(教学)互换性与技术测量实验

合集下载

《互换性与测量技术》教学教案(全)

《互换性与测量技术》教学教案(全)

《互换性与测量技术》教学教案(第一部分)一、教学目标1. 让学生了解互换性的概念及其在工程中的应用。

2. 使学生掌握测量技术的基本原理和方法。

3. 培养学生运用互换性和测量技术解决实际问题的能力。

二、教学内容1. 互换性的概念及其含义2. 互换性的重要性3. 测量技术的基本原理4. 测量方法及其分类5. 测量误差及其处理方法三、教学重点与难点1. 互换性的概念及其含义2. 测量技术的基本原理3. 测量误差的处理方法四、教学方法1. 讲授法:讲解互换性的概念、含义及其重要性,测量技术的基本原理和方法。

2. 案例分析法:分析实际案例,使学生了解互换性和测量技术在工程中的应用。

3. 讨论法:组织学生讨论测量误差处理方法,培养学生的动手能力和团队协作精神。

五、教学准备1. 教材:《互换性与测量技术》2. 课件:互换性、测量技术的相关图片和实例3. 工具:尺子、量具等测量工具4. 设备:实验室测量设备《互换性与测量技术》教学教案(第二部分)六、教学目标1. 让学生了解互换性的分类及其特点。

2. 使学生掌握不同测量方法的适用范围和注意事项。

3. 培养学生运用互换性和测量技术解决实际问题的能力。

七、教学内容1. 互换性的分类及其特点2. 不同测量方法的适用范围和注意事项3. 测量仪器的选择和使用方法八、教学重点与难点1. 互换性的分类及其特点2. 不同测量方法的适用范围和注意事项3. 测量仪器的选择和使用方法九、教学方法1. 讲授法:讲解互换性的分类及其特点,不同测量方法的适用范围和注意事项。

2. 实践操作法:引导学生进行实验室测量实践,掌握测量仪器的选择和使用方法。

3. 讨论法:组织学生讨论测量过程中可能遇到的问题,培养学生的动手能力和团队协作精神。

十、教学准备1. 教材:《互换性与测量技术》2. 课件:互换性、测量方法的相关图片和实例3. 工具:尺子、量具等测量工具4. 设备:实验室测量设备《互换性与测量技术》教学教案(第三部分)十一、教学目标1. 让学生了解测量误差的概念及其分类。

《互换性与技术测量》齿轮径向跳动的测量实验

《互换性与技术测量》齿轮径向跳动的测量实验

《互换性与技术测量》齿轮径向跳动的测量实验实验目的(一)熟悉测量齿轮径向跳动的方法。

(二)加深理解齿轮径向跳动的定义。

实验内容用齿轮径向跳动检查仪测量齿轮的径向跳动。

计量器具及测量原理齿轮径向跳动误差△F:是指在齿轮一转范围内,测头在齿槽内或在轮齿上,与齿高中部双面接触,测头相对于齿轮轴线的最大变动量,如实验图38所示。

齿轮径向跳动误差可用齿轮径向跳动检查仪、万能测齿仪或普通的偏摆检查仪等仪器测量。

本实验采用齿轮径向跳动检查仪来测量,该仪器的外形如实验图39所示。

它主要由底座1、滑板2、顶尖座6、调节螺母7、回转盘8和指示表10等组成,指示表的分度值为0.001mm。

该仪器可测量模数为0.3~5mm的齿轮。

为了测量各种不同模数的齿轮,仪器备有不同直径的球形测头。

按GB/Z18620.2-2008规定,测量齿轮径向跳动误差应在分度圆附近与齿面接触,故测量球或圆柱的直径d应按下述尺寸制造或选取,即d=1.68m. 式中m—齿轮模数(mm)。

此外,齿轮径向跳动检查仪还备有内接触杠杆和外接触杠杆。

前者成直线形,用于测量内齿轮的齿轮径向跳动和孔的径向跳动;后者成直角三角形,用于测量锥齿轮的径向跳动和端面圆跳动。

本实验测量圆柱齿轮的径向跳动。

测量时,将需要的球形测头装入指示表测量杆的下端进行测量。

实验步骤(一)根据被测齿轮的模数,选择合适的球形测头,装入指示表10测量杆的下端(实验图39)。

(二)将被测齿轮和心轴装在仪器的两顶尖上,拧紧紧固螺钉4和5。

(三)旋转手柄3,调整滑板2的位置,使指示表测头位于齿宽的中部。

通过升降调节螺母7和提升手把9,使测头位于齿槽内。

调整指示表10的零位,并使其指针压缩1~2圈。

.(四)每测一齿,须抬起提升手把9,使指示表的测头离开齿面。

逐齿测量一圈,并记录指示表的读数。

(五)处理测量数据,从GB/T10095.2-2008查出齿轮的径向跳动公差F,判断被测齿轮的适用性。

实验数据记录及处理1、齿轮齿数Z=30,2、根据da=m,得m标准值为:.d=mz=45mm4、:.rmax=2rmin=-45、所以Fr=rmax-rmin=6、查表,得Fr=23um Fr≤Fr检验合格实验结论由实验过程可得,齿轮得最大跳动径向为0.2mm。

互换性与测量技术(人教版)实验报告

互换性与测量技术(人教版)实验报告

实验二用光切显微镜测量表面粗糙度1.微观不平度十点高度Rz的测量
实验三形状误差的测量1.直线度误差的测量
2.平面度误差的测量
3.圆度误差的测量
实验四位置误差的测量
1.平行度误差的测量(mm)
3.跳动的测量(mm)
图样标注跳动量合格性结论端面跳动
径向跳动
径向全跳动
测量位置测量数据
最大最小差值1—1
2—2
3—3
4—4
5—5
6—6
7—7
8—8





实验五在工具显微镜上测量外螺纹各参数
实验一齿轮齿圈经向跳动的测量(表一)
实验一齿轮公法线长度及其变动的测量(表二)
实验一齿距偏差及齿距累计误差的测量(表三)
实验一在双啮仪上对齿轮的综合测量(表四)。

《互换性与技术测量》实验指导书1

《互换性与技术测量》实验指导书1

互换性与技术测量实验指导书目录实验一通用量具应用及量块组合选择(选用)实验二用比较仪检测工件尺寸误差实验三表面粗糙度的测量实验四直线度误差的测量实验1 通用量具应用及量块组合选择(孔轴测量)(选做)一、实验目的:1.了解量块、千分尺、游标卡尺的构造和工作原理。

2.掌握量块尺寸组合、千分尺、游标卡尺测量尺寸的方法3.掌握由测得数据进行数据处理的一般方法,并分析产生误差的原因及误差类型。

二、实验所需仪器千分尺、游标卡尺 83块一套的量块三、实验步骤1.利用游标卡尺测量工件直径尺寸,共测量十组数据,将测量结果填入实验报告,并对测量数据进行数据处理。

