已交!3-1 微波系统中电压驻波比的测量第9周三 5-8节
微波基本参数测量
微波基本参数测量物理081摘要:本实验中,我们要利用微波产生的电磁场的研究和分析以及相关的仪器对微波的频率、功率、驻波比进行测量,以掌握微波技术的基本知识和实验方法。
关键字:微波参数测量正文:微波的基本特征:1、微波的波长极短,具有“似光性”直线传播的特点。
2、微波的频率极高。
3、微波可以毫无阻碍地穿过电离层,具有穿透性。
4、在微波波段,电磁波每个量子的能量范围为10-6—10-3eV。
5、研究方法和测量技术上,微波电路与低频电路中采用“路”的概念和方法有很大的不同。
常用波导元件:1、衰减器,衰减器是一段波导,在垂直波导宽边并沿纵向向插入吸收片,使通过波的损耗达到衰减,可调节吸收片进入波导的深度以改变衰减量。
2、匹配负载,匹配负载一般做成波导段的形式,终端短路,并包含有一些安置在电场平面内的吸收片,吸收片做成特殊的劈形以实现与波导间的缓变过度匹配。
3、隔离器,是一种氧气非互易元件,具有单向衰减特性,即波从正面通过,衰减极小,而反面通过时衰减很大,常用于振荡器与负载之间,起隔离作用,使振荡器工作稳定。
4、可变短路器,可变短路器由短路活塞与传动读书装置构成,是一个可变电抗。
5、环行器,环形器是一种具有非互易特征的分支传输系统。
固态信号源:固态信号源产生微波信号输出,实现内方波周制,由体效应管振荡器,可变衰减器,PIN调制器组成。
选频放大器:主要用于放大微弱低频交流信号。
驻波测量线:它是一段开有长槽的波导与一个可沿线移动的带有晶体检波器的探针和调谐机构组成。
功率计:由功率探头和指示器两部分组成。
实验步骤初步设计:1、测试前的准备工作:根据讲义中介绍的常用微波器件和实验室提供的仪器使用说明书,掌握它们的工作原理及使用方法。
开启反射速调管微波源电源开关。
将微安表接在测量线输出端,适当选择微安表量程和可变衰减器位置,使测量线调在驻波波腹时,微安表能指示到表盘中以上的读数。
2、驻波比的测量:先接通电源使用测量线测试驻波比,可直接由测量线探针分别处于驻波波腹及波节位置时的电流表读数及,求出驻波比。
电压驻波比的测量
电压驻波比的测量实验目的通过对电压驻波比的测量实验,掌握驻波测量线的正确使用以及掌握大、中、小电压驻波系数的测量原理和方法。
二实验原理测量电压驻波比、阻抗、匹配情况等等,是微波测量的重要工作。
驻波测量线就是测量的基本仪器。
测量线由开槽波导,不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以探测微波传输系统中电磁场分布情况。
测量线波导是一段精密加工的开槽直波导,此槽位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小。
此外,槽端还有阶梯匹配段,两端法兰具有尺寸精确的定位和连接孔,而且保证开槽波导有很低的剩余驻波系数。
三厘米波导测量线的外形图见实验仪器介绍部分所示。
滑架是用来安装开槽波导和不调谐探头的。
把不调谐探头放入滑架的探头插孔中,拧紧锁紧螺钉,即可把不调谐探头紧固。
探针插入波导中的深度,用户可根据情况适当调整。
出厂时,探针插入波导的深度为1.5mm,约为波导窄边尺寸的15%。
电压驻波比的测量方法有未调制的频率法和调制的频率法种。
这里讲述调制的频率法,它的测量连接如图所示。
测量连接如图驻波测量是电磁波测量中最基本和重要内容之一,通过电磁波的测量可以测出阻抗、波长、相位等其它参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值1最先值之比,即S =maxE min⑴小驻波比(1.05<S<1.5)这时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高准 确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。
若驻波波腹点和节点处读数分别为Imax ,Imin 则电压驻波系数为E+E +・ …E ■I +I +・ •-1 S =max1 max~ maxn E =a . max max~ maxn E E +E +…E I +I +•-1 min1 min2 minn min1 min2 minn(2)中驻波比(1.5<S<5)此时,只须测一个驻波波腹和一个驻波波节,即直接读出Imax ,IminIS =max =a max —I minmin⑶大驻波比(S>5)当S>5时,如果直接测量大驻波的最大值,就会引入误差,驻波的最大值超出了指示器量程。
实验二 驻波比的测量
实验四 驻波比的测量【实验目的】掌握测量驻波比的原理和常用方法。
【实验内容】在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。
【实验框图与仪器】网络分析仪被测件信号源被测件频谱仪b. c.图1 驻波比测量系统图 【实验原理】测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。
由于驻波比(或反射系数)能表征电磁场的分布规律,所以它们时微波设备和元器件的一项重要指标,因此驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其它参量。
产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。
在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比:minmax E E =ρ (1-14)其中,max E 和min E 分别是微波传输系统电场的最大值和最小值。
