河北省南宫市奋飞中学2018-2019学年八上数学期末质量跟踪监视试题
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形是轴对称图形的是()A.B.C.D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A.28×10﹣9B.2.8×10﹣8C.0.28×10﹣7D.2.8×10﹣63.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣4.下列式子正确的是()A.(2a2)3=6a6B.2a2×a4=2a8C.(a+2)2=a2+4D.a﹣2=5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A.25°B.40°C.50°D.80°7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A.18或21B.21C.24或18D.188.在平面直角坐标系内,点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,则x+y的值为()A.0B.﹣1C.2D.﹣39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A.38°B.34°C.32°D.28°10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A.40×1.6x﹣30x=400B.﹣=30C.﹣=30D.﹣=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A.4B.6C.8D.1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB 边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°二、填空题(本题共6小题,每小题4分,共24分)13.因式分解:x2﹣9=.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成个三角形.15.若式子a2﹣2a+1+|b﹣2|=0,则ab=.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB 的距离为6,则BC等于.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题(本题共8小题,共90分)19.(8分)解分式方程:=+20.(10分)先化简,后求值:(1﹣)÷(),其中a=3.21.(10分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.22.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=﹣1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.23.(12分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.24.(12分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?25.(12分)等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.(14分)数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF 的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF 的最小值为;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000000028用科学记数法表示2.8×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【分析】根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.【解答】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.【点评】此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【分析】等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.【解答】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【分析】直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.【解答】解:∵点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,∴2y+1=y﹣1,x﹣6=﹣2x解得:y=﹣2,x=2,故x+y=0.故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【分析】利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.【解答】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°﹣104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°﹣152°=28°,故选:D.【点评】本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.【解答】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是﹣=30,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【分析】依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.【解答】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB 于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.二、填空题(本题共6小题,每小题4分,共24分)13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.【解答】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7﹣3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7﹣4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.【点评】本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【解答】解:∵a2﹣2a+1+|b﹣2|=0,∴(a﹣1)2+|b﹣2|=0,∴a﹣1=0,b﹣2=0,解得:a=1,b=2,则ab=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【分析】先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【分析】根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.【解答】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.【点评】本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC =BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本题共8小题,共90分)19.【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.【解答】解:去分母:4=3x﹣6+x+2解得:x=2,经检验当x=2时,x﹣2=0,所以x=2是原方程的增根,此题无解【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=3时,原式==2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可【解答】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点评】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.【分析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.24.【分析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【解答】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:=4×,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.25.【分析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.【解答】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB﹣BE∴2AF=OB﹣OA∴AF=∴OF=∴点C(,)【点评】本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【分析】(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF (SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF 的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【解答】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)
2018-2019学年度八年级(上册)期末质量评估抽查数学试卷命题人:xxx审题人:xxx考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.下面四个数中无理数是()A.0.B.C.D.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,954.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.25的平方根是,16的算术平方根是,﹣27的立方根是.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9= .12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为.13.(1)计算:|﹣|+3﹣2+(2)解方程组:14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?六、(本大题共12分)23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.参考答案与试题解析一.选择题(共6小题)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:点(2018,﹣1)所在象限为第四象限.故选:D.【点评】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.2.下面四个数中无理数是()A.0.B.C.D.【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、=3,不是无理数,故本选项不符合题意;D、是无理数,故本选项符合题意;故选:D.【点评】本题考查了无理数的定义和算术平方根,能理解无理数的定义的内容是解此题的关键,注意:无理数有:①开方开不尽的根式,②含π的,③一些有规律的数.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,95【分析】先根据平均数求得a的值,再将数据从小到大重新排列,继而利用中位数和众数的定义求解可得.【解答】解:∵这6位同学的平均成绩是90,∴85+95+72+100+93+a=6×90,解得:a=95,则这组数据从小到大重新排列为72、85、93、95、95、100,所以这组数据的中位数为=94,众数为95,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.【点评】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:D.【点评】考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.【分析】根据一次函数y=kx+b中的k、b的取值范围,确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx+b中,k<0,b<0,∴该直线必经过二、四象限,且与y轴负半轴相交.故选:B.【点评】主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二.填空题(共6小题)7.25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3.【分析】根据立方根、平方根、算术平方根的定义求出即可.【解答】解:25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3,故答案为:±5,4,﹣3.【点评】本题考查了立方根、平方根、算术平方根的定义,能熟记立方根、平方根、算术平方根的定义的内容是解此题的关键.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是﹣2.【分析】根据关于y轴对称的点,横坐标互为相反数,纵坐标相等,可得m,n的值,再代入计算可得.【解答】解:∵点A(m+1,2)与点B(4,n﹣1)关于y轴对称,∴m+1=﹣4,2=n﹣1,解得:m=﹣5,n=3,则m+n=﹣5+3=﹣2,故答案为:﹣2.【点评】本题考查了关于x,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为7.2.【分析】先用勾股定理求出直角边BC的长度,再用面积就可以求出斜边上的高.【解答】解:在Rt△ABC中,∵∠C=90°,AB=15,AC=12,∴BC==9,=AC•BC=AB•CD,由面积公式得:S△ABC∴CD===7.2.故斜边AB上的高CD的长为7.2.故答案为:7.2.【点评】本题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为15°或35°.【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,相减即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=60°,∴∠BAD=90°﹣60°=30°,∵∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵AE是△ABC角平分线,∴∠BAE=∠BAC=45°,∴∠DAE=∠BAE﹣∠BAD=15°,故答案为:15°或35°【点评】本题主要考查对三角形的内角和定理,三角形的角平分线等知识点的理解和掌握,能正确画图和求出∠BAE、∠BAD的度数是解此题的关键.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=24.【分析】按照定义新运算x*y=ax+by+1,用已知的两个式子建立方程组,求得a,b的值后,再求5*9的值【解答】解:根据题意知,解得:,则x*y=x+2y+1,所以5*9=5+2×9+1=24,故答案为:24.【点评】本题是新定义题,考查了定义新运算,解方程组.要注意运算顺序与运算符号.12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为(1,1)或(,)或(2,2).【分析】分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P2的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论.【解答】解:∵点A的坐标为(2,0),∴OA=2.