2.利用千分尺测量工件长度尺寸,共测量十组数据,将测量结果填入实验报告,并对测量数据进行数据处理。

3.用83块一套的量块对千分尺测量的数据处理以后的数据进行尺寸组合。

四、测量数据1.用游标卡尺测量直径尺寸2.用千分尺测量的数据3.用83块一套的量块对千分尺测量的数据数据处理以后的数据进行组合的量块尺寸尺寸:第一块量块:第二块量块:第三块量块:第四块量块:六、思考题1:测量误差一般分为几类型,一般各怎么进行数据处理?实验2 用比较仪测量工件尺寸误差1.实验目的1.1 立式光学比较仪工作原理及使用方法。

1.2 熟悉轴的直径误差的测量方法。

1.3 学会基本的测量误差处理方法。

2.设备与器材立式光学比较仪、被测轴和相同尺寸量块3.实验原理与方案立式光学比较仪主要用于作长度比较测量。

要先用量块将标尺和指针调到零位,被测尺寸对量块的偏差可从仪器标尺上读得。

并可对某轴的固定部位进行多次重复测量,计算测量误差。

立式光学计主要组成见外形图2-2。

由底座1、立柱2、支臂3、直角光管4和工作台11等几部分组成。

立式光学计的光学系统图2-3所示。

光线由进光反射镜6进入光学计管中,由通光棱镜7将光线转折90度,照亮了分划板4上的刻度尺9。

刻度尺上有±100 格的刻线,此处刻线作为目标,位于物镜2的焦平面上。

互换性与技术测量实验报告

互换性与技术测量实验报告

《互换性与技术测量》实验报告机械工程基础实验室技术测量室编年级班级姓名实验名称及目录:实验一、尺寸测量实验1—1、轴的测量实验1—2、孔的测量实验二、形位误差测量实验2—1、直线度误差的测量实验2—2、平行度误差、平面度误差测量实验三、表面粗糙度测量、螺纹测量实验3—1、表面粗糙度的测量实验3—2、螺纹中径、螺距及牙形半角的测量实验四、齿轮测量实验4—1、直齿圆柱齿轮公法线的测量实验4—2、直齿圆柱齿轮齿厚偏差的测量一、实验目的三、被测零件:四、测量示意图:七、测量数据分析并判断被测零件是否合格;八、思考题:1、用立式光学计测量塞规属于什么测量方法?2、绝对测量和相对测量各有什么特点?3、什么是分度值?刻度间距?4、仪器的测量范围和刻度尺的示值范围有何不同?一、实验目的三、被测零件:四、测量示意图:六、测量数据记录:(单位:mm)七、测量数据分析并判断被测零件是否合格;八、思考题:1、用内径千分尺和内径量表测量孔的直径是,各属于哪种测量方法?2、内径量表测量孔时“转折点”意味着什么?一旦“零位”确定,百分表指针超过“零位”发生转折,示值为正还是负?百分表指针不过“零位”发生转折,示值为正还是负?3、组合量块组的原则是什么?实验报告:直线度误差的测量(形状公差的测量)一、实验目的:二、实验仪器:四、测量示意图:(要求画出简单的仪器的测量原理图和被测面的测量截面图)六、作图:分别用最小区域法和两端点连线法求直线度误差值,并作出合格性结论。

七、思考题:1、以本实验为例,试比较按最小区域法和两端点连线法评定的直线度误差值何者更合理?2、用作图法求直线度误差值时,如前所述,总是按平行于纵坐标计量,而不是按垂直于两条平行包容直线的距离计量,原因何在?实验报告:平面度误差的测量一、实验目的:四、测量示意图:六、析判断被测平面是否合格?实验报告:平行度误差的测量一、实验目的:四、测量示意图:六、分析判断被测件平行度是否合格?实验报告:表面粗糙度的测量Array一、实验目的:二、实验仪器:三、实验内容:1、用表面粗糙度电感测微仪测量表面粗糙度的R a值;2、用干涉显微镜测量表面粗糙度的R z值。

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

实验一直线度误差的测量一、实验目的掌握按“节距法”测量直线度误差的方法。

二、测量原理及数据处理对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。

本实验用合像水平仪。

具体测量方法如下:将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。

将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。

然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。

如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。

最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。

[例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。

表1也可用作图法求出直线度误差,如图2。

作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。

测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3)A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格); Y i — 前后两测量点(i -1,i )的高度差;h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然1'in i i h y ==∑'i h — 在测量点A i 处,导轨的倾斜量(μ); Δh i — 测量点A i 对导轨首末两端点连线(A 0,A n )的直线度误差(μ)(显然Δh 0=0,Δh n =0);l — 桥板跨距,即各测量段长度l =L /n (mm),L ——导轨全长(mm ),n ——测量段数; c —水平仪的分度值0.01mm/米·格。

互换性与技术测量实验报告

互换性与技术测量实验报告

互换性与技术测量实验报告互换性与技术测量实验报告引言:互换性是指在特定条件下,两个或多个系统、组件或部件之间的相互替换性能。

在工程领域中,互换性是一个重要的概念,特别是在制造和设计过程中。

技术测量则是通过各种测量方法和工具,对互换性进行定量评估和验证。

本实验报告旨在探讨互换性与技术测量之间的关系,并通过实验数据和分析来支持结论。

实验目的:本实验旨在通过测量和比较不同尺寸的螺丝与螺孔之间的互换性能,来研究互换性与技术测量之间的关系。

实验设备与方法:实验中使用了一组螺丝和相应的螺孔,分别为直径为1mm、2mm和3mm的螺丝。

通过测量螺丝和螺孔的直径、长度和螺纹间距等参数,来评估互换性。

实验过程中,我们使用了千分尺、游标卡尺和显微镜等工具进行测量,并记录下实验数据。

实验结果与分析:根据实验测量数据,我们计算出不同尺寸的螺丝和螺孔之间的互换性指标。

通过对比不同尺寸的螺丝和螺孔的测量结果,我们发现直径为1mm的螺丝与螺孔之间的互换性最好,其尺寸差异最小。

而直径为3mm的螺丝与螺孔之间的互换性最差,尺寸差异较大。

进一步分析发现,螺纹间距对互换性也有重要影响。

螺纹间距越小,螺丝与螺孔之间的互换性越好。

这是因为螺纹间距较小的螺丝和螺孔之间的匹配度更高,更容易实现互换。

而螺纹间距较大的螺丝和螺孔之间的互换性较差,可能需要额外的工具或修整才能实现互换。

结论:通过本实验的测量和分析,我们可以得出以下结论:1. 互换性与技术测量密切相关,通过精确的测量可以评估和验证互换性能。

2. 尺寸和螺纹间距是影响互换性的重要因素,尺寸差异小和螺纹间距小的系统具有更好的互换性能。

3. 技术测量方法和工具的选择对于准确评估互换性至关重要,不同的测量方法可能会导致不同的结果。

进一步研究:本实验仅仅是对互换性与技术测量之间关系的初步探索,还有许多方面值得深入研究。

例如,可以通过更多的实验数据和样本来验证结论的普适性。

另外,可以研究不同材料和制造工艺对互换性的影响,以及探索如何通过技术测量来优化互换性能。

《互换性与技术测量》课程实验指导书1解析

《互换性与技术测量》课程实验指导书1解析

互换性与技术测量实验指导书机械设计制造及其自动化教研室编2011.09目录实验1 用立式光学计测量塞规 (2)实验2用内径百分表测量内径 (4)实验3 直线度误差的测量 (7)实验4 平行度与垂直度误差的测量 (11)实验5 表面粗糙度的测量 (14)实验6 工具显微镜长度、角度测量 (18)实验1 用立式光学计测量塞规一、实验目的1、了解立式光学计的测量原理;2、熟悉立式光学计测量外径的方法;3、加深理解计量器具与测量方法的常用术语。