一固定长度的探针感应的电动势正比于场强,因此对平方律检波,有式中,m ax I 和m in I 分别是电场为最大和最小时指示器的读数。
对于直线律检波有m inm axI I =ρ (1-16) 如果不知道检波律,必须用晶体检波特性曲线求出场强和指示器读数的关系再求得)151(minmax min max-==I I E E ρminmax min maxI I E E ==ρ (1-2)一般都是在小信号状态下进行测量,为此检波晶体二极管都是工作在平方律检波区域(检波电流I ∝E 2),故应有:minmaxI I =ρ当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。
节点偏移法测量驻波比的测试系统如图5示。
测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中121-=λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。
实验三-微波驻波比的测量
ρ =
Umax1 + Umax2 + ⋯ + Umaxn Umin1 + Umin2 + ⋯ + Uminn
E W Emax Emin L
E
L
Lk’ L2’ L2 Lk
直接法线驻波场分布图等指示度法波节点附近场的分布 (2)等指示度法 当被测量的驻波系数大于 5 时,驻波腹点和节点的电平相差比较大,直接法求 取大驻波系数会带来较大的误差,原因是:波腹点和波节点电平相差悬殊,因此 在测量最大点和最小点电平时, 晶体工作在不同的检波率,所以仍然采用直接法 测量大驻波比误差较大。 因此采用等指示度法,也就是通过测量驻波图形中波节 点两旁附近场的分布规律的间接方法,求出驻波系数。 根据传输线上场强和终端反射系数之间的关系,如果确定驻波节点两旁等指 示度之间的距离,可以推导出关系:
2
k ������ − (cos ρ = sin
λ g
2
πW λ g
)
πW
式中:k=测量点读数/最小点读数;λ g 为测量线上的波长即波导波长。 通常情况下,取测量点 U 左和右 = 2Umin的两个等指示度点所对应的探针 位置间距,记录为:W = Lh − Lh’,如果晶体是平方率检波(n = 2) ,传输线的 驻波系数可以用下式计算: 1 (sin
腔、开路接到最后面,调整波导测量线的探针,在选频放大器中读出u最大值和 最小值,进而计算出相应的驻波比,由于实验预习得不够充分,在动手实验的时 候,总是出现很多的错误,另外仪器的好坏也决定了实验的成功与否,我们在实 验中测量失配负载的时候,最小值总是到达0,这样,我们测量的数据就不够准 确,不能够很好的反应器件的特点,所以我们用谐振腔代替适配负载,所得到的 数据比较接近真实情况。 实验中要保持清醒的头脑, 需要记录什么数据应该提前做好准备, 画出表格, 以免在实验中,容易在数据上面分散精力,导致实验的效果不够理想,所以在今 后的实验中,我们要注意预习的必要性。
驻波检测理论分析
驻波检测理论分析电压驻波比介绍电压驻波比(VSWR)为英文Voltage Standing Wave Ratio 的简写。
电压驻波比产生的原因主要是由于在系统或者电路中存在阻抗不匹配,在无线电通信中,由于天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。
为了表示和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”(Standing Wave Ratio)这一概念,驻波比的全称是电压驻波比。
当两个阻抗数值一样时,即达到完全匹配,反射系数Γ等于0,驻波比为1。
这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1 的。
理想的比例为1:1 ,即输入阻抗相等于传输线的特性阻抗, 但几乎不可能达到,如果当VSWR 1.25:1 时,反射功率大概为1.14 %,当VSWR 1.5:1 反射功率为4.06 %,当VSWR 1.75:1 时,反射功率为7.53 %,由这个数字我们可以知道, 驻波比越大, 反射功率越高。
在射频系统阻抗匹配中,特别要注意要使电压驻波比达到一定要求,在移动通信系统中,一般要求驻波比小于1.5,一样一般可以保证通信系统的良好工作。
同时,因为在宽带运用时频率范围很广,驻波比会随着频率而变,所以应使阻抗在宽范围内尽量匹配。
电压驻波比对系统性能的影响随着驻波比的恶化,有效传输的功率将会减少,这是由于理想的阻抗匹配(VSWR=1:1)可以使功率无损传输,而严重的阻抗失配(高VSWR)将导致传输到负载的功率减少。
高的VSWR可能引起多种系统问题,其中对VSWR最为敏感的器件是功率放大器,因为其输出功率较大可能达到200 瓦左右,导致很大的功率反射,从而造成无线电装置的工作范围缩小、发射信号使接收部分饱和。
更为严重的影响是损坏发射机并且击穿传输电介质。
同时由于天线上反射回的信号在功率放大器处再次反射,然后重新发射出去,导致了类似多径现象,因此高VSWR可能引起基站系统的遮蔽衰落VSWR 值很高也有可能会损坏天馈系统,反射波在天线和发射机之间来回反复时会丧失一部分能量而转化为热能损耗了,这一部分热量增加了馈线对热损耗的承受能力,会产生破坏作用。
微波测量实验 微波驻波比的测量
测量示数(mm)
150.3
147.1
125.9
122.4
4)将测量线终端换接调配器+晶体检波器,并将探针置于住波节点位置,提高测试系统灵敏度。选择两倍于波节点电压强度的左右相邻两个点l=148.4mm与l’=151.1mm,则W=|l’-l|=2.7mm