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=2,∴点P1的坐标为(1,1);②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形.∵OP2=OA=2,∴OB=BP2=,∴点P2的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=2,∴AP3=OA=2,∴点P3的坐标为(2,2).综上所述:点P的坐标为(1,1)或(,)或(2,2).故答案为:(1,1)或(,)或(2,2).【点评】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.三.解答题(共11小题)13.(1)计算:|﹣|+3﹣2+(2)解方程组:【分析】(1)根据绝对值和二次根式的加减法可以解答本题;(2)根据解二元一次方程组的方法可以解答此方程组.【解答】解:(1)|﹣|+3﹣2+==;(2)②﹣①×2,得x=6,将x=6代入①,得y=﹣3,故原方程组的解是.【点评】本题考查实数的运算、解二元一次方程组,解答本题的关键是明确它们各自的计算方法.14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象的平移规律,可得平移后的解析式,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将x=2,y=﹣2代入函数解析式,得2k﹣4=﹣2,解得k=1,一次函数的解析式为y=x﹣4;(2)一次函数y=x﹣4的图象向上平移3个单位,得y=x﹣1.当y=0时,x﹣1=0,解得x=1,平移后的图象与x轴的交点的坐标(1,0).【点评】本题考查了一次函数图象与几何变换,解(1)的关键是待定系数法,解(2)的关键是利用函数图象的平移规律.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.【分析】先证AC∥DF得∠C=∠DEC,结合∠C=∠F可证CE∥BF,得∠2=∠3,根据∠1=∠3可得证.【解答】证明:∠1=∠2,理由:∵∠A=∠D,∴AC∥DF,∴∠C=∠DEC,∵∠C=∠F,∴∠F=∠DEC,∴CE∥BF,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.【点评】本题主要考查平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行,内错角相等⇔两直线平行,同旁内角互补⇔两直线平行.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.【分析】本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.【解答】解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×3×6+×(4+6)×3+×2×4=28.故四边形ABCD的面积为28.【点评】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【分析】(1)根据点A的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A,B,C关于x轴的对称点A′,B′,C′,连接A′B′,B′C′,C′A′则△A′B′C′即为所求.【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?【分析】设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了222吨,得出等式(1+5%)y+(1+15%)x=222,进而组成方程组求出答案.【解答】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则80×(1+5%)=84(吨),120×(1+15%)=138(吨),答:农场去年实际生产玉米84吨,小麦138吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:∵在Rt△ABC中,∠C=90°,∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?【分析】(1)由折线统计图得出具体数据,再根据中位数、众数和平均数的定义求解可得;(2)根据平均数、众数、中位数及方差的意义求解,只要合理即可.【解答】解:(1)a=×(6×2+7×7+9)=7,b=8,c=7,s2=×[(9﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(6﹣8)2+(8﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(8﹣8)2]=1.8.(2)∵甲的平均成绩、中位数与众数比乙的都高,∴应选甲运动员.【点评】本题考查的是折线统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.【分析】(1)根据题意和函数图象可以解答本题;(2)根据函数图象中的数据可以求得与x之间的函数表达式;(3)将x=4代入(2)中的函数解析式即可解答本题.【解答】解:(1)不相同,理由:因为去时用了2小时,返回时用了2.5小时,所以辆汽车的往返速度不相同;(2)设返回过程中y与x之间的函数关系式为y=kx+b,,解得,,∴y=﹣48x+240(2.5≤x≤5);(3)当x=4时,y=﹣48×4+240=48,答:这辆汽车从甲地出发4(小时)时与甲地的距离是48千米.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD==240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为1;若点F为完美点,且横坐标为3,则点F的纵坐标为2;(2)完美点P在直线y=x﹣1(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.【分析】(1)把m=2和3分别代入m+n=,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【解答】解:(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即==2,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(1,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x﹣1;(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,∴,解得:,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x ﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴∵,∴又∵,∴BC=1,∴S=BC×BM==.△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.。
2018-2019学年度八年级上数学期末试卷(解析版)
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版八上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。
最新2018-2019学年冀教版数学八年级上学期期末模拟综合测评1及答案解析-精编试题
八年级(上)期末模拟复习测试试卷一、选择题(共10题;共30分)1.下列语句中,不是命题的是 ( )A. 若两角之和为90°,则这两个角互余。
B. 同角的余角相等。
C. 画线段的中垂线。
D. 相等的角是对顶角。
2.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A. 原点上B. x轴上C. y轴上 D. 坐标轴上3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A. B.C. D.4.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. 边边边B. 边角边 C. 角边角 D. 角角边5.若点P的坐标是(1,﹣2),则点P在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA7.下列各式成立是 ( )A. B. C.D.8.下面选项对于等边三角形不成立的是()A. 三边相等B. 三角相等C. 是等腰三角形D. 有一条对称轴9.在式子、、(a<﹣3)、(y>0)、(x<0)中,是二次根式的有()A. 2个B. 3个 C. 4个 D. 5个10.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A. 18B. 16C. 14D. 12二、填空题(共8题;共24分)11.用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即________.12.化简:=________,=________13.关于x的方程=无解,则m的值是________.14.命题“同旁内角互补,两直线平行”中,题设是 ________,结论是 ________此命题是 ________(填“真命题”或“假命题”)15.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI________全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI________全等.(填“一定”或“不一定”或“一定不”)16.直角三角形的两边长为5和7,则第三边长为________17.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是________18.点D为等边△ABC的边BC的中点,则AB:BD=________.三、解答题(共6题;共36分)19.判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明.(1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.20.证明:在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.21.如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌△Rt△DFB,需添加什么条件?并写出你的证明过程.22.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.23.如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.24.在四边形ABCD中,AB=3,BC=4,AD=5 ,CD=5,∠ABC=90°,求对角线BD的长.四、综合题(共10分)25.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF=DF;(2)求证:AE∥BD;(3)若AB=6,AD=8,求BF的长.参考答案与试题解析一、选择题1.【答案】C【考点】命题与定理【解析】【分析】命题就是判断一件事情的语句.【解答】根据命题的定义,可知A、B、D都是命题,而C属于作图语言,不是命题.故选C.2.【答案】D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清3.【答案】A【考点】剪纸问题【解析】【解答】解:由题意可知:减去的部分为四个等腰直角三角形的斜边构成的正方形,又原图是正方形,所以剩下的图形为大正方形除去一个小正方形.故选A.【分析】找出题中的折叠规律,利用正方形纸片按照此方法沿虚线减下,展开即可得到剩下的图形.4.【答案】A【考点】全等三角形的判定,作图—基本作图【解析】【解答】作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=ODC′D′=CD∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB ,显然运用的判定方法是边边边选:A .【分析】通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.5.【答案】D【考点】点的坐标【解析】【解答】解:点P(1,﹣2)在第四象限.故选D.【分析】根据各象限内点的坐标特征解答即可.6.【答案】D【考点】全等三角形的应用【解析】【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.7.【答案】D【考点】二次根式的性质与化简,最简二次根式【解析】【分析】A中,由题意知,,故A错误;B中,,故错误;C中,,故C错误;D中,,故选D.【点评】本题属于对代数式的基本运算和规律的把握和运用,需要考生对代数式的基本运用方法熟练掌握。
2018-2019学年河北省八年级(上)期末数学试卷
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__.
26.问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
14.已知:a2﹣3a+1=0,则a+ ﹣2的值为( )
A. B. 1C.﹣1D.﹣5
15.如图在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是( )
A.∠A=∠DB. AB=FDC. AC=EDD. AF=CD
5.下列根式中能与 合并的二次根式为( )
A. B. C. D.
6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30°B.45°C.50°D.75°
7.关于 的叙述,错误的是( )
A. B. C. D.
最新8—19学年上学期八年级期末质量监测数学试题(附答案)
2018—2019学年度上学期期末考试八年级数学试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷 (选择题 共42分)一、选择题(本大题共14小题,每小题3分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,是轴对称图形的是( )A .B .C .D .2.诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为( ) A .510456.0-⨯ B .61056.4-⨯C .71056.4-⨯D .7106.45-⨯3.以下列各组数据为边长,能构成三角形的是 A .4,4,8 B .2,4,7 C .4,8,8 D .2,2,74.下列各式运算不正确...的是( ) A .347⋅=a a a B .1644)(a a = C .235a a a =÷D .4224)2(a a -=-5.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定 △ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC6.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A .50° B .60°C .70° D.80°7.平面直角坐标系中,点)1,2(-关于y 轴的对称点为),(b a ,则b a 的值为( )A .1B .21C .2-D .21-8.如图,在Rt △ABC 中,∠ACB =90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,若∠A =26°,则∠CDE 度数为( ) A .71° B .64° C .80° D .45°9.若实数m 、n 满足0)6(32=-+-n m ,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( ) A .12 B .15C .12或15D . 910.已知关于x 的分式方程112=+-x a 的解是负数,则a 的取值范围是( ) A .1<a B .1>a 且2≠aC . 3<aD .3<a 且2≠a11.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从1P ,2P ,3P ,4P 四个点中找出符合条件的点P ,则点P 有( ) A .4个B .3个C .2个D .1个12.如图,∠AOB =60°,OC 平分∠AOB ,P 为射线OC 上一点,如果射线OA 上的点D ,满足△OPD 是等腰三角形,那么∠ODP 的度数为( ) A .30° B .120° C .30°或120° D .30°或75°或120° 13.