二、实验内容1、用立式光学计测量塞规;2、由国家标准GB/T 1957—1981《光滑极限量规》查出被测塞规的尺寸公差和形状公差,与测量结果进行比较,判断其适用性。

三、计量器具及测量原理立式光学计是一种精度较高而结构简单的常用光学测量仪。

其所用长度基准为量块,按比较测量法测量各种工件的外尺寸。

图1为立式光学计外形图。

它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。

光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。

照明光线经反射镜l照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。

由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。

若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺的像7与刻度尺8对称。

若被测尺寸变动使测杆5推动反射镜4绕支点转动某一角度α(图2a),则反射光线相对于入射光线偏转2α角度,从而使刻度尺像7产生位移t(图2c),它代表被测尺寸的变动量。

物镜至刻度尺8间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为当a很小时,,因此光学计的目镜放大倍数为12,f=200mm,b=5mm,故仪器的总放大倍数n为由此说明,当测杆移动0.001mm时,在目镜中可见到0.96mm的位移量。

图1 立式光学计外形图图2 立式光学计测量原理图四、测量步骤1、按被测塞规的基本尺寸组合量块;2、选择测头。

互换性与测量技术基础位置误差测量实验

互换性与测量技术基础位置误差测量实验

互换性与测量技术基础——位置误差测量实验一、实验目的1、培养学生的创新精神、创新能力、创造思维;2、熟悉零件有关位置误差的含义和基准的体现方法;3、掌握有关通用量仪的使用方法。

二、实验用量具齿轮跳动检查仪、平板、千分表、百分表、磁性千分表架、V 型块、直角尺、钢板尺等。

三、实验内容说明及实验原理1、垂直度误差测量Ø42H7孔轴线对Ø30H7孔轴线以及对侧面B 的垂直度要求如图1.(1)Ø42H7孔轴线对Ø30H7孔轴线的垂直度误差测量如图2。

将工件放置在平板上,将测量表架安装在基准孔心轴上部,在距离为L2两端用千分表测得读数为M1、M2,则该零件轴线对轴线的垂直度误差为f ⊥= 21L L |M1-M2| (2)Ø42H7孔轴线对侧面B 的垂直度误差测量如图3。

以零件顶面为支撑面,放在三个千斤顶上。

再用一直角尺,使其一面在平板上,另一面与基准面靠拢,同时调节千斤顶使其与基准面贴合为止,这说明基准面与平板垂直。

然后用千分表分别测出L2长度两端读数M1、M2,则该零件轴线对侧面的垂直度误差为f ⊥= 21L L |M1-M2| 根据以上测量结果,判断两项垂直度要求是否合格。

图1 图2图32、平行度误差测量 连杆小孔轴线对大孔轴线的平行度要求如图4,测量方法如图5。

(1)垂直位置。

测量时,被测孔轴线和基准孔轴线均用心轴模拟。

将基准孔心轴的两端支撑在两等高的V 型块上,V 型块放在平板上,使被测工件放置在90º位置。

在距离为L2的位置上用百分表得读书分别为M1、M2,则平行度误差为:f ∥= 21L L |M1-M2| (2)水平位置。

将零件转位使之处于0º位置,使两心轴中心与平板等高,按上述方法测出0º位置的平行度误差。

根据以上测量结果,判断零件平行度要求是否合格。

图4 图53、圆跳动误差测量被测零件圆跳动公差要求如图6,测量方法如图7。

互换性与测量技术实验报告

互换性与测量技术实验报告

互换性与测量技术实验报告互换性与测量技术实验报告引言:在现代科学与技术领域,测量技术是一项至关重要的工作。

无论是在制造业、医疗领域还是科学研究中,准确的测量结果都是决策、判断和进一步研究的基础。

然而,测量技术中存在一个重要的概念,即互换性。

本实验旨在探讨互换性对测量结果的影响,并提出相应的解决方案。

实验设计:本次实验使用了一台电子天平和一组标准质量块。

首先,我们将天平调零,然后称量了每个质量块的重量。

在每次测量之前,我们都将质量块放在天平上,确保其与天平接触良好。

每个质量块的测量重复了五次,以获得更准确的结果。

实验结果:通过对实验数据的分析,我们发现了互换性对测量结果的影响。

尽管我们使用了同一台天平和相同的质量块,但在不同的测量中,质量块的重量存在微小的差异。

这表明互换性可能导致测量结果的不确定性。

讨论:互换性是指在相同条件下,不同测量之间的结果差异。

它可能由多种因素引起,包括仪器的精度、环境条件的变化以及操作员的技术水平等。

在测量技术中,互换性是一个不可忽视的问题,因为它直接影响到测量结果的准确性和可靠性。

为了解决互换性带来的问题,我们可以采取以下几种方法:1. 校准仪器:定期对测量仪器进行校准,以确保其准确度和稳定性。

校准应由专业人员进行,并使用标准样品进行比对。

2. 控制环境条件:在进行测量时,尽量保持环境条件的稳定,如温度、湿度等。

这可以减少外部因素对测量结果的影响。

3. 培训操作员:提高操作员的技术水平和操作规范性,以减少人为误差的可能性。

操作员应熟悉仪器的使用方法,并遵循正确的测量步骤。

4. 重复测量:进行多次测量,并计算平均值以提高结果的准确性。

多次测量可以减少随机误差的影响,提高测量结果的可靠性。

结论:互换性是测量技术中一个重要的概念,它对测量结果的准确性和可靠性有着直接的影响。

在实际应用中,我们应该意识到互换性的存在,并采取相应的措施来减少其对测量结果的影响。

通过校准仪器、控制环境条件、培训操作员和进行多次测量等方法,我们可以提高测量技术的精度和可靠性,为科学研究和工程应用提供更准确的数据支持。

《互换性与技术测量》实验教学课程标准

《互换性与技术测量》实验教学课程标准

《互换性与技术测量》实验教学课程标准一、课程简介课程类别:专业基础课适用专业:焊接技术及自动化专业、机械设计与制造、电气自动化、机电专业、冶金设备应用与维护、数控技术专业的高职学生。