代入公式:
得到: 。即用等指示度法测出的驻波系数为5.9。
35.5
37
36
1.54
86.2
36.2
99
60
1.29
从实验中我们可以看出,对于匹配负载, =1.01,与理论值1十分相近。对于失配负载,, =1.54,也比较接近实验仪器上写的 =1.5。
因为终端短路时, 非常大,超过了5,由实验原理知,当被测量的驻波系数大于5时,驻波腹点和节点的电平相差比较大,直接法求取大驻波系数会带来较大的误差,因此我们需要采用其他的方法测量。
(2)等指示度法测量驻波系数
当驻波比大于5的时候,我们不再能用直接法测量,必须用等指示度法。步骤如下:
1)连接好微波测量系统,开启微波信号源,选择好频率,工作方式选择“方波”。
2)将测量线探针插入适当深度,用选频放大器测量微波的大小,选择较小的微波输出功率并进行驻波测量线的调谐。
3)将测量线终端接短路片,用两点法测量三个相邻波节点位置,计算 。
电磁场与微波测量实验
实验报告
北京邮电大学
实验三.微波驻波比的测量
由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。
微波测量实验-微波驻波比的测量
电磁场与微波测量实验实验报告北京邮电大学实验三.微波驻波比的测量由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。
微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。
电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。
驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。
一、实验目的(1)了解波导测量系统,熟悉基本微波元件的作用。
(2)掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。
(3)掌握大、中、小电压驻波系数的测量原理和方法。
二、实验原理驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。
在大功率情况下,由于驻波存在可能发生击穿现象。
此外,驻波存在还会影响微波信号发生器输出功率和频率的稳定度。
因此,驻波测量非常重要。
电压驻波比测量:驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在测量时,通常测量电压驻波系数,及波导中电场最大值和最小值之比,即ρ=。
测量驻波比的方法与仪器种类很多,有直接法,等指示度法,功率衰减法等。
我们这次实验中主要用直接法和等指示度法来熟悉驻波测量线的使用。
(1)直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。
若驻波腹点和节点处电表读数分别为,则电压驻波系数ρ:ρ==当驻波系数1.5<ρ<5时直接读出,即可。
在我们的实验中,由于选频放大器直接读出来的是电压而不是电流,所以我们直接读出和也可以。
当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值。
实验一 晶体检波及驻波比测量
实验一 驻波比测量与检波晶体二极管检波律测定一、 实验目的与意义1、熟悉测量线的使用方法;2、驻波测量是微波测量中最基本和最重要的内容之一,几乎在所有的微波测量中都涉及驻波比测量的,因此必须熟练掌握测量中小驻波、大中驻波的常用方法。
二、 实验原理与方法 1、驻波比定义:一个微波元件插入均匀波导以后,即会产生反射波,不同性能的元件引起反射波的大小和相位都不相同,它与入射波合成后产生的驻波状态也不相同。
在驻波分布图形上有驻E图1. 驻波的形成波波腹和驻波波节,波腹点的电场最大值为Emax ,波节点的电场最小值为Emin 。
电压驻波比是传输线中电场最大值与最小值之比,表示为m i nm a xE E =ρ (1)传输线上波的传播状态也可用反射系数表示,即)2(d EiErEi Er βϕ-∠==Γ (2) (2)式中:ϕ为双口网络的反射角;d 为双口网络输入端到左侧第一个驻波节点的距离; g λπβ/2=是相位常数,其中g λ是波导波长。
驻波比ρ与反射系数Γ之间的关系式为Γ-Γ+=11ρ (3)11+-=Γρρ (4) 用测量线测量驻波系数的方法有很多,如下表所示:本实验中只介绍最基本的直接法和等指示度法。
2、检波晶体二极管特性的测定与定标要准确测得待测件的驻波比,首先要正确调整和使用信号源和测量线(信号源在实验时已由指导教师调好),其次要了解测量线探头中所使用的检波晶体二极管的检波特性。
由测量线结构可知,是开槽线使探针拾取探针所在位置的电场,感应出与场强成正比的电动势加到探头内的检波晶体上,晶体检波后的检波电流接到适当的仪表上,指示出沿线分布的驻波大小。
一般来说,晶体二极管是非线性元件,通常加在检波二极管上的电压u 正比于探针所在位置的场强E ,而检波电流i 与检波电压u 的一般关系式为n i cu = (5)式中c 为常数,n 为检波律,u 为检波电压。
晶体管的检波律n 随检波电压u 而改变,通常在低电压范围n 近似等于2(平方律),在高电压范围n 近似等于1(直线律)。
第一课微波实验相关内容
性为 I = q En
对晶体检波器进行 2019/12/3 定标,确定n.
(
I
m
ax
1
)n
I min
17
10
二、波长和频率的测量
8.3.1 波长的测量:
1. 原理: 当波导中存在 反射时,波导中的波就为驻波,相
z1 z2
邻两波节或波腹点的距离为半个
波导波长.