请你计算:()()x x +-11,()()211x x x ++-,…,猜想()()n x x x x +⋅⋅⋅+++-211的结果是( )A .11+-n xB .n x -1C .11++n xD .n x +114.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其中正确的有( )个.(第12题图)A .1B .2C .3D .4第Ⅱ卷 (非选择题 共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.因式分解:=+-x x x 232______________________. .16.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k .若2k =,则该等腰三角形的顶角为______________度.17.如图,边长为4m +的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为4,则另一边长为_______________. 18.如图,∠AOC =∠BOC =15°,CD ⊥OA ,CE //OA ,若CD =6,则CE =______________.19),(b a进入其中时,会得到一个新的数:)1)(2(--b a .现将数对)2,(m 放入其中,得到数n ,再将数对),(m n 放入其中后,最后得到的数是________.(结果要化简) 三、解答题:(本题满分63分)20.(本题满分7分)(1)计算:()()22-y xy x y x ++;(2)利用所学知识以及(1)所得等式,化简代数式222222332--nmn m n m n mn m n m ++÷++.21.(本题满分7分)先化简,再求值:1-121-1-22a a a a a ++÷)(,其中3a =-. 22.(本题满分8分)解分式方程:13321-+=+x xx x .23.(本题满分9分).如图,已知∠A =∠D ,AB =DB ,点E 在AC 边上,∠AED =∠CBE ,AB 和DE 相交于点F .(1)求证:△ABC ≌△DBE .(2)若∠CBE =50° ,求∠BED 的度数.24.(本题满分9分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)若△A 1B 1C 1与△ABC 关于y 轴成轴对称,则△A 1B 1C 1三个顶点坐标分别为A 1 ,B 1 ,C 1 ;(2)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标是 . (3)在y 轴上是否存在点Q .使得12ACQABCSS,如果存在,求出点Q 的坐标,如果不存在,说明理由;新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1-5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%。
2018-2019学年八年级上期末质量数学试卷含答案
2018-2019学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 .1有意义,则x 的取值范围是 A .1x >-且1x ≠ B .1x ≥-C .1x ≠D .x ≥-1且1x ≠2.下列各式从左到右的变形正确的是A .yx y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3π23.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25B .35C .13D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是== = D.2(2=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4,则AC 长是 A.9B. 8C. 7D. 610. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是A.①②B.①③C.②③D.①②③二、填空题(共10个小题,每小题2分,共20分)11.25的平方根是.12.计算:2= .13.若实数x y,0y=,则代数式2xy的值是.14. 已知:ABC∆中,AB AC=,30B A∠-∠=︒,则A∠=.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x 颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y与x之间的关系式是.19.已知1132a b+=,则代数式254436a ab bab a b-+--的值为.(第17题图)20.已知: 如图,ABC △中,45ABC ∠=,H 是高AD 和BE的交点,12AD =,17BC =,则线段BH 的长为.三、解答题 (共12个小题,共60分)21.(4分)22.(5+23.(4分)1= , 3(2)64x y += ,求代数式22x yx y ++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5分) 解关于x 的方程:32211x x x +=-+ .27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m 的值.28.(5分) 某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29.(5分) 在ABC ∆中,AB ,BC ,AC 形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=-小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简. 32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考二、填空题三、解答题21. 3分(各1分)=4分22. 解:原式=5(1512)--………………………………… 4分(前2分后2分)=8-5分23 解:∵1= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩……………………………………………4分(各1分)∴2222213215x y x y ++==++………………………………………5分24 解:原式=(2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯--……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x +……………………………………………4分∵ 2310x x +-= ∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯=……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分又∵C F ∠=∠……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27.…………………………………………… 3分 (2)依题意,得64105m +=…………………………………………… 4分解得 2m =…………………………………………… 5分 所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-xx …………………………………3分 解这个方程得100x = …………………………………………4分 经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分(2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90° ∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3………………5分 ∴CD =3.31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分解:原式()222444a a ab a b b-+=-()24ab a b b =-()4aa b b =-24a ab b =-………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分。
2018-2019年八年级数学上册期末试卷含答案解析
八年级数学上册期末模拟练习卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.若分式x+1x+2的值为0,则x的值为( )A.0 B.-1 C.1 D.22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( ) A.25 B.25或20 C.20 D.153.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.下列因式分解正确的是( )A.m2+n2=(m+n)(m-n) B.x2+2x-1=(x-1)2C.a2-a=a(a-1) D.a2+2a+1=a(a+2)+15.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线分别交AB、BC于点D、E,则∠BAE的大小为( )A.80°B.60° C.50° D.40°6.已知2m+3n=5,则4m·8n的值为( )A.16 B.25 C.32 D.647.已知14m2+14n2=n-m-2,则1m-1n的值为( )A.1 B.0 C.-1 D.-1 48.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D 的位置,则∠1-∠2的度数是( )A.40° B.80° C.90° D.140°9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D 旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( )A.①②④ B.②③④C.①②③ D.①②③④二、填空题(每小题3分,共24分)11.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=________°. 12.计算:(-8)2018×0.1252017=________.13.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3的度数为________.15.如图,在△ABC中,D为AB上一点,AB=AC,CD=CB.若∠ACD=42°,则∠BAC=________°.16.若x2+bx+c=(x+5)(x-3),其中b,c为常数,则点P(b,c)关于y轴对称的点的坐标是________.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为______________.18.如图,五边形ABCDE中,∠B=∠E=90°,AB=CD=AE=BC+DE=2,则这个五边形ABCDE 的面积是________.三、解答题(共66分) 19.(8分)计算:(1)x (x -2y )-(x +y )2; (2)⎝ ⎛⎭⎪⎪⎫3a +2+a -2÷a 2-2a +1a +2.20.(6分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.21.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎪⎫14-1.22.(10分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD .(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.(10分)如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B9.C 解析:在方程两边同乘x +1,得x -a =a (x +1),整理得(1-a )x =2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入(1-a )x =2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt△ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C. 11.50 12.8 13.(1)a (x-1)2(2)1x +114.55° 15.32 16.(-2,-15) 17.1480x=1480x +70+318.4 解析:如图,延长DE 至F ,使EF =BC ,连接AC ,AD ,AF .∵AB =CD =AE =BC +DE =2,∠B =∠AED =90°,∴CD =EF +DE =DF .在△ABC 与△AEF 中, ⎩⎨⎧AB =AE ,∠ABC =∠AEF ,BC =EF ,∴△ABC ≌△AEF (SAS),∴AC =AF .在△ACD 与△AFD 中,⎩⎨⎧AC =AF ,CD =FD ,AD =AD ,∴△ACD ≌△AFD (SSS),∴五边形ABCDE 的面积S =2S △ADF =2×12·DF ·AE =2×12×2×2=4.故答案为4.19.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(4分)(2)原式=⎣⎢⎢⎡⎦⎥⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.(8分) 20.解:如图,作AB 的垂直平分线EF ,(2分)作∠BAC 的平分线AM ,两线交于P ,(5分)则P 为这个中心医院的位置.(6分)21.解:(1)∵a +b =7,ab =10,∴a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(5分)(2)原式=(a -2)(a +2)-5a +2·2(a +2)a -3=(a +3)(a -3)a +2·2(a +2)a -3=2a +6.∵a =(3-π)0+⎝ ⎛⎭⎪⎪⎫14-1=1+4=5,∴原式=2×5+6=16.(10分)22.(1)证明:∵AC =AD ,∴∠ACD =∠ADC .又∵∠BCD =∠EDC =90°,∴∠ACB =∠ADE .(3分)在△ABC 和△AED 中, ⎩⎨⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED (SAS).(6分)(2)解:由(1)知△ABC ≌△AED ,∴∠E =∠B =140°.又∵∠BCD =∠EDC =90°,∴五边形ABCDE中,∠BAE =540°-140°×2-90°×2=80°.(10分) 23.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:由(1)知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴DE 垂直平分GF ,∴EG =EF .(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分) 24.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x=15x -0.5,(3分)解得x =1.5.经检验,x =1.5是原分式方程的解,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(5分)(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,(8分)解得a ≥8. 答:甲工程队至少修路8天.(10分) 25.(1)证明:∵∠ACB =∠DCE =α, ∴∠ACD =∠BCE .(1分)在△ACD 和△BCE 中,⎩⎨⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α, ∴∠BAM +∠ABM =180°-α, ∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分) 证明如下:由(1)可知BE =AD . ∵AD ,BE 的中点分别为点P ,Q , ∴AP =BQ .由(1)知△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎨⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP≌△BCQ(SAS),∴CP=CQ且∠ACP=∠BCQ.(10分)又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.(12)。