实验教学总目标:《互换性与技术测量》课程是机械类专业必须掌握的一门重要的技术基础课,而《互换性与技术测量》课的实验是该课程重要的实践性环节,通过实验巩固《互换性与技术测量》课程的基本理论知识;了解有关测量技术知识和控制产品质量的基本方法,加强机械制造的质量观念。

三、各实验项目的实验目的及实验教学的内容和任务实验一:常用量规的使用(一)实验目的1.了解常用量规的基本原理和构造。

2.掌握常用量规的使用方法和读数方法。

(二)实验教学内容与任务1.进一步了解游标卡尺、外径千分尺、百分表或千分表和万能角度尺的基本原理和构造。

2.学习常用量规的使用方法。

3.学习常用量规的读数方法。

4.通过测量工件巩固常用量规的使用方法和读数方法掌握。

实验二:量块的认识和使用(一)实验目的1.认识量块。

2.熟悉量块的使用方法。

(二)实验教学内容与任务1.学习量块的概念,了解量块的功能、结构、构成及量块的标准知识等。

2.了解量块在使用中的注意事项。

3.学习量块的使用方法。

4.通过一些量规如外径千分尺或公法线千分尺,加深理解量块的测量特点。

实验三:测量轴的跳动误差(一)实验目的1.了解偏摆检查仪的构造。

2.掌握测量轴的跳动误差的方法。

3.加深理解轴的跳动误差的意义。

(二)实验教学内容与任务1.学习偏摆检查仪的构造,进一步掌握千分表的使用。

2.测量轴的端面圆跳动误差。

3.测量轴的径向圆跳动误差。

4.根据测量结果分析轴的跳动误差的意义。

实验四:轴、孔尺寸测量(一)实验目的1.了解外径千分尺和内径百分表的构造和测量原理。

2.掌握外径千分尺和内径百分表的测量方法。

3.加深对外径和内径尺寸测量特点的了解。

(二)实验教学内容与任务1.进一步学习外径千分尺和内径百分表的构造和测量原理。

互换性与技术测量实验报告

互换性与技术测量实验报告
互换性与技术测量 A (上)
实用立式光学比较仪测量轴径
实验报告
专业班级 姓名
一、被测零件(名称、编号、精度要求等)
学号
二、实验设备(仪器名、分度值、测量范围、示值范围、量块等级等)
三、测量记录与数据处 测量位置
A-A′
测量
B-B′
方向
A′-A
B′-B
指导教师签名:
-4-
实验二(3) 齿轮公法线长度偏差的测量
实验报告
专业班级
学号姓名
一、被测齿轮参数与精度要求
同组人
二、测量仪器(名称、分度值、测量范围)
三、测量记录与数据处理(单位:μm) 1.计算跨齿数及公法线公称长度
2.齿厚测量记录与齿厚偏差计算
序号(圆周均布位置)
1
2
3
4
5
6
测得值
齿厚偏差 四、测量结果及合格性判断
Ⅰ-Ⅰ


实 际 偏 差( m )
Ⅱ-Ⅱ

A
Ⅲ-Ⅲ
测量
B
B′
简图

ⅡⅢ
A′
四、测量结果及合格性判断 五、思考题解答 1、 用比较仪测量工件属于何种测量方法,有何特点?
合格性结论:合格
指导教师签名:
-2-
实验二(1) 齿轮径向跳动的测量
实验报告
专业班级 机设 181
一、被测齿轮参数与精度要求
学号姓名
五、思考题解答
合格性结论:
指导教师签名:
-5-
同组人
二、测量仪器(名称、分度值、测量范围)
三、测量记录与数据处理(单位:μm)

序读
读数

号数

互换性与技术测量课程实验

互换性与技术测量课程实验

互换性与技术测量课程实验第一节 表面粗糙度测量实验一、 实验目的1. 了解用光切显微镜和手持式粗糙度仪测量表面粗糙度的原理和方法。

2. 加深对表面粗糙度和微观不平度十点高度R Z 的理解。

3. 熟悉表面粗糙度R Z 、R a 、Rt 、R q 等参数并加强理解。

二、实验仪器及设备1.光切显微镜;2.手持式粗糙度仪 三、实验内容(一)用光切显微镜测量表面粗糙度R Z 的值微观不平度十点高R Z 是指在取样长度内,5个最大的轮廓峰高平均值与5个最大的轮廓谷深平均值之和。

图5—1为微观不平度十点高R Z 的示意图,表面粗糙度参数R Z 的计算公式如下,R Z =55151∑∑==+i vii pi y y式中: y pi —第i 个最大的轮廓峰高y vi —第i 个最大的轮廓谷深1.实验仪器介绍光切显微镜主要用于测量表面粗糙度参数R Z ,也可测量R y 。

测量范围为R Z 80~0.8um 。

图5—2为9j 型光切显微镜的外形图。

底座6上装有立柱5,显微镜主体通过横臂2与立柱联结。

转动升降螺母4可使横臂连同显微镜主体沿立柱上下移动,进行粗调焦,用紧定螺钉1将横臂固定在立柱上,手轮3可对显微镜进行微调焦。

2.实验测量原理光切显微镜是利用光切原理来测量表面粗糙度的,如图5—3所示,被测表面为P 1P 2阶梯表面,当一束平行光以45º方向投射至阶梯表面上时,就被折射成S1和S2两段,从垂直于光束的方向上就可在显微镜内看到S1和S2两段光带的放大像S'1和S'2。

同样,S1和S2之间的距离h也被放大为S'1和S'2之间的距离h'1。

通过测量与计算,可求得被测表面的阶梯高度h。

图5—4为光切显微镜的光学系统图。

由光源⑴发出的光经聚光镜⑵,狭缝⑶,物镜⑷以45o方向投射到被测工件表面上。

调整仪器使反射光束进入与投射光管垂直的观察光管内,经物镜⑸成像于目镜分划板G上,通过目镜可观察到凹凸不平的光带,如图5—5所示,光带边缘即工件表面上被照亮了的h 1的放大轮廓像h ',测量出h '并通过计算即可求得被测表面的不平度高度h 。

《互换性与技术测量》实验指导书

《互换性与技术测量》实验指导书

《互换性与技术测量》 实验指导书湘潭大学机械工程学院二零一零年三月目录实验一:用比较仪测量光滑极限量规--------------------------------3实验二:用内径指示表测内孔------------------------------------------8实验三:直线度误差测量---------------------------------------------10实验四:用双管显微镜测量表面粗糙度-----------------------------15实验五:用正弦尺测量圆锥度-----------------------------------------20实验六:三针法测量螺纹中径-----------------------------------------22实验七:齿轮公法线的测量---------------------------------------------25实验八:齿轮的齿距偏差和累积误差的测量------------------------282实验一、用比较仪测量光滑极限量规线性尺寸可以用相对测量法(比较测量法)进行测量。