z3 z4
2、测量方法——平均法(等指示法):
2019/12/3
6
其次,注意检波晶体管的检波律。检波晶体管的检波电流I 与管端电压V有关,而V与探针所在处的电场E成正比, I,E满足关系式:
I = qEn
其中q,I,n为常数。在小功率情况下,可以相当精确地 认为n≈2,即平方律检波。但在比较精确的测量中,应该 对检波律进行校准。
2019/12/3
16
2、吸收式频率计:
未知频率 信号源
隔离器
频率计
可变衰 减器
晶体检 波器
选频放 大器
原理:当谐振腔的谐振频率与信号源频率相等时,进入 谐振腔的信号最强,故传输到晶体检波器的信号最小, 选频放大器指示的电流I0最小。
方法 :仔细旋转频率计的调
谐活塞,当I0下降到最小值时 频率计上指示的频率读数即 为被测信号的频率。
2019/12/3
11
在波节两边找出测量线检波指示相同的位置z1 和z2,则波节点位置为zmin即为平均值。
zmin = z1 + z2 2
故 波导波长为
z1 z2 z3 z4
λg =( z3 + z4 )-( z1 + z2 )
注: 此方法测量的
精确度不高。
实验三
实验三 微波驻波比的测量【实验目的】1、了解波导测量系统,熟悉基本微波元件的作用2、掌握驻波测量线的正确使用和用驻波测量线校准晶体验波器特性的方法3、掌握大、中、小电压驻波系数的测量原理和方法 【实验原理】电压驻波比(简称驻波比)是传输线中电场最大值与最小值之比,表示为:max minE E ρ=(3-1)测量驻波比的方法及仪器很多,本实验讨论用驻波测量线,根据直接法,等指示度法测量大、中电压驻波比。
1. 直接法直接测量沿线驻波的最大和最小场强(参见图3-1),根据式(3-1)直接求出电压驻波比的方法称直接法。
该方法适用于测量中、小驻波比。
图3-1 无耗线上的驻波图如果驻波腹点和节点处指示电表读数分别为max I 和min I ,晶体二极管为平方律检波,则式(3-1)成为:ρ=(3-2) 当驻波比1.05 1.5ρ<<时,驻波的最大值和最小值相差不大,且波腹,波节平坦,难以准确测定。
为了提高测量精度,可移动探针测出几个波腹和波节点的数据,然后取其平均值。
ρ=(3-3a )或1n ρ=+ (3-3b ) 当驻波比1.56ρ<<时,可直接测量场强最大值和最小值。
2. 等指示度法等指示度法测量适用于大、中电压驻波比(6ρ>)。
如果被测件驻波比较大,驻波腹点和节点电平相差悬殊,因而测量最大点和最小点电平时,使晶体工作在不同的检波律,故若仍按直接法测量驻波比误差较大。
等指示度法是测量驻波图形节点两旁附近的驻波分布规律,从而求得驻波比的方法,因此能克服直接法测量的缺点。
图3-2 等指示度法如图3-2,设min I 为驻波节点指示值,I 左,I 右为驻波节点相邻两旁的等指示值,W 为等指示度之间的距离,终端反射系数为Γ,则:2222min 21cos()()(1)PnnWI k I πλ+Γ-Γ==-Γ左或右 (3-4a )根据2cos 2cos 1θθ=-,及式11ρρ-Γ=+,可得:sin()Pρλ=(3-4b )当探头为晶体平方律检波,min 2I I 左或右=时,驻波比按式(3-4c )计算,这种方法也称为“二倍最小值法”或“三分贝法”。
微波驻波分布特性的测量实验
中国科大六系微波与天线实验室版权所有实验二驻波分布特性的测量微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验目的•了解测量线的调整和使用方法;•通过测量观察测量线终端接不同负载(短路、开口、匹配负载)时系统中形成的驻波分布情况;•掌握用直读法测量负载驻波比的方法。
微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理•测量线调整▪→探针伸入波导内引入不均匀性→等效:p p p jb g Y +=gp 反映探针吸取功率的大小bp 反映探什在波导中产生反射的影响gp端接任意负载时→ gp 分流,驻波波腹点电场强度比真实值小;bp 会使驻波波腹点和波节点位置发生变化;微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•终端短路→波节点处Yin →∞ →波节位置不会偏移•终端短路→波腹点处Yp 影响明显→波节位置因探针容性电纳bp 的存在→驻波波腹点向负载方向p 偏移•减小Yp 的影响→:适当减少探针插入深度;p gp bp:调整探针的调谐电路;微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•调整方法:10~15mm 探针深度:1.0~1.5mm 终端短路→探针移至波腹位置→调节测量线上的调谐活塞→选放指示最大→OK !•注意事项:频率改变,调谐要重新进行!微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•驻波分布:终端短路测量线终端接短路板终端短路:测量线终端接短路板→纯驻波分布终端开口:测量线终端开口→终端匹配:测量线终端接匹配负载→行波分布注意事项终端开口与开路的区别•注意事项:终端开口与开路的区别微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•驻波分布测量方法测量线终端接待测负载→移动测量线探针→按一定方式记录探针位置和检波指示值(d~i )→描绘驻波分布特性图形微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•驻波分布测量方法测量数据要求:至少包括两个波节点,三个波腹点,且相邻波节和波腹点之间测量点不得少于4个;注:匹配负载情况下根据实际观测量适当数据点;微波与天线实验室实验指导幻灯片中国科大六系微波与天线实验室版权所有中国科大六系微波与天线实验室版权所有实验原理(续)•驻波比的测量驻波比(ρ,s):描述驻波分布状态的重要参数;小信号工作,平方律检波条件下,实验中可由如下公式得到驻波比I 和I i 分别是驻波波腹点和波节点的检波电流min max I I S=Imax和Imin分别是驻波波腹点和波节点的检波电流值。
电压驻波比的测量实验报告