河北省南宫市奋飞中学2019年数学八上期末调研试卷
河北省南宫市奋飞中学2019年数学八上期末调研试卷一、选择题1.方程=0的解为( ) A .﹣2B .2C .5D .无解 2.如果分式:23xy x y+中分子、分母的x ,y 同时扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .扩大为原来的4倍 D .不变 3.若分式||22x x --的值为零,则x 的值是( ) A .±2B .2C .﹣2D .0 4.下列各式中,自左向右变形属于分解因式的是( ) A .x 2+2x+1=x(x+2)+1B .﹣m 2+n 2=(m ﹣n)(m+n)C .﹣(2a ﹣3b)2=﹣4a 2+12ab ﹣9b 2D .p 4﹣1=(p 2+1)(p+1)(p ﹣1) 5.下列由左边到右边的变形,属于因式分解的是( ). A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x(x -2)+1C .a 2-b 2=(a +b)(a -b)D .mx +my +nx +ny =m(x +y)+n(x +y)6.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x+1)( x ﹣1)=x 2﹣1 C .3x ﹣3y ﹣1=3( x ﹣y )﹣1 D .x 2﹣8x+16=( x ﹣4)2 7.下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .8.在下列学校校徽图案中,是轴对称图形的是( )A .B .C .D .9.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两锐角对应相等的两个直角三角形全等C .两角及其夹边对应相等的两个三角形全等D .面积相等的两个三角形全等10.如图所示,AB ⊥BC 且AB=BC ,CD ⊥DE 且CD=DE ,请按照图中所标注的数据,计算图中实线所围成的图形面积是( )A.64B.50C.48D.3211.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形12.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等13.下列图中不具有稳定性的是( )A.B.C.D.14.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形15.如图,已知D是△ABC的BC边的延长线上一点,DF⊥AB,交AB于点F,交AC于点E,∠A=56°,∠D=30°,则∠ACB的度数为()A.56°B.44°C.64°D.54°二、填空题16.在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是_____.17.若10m=5,10n=4,则10m﹣2n=_____.18.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.19.如图,在五边形ABCDE 中,∠1+∠2+∠3+∠4+∠5=______°.20.如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC=17cm ,则△ODE 的周长是______cm .三、解答题21.关于x 的方程xx k x --=+-2321. (1)当3k =时,求该方程的解;(2)若方程有增根,求k 的值.22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是__________________.(请选择正确的一个)A.22()()a b a b a b -=+- B .2222()a ab b a b -+=- C.2()a ab a a b +=+(2)若2216x y -=,8x y +=,求x y -的值; (3)计算:22222111111111123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23.如图,在平面直角坐标系中,O 为坐标原点,长方形 OABC ,点 B 的坐标为(3,8),点 A 、C 分别在坐标轴上,D 为 OC 的中点.(1)在 x 轴上找一点 P ,使得 PD +PB 最小,则点 P 的坐标为 ;(2)在 x 轴上找一点 Q ,使得|QD -QB|最大,求出点 Q 的坐标并说明理由.24.如图和的平分线交于点的延长线交于点.(1)求证:; (2)如果,那么等于多少度?25.如图1,线段AB 、CD 相交于点O ,连接AD 、CB.(1)请说明:A D B C ∠+∠=∠+∠;(2)点M 在OD 上,点N 在OB 上,AM 与CN 相交于点P ,且1DAP DAB n ∠=∠,1DCP DCB n∠=∠,其中n 为大于1的自然数(如图2).①当2n =时,试探索P ∠与D ∠、B Ð之间的数量关系,并请说明理由;②对于大于1的任意自然数n ,P ∠与D ∠、B Ð之间存在着怎样的数量关系?请直接写出你的探索结果,不必说明理由.【参考答案】***一、选择题16.17.51618.AH =CB 或EH =EB 或AE =CE .19..20.17三、解答题21.(1)x=1;(2)k=1.22.(1)A ;(2)2x y -= ;(3)1010201923.(1) P (1,0);(2)见解析.【解析】【分析】(1)作点D 关于x 轴的对称点D',根据轴对称性质有PD=PD',又根据三角形两边之和PD'+PB 大于第三边BD',故B 、P 、D'在同一直线上时,PD+PB 有最小值.求直线BD'的解析式后令y=0,求出其与x 轴的交点,即此时的点P 坐标;(2)根据三角形两边之差|QD-QB|小于第三边BD ,故当B 、D 、Q 在同一直线上时,|QD-QB|=BD 有最大值.求直线BD 解析式后令y=0,求出此时Q 的坐标.【详解】解:(1)作D 关于x 轴的对称点D',连接BD',交x 轴于点P∵PD=PD'∴PD+PB=PD'+PB∴当B 、P 、D'在同一直线上时,PD+PB=BD'最小∵四边形OABC 是矩形,B (3,8)∴C (0,8)∵D 为OC 中点∴D (0,4)∴D'(0,-4)设直线BD'解析式为:y=kx+b 3804k b b +=⎧⎨+=-⎩ , 解得:44k b =⎧⎨=-⎩, ∴直线BD':y=4x-4当4x-4=0时,解得:x=1故答案为:P (1,0)(2)根据三角形两边之差小于第三边,|QD-QB|<BD∴当B 、D 、Q 在同一直线上时,|QD-QB|=BD 最大设直线BD 解析式为:y=ax+c3804a c c +=⎧⎨+=⎩ , 解得:434a c ⎧=⎪⎨⎪=⎩ ∴直线BD :y=43x+4 当43x+4=0时,解得:x=-3 ∴点Q (-3,0)【点睛】本题考查了轴对称下的最短路径问题,解决此类问题的关键是找准动点在运动过程中不变的量,利用“两点之间线段最短”的来解题.24.(1)见解析;(2)120°.【解析】【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠1+∠2=(∠ABD+∠BDC ),进而得出结论;(2)依据角平分线定义以及(1)中的结论,即可得出∠1=60°,再根据平行线的性质,即可得到∠BFC 的度数.【详解】(1)证明:∵AB ∥CD ,∴∠ABD+∠BDC=180°,∵BE 、DE 分别平分∠ABD 、∠BDC ,∴∠1=∠ABD ,∠2=∠BDC ,∴∠1+∠2=(∠ABD+∠BDC )=90°,(2)解:∵DE 平分∠BDC ,BF 平分∠ABD,∴∠2=∠EDF=30°,∠1=∠FBD,又∵∠1+∠2=90°,∴∠1=60°,∵AB ∥CD ,∴∠BFC=180°-∠1=180°-60°=120°.【点睛】本题考查了角平分线的性质以及平行线的性质.解题的关键是掌握角平分线定义和平行线性质的灵活运用.25.(1)见解析;(2)①1()2P B D ∠=∠+∠;②(1)n D B P n-∠+∠∠=。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2 0 18- 2019学年八年级上学期期末质量检测数学试题(含答案)
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣720172.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,104.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10 B.1.8×10﹣9 C.1.8×10﹣8 D.0.18×10﹣86.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣37.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2 D.m2﹣mn+n28.(3分)下列计算正确的是()A.a8÷a3=a4 B.3a3•2a2=6a6 C.m6÷m6=m D.m3•m2=m59.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.510.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或1612.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2[来源:学科网]C.=2 D.=2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为度.14.(3分)七边形的内角和是.15.(3分)分解因式:m2+2m=.16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为度.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=cm.18.(3分)若x+3y﹣3=0,则2x•8y=.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.23.(6分)解分式方程:(1)(2).24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣72017【解答】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=﹣3,则(a+b)2017=(4﹣3)2017=1.故选:A.2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,10【解答】解:A、4+3<8,不能组成三角形,故此选项错误;B、3+2=5,不能组成三角形,故此选项错误;C、>5,能组成三角形,故此选项正确;D、5+5=10,不能组成三角形,故此选项错误;故选:C.4.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形【解答】解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的.故选:B.5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10 B.1.8×10﹣9 C.1.8×10﹣8 D.0.18×10﹣8【解答】解:0.0000000018=1.8×10﹣9.故选:B.6.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣3【解答】解:由题意,得x+3≠0,解得x≠﹣3,故选:C.7.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2 D.m2﹣mn+n2【解答】解:A、m2﹣2m﹣1无法用完全平方公式分解因式,故此选项错误;B、m2﹣2m+1=(m﹣1)2,能用完全平方公式分解因式,故此选项正确;C、m2+n2无法用完全平方公式分解因式,故此选项错误;D、m2﹣mn+n2无法用完全平方公式分解因式,故此选项错误;故选:B.8.(3分)下列计算正确的是()A.a8÷a3=a4 B.3a3•2a2=6a6 C.m6÷m6=m D.m3•m2=m5【解答】解:A、a8÷a3=a5,故此选项错误;B、3a3•2a2=6a5,故此选项错误;C、m6÷m6=1,故此选项错误;D、m3•m2=m5,故此选项正确;故选:D.9.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.5【解答】解:,,,中,是整式,,是分式,故选:A.10.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或16【解答】解:∵(a﹣4)2+|b﹣6|=0,∴a﹣4=0,b﹣6=0,[来源:Z,xx,]∴a=4,b=6,①当腰是4,底边是3时,三边长是4,4,6,此时符合三角形的三边关系定理,即等腰三角形的周长是4+4+6=14;②当腰是6,底边是4时,三边长是6,6,4,此时符合三角形的三边关系定理,即等腰三角形的周长是6+6+4=16.故选:D.12.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2【解答】解:设这个工程队原计划每天要铺建x米管道,则依题意可得:﹣=2.故选:D.[来源:学*科*网Z*X*X*K]二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为46度.【解答】解:∵△ABC中,∠ABC=44°,AD⊥BC,∴∠BAD=90°﹣44°=46°,故答案为:46.14.(3分)七边形的内角和是900°.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.15.(3分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为28度.【解答】解:∵∠ABE=60°,∠E=92°,∴∠BAE=28°,又∵△ABC≌△BAE,∴∠ABC=∠BAE=28°,故答案为:28.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=10cm.【解答】解:∵AE是△AB C的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;18.(3分)若x+3y﹣3=0,则2x•8y=8.【解答】解:∵x+3y﹣3=0,∴x=3﹣3y,∴2x•8y=23﹣3y•23y=23=8.故答案是:8.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.【解答】解:(1)(15x3y+10x2y﹣5xy2)÷5xy=3x2+2x﹣y;(2)(3x+y)(x+2y)﹣3x(x+2y)=3x2+6xy+xy+2y2﹣3x2﹣6xy=xy+2y2;(3)(x+2)(x﹣2)﹣(x+1)2=x2﹣4﹣x2﹣2x﹣1=﹣2x﹣5,当x=时,原式=﹣2×﹣5=﹣1﹣5=﹣6.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.【解答】证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).【解答】解:(1)原式=•(﹣)•=﹣;(2)原式=﹣==﹣22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交B C于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.【解答】解:∵AD平分∠BAC∴∠BAD=∠DAE,∵∠BAD=29°,∴∠DAE=29°,∴∠BAC=58°,∵DE垂直平分AC,∴AD=DC,∴∠DAE=∠DCA=29°,∵∠BAC+∠DCA+∠B=180°,∴∠B=93°.23.(6分)解分式方程:(1)(2).【解答】解:(1)方程两边乘x(x+2),得3x=2x+4,解得:x=4,经检验x=4是分式方程的解;(2)方程两边乘(x﹣3)(x+1)得:4=x﹣3+x+1,解得:x=3,经检验x=3是增根,分式方程无解.24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为4xkm/h.依据题意得﹣=+解得:x=15.检验:x=15时,12x≠0.所以原分式方程的解为x=15.并且此解符合题意.答:骑车学生的速度为15km/h.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019河北南宫奋飞中学八年级第一次月考数学试题
2018—2019学年八年级第二学期第一次月考
数学试卷(人教版)参考答案
评分说明:
1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.