相对测量常用的量仪有机械、光学、电气和气动比较仪等几种,本实验用立式光学比较仪测量外尺寸,用比较仪测量时,先用量块(或标准器)调整量仪示值零位,测量工件所得的示值为被测尺寸相对于量块尺寸的偏差。

一、实验目的"1.了解光学比较仪的结构并熟悉它们的示值零位调整方法和使用方法;2.熟悉量块的使用与维护方法。

二、实验仪器1.立式光学计;2.数显立式光学计。

三,实验原理立式光学比较仪也称立式光学计,是一种精度较高且结构不复杂的光学仪器,用于测量外尺寸。

图1-1为量仪外形图;量仪主要由底座12、立柱16、横臂14、直角形光管4和工作台10:等几部分组成。

量仪的光学系统安装在光管内,光学系统如图1-2所示。

光管工作时的测量原理是光学杠杆放大原理。

互换性与测量技术实验---轴径、孔径测量

互换性与测量技术实验---轴径、孔径测量

轴径、孔径测量一、实验目的1、正确掌握千分尺、内径百分表、游标卡尺、立式光学比较仪的正确使用方法;2、掌握对测量数据的处理方法;3、对比不同量具之间测量精度的区别。

二、实验仪器设备外径千分尺,内径百分表,游标卡尺,立式光学比较仪,轴、轴套。

二、实验原理分度值的大小反映仪器的精密程度。

一般来说,分度值越小,仪器越精密,仪器本身的“允许误差”(尺寸偏差)相应也越小。

学习使用这些仪器,要注意掌握它们的构造特点、规格性能、读数原理、使用方法以及维护知识等,并注意要以后的实验中恰当地选择使用。

1.游标卡尺游标卡尺,是一种测量长度、内外径、深度的量具。

游标卡尺由主尺和附在主尺上能滑动的游标两部分构成。

主尺一般以毫米为单位,而游标上则有10、20或50个分格,根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等,游标为10分度的有9mm(0.1mm),20分度的有19mm(0.05mm),50分度的有49mm(0.02mm)。

游标卡尺的主尺和游标上有两副活动量爪,分别是内测量爪和外测量爪,内测量爪通常用来测量内径,外测量爪通常用来测量长度和外径。

读数L=对准前刻度+游标上第n条刻度线与尺身的刻度线对齐*(乘以)分度值2.螺旋测微器(千分尺)螺旋测微器(micrometer),又称千分尺、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。

它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。

螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量,最终测量结果需要估读一位小数。

3.内径百分表百分表是一种精度较高的比较量具,它只能测出相对数值,不能测绝对值。

主要用于校正零件的安装位置,检验零件的形状精度和相互位置精度,以及测量零件的内径等。

互换性与技术测量,实验报告

互换性与技术测量,实验报告

互换性与技术测量,实验报告互换性与技术测量实验报告1互换性与技术测量实验报告实验一:立式光学计测量轴径一、测量器具说明立式光学计也称立式光学比较仪,是一种精度较高且结构简单的光学仪器,适用于外尺寸的精密测量。

图1-1是仪器的外形图。

二、实验步骤1、选择测头(本实验应选择刀口形测头),并把它安装在测杆上。

2、根据被测工件的基本尺寸或某一极限尺寸选取几块量块,并把它们研合成量块组。

3、接通电源,将量块组放在工作台上,对仪器进行粗调节、细调节和微调节,使零刻线与固定指示线重合。

调节后的目镜视场如图1-4所示。

按动测杆提升器数次,检查测杆的稳定性。

4,抬起测头,取下量块,换上被测工件,放下测头使与工件表面接触,在工件表面均布的三个横截面上分别对工件进行测量10~15次(每个截面测3~5次),见图1-5。

记录每次的测量读数。

5、对测量结果进行数据处理,并判断工件的合格性。

1实验二:直线度误差的测量2实验三:齿轮径向跳动测量一、仪器说明在偏摆检查仪上测量齿圈径向跳动(ΔFr)图4-2 齿圈径向跳动二、实验步骤:1.根据模数m,确定测量棒直径d=1.68m。

2.将被测齿轮套在测量心轴上,心轴装在仪器的顶尖间,然后调整好百分表的测量位置。

3.测量时,每测一齿,须抬起百分表测量杆,将测量棒换位,依次逐步测量一圈,将测得的数值记入报告中。

4.取其跳动量的最大最小两个数值,两数之差即为ΔFr。

4篇二:互换性与测量技术实验报告第一章概述互换性与测量技术实验是理论教学的重要环节和组成部分,通过实验使学生加深对公差与配合一些基本概念和知识的学习和掌握。

培养学生理论联系实际的能力和实际操作的技能,提高学生的综合素质。

本系列实验共有尺寸精度测量和形位误差的测量两部分其中形径误差的测量由于涉及到该课程几个章节的主要内容而作为综合性实验课。

尺寸精度的测量作为公差与配合的测量基础,它与形状误差的测量基本构成了该门课程所涉及的主要基本理论知识。

《互换性与技术测量》实验指导书(三个实验)

《互换性与技术测量》实验指导书(三个实验)

实验一直线度误差的测量一、实验目的掌握按“节距法”测量直线度误差的方法。

二、测量原理及数据处理对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。

本实验用合像水平仪。

具体测量方法如下:将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。

将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。

然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。

如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。

最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。

[例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。

也可用作图法求出直线度误差,如图2。

作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。

测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3)A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格);Y i — 前后两测量点(i -1,i )的高度差;h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然1'in i i h y ==∑'i h — 在测量点A i 处,导轨的倾斜量(μ); Δh i — 测量点A i 对导轨首末两端点连线(A 0,A n )的直线度误差(μ)(显然Δh 0=0,Δh n =0);l — 桥板跨距,即各测量段长度l =L /n (mm),L ——导轨全长(mm ),n ——测量段数; c —水平仪的分度值0.01mm/米·格。

互换性与技术测量实验报告

互换性与技术测量实验报告

互换性与技术测量实验报告实验名称:直径尺寸测量——用比较仪测量轴径(实验1-1)指导地点实验日期指导教师班级小组成员报告人一、实验目的了解直径尺寸的测量方法,学会用机械比较仪进行间接测量尺寸,并具有处理测量误差和表达检测结果的能力。

二、实验设备及用具实验设备机械比较仪实验用具量块、被测工件(阶台轴)三、实验数据与测试结果仪器名称分度值(mm)示值范围(mm)测量范围(mm)被测零件名称图样上给出的尺寸(mm)验收用极限尺寸(mm)最大最小测量截面Ⅰ—ⅠⅢ—Ⅲ测量方向A—A` B—B` A—A` B—B`测量数据(实际偏差)(um)1 2 平均实际尺寸(mm)合格性结论理由成绩批阅人四、思考题1、用机械比较仪测量轴属于什么测量法?2、在同一位置作二次测量,为什么测得的值会不一样?五、体会与建议互换性与技术测量实验报告实验名称:直径尺寸测量——用内径百分表测量孔径(实验1-2)指导地点实验日期指导教师班级小组成员报告人一、实验目的了解内径尺寸的测量方法,学会用内径百分表进行间接测量尺寸,并具有处理测量误差和表达检测结果的能力。

