波上的呢?这就引出了“调制”的概念.调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息。

调制分为幅度调制(简称“调幅”)、频率调制(简称“调频")、相位调制(简称“调相”)三种。

中波、短波一般采用调幅方式,超短波一般采用调频方式。

根据国际协议,短波通信必须使用单边带调幅方式(SSB),只有短波广播节目可以使用双边带调幅方式(AM)。

因此,国内外使用的短波电台都是单边带电台。

2。

1 单边带的定义调幅信号的频谱是由中央载频和上下两个边带组成的。

将载频和其中一个边带加以抑制,剩下的一个边带就成为单边带信号。

如果用一个边带再加上部份载频或全部载频,就成为兼容式调幅信号.下面用图示的方法说明单边带信号是怎样产生的。

2。

2 单边带的优点单边带的优点是:① 提高了频谱利用率,减少信道拥挤;② 节省发射功率约四分之三;③ 减少信道互扰;④ 抗选择性衰落能力强。

一部100W单边带电台的实际通话效果,相当于过去1000W以上双边带电台。

优化短波通信的方法 1、改善短波信号质量的三大要素由于短波传输存在固有弱点,短波信号的质量不如超短波。

不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。

改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。

1.1 正确选用工作频率短波频率和超短波频率的使用性质完全不同.超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。

用同一套电台和天线,选用不同频率,通信效果可能差异很大。

对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。

一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。

另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。

如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。

计算机测频利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。

计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值. 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。

其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。

1.2 正确选择和架设天线地线天线和地线是很多短波用户容易忽视的问题.当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线. 短波和超短波使用的天线是完全不同的。

超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线.而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。

简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高. 短波天线的理论原理比较高深。

短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果?根据我们了解和掌握的情况作如下简要介绍: (1)了解天线的基本工作原理短波天线分地波天线和天波天线两大类。

地波天线包括鞭状天线、倒L形天线、T形天线等。

这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。

地波天线的效率主要看天线的高度和地网的质量。

天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高. 天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。

典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角。

典型的全向天波天线有:角笼形天线、倒V形天线等。

它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。

天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。

(2)按用途选购天线随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等.选择天线基本的着眼点应该是用途。

近距离固定通信:选择地波天线或天波高仰角天线。

点对点通信或方向性通信:选择天波方向性天线等。

相关文档
最新文档