2.若答案不正确,但解题过程正确,可酌情给分.
一、(本大题共12个小题,每小题3分,共36分)
13.22
14.10 15.26 16.4 17.1或4或16
三、18.解:(1)原式=-1;(4分) (2)原式=-7-26.(4分)
19.解:(1)AC 的长为364;(5分) (2)CD 的长为2
6.(4分) 20.解:(1)长方形的周长为62;(4分)
(2)与长方形等面积的正方形的周长为8;∵62>8,∴长方形的周长大于正方形的周长.
(5分)
21.解:此时两船的距离为26km.(10分)
22.解:△ABC 的面积为9.【精思博考:设BD=x ,则CD=6-x ,∴52-x 2=13-(6-x )2,解得x=4】
(10分)
23.解:(1)615614=+;(3分) (2)2
n 11)(n 2n 1n ++=++;(4分) (3)证明略.【精思博考:2
n 11)(n 2n 1)(n 2n 12n n 2n 1n 22++=++=+++=++】(4分) 24.解:(1)AP 的长为1.8;【精思博考:设AP=x ,列方程x 2+82=(10-x )2】(4分)
(2)①AD 的长为8;(3分)
②△AEF 的面积为25.【精思博考:设BF=EF=x ,在Rt △CEF 中,x 2=42+(8-x )2】(5分)。
2018-2019 学年八年级上期末质量检测数学试题
2018-2019 学年八年级上期末质量检测数学试题班级姓名成绩一、选择题(本大题共10 小题,每小题 2 分,共20 分)1.在①角、②等边三角形、③平行四边形、④梯形中是轴对称图形的是()A.①②B.③④C.②③D.②④2.计算4x2•x3 的结果是()A.4x6 B.4x5 C.x6 D.x53.若x,y 的值均扩大为原来的2 倍,则下列分式的值保持不变的是()A. B. C. D.4.下列计算中,正确的是()A.2a3÷a3=6 B.(a﹣b)2=﹣a2﹣b2C.2a6÷a2=a3D.(﹣ab)2=a2b25.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C.6 D.96.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形7.如图,点P 是∠AOB 平分线IC 上一点,PD⊥OB,垂足为D,若PD=3,则点P 到边OA 的距离是()A. B.2 C.3 D.48.如图,△AOC≌△BOD,点A 与点B 是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B9.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E,垂足为D,如果ED=5,则EC 的长为()A.5 B.8 C.9 D.1010.如图,AD 是△ABC 的中线,E,F 分别是AD 和AD 延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD 和△ACD 面积相等;②∠BAD =∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤二、填空题(本大题共 6 小题,每小题 3 分,共18 分)11.(3 分)计算:40+2﹣1=.12.(3 分)要使分式有意义,则x 的取值范围为.13.(3 分)若x2﹣2ax+16 是完全平方式,则a=.14.(3 分)若一个等腰三角形的周长为26,一边长为6,则它的腰长为.15.(3 分)如图,在△ABC 中,CD,BE 分别是AB,AC 边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=°.16.(3 分)如图,在锐角三角形ABC 中,AC=6,△ABC 的面积为15,∠BAC的平分线交BC 于点D,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.三、解答题(本大题共7 题,共62 分,解答应写出文字说明.17.(8 分)计算:(1)(x+2)(2x﹣1)(2)(﹣2x3)2﹣3x2(x4﹣y2)18.(8 分)分解因式:(1)2a2﹣8 (2)(x﹣1)2﹣2(x﹣1)﹣319.(8 分)计算:(1)+ (2)•(1+ )20.(8 分)如图,平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,3),B(3,3),C(4,﹣1).(1)画出△ABC 关于x 轴对称的△A1B1C1,写出点A1,B1 ,C1 的坐标;(2)求△A1B1C1 的面积.21.(10 分)如图,AE⊥DB,CF⊥DB,垂足分别是点E,F,DE=BF,AE=CF,求证:∠A=∠C.22.(10 分)某美术社团为练习素描需要购买素描本,第一次用600 元购买了若干本素描本,用完后再花了1200 元继续在同一家商店购买同样分素描本,但这次的单价是第一次单价的1.2 倍,购买的数量比第一次多了40 本,求第一次的素描本单价是多少元?23.(10 分)如图,在等腰Rt△ABC 中,角ACB=90°,P 是线段BC 上一动点(与点B,C 不重合)连接AP,延长BC 至点Q,使CQ=CP,过点Q 作QH⊥AP 于点H,交AB 于点M.(1)∠APC=α,求∠AMQ 的大小(用含α的式子表示);(2)在(1)的条件下,过点M 作ME⊥QB 于点E,试证明PC 与ME 之间的数量关系,并证明.参考答案:一、选择题(本大题共10 小题,每小题 2 分,共20 分)4.在①角、②等边三角形、③平行四边形、④梯形中是轴对称图形的是()A.①②B.③④C.②③D.②④【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.解:①角、②等边三角形、③平行四边形、④梯形中是轴对称图形的是①②,故选:A.【点评】此题主要考查了轴对称图形,关键是找到图形的对称轴.5.计算4x2•x3 的结果是()A.4x6 B.4x5 C.x6 D.x5【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解:4x2•x3=4x5.故选:B.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.若x,y 的值均扩大为原来的2 倍,则下列分式的值保持不变的是()A. B. C. D.【分析】根据分式的基本性质即可求出答案.解:A、原式=,与原来的分式的值不同,故本选项错误;B、原式=,与原来的分式的值不同,故本选项错误;C、原式=,与原来的分式的值不同,故本选项错误;D、原式==,与原来的分式的值相同,故本选项正确.故选:D.【点评】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.下列计算中,正确的是()A.2a3÷a3=6 B.(a﹣b)2=﹣a2﹣b2C.2a6÷a2=a3D.(﹣ab)2=a2b2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:∵2a3÷a3=2,故选项 A 错误,∵(a﹣b)2=a2﹣2ab+b2,故选项 B 错误,∵2a6÷a2=a4,故选项C 错误,∵(﹣ab)2=a2b2,故选项 D 正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.11.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2 和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9 都不符合不等式5<x<9,只有 6 符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.12.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.解:设所求n 边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.【点评】本题主要考查了多边形的内角和与外角和、方程的思想,关键是记住内角和的公式与外角和的特征,比较简单.13.如图,点P 是∠AOB 平分线IC 上一点,PD⊥OB,垂足为D,若PD=3,则点P 到边OA 的距离是()A. B.2 C.3 D.4【分析】作PE⊥OA 于E,根据角平分线的性质解答.解:作PE⊥OA 于E,∵点P 是∠AOB 平分线OC 上一点,PD⊥OB,PE⊥ OA,∴PE=PD=3,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.如图,△AOC≌△BOD,点A 与点B 是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D 均正确,而AB、CD 不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.15.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E,垂足为D,如果ED=5,则EC 的长为()A.5 B.8 C.9 D.10【分析】先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.解:∵在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E,ED=5,∴BE=CE,∴∠B=∠DCE=30°,在Rt△CDE 中,∵∠DCE=30°,ED=5,∴CE=2DE=10.故选:D.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,AD 是△ABC 的中线,E,F 分别是AD 和AD 延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD 和△ACD 面积相等;②∠BAD =∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.解:∵AD 是△ABC 的中线,∴BD=CD,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF 和△CDE 中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点评】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.