电压驻波比的测量实验报告电压驻波比测量实验报告近代物理实验报告指导教师: 得分:实验时间: 2009 年 10 月 26 日,第九周,周一,第 5-8 节实验者: 班级材料0705学号 200767025 姓名童凌炜同组者: 班级材料0705学号 2007670姓名车宏龙实验地点: 综合楼 406实验条件: 室内温度 ?,相对湿度 %,室内气压实验题目: 微波系统中电压驻波比的测量实验仪器:(注明规格和型号) 导波管(BJ-100)、隔离器、衰减器、谐振式频率计、晶体检波器、驻波测量线(DH364A00)、匹配负载实验目的:(1) 了解驻波导测量系统,熟悉基本微波原件的作用; (2) 掌握驻波测量线的正确使用方法;(3) 掌握大、中、小电压驻波系数的测量原理和方法。
实验原理简述: 1. 微波的基本知识1.1 电磁波的基本关系??D????B?0??E???B?t??H?j??D?t(3-1-1)D??E,B??H,J??E (3-1-2)如上所示,方程组(3-1-1)为Maxwell方程组,方程组(3-1-2)描述了介质的性质对场的影响。
1.2 矩形波导中波的传播在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。
本实验中使用的是矩形波导管,同时对应使用的是在矩形波导中常用的微波TE101.2.1 TE10型波。
一个均匀、无限长和无耗的矩形波导。
(图3-1-3)经过计算可以得到波导波长?g???(?2a)2特点:1,存在一个临界波长?c=2a,只有波长???c的电磁波才能在波导管中传播 2,导波波长?g自由空间波长?3,电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于导波的窄边4,磁场既有横向分量,也有纵向分量,磁力线环绕电力线 5,电磁场的波导的纵方向(z)上形成行波下图所示,为TE10型波的电磁场结构1.2.2导波的工作状态如果导波终端负载是匹配的,传播到终端的电磁波的所有能量被吸收,这时波导中呈现的是行波。
驻波测量线的调整与电压驻波比测量
实验一驻波测量线的调整一、实验目的1、熟悉测量线的使用及探针的调谐。
2、了解波到波导波长的测量方法。
二、实验原理1、微波测量系统的组成微波测量一般都必须在一个测试系统上进行。
测试系统包括微波信号源,若干波导元件和指示仪表三部分。
图1是小功率微波测试系统组成的典型例子。
图1 小功率波导测试系统示意图进行微波测量,首先必须正确连接与调整微波测试系统。
信号源通常位于左侧,待测元件接在右侧,以便于操作。
连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。
如果连接不当,将会影响测量精度,产生误差。
微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。
隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。
可变衰减器用来控制进入测试系统的功率电平。
频率计用来测量信号源的频率。
驻波测量线用来测量波导中驻波的分布。
波导的输出功率是通过检波器进行检波送往指示器。
若信号为连续波,指示器用光点检流计或直流微安表。
若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。
后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。
系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。
信号源的调整包括振谐频率、功率电平及调谐方式等。
本实验讨论驻波测量线的调整和晶体检波器的校准。
2、测量线的调整及波长测量(1)驻波测量线的调整驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。
测量线通常由一端开槽传输线,探头(耦合探针,探针的调谐腔体和输出指示)、传动装置三部分组成,由于耦合探针深入传输线而引起不均匀性,其作用相当于在线上并联一个导纳,从而影响系统的工作状态(详见第二部分二)。
实验四 电压驻波比测量
实验四电压驻波比测量(大、中驻波比)李洋晶00748006实验仪器:DH406A0型三厘米微波参数测量系统。
实验目的:掌握大、中、小驻波比的测量原理、方法及适用范围,掌握等指示度法、功率衰减法测量大、中电压驻波比。
一.等指示度法测量单螺调配器的驻波比1.实验装置:测量系统结构框图注:此处的负载终端采用单螺调配器+匹配负载。
2.实验步骤:1)关闭所有电源开关,按上图一所示的框图连接微波实验系统。
2)调节单螺钉调配器的单螺钉的穿深度约为7mm。
3)打开所有电源开关之前,将可变衰减器调到最大衰减,以免开机后选频放大器指针超出量程,使表头产生机械损坏。
4)打开选频放大器电源,“频率”选择开关选择“1kHz”(500Hz-1100Hz)或者“宽带”(400Hz-10kHz)(为减少干扰和噪声对系统的影响,建议尽量选择建议选择窄带方式“1kHz”)。
“量程”开关置于“×10”位置,“增益”放在较小位置,“输入电压”细调放至中间位置,“输入电压”步进开关置于较大位置。
并检查此时在没有输入信号的情况下指示是否为零。
5)打开微波信号源电源,选择“方波”(频率1kHz)调制,缓慢调节“频率”到一个合适的值(表头显示频率与真实频率的误差,大约在40MHz以内)。
预热15分钟左右,以使输出频率更稳定。
6)调整可变衰减器,适当调整增益等,移动测量线探针位置至驻波节点,使选频放大器指示值在表头略小于中间的位置(中心偏左),读取驻波节点幅值Imin。
a)如果选频放大器的“频率”选择开关置于“1kHz”(500Hz-1100Hz),则在寻找合理指示值时,还需微调“频率”细调旋钮,以使得选频放大器的低频方波信号与微波信号源方波同频,当同频时获得输出最大值。
7)缓慢移动测量线探针位置,在驻波节点两旁找到指示读数为2Imin的两个等指示度点,精确读出这两个等指示度点的位置d1和d2,并记录下来,计算W=|d2-d1|。
8)重复步骤6),7)共 3次以上,然后求平均W。
试验二驻波的测量
试验二驻波的测量《微波技术与天线》实验指导书主编赵霞审核楚栓成校对杨艺北方民族大学电气信息工程学院二○○八年三月目录实验系统介绍 (3)实验一微波测量系统 (9)实验二驻波的测量 (12)实验三阻抗及匹配 (15)实验四微波技术应用的研究 (18)实验系统简介微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