二、实验设备及用具实验设备内径百分表实验用具内径百分表、千分尺、被测工件(轴套)三、实验数据与测试结果仪器名称分度值(mm)示值范围(mm)测量范围(mm)被测零件名称图样上给出的尺寸(mm)验收用极限尺寸(mm)最大最小测量截面Ⅰ—ⅠⅢ—Ⅲ测量方向A—A` B—B` A—A` B—B`测量数据(实际偏差)(um)1 2 平均实际尺寸(mm)合格性结论理由成绩批阅人四、思考题1、用内径百分表测量孔是否必须调零?调零位时为何要使指示表有一定的内压缩量?2、测量时,应注意些什么?为什么要摆动内径指示表?五、体会与建议互换性与技术测量实验报告实验名称:形位误差的测量——箱体孔轴线平行度误差测量(实验2-1)指导地点实验日期指导教师班级小组成员报告人一、实验目的了解形位误差的检测和基准的体现方法,掌握箱体孔轴线平行度误差的测量方法。

《互换性与测量技术》教学教案(全)

《互换性与测量技术》教学教案(全)

《互换性与测量技术》教学教案(第一部分)第一章:互换性概述1.1 教学目标1. 了解互换性的概念及其重要性2. 掌握互换性的基本特性3. 理解互换性与标准化、系列化的关系1.2 教学内容1. 互换性的概念与定义2. 互换性的重要性3. 互换性的基本特性4. 互换性与标准化、系列化的关系1.3 教学方法1. 讲授法:讲解互换性的概念、特性和重要性2. 案例分析法:分析实际案例,理解互换性的应用1.4 教学设计1. 引入话题:讨论产品的通用性和互换性2. 讲解互换性的概念与定义3. 分析互换性的重要性4. 讲解互换性的基本特性5. 探讨互换性与标准化、系列化的关系1.5 教学评估1. 课堂问答:检查学生对互换性概念的理解2. 案例分析:评估学生对互换性应用的掌握第二章:测量技术基础2.1 教学目标1. 掌握测量的基本概念2. 了解测量技术的基本原理3. 熟悉测量工具和仪器2.2 教学内容1. 测量的概念与分类2. 测量技术的基本原理3. 测量工具和仪器的基本知识2.3 教学方法1. 讲授法:讲解测量的概念、分类和基本原理2. 实物演示法:展示测量工具和仪器,加深学生对测量的认识2.4 教学设计1. 引入话题:讨论测量在日常生活中的应用2. 讲解测量的概念与分类3. 讲解测量技术的基本原理4. 介绍测量工具和仪器的基本知识2.5 教学评估1. 课堂问答:检查学生对测量概念的理解2. 实物演示:评估学生对测量工具和仪器的认识第三章:尺寸测量3.1 教学目标1. 掌握常见尺寸测量方法2. 了解尺寸测量误差及其处理方法3. 熟悉尺寸测量工具和仪器3.2 教学内容1. 常见尺寸测量方法2. 尺寸测量误差及其处理方法3. 尺寸测量工具和仪器的基本知识3.3 教学方法1. 讲授法:讲解尺寸测量的方法和误差处理2. 实验演示法:展示尺寸测量过程,介绍测量工具和仪器3.4 教学设计1. 引入话题:讨论尺寸测量在制造业中的应用2. 讲解常见尺寸测量方法3. 讲解尺寸测量误差及其处理方法4. 介绍尺寸测量工具和仪器的基本知识3.5 教学评估1. 课堂问答:检查学生对尺寸测量方法的理解2. 实验演示:评估学生对尺寸测量过程的掌握第四章:形状和位置测量4.1 教学目标1. 掌握常见形状和位置测量方法2. 了解形状和位置测量误差及其处理方法3. 熟悉形状和位置测量工具和仪器4.2 教学内容1. 常见形状和位置测量方法2. 形状和位置测量误差及其处理方法3. 形状和位置测量工具和仪器的基本知识4.3 教学方法1. 讲授法:讲解形状和位置测量的方法和误差处理2. 实验演示法:展示形状和位置测量过程,介绍测量工具和仪器4.4 教学设计1. 引入话题:讨论形状和位置测量在制造业中的应用2. 讲解常见形状和位置测量方法3. 讲解形状和位置测量误差及其处理方法4. 介绍形状和位置测量工具和仪器的基本知识4.5 教学评估1. 课堂问答:检查学生对形状和位置测量方法的理解2. 实验演示:评估学生对形状和位置测量过程的掌握第五章:测量误差与数据处理5.1 教学目标1. 掌握测量误差的基本概念2. 了解测量数据处理的方法3. 熟悉测量误差和数据处理在实际测量中的应用1. 测量误差的基本概念2. 测量数据处理《互换性与测量技术》教学教案(第二部分)第六章:测量误差的基本概念(续)6.1 教学目标1. 理解系统误差和偶然误差的区别2. 学会计算测量误差3. 了解减小测量误差的方法6.2 教学内容1. 系统误差和偶然误差的定义和特点2. 测量误差的计算方法3. 减小测量误差的方法和技术6.3 教学方法1. 讲授法:讲解系统误差和偶然误差的概念2. 计算演示法:演示如何计算测量误差3. 案例分析法:分析实际测量中减小误差的方法6.4 教学设计1. 复习测量误差的基本概念2. 讲解系统误差和偶然误差的定义和特点3. 演示如何计算测量误差4. 分析实际测量中减小误差的方法1. 课堂问答:检查学生对系统误差和偶然误差的理解2. 计算练习:评估学生计算测量误差的能力第七章:测量数据处理的方法7.1 教学目标1. 掌握测量数据的采集和记录方法2. 学会使用最小二乘法拟合数据3. 了解测量数据的统计分析方法7.2 教学内容1. 测量数据的采集和记录方法2. 最小二乘法的基本原理和应用3. 测量数据的统计分析方法7.3 教学方法1. 讲授法:讲解数据采集和记录的重要性2. 计算演示法:演示如何使用最小二乘法拟合数据3. 案例分析法:分析实际测量数据处理的例子7.4 教学设计1. 复习测量数据处理的重要性2. 讲解测量数据的采集和记录方法3. 演示如何使用最小二乘法拟合数据4. 分析实际测量数据处理的例子7.5 教学评估1. 课堂问答:检查学生对数据采集和记录的理解2. 计算练习:评估学生使用最小二乘法拟合数据的能力第八章:测量不确定度评定8.1 教学目标1. 理解测量不确定度的概念2. 学会计算测量不确定度3. 了解测量不确定度在实际测量中的应用8.2 教学内容1. 测量不确定度的定义和分类2. 测量不确定度的计算方法3. 测量不确定度在实际测量中的应用8.3 教学方法1. 讲授法:讲解测量不确定度的概念和计算方法2. 案例分析法:分析实际测量中测量不确定度的应用8.4 教学设计1. 复习测量不确定度的概念2. 讲解测量不确定度的定义和分类3. 演示如何计算测量不确定度4. 分析实际测量中测量不确定度的应用8.5 教学评估1. 课堂问答:检查学生对测量不确定度的理解2. 计算练习:评估学生计算测量不确定度的能力第九章:互换性在产品设计中的应用9.1 教学目标1. 理解互换性在产品设计中的重要性2. 学会应用互换性原理进行产品设计3. 了解互换性在制造业中的应用案例9.2 教学内容1. 互换性在产品设计中的重要性2. 互换性原理在产品设计中的应用方法3. 互换性在制造业中的应用案例9.3 教学方法1. 讲授法:讲解互换性在产品设计中的重要性2. 案例分析法:分析互换性在制造业中的应用案例9.4 教学设计1. 复习互换性的概念和特性2. 讲解互换性在产品设计中的重要性3. 演示互换性原理在产品设计中的应用方法4. 分析互换性在制造业中的应用案例9.5 教学评估1. 课堂问答:检查学生对互换性在产品设计中重要性的理解2. 案例分析:评估学生分析互换性在制造业中应用案例的能力第十章:互换性与测量技术的发展趋势10.1 教学目标1. 了解互换性和测量技术的发展趋势2. 学会分析新兴技术对互换性和测量技术的影响3. 熟悉互换性和测量技术重点和难点解析重点环节1:互换性的概念与定义解析:理解互换性的定义是学习本课程的基础,需要学生清晰地理解互换性在产品设计和制造业中的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 外螺纹中径的测量一、实验目的熟悉测量外螺纹中径的原理和方法。