二、填空题(本大题共 6 小题,每小题 3 分,共18 分)11.(3 分)计算:40+2﹣1= 1 .【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.解:∵40+2﹣1=1+ =1.故答案为:1.【点评】此题主要考查了零指数幂的性质以及负指数幂的性质,正确化简各数是解题关键.12.(3 分)要使分式有意义,则x 的取值范围为x≠﹣3 .【分析】根据分式有意义,分母不等于0 列不等式求解即可.解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.13.(3 分)若x2﹣2ax+16 是完全平方式,则a=±4 .【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x 和4 这两个数的平方,那么中间一项为加上或减去x 和4 积的2 倍.解:∵x2﹣2ax+16 是完全平方式,∴﹣2ax=±2×x×4∴a=±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的 2 倍,就构成了一个完全平方式.注意积的 2 倍的符号,避免漏解.14.(3 分)若一个等腰三角形的周长为26,一边长为6,则它的腰长为 10 .【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.解:①当6 为腰长时,则腰长为6,底边=26﹣6﹣6=14,因为14>6+6,所以不能构成三角形;②当6 为底边时,则腰长=(26﹣6)÷2=10,因为6﹣6<10<6+6,所以能构成三角形;故腰长为10.故答案为:10.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15.(3 分)如图,在△ABC 中,CD,BE 分别是AB,AC 边上的高,且CD,BE 相交于点P,若∠A=70°,则∠BPC=110 °.【分析】根据四边形的内角和等于360°,求出∠DPE 的度数,再根据对顶角相等解答.解:∵CD、BE 分别是AB、AC 边上的高,∴∠DPE=360°﹣90°×2﹣70°=110°,∴∠BPC=∠DPE=110°.故答案为:110°.【点评】本题考查了多边形的内角和,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.16.(3 分)如图,在锐角三角形ABC 中,AC=6,△ABC 的面积为15,∠BAC 的平分线交BC 于点D,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 5 .【分析】如图,作N 关于AD 的对称点N′,连接MN′,作BN″⊥AC 于N″ 交AD 于M′.因为BM+MN=BM+MN′≤BN″,所以当M 与M′,N 与N″重合时,BN″最小,求出BN″即可解决问题.解:如图,作N 关于AD 的对称点N′,连接MN′,作BN″⊥AC 于N″交AD 于M′.∵BM+MN=BM+MN′≤BN″,∴当M 与M′,N 与N″重合时,BN″最小,∵×AC×BN″=15,AC=6,∴BN″=5,∴BM+MN 的最小值为5,故答案为:5.【点评】本题考查轴对称﹣最短问题、垂线段最短等知识,解题的关键是重合利用对称,垂线段最短解决最值问题,属于中考常考题型.三、解答题(本大题共7 题,共62 分,解答应写出文字说明.17.(8 分)计算:(1)(x+2)(2x﹣1)(2)(﹣2x3)2﹣3x2(x4﹣y2)【分析】(1)根据多项式的乘法解答即可;(2)根据整式的混合计算解答即可.解:(1)原式=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)原式=4x6﹣3x6+3x2y2=x6+3x2y2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序和法则解答.18.(8 分)分解因式:(1)2a2﹣8(2)(x﹣1)2﹣2(x﹣1)﹣3【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用十字相乘法分解即可.解:(1)原式=2(a2﹣4)=2(a+2)(a﹣2);(2)原式=(x﹣1﹣3)(x﹣1+1)=x(x﹣4).【点评】此题考查了因式分解﹣十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(8 分)计算:(1)+(2)•(1+ )【分析】(1)先通分,再根据同分母分式的加法法则计算可得;(2)先利用乘法分配律展开计算,再进一步计算可得.解:(1)原式=+=;(2)原式=+ •=+1=+=.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(8 分)如图,平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,3),B(3,3),C(4,﹣1).(3)画出△ABC 关于x 轴对称的△A1B1C1,写出点A1,B1 ,C1 的坐标;(4)求△A1B1C1 的面积.【分析】(1)分别作出点A、B、C 关于x 轴的对称点,再顺次连接可得;(2)结合图形,利用三角形的面积公式计算可得.解:(1)如图所示,△A1B1C1即为所求,其中A1的坐标为(1,﹣3),B1的坐标为(3,﹣3),C1的坐标为(4,1);(2)△A1B1C1 的面积为×2×4=4.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及三角形的面积公式.21.(10 分)如图,AE⊥DB,CF⊥DB,垂足分别是点E,F,DE=BF,AE=CF,求证:∠A=∠C.【分析】欲证明∠A=∠C,只要证明△AEB≌△CFD 即可.证明∵AE⊥BD,CF⊥BD,∴∠AEB=∠DFC=90°,∵DE=BF,∴DF=BE,在△AEB 和△CFD 中,,△AEB≌△CFD(SAS),∴∠A=∠C.【点评】本题考查全等三角形的判定和性质、平行线的性质和判定等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.22.(10 分)某美术社团为练习素描需要购买素描本,第一次用600 元购买了若干本素描本,用完后再花了1200 元继续在同一家商店购买同样分素描本,但这次的单价是第一次单价的1.2 倍,购买的数量比第一次多了40 本,求第一次的素描本单价是多少元?【分析】设第一次的素描本单价是x 元,根据结果比上次多买了40 本列出方程解答即可解:设第一次的素描本单价是x 元,依题意得:﹣=40 解得x=10经检验x=10 是原方程的解答:第一次的素描本单价是10 元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.23.(10 分)如图,在等腰Rt△ABC 中,角ACB=90°,P 是线段BC 上一动点(与点B,C 不重合)连接AP,延长BC 至点Q,使CQ=CP,过点Q 作QH ⊥AP 于点H,交AB 于点M.(1)∠APC=α,求∠AMQ 的大小(用含α的式子表示);(2)在(1)的条件下,过点M 作ME⊥QB 于点E,试证明PC 与ME 之间的数量关系,并证明.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)由AAS 证明△APC≌△QME,得出PC=ME,解:(1)∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB 是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α;(2)结论:PC=ME.理由:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC 和△QME 中,,∴△APC≌△QME(AAS),∴PC=ME,【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解决问题的关键.。
河北省南宫市奋飞中学2021届数学八年级上学期期末质量跟踪监视试题
河北省南宫市奋飞中学2021届数学八年级上学期期末质量跟踪监视试题一、选择题1.已知:112a b -=,则2227a ab b a b ab ---+的值等于( ) A .-43 B .43 C .215D .- 272.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x 米,根据题意,则下列方程正确的是( )A .120012008x 25%x -= B .120012008x 1.25x -= C .1200120081.25x x -= D .120012008(125%)x x-=- 3.下列式子中:(1) b a a b c a a c --=-- ;(2)221m n m n m n -=--;(3) 1x y y x -=-- ;(4)a b a b a b a b-+-=--+. 正确的个数为( ) A.1个 B.2个 C.3个D.4个 4.下列计算正确的是( ) A.235(a )a = B.()222ab a b -=C.a(a −b)=22a b -D.()222a b ab 2ab a b -÷=- 5.下列运算正确的是( )A.236•a a a =B.()325a a =C.23•a ab a b -=-D.532a a ÷= 6.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A. B. C. D.无法确定7.已知△ABC 内接于⊙O ,连接OA ,OB ,OC ,设∠OAC =α,∠OBA =β,∠OCB =γ.则下列叙述中正确的有( )①若α<β,α<γ,且OC ∥AB ,则γ=90°﹣α;②若α:β:γ=1:4:3,则∠ACB=30°;③若β<α,β<γ,则α+γ﹣β=90°;④若β<α,β<γ,则∠BAC+∠ABC=α+γ﹣2β.A.①②B.③④C.①②③D.①②③④8.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.