电压驻波比(VSWR)知识介绍
电压驻波比(VSWR)知识介绍电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。
当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。
常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。
如果发射机的阻抗不同,要求天线的阻抗也不同。
在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。
而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。
如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。
只要设法调到你的天线电流最大就可以了。
VSWR不是1时,比较VSWR的值没有意义正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。
由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。
VSWR都=1不等于都是好天线影响天线效果的最重要因素:谐振让我们用弦乐器的弦来加以说明。
无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。
当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。
中间摆动最大,但振动张力最松弛。
这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。
我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 微波系统中电压驻波比的测量微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波不同. 从图3-1-1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者. 与无线电波相比,微波有下述几个主要特点.图3-1-1 电磁波的分类1.波长短(1m ~1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用.2.频率高:微波的电磁振荡周期(10-9~10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替. 另外,微波在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替.3.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内. 人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟、原子钟.4.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯、宇宙通讯和射电天文学的研究和发展提供了广阔的前景.综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同. 微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量.微波实验是近代物理实验的重要组成部分.国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上. 据统计美国为66%,日本为50%,法国为54%. 我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之λ/m3610910121015101810-910-1110-610-3100103106f /Hz 广播 电视红外可见光 紫外电波无线电波光波X 射线微波间的同轴电缆全部断裂的情况下,六个微波通道全部安然无恙. 九十年代的长江中下游的特大洪灾中,微波通信又一次显示了它的巨大威力. 在当今世界的通信革命中,微波通信仍是最有发展前景的通信手段之一.【实验目的】1.了解波导测量系统,熟悉基本微波元件的作用. 2.掌握驻波测量线的正确使用方法.3.掌握大、中、小电压驻波系数的测量原理和方法.【实验原理】1.微波的基本知识 (1)电磁波的基本关系 描写电磁场的基本方程是:ρ=⋅∇D 0=⋅∇Bt -∂∂=⨯∇BE t ∂∂+=⨯∇Dj H (3-1-1)和E D ε=, H B μ=, E j γ=. (3-1-2)方程组(3-1-1)称为Maxwell 方程组,方程组(3-1-2)描述了介质的性质对场的影响.对于空气和导体的界面,由上述关系可以得到边界条件(左侧均为空气中场量)0=t E ,on E εσ=, i H t = ,=n H .(3-1-3)方程组(3-1-3)表明,在导体附近电场必须垂直于导体表面,而磁场则应平行于导体表面.(2)矩形波导中波的传播在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,b xa图3-1-2 矩形波导管而必须改用微波传输线. 常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管如图3-1-2所示,波导是指能够引导电磁波沿一定方向传输能量的传输线.根据电磁场的普遍规律——Maxwell 方程组或由它导出的波动方程以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波又称为磁波,简写为TE 波或H 波,磁场可以有纵向和横向的分量,但电场只有横向分量. ②横磁波又称为电波,简写为TM 波或E 波,电场可以有纵向和横向的分量,但磁场只有横向分量. 在实际应用中,一般让波导中存在一种波型,而且只传输一种波型,我们实验用的TE 10波就是矩形波导中常用的一种波型.