二、 实验内容1. 用螺纹千分尺测量外螺纹中径。

2. 用三针测量外螺纹中径。

三、测量原理及计量器具说明1. 用螺纹千分尺测量外螺纹中径图1为螺纹千分尺的外形图。

它的构造与外径千分尺基本相同,只是在测量砧和测量头上装有特殊的测量头1和2,用它来直接测量外螺纹的中径。

螺纹千分尺的分度值为0.01毫M 。

测量前,用尺寸样板3来调整零位。

每对测量头只能测量一定螺距范围内的螺纹,使用时根据被测螺纹的螺距大小,按螺纹千分尺附表来选择,测量时由螺纹千分尺直接读出螺纹中径的实际尺寸。

图 12. 用三针测量外螺纹中径图2为用三针测量外螺纹中径的原理图,这是一种间接测量螺纹中径的方法。

测量时,将三根精度很高、直径相同的量针放在被测螺纹的牙凹中,用测量外尺寸的计量器具如千分尺、机械比较仪、光较仪、测长仪等测量出尺寸M 。

再根据被测螺纹的螺距p 、牙形半角2α和量针直径m d ,计算出螺纹中径2d 。

由图2可知: )(222CD AD M AC M d --=-=而 2sin 22αmm d d BD AB AD +=+==⎪⎪⎪⎪⎭⎫⎝⎛+2sin112αm d42αPctg CD =将AD 和CD 值代入上式,得:222sin 112ααctg Pd M d m +⎪⎪⎪⎪⎭⎫⎝⎛+-=对于公制螺纹,060=α,则P d M d 866.032+-=图 2 为了减少螺纹牙形半角偏差对测量结果的影响,应选择合适的量针直径,该量针与螺纹牙形的切点恰好位于螺纹中径处。

此时所选择的量针直径m d 为最佳量针直径。

由图3可知:2cos2αP d m =对于公制螺纹,060=α,则P d m 577.0=在实际工作中,如果成套的三针中没有所需的最佳量针直径时,可选择与最佳量针直径相近的三针来测量。

量针的精度分成0级和1级两种:0级用于测量中径公差为4—8μm 的螺纹塞规;1级用于测量中径公差大于8μm 的螺纹塞规或螺纹工件。

测量M 值所用的计量器具的种类很多,通常根据工件的精度要求来选择。

本实验采用杠千分尺来测量(见图4)。

杠杆千分尺的测量范围有0—25,25—50,50—75,75—100mm图 3 图 4四种,分度值为0.002mm 。

它有一个活动量砧1,其移动量由指示表7读出。

测量前将尺体5装在尺座上,然后校对千分尺的零位,使刻度套筒管3、微分筒4和指示表7的示值都分别对准零位。

测量时,当被测螺纹放入或退出两个量砧之间时,必须按下右侧的按钮8使量砧离开,以减少量砧的磨损。

在指示表7上装有两个指标6,用来确定被测螺纹中径上、下偏差的位置,以提高测量效率。

四、测量步骤1. 用螺纹千分尺测量外螺纹中径(1)根据被测螺纹的螺距,选取一对测量头。

(2)擦净仪器和被测螺纹,校正螺纹千分尺零位。

(3)将被测螺纹放入两测量头之间,找正中径部位。

(4)分别在同一截面相互垂直的两个方向上测量螺纹中径。

取它们的平均值作为螺纹的实际中径,然后判断被测螺纹中径的适用性。

2. 用三针测量外螺纹中径(1)根据被测螺纹的螺距,计算并选择最佳量针直径dm。

(2)在尺座上安装好杠杆千分尺和三针。

(3)擦净仪器和被测螺纹,校正仪器零位。

(4)将三针放入螺纹牙凹中,旋转杠杆千分尺的微分筒4,使两端测量头1、2与三针接触,然后读出尺寸M的数值。

(5)在同一截面相互垂直的两个方向上测出尺寸M,并按平均值用公式计算螺纹中径,然后判断螺纹中径的适用性。

思考题1. 用三针测量螺纹中径时,有哪些测量误差?2. 用三针测得的中径是否作用中径?3. 用三针测量螺纹中径的方法属于哪一种测量方法?为什么要选用最佳量针直径?4. 用杠杆千分尺能否进行相对测量?相对测量法和绝对测量法比较,哪种测量方法精度较高?为什么?实验一外螺纹中径测量实验二公法线平均长度偏差与公法线长度变动测量一、实验目的1. 掌握测量齿轮公法线长度的方法。

2. 加深理解齿轮公法线长度及其偏差的定义。

二、实验内容用公法线指示卡规/公法线千分尺等测量齿轮公法线长度偏差。

三、测量原理及计量器具说明公法线长度偏差是指在齿轮一周内,实际公法线长度W a与公称公法线长度W之差,见图1。

公法线长度偏差是齿厚偏差的函数,能反映齿轮副侧隙的大小,可规定极限偏差(上偏差E bns、下偏差E bni)来控制公法线长度偏差。

对外齿轮W+E≤Wα≤W+E bnsbni对内齿轮W-E≤Wα≤W-E bnsbni图 1公法线长度偏差的测量方法与前面所介绍的公法线长度变动的测量相同,在此不再赘述。