等腰三角形的两个底角相等C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的2倍9.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°10.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN =()A.58°B.32°C.36°D.34°11.如图,已知的3条边和3个角,则能判断和全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙12.已知:如图,△ABC是直角三角形,∠ACB=90°,点D、E分别在AB、BC上,且CA=CD=CE,下列说法:①∠EDB=45° ②∠EAD=12∠ECD ③当△CDB是等腰三角形时,△CAD是等边三角形④当∠B=22.5°时,△ACD≌△DCE .其中正确的个数有()A.1个B.2个C.3个D.4个13.如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()A.40°B.50°C.60°D.70°14.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形15.如图,△ABC 中,∠C=44°,∠B=70°,AD 是BC 边上的高,DE ∥AC ,则∠ADE 的度数为( )A.46°B.56°C.44°D.36° 二、填空题16.计算:138=______.17.计算:()201820190.1258-⨯=________.18.如图,在3×3的正方形网格中,∠1+∠2+∠3+∠4+∠5=_____.19.如图,已知AB//DE ,BAC m ∠=,CDE n ∠=,则ACD ∠=________________.20.如图,在ABC ∆中,13AB =,5AC =,12BC =,将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,连接DC 交AB 于点F ,则ACF ∆与BDF ∆的周长之和为_______.三、解答题21.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?22.计算:(1)222233a b a b ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭(2)2(2)x y --(3)2(2)(2)(2)x y x y x y +---23.如图,在平面直角坐标系中: ()1描出点()2,1A -、()1,3B -;()2描出点A 关于y 轴对称的点C ,点B 关于x 轴对称的点D ;()3依次连接点A 、B 、C 、D ,得到四边形ABCD ,则四边形ABCD 的面积为______.24.如图和的平分线交于点的延长线交于点.(1)求证:; (2)如果,那么等于多少度?25.如图1是一个五角星.(1)计算:∠A+∠B+∠C+∠D+∠E 的度数.(2)当BE 向上移动,过点A 时,如图2,五个角的和(即∠CAD+∠B+∠C+∠D+∠E )有无变化?说明你的理由.(3)如图3,把图2中的点C 向上移到BD 上时,五个角的和(即∠CAD +∠B +∠ACE +∠D +∠E)有无变化?说明你的理由.【参考答案】***一、选择题16.217.818.225°19.()m n 180+-20.三、解答题21.280米22.(1)22449a b -+;(2)2244x xy y ++;(3)242xy y - 23.(1)详见解析;(2)详见解析;(3)12【解析】【分析】()1根据点的坐标描点即可;()2由轴对称的定义作图即可得;()3利用割补法将原四边形分割成两个三角形即可得.【详解】解:()1如图,点A 、B 即为所求;()2如图,点C 和点D 即为所求;()3四边形ABCD 的面积为1161631222⨯⨯+⨯⨯=, 故答案为:12.【点睛】本题主要考查作图-轴对称变换,割补法求图形的面积,解题的关键是掌握轴对称变换的定义和性质.24.(1)见解析;(2)120°.【解析】【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠1+∠2=(∠ABD+∠BDC ),进而得出结论;(2)依据角平分线定义以及(1)中的结论,即可得出∠1=60°,再根据平行线的性质,即可得到∠BFC 的度数.【详解】(1)证明:∵AB ∥CD ,∴∠ABD+∠BDC=180°,∵BE 、DE 分别平分∠ABD 、∠BDC ,∴∠1=∠ABD ,∠2=∠BDC ,∴∠1+∠2=(∠ABD+∠BDC )=90°,(2)解:∵DE 平分∠BDC ,BF 平分∠ABD,∴∠2=∠EDF=30°,∠1=∠FBD,又∵∠1+∠2=90°,∴∠1=60°,∵AB ∥CD ,∴∠BFC=180°-∠1=180°-60°=120°.【点睛】本题考查了角平分线的性质以及平行线的性质.解题的关键是掌握角平分线定义和平行线性质的灵活运用.25.:()1180A B C D E ∠+∠+∠+∠+∠=; ()2不变,180CAD B ACE D E ∠+∠+∠+∠+∠=; 理由见解析.(3)无变化.理由见解析.。
河北省重点中学市联考2019年八上数学期末模拟质量跟踪监视试题之二
河北省重点中学市联考2019年八上数学期末模拟质量跟踪监视试题之二一、选择题1.下列各式的变形中,正确的是( ) A.11x x x x--= B.()224321x x x -+=+- C.()211x x x x÷+=+ D.22(-)()x y x y x y =-+2.下列方程中,有实数解的方程是( )A 10=;B .4210x -=;C .2360x x ++=;D .111x x x =-- 3.下列计算正确的是( ) A .(x ﹣y )2=x 2﹣y 2B .(﹣a 2b )3=a 6b 3C .a 10÷a 2=a 5D .(﹣3)﹣2=194.下列算式能用平方差公式计算的是( ) A.(2)(2)a b b a +- B.11(1)(1)22x x +--C.(3)(3)x y x y --+D.()()m n m n ---+5.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .x2C .a 2D .a 26.将图 1 中阴影部分的小长方形变换到图 2 位置,根据两个图形的面积关系可以得到一个关于 a ,b 的恒等式为( )A .a 2﹣2ab+b 2=(a ﹣b )2B .a 2+2ab+b 2=(a+b )2C .2a 2+2ab =2a (a+b )D .a 2﹣b 2=(a+b )(a ﹣b )7.如图,在等边△ABC 中,AB =2,N 为AB 上一点,且AN =1,AD BAC 的平分线交BC 于点D ,M 是AD 上的动点,连接BM 、MN ,则BM+MN 的最小值是( )A B .2 C .1 D .38.如图,在ABC ∆中,点D 是BC 边上一点,AD AC =,过点D 作DE BC ⊥交AB 于E ,若ADE ∆是等腰三角形,则下列判断中正确的是( )A .B CAD =∠∠B .BED CAD ∠=∠C .ADB AED ∠=∠ D .BED ADC ∠=∠9.如图,在平面直角坐标系中,11POA ∆,212P A A ∆,323P A A ∆,…都是等腰直角三角形,其直角顶点()13,3P ,2P ,3P ,…均在直线143y x =-+上.设11POA ∆,212P A A ∆,323P A A ∆,…的面积分别为1S ,2S ,3S ,…,根据图形所反映的规律,2019S =( )A .2018194⎛⎫⨯ ⎪⎝⎭B .2019194⎛⎫⨯ ⎪⎝⎭C .2018192⎛⎫⨯ ⎪⎝⎭D .2019192⎛⎫⨯ ⎪⎝⎭10.如图,已知∠1=∠2,则下列条件中不一定能使△ABC ≌△ABD 的是( )A .AC=ADB .BC=BDC .∠C=∠D D .∠3=∠411.如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,DE 平分∠ADB ,则∠B=( )A .40°B .30°C .25°D .22.5〫12.如图,,,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A.相交B.平行C.垂直D.平行、相交或垂直 13.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3,4,8B .4,4,9C .5,7,12D .7,8,914.△ABC 的三条边分别为5、x 、7,则x 的取值范围为( )A .5<x <7B .2<x <12C .5≤x≤7D .2≤x≤1215.已知:如图,直线BO ⊥AO 于点O ,OB 平分∠COD ,∠BOD =22°.则∠AOC 的度数是( )A.22°B.46°C.68°D.78°二、填空题 16.已知,则______.【答案】17.如图,在Rt △ABC 中,∠C =90°,AC =3,AB =5,以点A 为圆心,以任意长为半径作弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点D ,则CD 的长是_____.18.细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为_____.19.如图,已知EF CD ∥,12180︒∠+∠=,若CD 平分ACB ∠,DG 平分CDB ∠,且40A ︒∠=,则ACB ∠为___________°.20.如图,∠AOE=∠BOE=15°,EF ∥OB ,EC ⊥OB ,若EC=1,则EF= ▲ .三、解答题 21.计算:(1)分解因式:(a 2+4)2-16a 2;(2)解不等式组,并将解集表示在数轴上:1317-2252+1x x x x ⎧-≤⎪⎨⎪-⎩>3()(3)解方程:221+42+2x x x x =-- 22.计算(1 (2)(x ﹣1)(x+3)﹣x (x+1)23.已知在等腰三角形ABC 中,,AB AC D =是BC 的中点,O 是ABC ∆内任意一点,连接,,,OA OB OC OD ,过点B 作//BE OC , 交OD 的延长线于点E ,延长OA 到点F ,使得AF OA =,连接,FE CE .(1)如图1,求证:四边形OBEC 是平行四边形;(2)如图2,若90BAC ∠=,求证:EF BC ⊥且EF BC =;24.