① TE 10型波在一个均匀、无限长和无耗的矩形波导,如图3-1-3所示,从电磁场基本方程组(3-1-1)和(3-1-2)出发,可以解得沿z 方向传播的TE 10型波的各个场分量为)(0)sin(z t j y e axE E βωπ-=,0==Z x E E)(0)sin(z t j x e axE H βωπωμβ--=, 0=y H )(0)cos(z t j z e axE a jH βωπωμπ-⋅= (3-1-4) 其中:ω为电磁波的角频率,f πω2=,f 是微波频率;a 为波导截面宽边的长度;β为微波沿传输方向的相位常数 g λπβ/2=λg 为波导波长,2)2(1ag λλλ-=(3-1-5)图3-1-3和式(3-1-4)均表明,TE 10波具有如下特点:a) 存在一个临界波长c λ=2a ,只有波长λ<λC 的电磁波才能在波导管中传播. b) 波导波长λg >自由空间波长λ.c) 电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于波导的窄边.d) 磁场既有横向分量,也有纵向分量,磁力线环绕电力线.e) 电磁场在波导的纵方向(z )上形成行波. 在z 方向上,Ey 和Hx 的分布规律相同,也就是说Ey 最大处Hx 也最大,Ey 为零处Hx 也为零,场的这种结构是行波的特点. ② 波导管的工作状态如果波导终端负载是匹配的,传播到终端的电磁波的所有能量全部被吸收,这时波导图 3-1-4(a )行波,(b )混合波,(c)驻波中呈现的是行波. 当波导终端不匹配时,就有一部分波被反射,波导中的任何不均匀性也会产生反射,形成所谓混合波. 为描述电磁波,引入反射系数与驻波比的概念,反射系数Γ定义为φj i r E E e /Γ==Γ.驻波比ρ定义为:minmaxE E =ρ (3-1-6) 其中:max E 和min E 分别为波腹和波节点电场E 的大小.不难看出:对于行波,ρ=1;对于驻波,ρ→∞;而当1<ρ<∞,是混合波. 图3-1-4为行波、混合波和驻波的振幅分布示意图.2.电压驻波比的测量驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和品质因数(Q 值)等其它参量. 在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比,见(3-16).测量驻波比的方法与仪器种类很多,本实验着重熟悉用驻波测量线测驻波系数的几种方法.图3-1-3 (a ),(b ),(c) TE 10波的电磁场结构 (d)波导壁电流分布(1) 直接法:直接法是测量沿线驻波的量大和最小场强,然后根据(3-1-6)式直接求出电压驻波比. 这种方法适用于测量中、小电压驻波比.当驻波比较小时,晶体二极管为平方检波,如果驻波腹点和节点处指示电表读数分别为I max 和I min ,则 (3-1-1) 式可写成minmax II =ρ (3-1-7)① 驻波比在1.005≤ρ≤1.5时:如图3-1-5所示,此时驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算. 若驻波腹点和节点处电表读数分别为I max ,I min ,则电压驻波系数为 nn nnI I I I I I E E E E E E min 2min 1min max 2max 1max min 2min 1min max 2max 1max +⋅⋅⋅+++⋅⋅⋅++=++++++=ρ (3-1-8)② 中驻波比(1.5 ≤ ρ ≤ 6 ) 时此时,只须测一个驻波波腹和一个驻波波节,即直接读出I max 、I min ,如图3-1-6所示. minmaxmin maxI I E E ==ρ (3-1-9)(2) 等指示度法:等指示度法适用于测量大、中电压驻波比(ρ>6). 此时,波腹振幅与波节振幅的区别很大,因此在测量最大点和最小点电平时,晶体工作在不同的检波律,如仍按直接法测量,则产生较大误差,所以采用等指示度法,也就是通过测量驻波波节点附近场的分布规律的间接方法(见图3-1-7).图 3-1-5 小驻波比时的驻波图图3-1-6 中驻波比时的驻波图图3-1-7 大驻波比时的驻波图根据传输线上场强与终端反射系数Γ的关系,并确定驻波节点两旁等指示度之间的距离,可得到如下关系2222min 212cos()(1)ng WI k I πλ+Γ-Γ⎛⎫==⎪-Γ⎝⎭(3-1-10)式中I min 为驻波节点的值,I 为驻波节点相邻两旁的等指示值,W 为等指示度之间的距离. 经过三角变换,式(3-1-10)变为)sin()(cos 2/2gg n Wk λλπρ-=(3-1-11)我们测量驻波节点的值I min 、节点两旁等指示度的值I 及它们之间的距离W ,其中当k =2时,若n =2(探头晶体为平方律检波),则有)(sin 112gWλπρ+= (3-1-12)这种方法称为“二倍最小值法”或“三分贝法”.当驻波比很大(ρ>6)时,W 很小,有Wg πλρ=(3-1-13)由(3-1-12)、(3-1-13)两式可以看出:W 与g λ的测量精度对测量结果影响很大,因此必须用高精度的探针位置指示装置(如百分表)进行读数.(3) 功率衰减法:这种方法适用于任意驻波比值的测量.用直接法测量驻波比的精度与晶体的检波律有关,因而要求在同一测量中须保持同一检波律,这给测量带来一定的困难. 等指示度法虽然在一定程度上解决了这一矛盾,但当驻波比较大时,对W 的测试要求很高. 功率衰减法测量驻波比能克服以上两种方法的缺点,它是用精密可变衰减器测量驻波腹点和节点两个位置上的电平差,因而与晶体的检波律无关,主要取决于衰减器的精度和系统的匹配情况. 用该方法测量驻波比是通过改变精密可变衰减器的衰减量,使探针位于驻波腹点和节点指示电表的读数相同,则驻波比可用下式计算20m inm ax 10A A -=ρ (3-1-14)式中max A 、min A 分别为探针在波腹点和波节点处,指示电表读数相同时所对应的精密可变衰减器的读数.minI I k 最小点读数测量读数=【实验仪器】实验装置如图3-1-8所示. 各部分的作用介绍如下:1.波导管:本实验所使用的波导管型号为BJ —100,其内腔尺寸为a =22.86mm ,b =10.16mm. 