应该注意的是,测量公法线长度偏差时,需先计算被测齿轮公法线长度的公称值W,然后按W值组合量块,用以调整两量爪之间的距离。

沿齿圈进行测量,所测公法线长度与公称值之差,即为公法线长度偏差。

公法线即基圆的切线。

渐开线圆柱齿轮的公法线长度W是指跨越k个齿的两异侧齿廓的平行切线间的距离,理想状态下公法线应与基圆相切。

公法线长度变动是指在齿轮一周范围内,实际公法线长度最大值与最小值之差,如图2所示。

公法线长度变动ΔF w 一般可用公法线千分尺或万能测齿仪上进行测量。

公法线千分尺是用相互平行的圆盘测头,插入齿槽中进行公法线长度变动的测量(图 3),ΔF w =W max -W min 。

若被测齿轮轮齿分布疏密不均,则实际公法线的长度就会有变动。

但公法线长度变动的测量不是以齿轮基准孔轴线为基准,它反映齿轮加工时的切向误差,不能反映齿轮的径向误差,可作为影响传递运动准确性指标中属于切向性质的单项性指标。

图 2图 3必须注意,测量时应使量具的量爪测量面与轮齿的齿高中部接触。

为此,测量所跨的齿数k 应按下式计算:k =9z+0.5四、测量步骤1. 按下式计算直齿圆柱齿轮公法线长度W ;W =[]f f f m Zinv n m αξαπαsin 2)5.0(cos ++-式中 m ——被测齿轮的模数(mm );fα——齿形角;Z ——被测齿轮齿数;n ——跨齿数(n ≈5.0+Z fπα,取整数)。

当fα=200,变位系数ξ=0时,则[]Z n m W 014.0)12(476.1+-=其中5.0111.0+=Z nW 和n 值也可以从表1查出。

2. 按公法线长度的公称尺寸组合量块。

3. 调整仪器。

用公法线千分尺测量时,先用校对量块检查其零位。

然后直接测量。

用组合好的量块组调节固定卡脚3与活动卡脚6之间的距离,使指示表10的指针压缩一圈后再对零。

然后压紧按钮8,使活动卡脚退开,取下量块组。

图44. 在公法线卡规的两个卡脚中卡入齿轮,沿齿圈的不同方位测量4—5个以上的值(最好测量全齿圈值)。

测量时应轻轻摆动卡规,按指针移动的转折点(最小值)进行读数。

读数的值就是公法线长度偏差。

5. 将所有的读数值平均,它们的平均值即为公法线长度偏差E w 。

按齿轮图样标注的技术要求,确定公法线长度上偏差E bns 、和下偏差E bni ,并判断被测齿轮的适用性。

6. 公法线长度变动的测量。

将公法线千分尺粗调到计算出的公称值后,在齿宽中部截面上,依次沿整个圆周进行测量,从中选取最大读数与最小读数之差即可。

思 考 题1. 测量公法线长度是否需要先用量块组将公法线卡规的指示表调整零位。

2. 测量公法线长度偏差,取平均值的原因何在?表1 m =1 、020=f α的规范直齿圆柱齿轮的公法线长度注:对于其它模数的齿轮,则将表中的数值乘以模数。

实验二公法线平均长度偏差与公法线长度变动测量实验三齿厚偏差测量一、实验目的1.掌握测量齿轮齿厚的方法。

2.加深理解齿轮齿厚偏差的定义。

二、实验内容用齿轮游标尺测量齿轮的齿厚偏差。

三、测量原理及计量器具说明齿厚偏差△E s 是指在分度圆柱面上,法向齿厚的实际值与公称值之差。

图1为测量齿厚偏差的齿轮游标尺。

它是由两套相互垂直的游标尺组成。

垂直游标尺用于控制测量部位(分度圆至齿顶圆)的弦齿高h f ,水平游标尺用于测量所测部位(分度圆)的弦齿厚实际)(f S 。

齿轮游标尺的分度值为0.02mm ,其原理和读数方法与普通游标尺相同。

图1 图2用齿轮游标尺测量齿厚偏差,是以齿顶圆为基础。

当齿顶圆直径为公称值时,直齿圆柱齿轮分度圆处的弦齿高f h 和弦齿厚f S 由图2可得:f h = h '+x =⎥⎦⎤⎢⎣⎡-+Z Zm m 090cos 12f S =Z Zm 090sin式中 m ——齿轮模数(mm ); Z ——齿轮齿数。

当齿轮为变位齿轮且齿顶圆直径有误差时,分度圆处的弦齿高f h 和弦齿厚f S 应按下式计算:f h =)()24cos(12'--⎥⎦⎤⎢⎣⎡+-+e e f R R Ztg Zm m αξπ f S =⎥⎦⎤⎢⎣⎡+Z Zm f2sin 4sin αξπ 式中 ξ——移距系数;f α——齿形角;e R ——齿顶圆半径的公称值;'e R ——齿顶圆半径的实际值。

四、测量步骤1. 用外径千分尺测量齿顶圆的实际直径。

2. 计算分度圆处弦齿高f h 和弦齿厚f S (可从表1查出)。

3. 按f h 值调整齿轮游标尺的垂直游标尺。

4. 将齿轮游标尺置于被测齿轮上,使垂直游标尺的高度尺与齿顶相接触。

然后,移动水平游标尺的卡脚,使卡脚靠紧齿廓。

从水平游标尺上读出弦齿厚的实际尺寸(用透光法判断接触情况)。

5. 分别在圆周上间隔相同的几个轮齿上进行测量。

6. 按齿轮图样标注的技术要求,确定齿厚上偏差E sns 和下偏差E sni ,判断被测齿厚的适用性。

思 考 题1. 测量齿轮齿厚偏差的目的是什么?2. 齿厚极限偏差(E sns 、E sni )和公法线长度极限偏差(E bns 、E bni )有何关系?3. 齿厚的测量精度与哪些因素有关?表1 m =1时分度圆弦齿高和弦齿厚的数值实验三齿厚偏差测量实验四合象水平仪测量直线度一、实验目的1. 掌握用水平仪测量直线度误差的方法及数据处理。

2. 加深对直线度误差定义的理解。

二、实验内容用合象水平仪或框式水平仪测量直线度误差。

三、测量原理及计量器具说明机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行检测。

常用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等。

使用这类器具的共同特点是测定微小角度变化。

由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜角度就要发生相应的变化。

如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。

通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差。

由于合象水平仪的测量准确度高、测量范围大(±10 mm/m)、测量效率高、价格便宜、携带方便等优点,故在检测工作中得到了广泛的采用。

相关文档
最新文档