如图,E ,F 分别是等边△ABC 边AB ,AC 上的点,且AE =CF ,CE ,BF 交于点P . (1)证明:CE =BF ; (2)求∠BPC 的度数.25.(1)如图1的图形我们把它称为“8字形”,则∠A ,∠B ,∠C ,∠D 四个角的数量关系是 ;(2)如图2,若∠BCD ,∠ADE 的角平分线CP ,DP 交于点P ,则∠P 与∠A ,∠B 的数量关系为∠P = ;(3)如图3,CM ,DN 分别平分∠BCD ,∠ADE ,当∠A+∠B =80°时,试求∠M+∠N 的度数(提醒:解决此问题可以直接利用上述结论); (4)如图4,如果∠MCD =13∠BCD ,∠NDE =13∠ADE ,当∠A+∠B =n°时,试求∠M+∠N 的度数.【参考答案】*** 一、选择题16.无 17.5 18.1×10﹣6 19.80 20.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省南宫市奋飞中学2018-2019学年八上数学期末质量跟踪监视试题一、选择题1.要使分式24a a +-有意义,则a 的取值范围是( ) A.4a >B.4a <C.4a ≠D.2a ≠- 2.已知(x ﹣1)|x|﹣1有意义且恒等于1,则x 的值为( )A .﹣1或2B .1C .±1D .0 3.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划每天生产x 台机器,则可列方程为( )A .600x =45050x + B .600x =45050x - C .60050x +=450x D .60050x -=450x4.下列各式变形中,是因式分解的是( )A .a 2﹣2ab+b 2﹣1=(a ﹣b)2﹣1B .2x 2+2x =2x 2(1+1x) C .(x+2)(x ﹣2)=x 2﹣4D .x 4﹣1=(x 2+1)(x+1)(x ﹣1)5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.34 6.等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A .25B .25或32C .32D .19 7.下列由左到右的变形,属于因式分解的( ) A.()()2339x x x --=-B.()2481421a a x x --=--C.()()2492323x x x -=+-D.2269(3)a a a +-=- 8.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,在AC 上截取AE=AB ,连接DE 、BE ,并延长BE 交CD 于点 F ,以下结论:①△BAC ≌△EAD ;②∠ABE+∠ADE=∠BCD ;③BC+CF=DE+EF ;其中正确的有( )个A.0B.1C.2D.39.如图,是的高,,则度数是( )A. B. C. D.10.如图,在△ABC 中,AB=4,AC=6,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( )A.10B.6C.4D.不确定11.如图,在平面直角坐标系中,已知正方形ABCO ,A (0,3),点D 为x 轴上一动点,以AD 为边在AD 的右侧作等腰Rt △ADE ,∠ADE =90°,连接OE ,则OE 的最小值为( )A B C . D .12.如图,在ABC 中,ACB 90∠=,AC BC 4==,D 为BC 的中点,DE AB ⊥,垂足为E.过点B 作BF//AC 交DE 的延长线于点F ,连接CF ,AF.现有如下结论:AD ①平分CAB ∠;BF 2=②;AD CF ⊥③;AF =④CAF CFB ∠∠=⑤.其中正确的结论有( )A.5个B.4个C.3个D.2个 13.一个四边形,截一刀后得到的新多边形的内角和将 A.增加 180°B.减少 180°C.不变D.不变或增加 180°或减少 180°14.长度分别如下的四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5B.4,5,6C.1,3D.2,3,415.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .垂线段最短B .两点之间线段最短C .两点确定一条直线D .三角形的稳定性 二、填空题16.分式1xy ,22x y ,3xyz的最简公分母为_____. 17.计算(﹣12a 2b )3=__. 18.如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,BC=8,AB=10,则△FCD 的面积为__________.19.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.20.如图,正方形ABCD 的边长是5,DAC ∠的平分线交DC 于点E ,若点P Q 、分别是AD 和AE 上的动点,则DQ PQ +的最小值是_______.三、解答题21.(1)计算:()()()220201913 3.1413π-⎛⎫-+-⨯-- ⎪⎝⎭; (2)计算:()()222322ab a b a ab ⋅÷-+-22.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a 、b 的长方形拼摆成一个如图4的正方形,请你写出这三个代数式2()a b +、2()a b -、ab 之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当5a b +=,6ab =-时, 则-a b 的值为 . ②设234x y A +-=,23B x y =--,计算:22()()A B A B +--的结果.23.如图,在ABC ∆中,点D 为线段BC 上一点(不含端点).AP 平分BAD ∠交BC 于,E PC 与AD 的延长线交于点F ,连接BF ,且 PEF AED ∠=∠.(1)求证:AB AF =;(2)若ABC ∆是等边三角形.①求APC ∠的大小;②猜想线段AP PF PC 、、之间满足怎样的数量关系,并证明.24.如图,在△ABC 中,AB =BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD =45°,AD 与BE 交于点F ,连接CF.(1)求证△ACD ≌△BFD(2)求证:BF =2AE ;(3)若CD ,求AD 的长.25.规定:满足(1)各边互不相等且均为整数;(2)最短边上的高与最长边上的高的比值为整数k 。
这样的三角形称为比高三角形,其中k 叫做比高系数。
根据规定解答下列问题:(1)周长为13的比高三角形的比高系数k= ;(2)比高三角形△ABC 三边与它的比高系数k 之间满足BC-AC=AC-AB=k 2,求△ABC 的周长的最小值。
【参考答案】***一、选择题16.x2yz .17.−a6b318.19.45°20.2三、解答题21.(1)-1;(2)22a b .22.(1)见解析;(2)2()a b +-2()a b -=4ab ;(3)①±7,22694x x y -+-.23.(1)见解析;(2)①60APC ∠=;②猜想:AP PF PC =+,证明见解析.【解析】【分析】(1)由已知证明出AEB AEF ∆≅∆即可推出AB AF =(2) ①根据等边三角形的性质进行推断计算即可②延长CP 至点M ,使PM PF =,连接,BM BP 即可证明得出AP PF PC =+【详解】(1)证明:PEF AED ∠=∠180180AED PEF ∴-∠=-∠又AP 平分BAD ∠,BAP FAP ∴∠=∠,在AEB ∆和AEF ∆中,BAP FAP AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩AEB AEF ∴∆≅∆AB AF ∴=;(2)ABC ∆是等边三角形,,60AB AC BC BAC ∴==∠=又AB AF =AF AC ∴= 设BAP FAP x ∠=∠=,则602FAC x ∠=-在ACF ∆中,()180602602xAFC x --∠==+又AFC FAP APC x APC ∠=∠+∠=+∠,60APC ∴∠=(3)猜想:AP PF PC =+,理由如下:延长CP 至点M ,使PM PF =,连接,BM BP,,AB AF BAP FAP AP AP =∠=∠=APB APF ∴∆≅∆60,APC APB PF PB ∴∠=∠==60,BPM PM PB ∴∠==BPM ∴∆为等边三角形,BP BM =,60ABP CBM PBC ∠=∠=+∠在ABP ∆和CBM ∆中,AB CB ABP CBM BP BM =⎧⎪∴∠=∠⎨⎪=⎩ABP CBM ∴∆≅∆AP CM PM PC PF PC ∴==+=+AP PF PC ∴=+【点睛】本题考查等边三角形及三角形的性质,熟练掌握三角形的选择及判定是解题关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先判定出△ABD 是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD ,再根据同角的余角相等求出∠CAD=∠CBE ,然后利用“角边角”证明△ADC 和△BDF 全等;(2)根据全等三角形对应边相等可得BF=AC ,再根据等腰三角形三线合一的性质可得AC=2AE ,从而得证;(3)根据全等三角形对应边相等可得DF=CD ,然后利用勾股定理列式求出CF ,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF ,然后根据AD=AF+DF 代入数据即可得解.【详解】(1)∵AD ⊥BC ,∠BAD=45°,∴△ABD 是等腰直角三角形,∴AD=BD ,∵BE ⊥AC ,AD ⊥BC ,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(2)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(3) ∵△ACD≌△BFD,∴,在Rt△CDF中,2==,∵BE⊥AC,AE=EC,∴AF=CF=2.∴【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.25.(1)k=3或2;(2)△ABC的周长的最小值36。