其主模频率范围为8.20~12.50GHz ,截止频率为6.557GHz.2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性. 隔离器常用于振荡器与负载之间,起隔离和单向传输作用.3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小. 衰减器起调节系统中微波功率以及去耦合的作用.4.谐振式频率计(波长表):电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输. 当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率.5.晶体检波器:从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率.6.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器. 在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中. 由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出.7.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率.【实验内容与步骤】由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完图3-1-8 实验装置示意图全不同. 在微波系统中,测量参量主要包括功率、波长和驻波参量,这也是和低频电路不同的. 本实验我们将学习运用驻波测量线,测量大、中、小电压驻波比.1. 开启微波信号源(DH1121C),选择频率约为9.37GHz,预热15分钟.2. 将测量线探针插入适当深度,用选频放大器测量微波的大小,选择较小的微波输出功率并进行驻波测量线的调谐.3. 选信号源的工作方式为“等幅”、“点频”用直读频率计测量微波频率,并计算微波波导波长.4. 微波源工作方式选择“方波”. 测量线终端接短路板,用交叉读数法读出两个相邻波节点的位置,计算波导波长并与计算值比较. 具体方法如下:在所测波节点两端取读数相等的两点d i1、d i2,记录数据. 二者的平均值代表波节点的位置d01,两相邻波节间的距离为波导波长的一半.5. 关闭微波电源,取下短路器,接上单螺旋调配器和匹配负载.6. 调节单螺钉穿伸度为3mm,移动测量线的探针,观察驻波的波节点及波腹点的电压值,判断是驻波状态,分析此时的驻波比的大小.7. 移动探针至驻波腹点,调节指示器灵敏度,使电表读数达满偏(或接近满偏)8.将探针移至测量线的最右端,向左依次测量驻波腹点和节点的幅值I max,I min,记录数据;9. 反向移动测量线探针,重复测量.10. 调节螺钉穿伸度为5mm,移动测量线的探针,观察驻波的波节点及波腹点的电压值,判断驻波状态,分析此时的驻波比的大小.11. 选择驻波的一个波腹点及其相邻的波节点,测量其电压值,记录数据,重复5次;12. 调节螺钉穿伸度为7mm,移动测量线的探针,观察驻波的波节点及波腹点的电压值,判断驻波状态,分析此时的驻波比的大小.13. 等指示度法测量电压驻波比,具体方法如下:(1)测量线探针移至驻波节点. 调整微波可变衰减器、指示器的灵敏度,使指示器电表指针为满度的一半,读取驻波节点幅度值I min.(2)缓慢移动探针,在驻波点两旁找到电表指示读数为2I min的两个指示度点,应用测量线标尺或百分表读取二个等指示点对应的探针位置的读数值d1、d2. 重复5次.(3)记录数据,并计算驻波比.【数据记录与处理】微波频率:1. 波导波长的测量2. 小电压驻波比3. 中电压驻波比4.大电压驻波比(等指示度法测量)【思考题】1.驻波节点的位置在实验中精确测准不容易,如何比较准确的测量?2.如何比较准确地测出波导波长?3.在对测量线调谐后,进行驻波比的测量时,能否改变微波的输出功率或衰减大小? 【参考文献】1. 近代物理实验讲义. 华南师范大学.2. 吴思诚等. 近代物理实验. 北京:北京大学物理实验2005【附录】波导测量线说明书DH364A00型三厘米波导测量线是探测三厘米波段的波导中驻波分布情况的仪器. 它通常用来测量波导元件、波导系统的驻波系数、阻抗,还可测量波导波长、相移等多种参数,是一种通用的微波测量仪器.1. 主要技术指标(1)工作频率范围:8.2~12.4GHz(2)合成电压驻波系数:≤1.03(3)探针插入波导深度:1.5mm(4)探头行程:95mm(5)波导规格:BJ-100 (波导内口尺寸:22.86mm×10.16mm)(6)连接法兰规格:FBP-100(7)外形尺寸:247×170×144(mm)2. 仪器的工作原理和结构三厘米波导测量线由开槽波导、不调谐探头和滑架组成. 开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息. 测量线外形如图3-1-9所示:图3-1-9 测量线外形测量线开槽波导是一段精密加工的开槽直波导,此槽位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小,此外,槽端还有阶梯匹配段,两端法兰具有尺寸精确的定位和连接孔,从而保证开槽波导有很低的剩余驻波系数.不调谐探头由检波二极管、吸收环、盘形电阻、弹簧、接头和外壳组成,安放在滑架的探头插孔中. 不调谐探头的输出为BNC接头,检波二极管经过加工改造的同轴检波管,其内导体作为探针伸入到开槽波导中,因此,探针与检波晶体之间的长度最短,从而可以不经调谐,而达到电抗小、效率高,输出响应平坦.滑架是用来安装开槽波导和不调谐探头的,其结构见图3-1-10.图3-1-10 滑架结构图滑架各部分的名称、作用说明如下:⑴水平调整螺钉用于调整测量线高度⑵百分表止挡螺钉细调百分表读数的起始点⑶可移止挡粗调百分表读数⑷刻度尺指示探针位置⑸百分表插孔插百分表用⑹探头插孔装不调谐探头⑺探头座可沿开槽线移动⑻游标与刻度尺配合,提高探针位置读数分辨率⑼手柄旋转手柄,可使探头座沿开槽线移动⑽探头座锁紧螺钉将不调谐探头固定于探头插孔中⑾夹紧螺钉安装夹紧百分表用⑿止挡固定螺钉将可移止挡⑶固定在所要求的位置上⒀定位垫圈(图中未示出)用来控制探针插入波导中的深度.。